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Summary. We describe a novel class of Bayesian nonparametric priors based on stick-
breaking constructions where the weights of the process are constructed as probit trans-
formations of normal random variables. We show that these priors are extremely flexible,
allowing us to generate a great variety of models while preserving computational sim-
plicity. Particular emphasis is placed on the construction of rich temporal and spatial
processes, which are applied to two problems in finance and ecology.
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1. Introduction

Bayesian nonparametric (BNP) mixture models have become extremely popular in the last
few years, with applications in fields as diverse as finance (Kacperczyk et al., 2003; Rodriguez
& ter Horst, 2009), econometrics (Chib & Hamilton, 2002; Hirano, 2002), image analysis
(Han et al., 2008; Orbanz & Buhlmann, 2008), genetics (Medvedovic & Sivaganesan, 2002;
Dunson et al., 2008), medicine (Kottas et al., 2002) and auditing (Laws & O’Hagan, 2002).
In the simple case where we are interested in estimating a single distribution from an inde-
pendent and identically distributed sample y1, . .., y,, nonparametric mixtures assume that
observations arise from a convolution

4y ~ / K(1$)G(dd)

where k(-|¢) is a given parametric kernel indexed by ¢, and G is a mixing distribution, which
is assigned a flexible prior. For example, assuming that G follows a Dirichlet process (DP)
prior (Ferguson, 1973; Blackwell & MacQueen, 1973; Ferguson, 1974; Sethuraman, 1994)
leads to the well known Dirichlet process mixture (DPM) models (Lo, 1984; Escobar, 1994;
Escobar & West, 1995).
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Many recent developments in BNP mixture models have concentrated on models for col-
lections of distributions defined on an appropriate space S (e.g., S C R? for spatial processes
and S C N for temporal processes observed in discrete time). Unlike traditional paramet-
ric models, where only a limited number of the features of the distribution are allowed to
change with covariates, these models provide additional flexibility by allowing the mixing
distribution G to change with s € S while inducing dependence among the members of the
collection. A number of different approaches have been developed with this goal in mind,
including those based on mixtures of independent processes (Miiller et al., 2004; Dunson,
2006; Griffin & Steel, 2006a; Dunson et al., 2007), and approaches that induce dependence
in the weights and/or atoms of different G5 (MacEachern, 1999, 2000; Delorio et al., 2004;
Gelfand et al., 2005; Teh et al., 2006; Griffin & Steel, 2006b; Duan et al., 2007; Rodriguez
& Ter Horst, 2008; Rodriguez et al., 2008). In this paper we pursue this last direction to
construct dependent nonparametric priors.

The design of BNP models requires a delicate balance between the need for simple and
computationally efficient algorithms and the need for priors with large enough support. Intro-
ducing dependence only in the atoms of G'g, which has been an extremely popular approach,
typically leads to relatively simple computational algorithms but does not afford sufficient
flexibility. For example, MacEachern (2000) shows that constant-weight models cannot ac-
commodate collections of independent distributions. On the other hand, inducing complex
dependence structure in the weights (e.g., periodicities) can be a hard task and typically leads
to complex and inefficient computational algorithms, limiting the applicability of the models.

This paper proposes a novel approach to construct rich and flexible families of nonpara-
metric priors that allow for simple computational algorithms. Our approach, which we call
a probit stick-breaking process (PSBP), uses a stick-breaking construction similar to the one
underlying the Dirichlet process (Sethuraman, 1994; Ongaro & Cattaneo, 2004), but replaces
the characteristic beta distribution in the definition of the sticks by probit transformations of
normal random variables. Therefore, the resulting construction for the weights of the process
is reminiscent of the continuation ratio probit model popular in survival analysis (Agresti,
1990; Albert & Chib, 2001). Although we emphasize the construction of temporal and spatial
models, this strategy is extremely flexible and allows us to create all sorts of nonparametric
models, such as nonparametric random effects and ANOVA models, as well as nonparamet-
ric regression models. Indeed, a similar approach has been used to create nonparametric
factor models and nonparametric variable selection procedures in Rodriguez et al. (2009) and
Chung & Dunson (2009)

The remaining of the paper is organized as follows: After a brief review of the literature
on stick-breaking priors, Section 2 describes the probit stick-breaking processes for a single
probability measure and studies its theoretical properties. The PSBP is extended in Section
3 to model collections of distributions. This section also presents some specific examples,
including temporal and spatial models for distributions. Section 4 discusses efficient compu-
tational implementation for PSBP models using collapsed samplers. In Section 5, we present
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two illustrations where the probit stick-breaking process is used to construct flexible nonpara-
metric spatial and temporal models in the context of applications to finance and environmental
sciences. Finally, Section 6 presents our conclusions and future research directions.

2. Stick-breaking priors for discrete distributions

Let (X, B) be a complete and separable metric space (typically X = R™ and B are the Borel
sets on R™), and let G € G be its associated probability measure. G follows a stick-breaking
prior with centering measure G and shape measure Hy, Ho, ... if and only if it admits a
representation of the form:

L
G()=>_ wde,(") (1)
=1

where the atoms {0;}%_, are independent and identically distributed from G and the stick-
breaking weights are defined w; = w; [], (1 — u,), where the stick-breaking ratios are
independently distributed u; ~ H; for I < L and u;, = 1. The number of atoms L can
be finite (either known or unknown) or infinite. For example, taking L. = oo, and having
u; ~ Beta(l —a,b+la) for0 < a < 1and b > —a yields the two-parameter Poisson-
Dirichlet Process, also known as the Pitman-Yor Process (Ishwaran & James, 2001), with
the choice @ = 0 and b = 7 resulting in the Dirichlet Process (DP) (Ferguson, 1973, 1974;
Sethuraman, 1994).

The use of beta random variables to define stick-breaking priors is customary because it
endows the process with some interesting and useful properties. For example, Pitman-Yor
processes can be characterized by a generalized P6lya urn (Pitman, 1995, 1996; Ishwaran
& James, 2001), which has some computational advantages. Although having a predictive
rule for the process is an appealing property, we argue in this paper that other distributions
on the stick-breaking weights can be used to create very flexible nonparametric priors while
preserving computational simplicity.

In the sequel, instead of using beta random variables, we will concentrate on stick-
breaking weights constructed as

u = P(ay) oy ~ N(p, 0%)

where ®(-) denotes the cumulative distribution function for the standard normal distribution.
Setting = 0 and o = 1 trivially leads to u; ~ Uni[0, 1] (and therefore to a DP with precision
parameter 7 = 1) while different mean parameters produce distributions for u; that are right
skewed (if © < 0) or left skewed (if © > 0). For a finite L, the construction of the weights
ensures that Eloil w; = 1. When L = o0, it is easy to check that

Z E(log(1 —w;)) = —o0

=1
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Fig. 1. Random realizations of a probit stick-breaking process with a standard Gaussian
centering measure (dashed line) with o = 1. The two plots demonstrate the effect of the
precision parameter p on the realizations.

and therefore ) ;- w; = 1 almost surely (see Appendix A). Similarly, for any measurable
set B € B the first and second moments are given by

E(G(B)) = Go(B)

Var(G(B)) = Go(B)(1 — Go(B))Bs {

1-(1-26 +52)L}
261 — B2

where 31 = E(w;) = ®(u/V1+ 02) and B2 = E(u?) = Pr(Ty > 0,75 > 0), with (T3, T5)
following a joint bivariate normal distribution such that E(7;) = pu, Var(T;) = 1 + o2
and Cov(Ty,T) = o? (see Appendix A). Therefore, we can interpret G as the centering
measure and g and o2 as controlling the variance of the sampled distributions around the
mean Gy. Indeed, note that, since 1 — 25 + 32 < 1, then limy, .o, V(G(B)) = Go(B)(1 —
Go(B)B2/(261 — B2). Also, note that Var(G(B)) is increasing in p, and as u — oo the
random distribution G’ becomes a point mass at a random location @ almost surely. Figure 1
serves to illustrate the properties just discussed.

The structure of the stick-breaking weights is reminiscent of the continuation ratio probit
models used in discrete-time survival analysis (Agresti, 1990; Albert & Chib, 2001). In this
setting, the stick-breaking weight w; represents the hazard of an individual “dying” at time [.
Unlike the Dirichlet process, the probit stick-breaking prior does not form a conjugate family



Nonparametric Bayesian models through probit stick-breaking processes 5

on the space of probability measures, in the sense that the posterior distribution for G is not
a probit stick-breaking distribution. However this is not an obstacle for computation (see
Section 4).

Since a distribution G sampled from a PSBP will be discrete almost surely, a sequence
of values sampled from G has a positive probability of showing ties. In a PSBP mixture,
the pattern of these ties in the parameters induces a partition of the observations into groups.
Therefore, when the PSBP is used for clustering purposes it is important to understand the
structure of the partitions generated by the model. In particular, we are interested in how the
expected number clusters (corresponding to the distinct number of values in a sample from
(3) grows as the sample size n grows, and on how uniformly are the observations assigned to
the clusters. For non-atomic centering measures, these are controlled exclusively by the pre-
cision parameters p and o. The top panel of Figure 2 shows the expected number of groups
against the logarithm of the number of observations for ¢ = 1 and different values of y, and
compares the clustering properties of the PSBP against the Dirichlet process. These expected
values were approximated using a Monte Carlo method that involves retrospective sampling
(Roberts & Papaspiliopoulos, 2008). In order to simplify interpretation, we compare pro-
cesses with the same value of 5, = E(u;) (remember that for the DP, E(w;) = 1/(1 + 1),
while for the PSBP E(u;) = ®(u/v'1+ 02)). In first place, we note that the rate of growth
of the number of clusters with the sample size in the probit stick-breaking process is loga-
rithmic, just as in the Dirichlet process. Also, since the processes are equivalent for 5 = 0.5,
the curves agree. However, the distribution of the number of clusters under the probit stick-
breaking process seems to be more right (left) skewed for 5 > 0.5 (6 < 0.5). In any case,
the differences are small, even for sample sizes of about 2000 observations. This pattern is
similar for values of o different from 1.

The bottom panel of Figure 2 shows curves relating the expected number of clusters to
the expected size of the largest cluster, for a sample of n = 200 observations. Each curve
corresponds to a different value of o, while points on the curve are generated by changing
1 between —1 and 1. This plot hints at the different roles p and o play in controlling the
clustering structure of the model: for small o, the size of the largest cluster declines more
rapidly with a decreasing value of p, and hence an increasing expected number of clusters,
than for larger values of o. Indeed, very large values of ¢ tend to induce a single very large
cluster accompanied by many smaller clusters.

In the case of finite PSBP models where L < oo, it is important to verify that the behavior
of model is in some sense consistent as the number of components grows. In particular we
would like to check whether, as L. — oo, the finite model converges to the infinite process.
This is important both for computational reasons (as finite truncations can provide a simple
algorithm for model fitting) and for the robustness of the model (if there is inconsistency, then
the model will typically be sensitive to the choice of L). As Ishwaran & James (2001) point
out, this property cannot be taken for granted and must be checked.

The following result shows that, for the probit stick-breaking process, truncations are
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Fig. 2. Clustering structure generated by the probit stick-breaking process. Top panel shows
the expected number of clusters under the PSBP with ¢ = 1, compared against the Dirichlet
process. Note that both models show a logarithmic rate of growth in the number of observa-
tions in the sample. However, the probit stick-breaking process grows more slowly than the
DP for 51 > 0.5 (1 < 0) and faster for 5, < 0.5 (1 > 0). Bottom panel shows the expected size
of the largest cluster versus the expected number of clusters under different combinations of
pn and o. These plots correspond to samples of n = 200 observations.
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indeed good approximations. The proof, which can be seen Appendix B, is a straightforward
extension of Ishwaran & James (2001) and Ishwaran & James (2003).

THEOREM 1. Let G be a random distribution drawn from a PSBP with L components,
baseline measure G and variance parameters [ and o2, and let G denote the case L = cc.
In addition, for a sample of sizen, y = (y1,...,yn), let

p*(y) =Eqe {H/k(yid)i)GL(dd)i)}
=1

where Eq. denotes the expectation with respect to the law of the random distribution G*,
and p*>(y) defined similarly. Then

P (y) — = (3] < 4 (1 - {1 - [cp (ﬂ‘_‘?)]})

where ||pL(y) — p>(y)|| denotes the total variation distance between p*(y) and p™(y).

Note limz, . |[p*(y) — p*°(y)|| = 0, and therefore the finite process converges in total
variation norm (and therefore in distribution) to the infinite process. As a consequence we
have the following Corollary.

COROLLARY 1. The posterior distribution based on a L-finite PSBP converges in dis-
tribution to the one based on the infinite PSBP as L — oo, as long as the predictives are
non-degerate.

Corollary 1 is especially important for computational purposes. Indeed, it ensures that
samples obtained from the posterior distribution of the truncated process can be used to gen-
erate arbitrarily accurate inferences on measurable functionals of the infinite process. In
practice, the number of atoms does not need to be extremely large. Indeed, note that

p(t)] oo vmefe ()]

Since ® (—ﬁ) < 1, the rate of decay of the ||p~ (y) — p>(y)|| is exponential in L, just

like with the Dirichlet process. In Figure 3 we demonstrate the behavior of |[p (y) —p>° (y)||
as a function of y and L for n = 1000 and o = 1. Note that for 8; = 0.26 (which roughly
corresponds to 17 = 3 in the Dirichlet process), about 50 atoms are enough for a reasonable
approximation, while for 8; = 17 (which is roughly equivalent to = 5), more than 70
atoms seem to yield no visible additional benefit.
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Fig. 3. Bounds on the distance between the infinite stick-breaking process and its cor-
responding truncation for o = 1 and different values of u. The curves are indexed by

B =0(p//(1+0%).

3. Dependent probit stick-breaking processes for collections of distributions

In order to extend the single-distribution model in Section 2 to a prior on a collection of
distributions, we could replace the set of atoms {6;}~_, and latent random variables {c,; } =,
with a sequence of independent stochastic processes {0;(s) : s € S}, and {(s) : s €
S}, so that,

yi(8) ~ fo = / k(1) Ga(d)

L
Gs() = Zwl(s)(sez(s)(') (2)
=1

wi(s) = ®(au(s)) [T (1 — ®(ar(s))).

r<l
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{ay(s) : s € S}, has Gaussian margins and {6,(s)}_, are independent and identically
distributed sample paths from a given stochastic process. Models that incorporate dependent
weights have a number of theoretical and practical advantages over models that only use
dependent atoms like the constant weight models described in Delorio et al. (2004), Gelfand
et al. (2005) and Rodriguez & Ter Horst (2008). On one hand, models with non-constant
weights have richer support. Indeed it is well known that constant-weights models cannot
generate a set of independent measures (MacEachern, 2000).

This extension of PSBPs to dependent PSBPs parallels the extension of Dirichlet pro-
cesses to the dependent case by MacEachern (1999, 2000). However, for dependent PSBPs it
is much more straightforward to accommodate varying weights without sacrificing computa-
tional tractability. In the sequel, we focus our attention on PSBP models with constant atoms
where 0;(s) = 6; ~ G for all s € S, but adding dependence in the atoms is straightfor-
ward. The resulting class M = {Gs : s € S} is such that G5 marginally follows a probit
stick-breaking process for each s € S. Therefore for any set B € B,

E(GS(B)) = GO(B)

Var(Gs(B)) = Go(B)(1 — Go(B)) s { 1— (1—2B1(s) + Ba(s))* }

261(s) — Ba(s)

One important property of dependent PSBP models with constant atoms is their smooth-
ness. A simple definition of process smoothness for the PSBP can be obtained by consider-
ing the distance (in some appropriate topology) between realizations of the process at nearby
locations. In particular, for any fixed point sg € S, we can define a stochastic process
{Zs,(s) : s € S} such that

Zeo(s) = / Gay (d) — Ga(dg)) 3)

gives the total variation distance between G5 and G, (note that this is indeed a stochastic pro-
cess since both distributions are random). The stochastic process Zs, (s) is said to be almost
surely continuous at s if limg s Zs, (s') = Zs, (s). If the process is almost surely continuous
for every s € S, then it is said to have continuous realizations (Banerjee & Gelfand, 2003).

THEOREM 2 (SMOOTHNESS OF DEPENDENT PSBP MODELS). Let {Bl}le be an in-
dependent and identically distributed sequence from some centering distribution Gy and
{ay(s) : s € S}, be an independent sequence of stochastic processes with continuous
realizations and Gaussian marginals, both defining a dependent PSBP with constant atoms.
Also, let Zs,(s) be as defined in (3). For any sg € S,

(a) Zs,(s) also has continuous realizations almost surely.
(b) limg_,s, Zs,(s) = 0 = Zs,(so) almost surely.
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The proof of Theorem (2) can be seen in Appendix C. Conditions for the almost sure
continuity of the random processes {ay(s) : s € S}/, are given in Kent (1989). It is worth
emphasizing that continuity in these results does not refer to the draws from the random
distribution G5 (which is almost surely discrete), but to the similarity between realizations at
nearby locations.

The covariance structure generated by the model is another important property to under-
stand. For any Borel set B we have that, a priori,

_ Pa(s,8) {1 = [1 = Bi(s) — Bu(s') + Ba(s.8)]

Cov(Gs(B), Gy (B)) Pi(s) + Bi(s) = Pals,s')

x Go(B){1 — Go(B)}

where the expression for (s, s’) can be seen in Appendix D. Therefore, the process for the
distributions will typically be nonstarionary. In the following subsections, we discuss some
examples of dependent PSBPs.

3.1. Dependent PSBPs with latent Gaussian processes

A particularly interesting example of a dependent PSBP arises by letting «;(s) in equation (2)
be a Gaussian process over S with mean p and covariance function o%7(s,s’), fors € S C
RY. More concretely, given observations associated with locations (or predictors) sy, . .., Sy,
the joint distribution for the realizations of the latent processes «;(s) at these locations is
given by

ai(s1) p 1 v(s1,82) ... (s1,8n)

o (s2) K 9 7v(s2,81) 1 o (s2,8n)
. ~N . ],o ) ) . .

ai(sn) ju Y(sn;81)  Y(Sn,82) ... 1

Letting y(s,s’) — 0 for all s and s’ leads to independent estimates at each location, while
v(s,s’) — 1 leads to a common nonparametric prior for all locations. Models of this type
can be used for time series observed in continuous time (S = R™), or to construct models for
spatial data (S C R?). In particular, this construction allows us to easily generate spatial pro-
cesses for discrete and non-Gaussian distributions. Even more, we can introduce multivariate
atoms, leading to a simple procedure to construct non-stationary, non-separable multivariate
spatial-temporal processes. By interpreting .S as a space of predictors, this construction also
allows us to generate flexible nonparametric regression models with heteroscedastic errors,
as discussed in Griffin & Steel (2006b).

A priori, the covariance of the process under (2) is

_ Dals,s') {1—[1—Bi(s) = Bi(s') + Bals,s)]"}
Bi(s) + Bi(s') — Ba(s,s)

Cov(y(s),y(s")) Ec, (Var(y]0)),
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which means that a priori the process is nonstationary, even if the underlying processes driv-
ing the atoms are stationary. Indeed, this shows one of the limitations induced by using mod-
els with constant atoms, as in this case it is impossible to center the nonparametric process
on a stationary process (except for the trivial, random noise model).

A posteriori, the covariance of the process can be computed by conditioning on the values
of the stick-breaking weights and atoms:

L L
Cov(y(s), y(s") {wi(s)Hey {Oi}=1) = Y D wils)w,(s')E(y|6:)E(y|6x)

l=1r=1

e 01)(2“” o)

Other functionals of interest can be calculated in a similar fashion. To predict the distributions
at a new location s,, 11, we can interpolate the latent field «.(s) to obtain «(s,,+1) and compute

{wi(sns1)}izy-

3.2. Dependent PSBPs with latent Markov random fields
Consider now a model for distributions that evolve in discrete time, as in Griffin & Steel
(2006b); Caron et al. (2007, 2008) and Griffin (2008). Fort =1,...,T let

L
v~ [ k(16)Gi(de) Go() = > wiedo, ()
=1
wie = ®(cue) [ [(1 = @(ar)) aur = Ajmy,
r<l

We can induce dependence in the weights through a general autoregressive process of the
form

mt\m,H ~ N(Bmz,tm W)

By appropriately choosing the structural parameters A, B; and W a number of different
evolution patterns can be accommodated. For example, letting A; be a p x 1 vector and B;
be a p x p matrix such that

010 ...0
0 001
A= . B; =
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we induce a form-free periodic model for densities (see West & Harrison (1997), Chapter
7), where G, is centered around Gy, in the sense that E(ay svp|o t4p—1, ..., 00) = Q.
In particular, setting W; = 0 leads to a common G, for all time points. Other patterns
like trends, periodicities and autoregressive processes can be similarly modeled, providing
additional flexibility over other nonparametric models. Also, this approach can be generalized
to construct spatial (or spatial-temporal) models for aerial data by considering a two (or three)
dimensional Gaussian random Markov field, in the spirit of Figueiredo (2005) and Figueiredo
et al. (2007).

3.3.  Random effect models for distributions

Finally, consider a situation where multiple observations are obtained for each one of I popu-
lations, and our goal is to borrow information nonparametrically across them while assuming
exchangeability both between and within populations. Specifically, for j = 1,...,n; and
1 = 1,...,I assume that data y;; corresponds to the j-th observation from the ¢-th popula-
tion. In a parametric setting, a natural model for this situation is a random effects model. For
the nonparametric case, assume that for some parametric kernel k(+|¢),

i~ [ KCIB)Gi) () =3 wadn ()
=1
where
wy = P(ay) H(l — O(ay,)) o ~ N(af, 1) af ~N(p,1)

r<l

The common prior for {c;;}{_, allows us to borrow information across populations by
shrinking the stick-breaking ratios corresponding to the /-th mixture component towards a
common value. This formulation is reminiscent of the hierarchical Dirichlet process (HDP)
(Teh et al., 2006); indeed this random effect model for distributions can be used as an al-
ternative to the HDP. However, unlike the HDP, a generalization that includes covariates is
straightforward by letting

o = ng’?iz na ~ N(nj, 1) 7 ~N(u, 1)

where x;; is the vector of covariates specific to observation ;.

4. Posterior sampling

In this section we demonstrate that a collapsed Markov chain Monte Carlo (MCMC) sampler
(Robert & Casella, 1999; Ishwaran & James, 2001) can be constructed to fit the dependent PS-
BPs mixtures described in 2. Our algorithms borrow on ideas previously used to fit Bayesian
continuation-ratio probit models in survival analysis (Albert & Chib, 2001).
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First, we concentrate on the case L < oo. For each observation y; (s;), corresponding to
replicate 7 under condition/location ¢, j = 1,...,m; and¢ = 1, ..., n, introduce an indicator
variables & (s;) such that £;(s;) = [ if and only if observation y; (s;) is sampled from mixture
component /. The use of these latent variables is standard in mixture models; conditional on
the indicators the full conditional distribution of the component-specific parameters for a
model with constant atoms is given by

pO]---) xGo(dd)) [ k(y;(s:)l60).
{(3,9)1€; (si)=l}

If the centering measure Gy is conjugate to the kernel k(+|@), sampling from this distri-
bution is straightforward. In non-conjugate settings, sampling can still be carried out using
a Metropolis-Hastings step. Similarly, if the atoms are not constant then the observations on
each component correspond to draws from a single stochastic process and sampling of its
parameters can be carried out using standard simulation algorithms.

Conditional on the component specific parameters and the realized values of the weights
{wi(s1) -, ..., {wi(sy)}, at the observed locations, the full conditional distribution for
the indicators is multinomial with probabilities given by

Pr((si) =1]--+) ocwi(s;)k(y;(si)|01)-

In order to sample the value of the latent processes {a;(s1)}2, ..., {a(sn)}L, and
the corresponding weights {w;(s1)},, ..., {wi(s,)}E,, foreachi = 1,...,n and | =
1,...,L—1 we introduce a collection of conditionally independent latent variables z;;(s;) ~

N(aq(s;),1). If we define £;(s;) = [ if and only if z;;(s;) > 0 and z;.(s;) < 0 forr < I, we
have

Pr(&;(s;) =1) = Pr(zj(s;) > 0, zjx(si) < 0forr < 1)
= @(au(ss)) H(1 = ®(ar(si))) = wi(sq). )

r<l

independently for each ¢. This data augmentation scheme simplifies computation as it allows
us to implement another Gibbs sampling scheme. Indeed, conditionally on the value of the
latent process and the indicator variables, we can impute the augmented variables by sampling
from its full conditional distribution,

zi(sg)] -+ ~ N(u(si), Dir- 1 <&(si)
e N(Oél(Si), 1)1R+ | = 57(51) ’

where N(p, 72)1q denotes the normal distribution with mean 1 and variance 72 truncated to
the set (2.
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In turn, conditional on the augmented variables, the latent processes can be sampled by
taking advantage of the normal priors for a;(s). The details of this step are specific to the
problem being considered; for example, for the spatial model described in Section 3.1 ob-
served without replicates, we have

(cu(s1),...,cu(sn)) ~N qz—l + 0121} B [uz—& - lezz} , [2—1 + 0121} _1>

where z; = (2(s1),...,2(sp)) and 1 is a column vector of ones. Similarly, for the
models in Section 3.2, the corresponding augmented models on the latent variables z;; ~
N(c;¢, 1) results in a series of dynamic linear models (West & Harrison, 1997) and a Forward-
Backward algorithm (Carter & Kohn, 1994; Fruhwirth-Schnatter, 1994) can be used to effi-
ciently sample the latent process.

Once the latent processes have been updated, the weights can be computed using (4). If
unknown parameters remain in the specification of the latent process (spatial correlations,
evolution variances, the mean p of the latent process), these can typically be sampled condi-
tionally of the value of the imputed latent processes.

In the case L = oo, we can easily extend this algorithm to generate a slice sampler, as
discussed in Walker (2007) and Papaspiliopoulos (2009). Alternatively, the results at the end
of Section 2 suggest that a finite PSBP with a large number of components (= 50, depending
on the value of 1) can be used instead (Ishwaran & James, 2001; Ishwaran & Zarepour, 2002).

5. lllustrations

This section presents two applications of the PSBP model. We first discuss an application of
the discrete time PSBP introduced in Section 3.2, and then we move to an application of the
spatial nonparametric models described in Section 3.1. All computations were carried out
using the algorithm for a finite PSBP with L = 50 components. In both cases, inferences are
based on 100,000 samples of the MCMC obtained after a burn-in period of 10,000 iterations.
No evidence of lack of convergence was found from the visual inspection of trace plots or the
application of the Gelman-Rubin convergence test (Gelman & Rubin, 1992).

5.1. Multivariate stochastic volatility

In this section we use the PSBP model to construct a multivariate stochastic volatility model
that allows for the joint distribution of returns across multiple assets to evolve in time. There-
fore, the model accommodates not only time varying volatilities for the assets, but also time
varying means and correlations, providing added flexibility to traditional stochastic volatility
models. The data set under consideration consists of the weekly returns of the S&P500 (US
stock market) and FTSE100 (UK stock market) indexes covering the ten-year period between
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February 02, 1999 and April 02, 2009, for a total of 522 observations. Figure 4 shows the
evolution of these returns in time (on which the current financial crises can be clearly seen in
the increased volatility of returns), while Figure 5 shows a scatterplot of the returns generated
by both indexes (which reveals that there is a strong correlation among the assets).

0.02 0.04
0.00 0.05
1 1

Observed returns S&P500
-0.05

|
Observed returns FTSE100

-0.08 -0.06 -0.04 -0.02 0.00

-0.10

Fig. 4. Time series plots for the weekly returns on the S&P500 and FTSE indexes between
February 02, 1999 and February 02, 2009. Different volatility levels are readily visible in the
plots

We model r; = (r},r?)’, the joint log-return of the S&P500 and the FTSE100 at time ¢,
as following a normal distribution with time varying mean vector g, and covariance matrix
3. In turn, we let (p,, ;) ~ G, where G, evolves in time according to a discrete time
PSBP (see Section 3.2) with a normal-inverse Wishart centering measure. Based on historical
information, the parameters of the centering measure were chosen so that the mean of the
returns is O, the annualized volatility is centered around 12%, and the expected correlation
is 0.75. For the latent structure we assume A; = 1, By = 1 and W; = U, leading to
a specification reminiscent of a random walk mixing distribution, where G, is a priori
“centered” around G;. We used a Gamma hyperprior for 1/U with two degrees of freedom
and mean 1, and a standard normal prior for 7.

Figure 6 shows the estimated volatilities for both assets under the PSBP model (solid
lines). These can be contrasted against estimates obtained from the Bayesian stochastic
volatility model described in Jacquier et al. (1994) and Kim et al. (1998) (dashed lines). Both
sets of estimates have very similar features, however, the series estimated using the PSBP are
smoother, presenting less short term fluctuations. This is most likely due to the heavy tails
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Fig. 5. Scatter plot for weekly returns on the S&P500 and FTSE indexes between February
02, 1999 and February 02, 2009. The plot clearly suggests that the returns of both indexes
are strongly correlated.

in the conditional distributions induced by the use of a mixture likelihood, which allow us to
explain outliers without the need to increase the volatility.

To help emphasize the additional flexibility afforded by the model, we present in Figures
7 and 8 the estimated correlation across assets and the estimated expected (annualized) re-
turns. Many multivariate stochastic volatility models available in the literature assume that
the correlation across assets is constant, and most of them also assume a constant mean for
the returns. The results from the PSBP suggest that these assumptions might not be supported
by the data. First, note the negative association between correlation and expected returns: the
correlation among the two assets tends to decrease when the returns are high, and to increase
when returns decrease. This leverage effect has been blamed for the failure of traditional
pricing models in the aftermath of the current financial crises. Additionally, note that the
historical mean of returns for both the S&P500 and FTSE100 indexes turns out to be nega-
tive over this period. This result is highly influenced by the dismal returns realized during
the last 18 months. However, it is hardly believable that the expected returns on assets is a
negative constant. Instead, a time varying pattern such as the one depicted in Figure 8 is more
reasonable, as it nicely correlates with the business cycle.

One possible concern with our hierarchical specification is whether there is enough in-
formation in the observations to identify the precision parameter 1y or the parameters con-
trolling the latent process. This does not seem to be an issue in our case, as the poste-
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Fig. 6. Estimated volatilities for the S&P500 and the FTSE100 indexes under the PSBP model.
We compare our estimates with those obtained from the stochastic volatility model of Jacquier
et al. (1994) and Kim et al. (1998) (labeled STSV). The horizontal line corresponds to a stan-
dard deviation of returns over the 10-year period. The spikes in volatility at the end of the
series correspond to the current financial crises and are clearly apparent in both indexes.

rior distributions for the parameters U and 7y show substantial learning from the data. The
posterior distribution for U has a posterior mean of 0.1189 (symmetric 95% credible band,
(0.0744,0.1848)), while the mass parameter 7 has a posterior mean of 0.0322 (95% credible
interval, (—0.0842,0.1446)), both substantially different from their prior distributions.

5.2. Spatial processes for count data

The Christmas Bird Count (CBC) is an annual census of early-winter bird populations con-
ducted by over 50,000 observers each year between December 14th and January 5th. The pri-
mary objective of the Christmas Bird Count is “to monitor the status and distribution of bird
populations across the Western Hemisphere.” Parties of volunteers follow specified routes
through a designated 15-mile diameter circle, counting every bird they see or hear. The par-
ties are organized by compilers who are also responsible for reporting total counts to the or-
ganization that sponsors the activity, the Audubon Society. Data and additional details about
this survey are available at http://www.audubon.org/ bird/cbc/index.html.
Here, we focus on modeling the abundance of Zenaida macroura, commonly known as the
Mourning Dove, in North Carolina during the 2006-2007 winter season. We use information
from 27 parties (see Figure 9); since the diameter of the circles is very small compared to the
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Fig. 7. Estimated correlation between the S&P500 and the FTSE100 indexes under the PSBP
model. The horizontal line corresponds to a simple correlation of returns over the 10-year
period. In line with recent discussions in the literature, the model demonstrates that correlation
among assets tends to increase in times of financial distress.

size of the region under study, we treat the data as point referenced to the center of the circle.

Specifically, we let y(s) stand for the number of birds observed at location s (expressed
in latitude and longitude) and assume that y(s) ~ Poi(h(s)\(s)), where h(s) represents the
number of man-hours invested at location s. Next, we assume that A(s) ~ Gg, where Gg
follows a spatial PSBP driven by underlying Gaussian processes with mean «, exponential
covariance function and common variance and correlation parameters o2 and p (see Section
3.1). Based on historical data from previous CBC censuses we assume an exponential cen-
tering measure Gy with mean 0.15 sighting/man-hour. Priors for the parameters of the latent
Gaussian processes o2 and p are also taken to be exponential with unit mean, while the prior
for v is set to a standard normal distribution.

Figure 9 shows the mean of the predictive distribution for the number of sightings per
man-hour over a 90 x 30 grid overlaid on the North Carolina map. The map shows a higher
expected number of sighting in the northern area of the coastal plain region, with a lower
expected number of sighting in the Piedmont plateau. This is a very reasonable result as it
is well known that the Mourning Dove favors open and semi-open habitats, such as farms,
prairie, grassland, and lightly wooded areas, while avoiding swamps and thick forest (Kauf-
man, 1996, page 293).
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Fig. 8. Annualized expected returns for the S&P500 and the FTSE100 indexes under the
PSBP model. The horizontal line corresponds to a simple average of returns over the 10-year
period.

In Figure 10 we present density estimates for 4 locations in North Carolina; three of them
correspond to places where parties were active (Greenville, Wayne County and Greensboro),
while the fourth correspond to a location in the Blue Ridge mountain near Waynesville where
no data was observed (for an out-of-sample prediction exercise). The resulting distributions
tend to have heavy tails and might present multimodality, as in the case of Greenville. This
is in contrast to the predictive distributions that would be obtained from a Poisson general-
ized linear model with a logarithmic link and spatial random effects that follow a Gaussian
process, which would be unimodal.

As before, there is substantial learning in the structural parameters of the model. The
posterior mean of the correlation parameter p is 0.179 (95% credible band (0.033,0.717)),
for o2 it is 1.203 (95% credible band (0.574,2.032)) and for y it is -0.274 (95% credible
band (—0.451,0.133)).

6. Discussion

One of the main advantages of the PSBP formulation is their generality and flexibility; the
probit formulation allow us to extend all the traditional Bayesian models based on hierarchical
linear models to generate equivalent models for distributions with little additional cost. In
addition to any possible combination of the models discussed in this paper, we can easily
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0.3 111 221 3.32 4.12
Average rate of sighting

Fig. 9. Estimated expected rate of sightings (per man-hour) for the Mourning Dove. Filled dots
correspond to the 27 locations where observations were collected. Squared dots represent
locations where density estimation is carried out, filled squares represent locations for in-
sample-predictions, while the empty square corresponds to a point of out-of-sample prediction.

create ANOVA, mixed effects and clustering procedures, among others.

Our discussion in this paper has focused on models where the mean of the latent stochastic
processes driving the weights is common to all components. As we discussed in Section 2,
this implies that the number of components grows roughly at a logarithmic rate as the number
of observations increase. Simulation experiments demonstrate that faster growth rates can be
obtained by having the mean of «; decrease linearly (or more generally, polynomially) with {.
This is reminiscent of the behavior of Poisson-Dirichlet processes, where growth rates follow
a power law for discount parameters greater than 0.
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Fig. 10. Density estimates for four NC locations. The top two panels and the lower left panel
correspond to three locations where observations were collected (in-sample predictions), while
the bottom right panel corresponds to an out-of-sample prediction for a location in the Blue
Ridge mountains next to Waynesville, NC.
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A. Properties of the weights of the PSBP

Let u; = ®(2;) where 2; ~ N(u, 02). The expectation of 3; = E(u;) can be easily computed
using a change of variables,

b=k = [ o) exp{—;W}de

1 1T, (a—p)?
— Smexp{—Q |:$U +T dZCdZ[

where S = {(x,2) : —00 < 2 < 00, 00 < x < z;}. Applying the change of variables
t1 =z —x and t5 = 2; we get

E(uy) / / %exp {—; |:(t2 — )%+ “2;2’”02] } dtodt

[ e e ()

where Ty ~ N(u, 1+ o). Now, using Jensen’s inequality,
E [log(1 — u;)] <log[l — E(u;)]
=log(l—®(u/v/1+02)) <0

Therefore, >~ E [log(1 — ;)] = —oco and, by theorem 2 in Ishwaran & James (2001),
Y2, w; = 1 almost surely. A similar calculation can be used to compute the second central
moment of u;,

po=tud) = [ ) en {10 e

3/2 2

1 1 1 —

= / <> Zexp {_ |:x2 +y2 + (zl,u)} } drdydz
g \ 27 o 2 o?

where now S = {(z,y,2;) : —00 < z < 00, 00 < & < z, 00 <y < z}. Using the
change of variables t; = z; — x and t5 = z; — y and t3 = 2; we get

o)L () o

2, (ts—p)®
exp —5 (ts —t1)” + (t3 — t2)> + EPTI dtzdtydty

= Pr(T1 > 0,75 > 0)
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T w\ (1+0? o2
where (T2> ~N ((H) ; ( o2 14102))
The argument can be directly extended to higher order moments. In general, the p-th

moment can be obtained from the cumulative distribution function of a p-variate normal
distribution,

Bp = E(u}) =Pr(Ty >0,...,T, > 0)
where T = (11, ...,T,) follows a multivariate normal distribution with E(7T};) = p, Var(T};) =
1+ 02 and Cov(T;, Tj) = o2

B. Truncations of PSBP models

Note that Theorem 2 in Ishwaran & James (2001) applies directly. Therefore,

I ()~ p* ()] < 4 [1—E{(iws) H

Now, by Jensen’s inequality and the results in Appendix A

) e -Ee)]
(b))

C. Proof of Theorem 2

Consider first the case when L is finite. Note that, if the collection {cy(s)}/, has continu-
ous realizations, so does {w;(s)}£_, because it is a continuous transformation of the latent
processes. Now,

208) = 28] = | [ 160 (00) ~ Guld9)] = [ Guy(00) ~ Gl
< [16e(d6) - G (40)

= 2 sup |Gs(B) — Gs (B)]
BeB

L
< 2su wy(s) —w(s")| dg, (B
< Be%;| 1(s) —wi(s')] dg, (B)
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Due to the almost sure continuity of {w;(s)},, for any € > 0 there exists a A such that
|s — 8’| < A implies |w;(s) — w;(s’)| < €/(2L), which in turn implies that

|Zsy(s) = Zso (s")| < 2 sup ZM — wy(s")| do, (B)

BGB

<22|wl (s)| < e

For the case L = oo, write

[e%S) L e}
D lwi(s) —wi(s) =Y wn(s) —wi(s)| + D fwi(s) —wi(s)|
=1 =1 I=L+1

and note that

o0 o0
Z lwi(s < DY we)+ Y wls)
l=L+1 l=L+1 l=L+1

Now for any ¢ > 0, pick a finite L large enough so that both >/, . wi(s) < €/4 and
>oiop 4y wi(s’) < €/4. The existence of such L is ensured by the almost sure convergence
of the weights (see Appendix A). Since we already showed that there exists a A such that
|s —s'| < Aw(s) —wi(s’)| < €/(4L), this implies that

|Zsy (s) = Zao (s)| < €

as desired.

D. Covariance structure in the Dependent PSBPs

Assume that «;(s) follows a stochastic process with mean function s (s) and covariance
function o27;(s,s’). Letting u;(s) = ®(y(s)) for all s € S, we can use a similar change
of variables to that used in Appendix A to derive the covariance in the stick-breaking weight
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between locations s; and so,

E(ui(s1)ui(s2)) / / D (29 *‘El| 12

1 _
Y eXp{—2(uz 05 ) da

[T e { - e - )

1
X 2—|§Jl|_1/2 exp {—2(/,” - x)'2 X)} dxydzodtydts
™
= PI’(Tl > O,TQ > O) = ﬁ2(51752>

where z = (21, 22)", p; = (u(s1), pu(s2))’s x = (x1,22), yj = o%vi(s1,82) and T =
(T1,T>)" ~ N(p;, 2y + 1.
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