UCSC-SOE-09-12: Nonparametric Bayesian models through probit stick-breaking processes

Abel Rodriguez & David B. Dunson
03/23/2009 09:00 AM
Applied Mathematics & Statistics
We describe a novel class of Bayesian nonparametric priors based on stick-breaking constructions where the weights of the process are constructed as probit transformations of normal random variables. We show that these priors are extremely flexible, allowing us to generate a great variety of models while preserving computational simplicity. Particular emphasis is placed on the construction of rich temporal and spatial processes, which are applied to two problems in finance and
ecology.

UCSC-SOE-09-12

Error | Technical Reports

Error

The website encountered an unexpected error. Please try again later.