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Abstract

Group factor models have been developed to infer relationships between multiple
co-occurring multivariate continuous responses. Motivated by complex count data
from multi-domain microbiome studies using next-generation sequencing, we develop
a sparse Bayesian group factor model (Sp-BGFM) for multiple count table data that
captures the interaction between microorganisms in different domains. Sp-BGFM
uses a rounded kernel mixture model using a Dirichlet process (DP) prior with log-
normal mixture kernels for count vectors. A group factor model is used to model the
covariance matrix of the mixing kernel that describes microorganism interaction. We
construct a Dirichlet-Horseshoe (Dir-HS) shrinkage prior and use it as a joint prior
for factor loading vectors. Joint sparsity induced by a Dir-HS prior greatly improves
the performance in high-dimensional applications. We further model the effects of
covariates on microbial abundances using regression. The semiparametric model flex-
ibly accommodates large variability in observed counts and excess zero counts and
provides a basis for robust estimation of the interaction and covariate effects. We
evaluate Sp-BGFM using simulation studies and real data analysis, comparing it to
popular alternatives. Our results highlight the necessity of joint sparsity induced by
the Dir-HS prior, and the benefits of a flexible DP model for baseline abundances.
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1 Introduction

1.1 Motivation and Multi-Domain Microbiome Data

Statistical methods that capture correlations in different responses can be helpful in the

multiple output case. For example, canonical correlation analysis (CCA) and inter-battery

factor analysis (IBFA) are useful tools that combine two multivariate responses and provide

inference on cross-covariance between the responses (Browne, 1979; Bach and Jordan, 2005;

Klami et al., 2013). Group factor analysis extends traditional factor analysis to infer joint

variability between two or more multivariate responses (Virtanen et al., 2012; Klami et al.,

2014; Zhao et al., 2016). However, they may not be suitable for the analysis of multiple

intercorrelated multivariate count variables because those methods consider continuous

responses and assume a multivariate normal distribution.

Motivated by a high-throughput sequencing dataset from the multi-domain chronic

wounds microbiome study in Verbanic et al. (2020, 2022); Zhang et al. (2023), we develop

a Bayesian group factor model that accounts for the discreteness of data with multiple

count responses. Microorganisms, including bacteria, viruses, fungi, and archaea, coexist

in diverse communities and form polymicrobial communities within the human body (Pe-

ters et al., 2012). Polymicrobial infection is one of the leading impediments to chronic

wound healing. Appropriately inferring the intricate interactions among microorganisms,

both within a specific domain and across different domains, as well as their associations

with the environment, is crucial to a better understanding of the healing of chronic wounds.

The dataset consists of multiple count tables, with each count table representing a specific

microorganism domain. In these count tables, the counts correspond to the abundances of

microbial operational taxonomic units (OTUs), which are commonly used as a proxy for

microbial species. The motivating study investigated bacteria and bacteriophages (bacte-

rial viruses) in the wound microbiome. Bacteriophages play a role in regulating bacterial
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(a) Log-transformed normalized OTU counts (b) Empirical correlation estimates

Figure 1: [Multi-domain skin microbiome data] Panel (a) has a heatmap of the log-
transformed normalized OTU counts. The counts are normalized using cumulative sum
scaling. A pseudocount of 0.01 is added for log transformation. Panel (b) illustrates empir-
ical correlation estimates using the log-transformed normalized OTU counts. The OTUs
are rearranged within a domain.

abundance and influencing their metabolism and fitness. They are essential components of

the wound microbiome. However, the interaction between bacterial and viral communities

in wound microbiomes has received relatively limited attention. Verbanic et al. (2020) and

Zhang et al. (2023) focused on the bacterial fraction of the microbial community in the

dataset and examined its taxonomic associations with debridement - a common treatment

for chronic wounds, whereas Verbanic et al. (2022) explored the viral content of wound

surfaces in the same dataset but did not analyze it together with bacteria. To gain a com-

prehensive understanding of wound microbiomes and their association with treatment, it

is essential to consider both bacteria and bacteriophages.

More specifically, the study collected wound swabs from 20 patients attending an out-

patient wound care clinic. Samples were obtained from chronic wounds before and after a

treatment event, as well as from a control site on the skin. This resulted in a dataset of 60

samples from 20 subjects, along with a categorical covariate with three levels: healthy, pre-

treatment and post-treatment. The abundance of bacteria in the samples was measured by
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high-throughput sequencing of the V1–V3 loops of 16S rRNA genes, and the abundance

of viral contents by high-throughput sequencing of DNA from virus-like particles (VLPs)

isolated from the samples. Counts of bacterial OTUs (bOTU) were aggregated at the genus

level, and counts of viral OTUs (vOTUs) at the host level. To ensure reliable inference,

we removed OTUs having extremely low counts on average or having zero counts in a

significant number of samples. The preprocessing details are described in § 4. After pre-

processing, the dataset comprises counts of 75 bOTUs and 39 vOTUs in the two domains,

bacteria and viruses, for the 60 samples. Fig 1(a) shows a heatmap of the log-transformed

normalized OTU counts. The counts are normalized using cumulative sum scaling (CSS)

in Paulson et al. (2013). CSS normalization involves summing the OTU counts up to a

pre-specified quantile of a sample and generating normalized counts by dividing the counts

by the sum. The sample medians are used for the illustration. It corrects potential bias

introduced by total-sum normalization (TSS) in differential abundance analysis. To avoid

problems with the log transformation of zero counts, a pseudocount of 0.01 is added. From

the figure, the bOTUs exhibit higher richness in the healthy skin samples than in the wound

samples. On the other hand, the vOTUs are more enriched in the wound samples than

in the healthy skin samples. Fig 1(b) illustrates empirical correlation estimates using the

log-transformed normalized counts from all 60 samples obtained under the three different

experimental conditions. Also, empirical correlation estimates are computed separately for

each condition and presented in Supp. Fig. 15. The figures indicate potential interactions

between OTUs within and across different domains.

1.2 Statistical Challenges

Besides discreteness, microbiome data presents several challenges for statistical modeling,

including compositionality, excess zeros, high dimensionality and large inter-sample vari-

ability. Typically, microbiome data is represented as a table of counts, where the total
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number of reads can vary between samples due to experimental artifacts such as sequenc-

ing depth. Raw counts in an OTU table thus represent only relative abundances in a

sample (i.e., compositionality), and it requires appropriate normalization of raw counts for

modeling. Supp. Fig 16 illustrates histograms of the logarithm of the total counts in the

skin microbiome dataset. The total counts greatly vary across samples, with the variability

differing according to the domain. In addition, OTU count tables contain excess zeros

because of the absence of OTUs and/or limited sequencing depth, with counts of an OTU

greatly varying due to a large amount of inter-subject or inter-sample variability. Fig 1(a)

reveals a substantial degree of variability in OTU counts among samples even after tak-

ing into account the difference in sample total counts through normalization. The figure

also illustrates excess zeros in the dataset. Furthermore, in the presence of environmental

factors, the underlying data-generating structure becomes even more complicated. These

make statistical analysis challenging, and any method that does not address them appropri-

ately may produce erroneous inferences such as spurious estimates of correlations between

microorganisms.

1.3 Current Approaches and Limitations

Various statistical methods have been developed to explore the associations among mi-

croorganisms, mainly with a focus on a single domain (i.e., a count table of a single group).

Typically, a covariance or precision (i.e., inverse covariance) matrix is utilized to infer the

associations. Most of these methods use a penalized estimation method after normaliz-

ing and/or transforming raw counts. The graphical lasso in Friedman et al. (2008) is

one of the popular penalized methods for estimating the precision matrix Σ−1 that forms

an undirected graph in a high-dimensional setting. In a Gaussian graphical model, the

off-diagonal values of zero and non-zero in Σ−1 represent conditional independence or de-

pendence between the OTUs. The ℓ1 penalty encourages sparsity in Σ−1. Examples of
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the graphical model based approach include SPIEC-EASI (SParse InversE Covariance Es-

timation for Ecological Association Inference) (Kurtz et al., 2015), Zi-LN (Zero-inflated

Log-Normal model) (Prost et al., 2021), Comp-gLASSO (Compositional graphical LASSO

method) (Tian et al., 2023) and PhyloBCG (Phylogenetically-informed Bayesian Copula

Graphical model) (Chung et al., 2022) among many others. All these methods are designed

for single-domain microbiome data analysis. Specifically, SPIEC-EASI first applies the cen-

tered log-ratio (clr) transformation to raw OTU counts to account for the compositionality

and discreteness. It then assumes a Gaussian distribution with mean zero and precision

matrix Σ−1 for the clr transformed data and estimates Σ−1 with the ℓ1 penalty to obtain

an interaction graph. This method was later extended to allow for multi-domain analysis

by applying the clr transformation separately to an OTU table from each domain and esti-

mating the precision matrix using a concatenated transformed composition vector (Tipton

et al., 2018). Other penalized estimation methods of the covariance matrix Σ include RE-

BECCA (Regularized Estimation of the Basis Covariance Based on Compositional Data)

(Ban et al., 2015) and COAT (COmposition-Adjusted Thresholding Method) (Cao et al.,

2019) that are developed for single group data analysis. Alternatively, low-rank approxi-

mations can be used for the estimation of Σ. For example, see MOFA (Multi-Omics Factor

Analysis) (Argelaguet et al., 2018) and ZI-MLN (Zero-inflated Multivariate Log-normal

Kernel Model) (Zhang et al., 2023). In particular, MOFA builds a Bayesian group factor

model for clr-transformed multi-group count table data. The data is recentered by sub-

tracting the sample mean for each OTU, and subsequently it assumes a normal distribution

with mean zero and covariance Σ. Σ is estimated by a factor model that assumes two-level

sparsity priors for factor loadings to obtain fast computation and robust estimation. While

there are several methods available for inferring microorganism interactions across multi-

ple domains, a need remains for more robust approaches to address the aforementioned

challenges.
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We take the low-rank approximation approach and develop a sparse Bayesian group fac-

tor model (Sp-BGFM) for the analysis of multiple multivariate count data to obtain desired

inferences on within-domain and across-domain OTU interactions. Sp-BGFM extends the

applicability of a conventional group factor model that handles continuous responses by

assuming a Gaussian model with a fixed mean at zero. It directly constructs a discrete dis-

tribution for count vectors and simultaneously models mean and variance of a count vector.

Specifically, using the approach in Canale and Dunson (2011), Sp-BGFM builds nonpara-

metric mixtures of rounded multivariate continuous kernels using a Dirichlet process (DP)

prior to obtain a flexible joint distribution of count vectors. A mean-constrained mixture of

log-normals is used as the kernel to capture the location of the count distribution without

identifiability problems. A novel prior distribution, the Dirichlet-Horseshoe (Dir-HS) dis-

tribution, is constructed as a joint prior on factor loading vectors to efficiently induce joint

sparsity and provide reliable inferences on a high-dimensional interaction structure within

and across domains, even with a small sample size. The semiparametric formulation flexi-

bly accommodates excess zeros and inter-subject or inter-sample variability in OTU counts

and further improves the estimation of OTU interaction. Moreover, the mean function

of the kernel is extended through regression to accommodate covariates. Also, our model

simultaneously performs model-based normalization for proper uncertainty quantification.

Extensive numerical studies show that Sp-BGFM recovers the underlying data-generating

process including within- and cross-domain interaction reasonably well and performs very

competitively compared to various comparators. The method is then applied to analyze

real multi-domain skin microbiome data.

The rest of this article is organized as follows. § 2 details the development of Sp-

BGFM and describes the prior specification and posterior computation. In § 3, we evaluate

the performance of Sp-BGF under different simulation settings and compare it to several

popular alternatives. § 4 demonstrates the application of our method to the multi-domain
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skin microbiome dataset. Finally, § 5 provides a brief discussion and conclusion.

2 Model and Posterior Inference

2.1 Sampling Distribution and Prior Specification

Consider random count vectors ofM different groups (or domains). Let yim = (yim1, . . . , yimJm)
′

denote a Jm-dimensional vector of group m of sample i, i = 1, . . . , N and m = 1, . . . ,M .

Each yimj ∈ N0, j = 1, . . . , Jm, is a non-negative integer that represents an unnormalized

abundance of OTU j of group m in sample i. We stack yim and construct a table Ym of

size N × Jm, a subset of data corresponding to group m. We assume that yi1, . . . ,yiM in

sample i are obtained from subject si, where si ∈ {1, . . . , S}. Also, data may have a vector

of P covariates, xi = (xi1, . . . , xiP ) that may be associated with yi1, . . . ,yiM .

We concatenate the vectors yim of sample i and construct yi = (y′
i1, . . . ,y

′
iM)′ a J-dim

count vector of OTUs in M different groups for sample i, where J =
∑M

m=1 Jm is the

total number of OTUs. Taking the rounded kernel approach for count data in Canale and

Dunson (2011), we introduce a continuous random vector y⋆
i ∈ RJ

+ and build a flexible

model for y⋆
i . For sample i from subject si, we assume

y⋆
i | ri,αsi ,Σ

indep∼ log-NJ(y
⋆ | αsi + ri,Σ), i = 1, . . . , N, (1)

αsi | G
iid∼ G(α), si ∈ {1, . . . , S}. (2)

We will let G a random probability measure with a DP prior to flexibly accommodate

variability in counts across m, s, and j. We will discuss a prior distribution for G later.

We use a rounding function and obtain the distribution of yi as follows;

P(yi = y | ri,αsi ,Σ) =

∫
A(y)

fy⋆(y⋆ | αsi + ri,Σ) dy
⋆, (3)
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where the region of integration A(y) = {y⋆ | y11 ≤ y⋆11 < y11 + 1, . . . , yMJM ≤ y⋆MJM
<

yMJM +1} and fy⋆(·) is a pdf of a J−dim log-normal distribution with parameters αsi + ri

and Σ. αsi = [αsi1, . . . ,αsiM ]′ is a J−dim vector of OTU abundances, where a subvector

αsim = (αsimj), j = 1, . . . , Jm is for group m. It is shared by all samples from subject

si, and dependence among those samples is induced. ri is a vector of sample scale factors,

ri = [ri11J1 , . . . , riM1JM ]′. From (1), exp(αsimj+rim) is the median of y⋆imj and explains the

location of the distribution of yimj (i.e, raw OTU abundance). exp(rim) scales the location

for all OTUs in group m of sample i, and rim’s account for difference in total counts across

(i,m) due to experimental artifacts. αsimj thus represents a normalized baseline abundance

of OTU j of group m in a sample taken from subject si. The dependence structure of the

counts can be inferred through a J × J covariance matrix, Σ > 0. Let Σmm′

jj′ denote the

element of Σ corresponding to the covariance between OTU j of group m and OTU j′

of group m′. Letting µimj = αsimj + rim, we have E(y⋆imj) = exp(µimj + Σmm
jj /2) and

Cov(y⋆imj, y
⋆
im′j′) = E(y⋆imj)E(y

⋆
im′j′)

{
exp(Σmm′

jj′ )− 1
}
, m,m′ ∈ {1, . . . ,M}, j ∈ {1, . . . Jm}

and j′ ∈ {1, . . . Jm′}. That is, Σmm and Σmm′
with m ̸= m′ describe the within-group

and across-group interaction structures, respectively. We will later extend the model to

accommodate xi through regression in µimj.

We next build a prior probability model for Σ, the parameter of primary interest.

To overcome difficulties due to the high dimensionality, we assume that most pairs do

not interact and consider joint sparsity, a structural assumption on Σ (also known as

sparse spiked covariance structure) (Cai et al., 2016; Xie et al., 2022). The joint sparsity

assumption allows to obtain a faster minimax rate of convergence for a frequentist estimator

and improve posterior convergence for a Bayesian estimator. We first decompose a J × J

covariance matrix Σ into Σ = ΛΛ′ + V . Here, Λ = [Λ′
1, . . . ,Λ

′
m]

′ is a J ×K factor loading

matrix with J ≫ K, where Λm = [λmjk] is a Jm×K matrix. V is a J-dim diagonal matrix,

where diagonal submatrices V mm = v2mIJm and off-diagonal submatrices V mm′
= 0Jm×Jm′ ,
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m ̸= m′. The within-group and cross-group covariances are then Σmm = ΛmΛ
′
m+V mm and

Σmm′
= ΛmΛ

′
m′ , m ̸= m′. Under factor models, Λ are only identifiable up to orthogonal

transformations. Our interest is primarily in the estimation of Σ, and this issue is not of

great practical importance. We construct a Dirichlet-Horseshoe (Dir-HS) prior for columns

λk of Λ to efficiently induce joint sparsity; for each k, k = 1, . . . , K,

τk | aτ , bτ
iid∼ Ga(aτ , bτ/J),

ϕk = (ϕ11k, . . . , ϕMJMk) | aϕ
iid∼ Dir(aϕ, . . . , aϕ),

ζmjk
iid∼ C+(0, 1), m = 1, . . . ,M, j = 1, . . . , Jm,

λmjk | ϕmjk, τk, ζmjk
indep∼ N(0, ζ2mjkϕmjkτk),

(4)

where C+(0, 1) represents the half-Cauchy distribution for R+ with location and scale pa-

rameters 0 and 1, and Ga(a, b) is the gamma distribution with mean a/b. For V , we

assume v2m | av, bv
iid∼ inv-Ga(av, bv) with fixed av and bv. In (4), ϕk chooses active features

(OTUs) for factor k. On the other hand, τk’s globally control individual factors, and a

small value of τk indicates that factor k is negligible in explaining dependence among the

OTUs. The Dir-HS distribution can be derived by integrating ϕk and ζmjk out. The Dir-HS

density function lacks an analytic form, and the following theorem finds tight bounds for

the marginal density of λmjk under the Dir-HS.

Theorem 2.1. Let J = 2. Assume ϕ1 ∼ Be(aϕ, aϕ) and let ϕ2 = 1 − ϕ1. Assume the

Dir-HS distribution in (4) as a joint distribution for λ = (λ1, λ2) ∈ R2 given τ . Without

loss of generality, let τ = 1. The marginal density ΠDir-HS(λ1) of λ1 satisfies the following:

(a) limλ1→0ΠDir-HS(λ1) = ∞. (b) For λ1 ̸= 0,

22aϕ−
5
2π−2 Γ

2(aϕ + 1/2)

Γ(2aϕ + 1/2)

4

λ21
3F 2

(
1, 1, aϕ + 1/2; 2, 2aϕ + 1/2;− 4

λ21

)
< ΠDir-HS(λ1) < 22aϕ−

3
2π−2 Γ

2(aϕ + 1/2)

Γ(2aϕ + 1/2)

2

λ21
3F 2

(
1, 1, aϕ + 1/2; 2, 2aϕ + 1/2;− 2

λ21

)
,

(5)
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Figure 2: Scatter plots of (λ1, λ2) simulated from Dir-HS, Dir-Laplace and independent
HS are illustrated in panels (a), (b) and (c), respectively. The contours represent their
empirical density on the logarithmic scale.

where pF q is the generalized hypergeometric function, pF q(α1, . . . , αp; β1, . . . , βq;x) =∑∞
t=0

(α1)t...(αp)t
(β1)t...(βq)t

xt

t!
. Especially when aϕ = 1

2
,

1√
2π5

{
sinh−1(2/|λ1|)

}2
< ΠDir-HS(λ1) <

√
2

π5

{
sinh−1(

√
2/|λ1|)

}2

, (6)

where the inverse hyperbolic sine function sinh−1(x) = log(x+
√
x2 + 1).

A proof is given in Supp. §1. From the theorem, the marginal density of λmjk has an

unbounded spike at zero for any value of aϕ similar to a HS prior (Carvalho et al., 2009).

It thus obtains severe shrinkage for λmjk when needed, while having tail robustness, and

can achieve improved performance at handling unknown sparsity with a small number of

large signals compared to other joint shrinkage priors such as the Dirichlet-Laplace (Dir-

Laplace) prior (Bhattacharya et al., 2015). Fig 2(a) has a scatterplot of (λ1, λ2) simulated

from the Dir-HS with aϕ = 1/20 and τ = 1. For comparison, panels (b) and (c) have

scatterplots from the Dir-Laplace distribution and an independent HS distribution, re-

spectively. Specifically, for the Dir-Laplace, we assume ϕ1 ∼ Be(aϕ, aϕ), let ϕ2 = 1 − ϕ1

and λj | ϕj
indep∼ DE(τϕj), j = 1, 2, where DE(b) is the Laplace distribution with mean

0 and variance 2b2. For independent HS distributions, we assume λj | ζj
indep∼ N(0, ζ2j /2)
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and ζj
iid∼ C+(0, 1), j = 1, 2, to match the scale parameter with that under the Dir-HS.

Comparing panel (a) to panel (b), the Dir-HS has heavier tails, leading to greater robust-

ness to large signals. Supp. Proposition 1.1 examines the tails of the marginal densities

ΠDir-HS(λ1) and ΠDir-Laplace(λ1) of λ1 under the Dir-HS and Dir-Laplace and shows that

limλ1→±∞ΠDir-Laplace(λ1)/ΠDir-HS(λ1) = 0. Also, note that ΠDir-Laplace(λ1) is bounded at 0

given τ when aϕ > 1. The Dir-HS has a higher density along the axes than the indepen-

dent HS in panel (c) and enables joint sparsity. Supp. Figs 1 and 2 plot joint and marginal

densities of the distributions in the central origin and tail regions with various values of aϕ.

Previously, Zhao et al. (2016) built a group factor model with mean fixed at zero for con-

tinuous responses. They constructed a ‘global-factor-local shrinkage’ prior for the elements

in a factor loading matrix for structured sparsity. Their prior was built with a hierarchical

structure that includes global, factor-specific and element-specific hyperparameters. Note

that their prior does not induce joint sparsity. Pati et al. (2014) built a factor model

with a fixed mean at zero for a continuous response in a single group and considered the

Dir-Laplace distribution on the vector constructed by concatenating factor loading vectors.

From (1)-(3), the marginal distribution of yi can be obtained by integrating α with

respect to mixing distribution G. It is critical to improving the estimation of Σ that

the model adequately accommodates large inter-subject variability in counts, which is a

common issue in microbiome data analysis. We consider the following infinite mixture

model for G in (2),

G(α) =
M∏

m=1

Jm∏
j=1

Gmj(αmj)

=
M∏

m=1

Jm∏
j=1

[
∞∑
l=1

ψα
ml

{
ωα
mlδξαmjl

+ (1− ωα
ml)δ

(
να
mj

−ωα
ml

ξα
mjl

1−ωα
ml

)
}]

,

(7)

where δξ is a point mass centered at ξ. We assume ξαmjl | ναmj, u
2
α

iid∼ N(ναmj, u
2
α) with

fixed ναmj and u2α. The mixture weights ψα
ml in (7) are constructed using a stick-breaking
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process (Sethuraman, 1994); let ψα
m1 = V α

m1 and ψα
ml = V α

ml

∏l−1
l′=1(1 − V α

ml′), l > 1 with

V α
ml | cα

iid∼ Be(1, cα), where the total mass parameter cα is fixed. Assume inner mixture

weights ωα
ml | aαω, bαω

iid∼ Be(aαω, b
α
ω), where a

α
ω and bαω are fixed. Observe that individual

parameters αsimj and rim in µimj are not identifiable due to the multiplicative structure,

E(log(y⋆imj) | αsimj, rim) = αsimj + rim. Under (7), the prior and posterior means of αsimj

are fixed at ναmj, and E(log(y⋆imj) | Gmj, rim) fixed at ναmj + rim. We will impose a similar

constraint on the prior of rim below. The constraints are placed to address potential

issues with the identifiability. Note that µimj’s are identifiable, and Σ, a parameter of

primary interest, can be identified. Despite the constraint, G can capture various patterns

in the distribution of α due to its inherent flexibility (Müller et al., 2015). Specifically,

the distribution of y⋆imj can be written as a Dirichlet process mixture with a log-normal

mixture kernel in Antoniak (1974). Also, the model in (7) allows to efficiently borrow

information across subjects and across OTUs through its hierarchical structure and yield

improved estimates of αsimj. In particular, ψα
ml’s and ωα

ml’s are common weights for all

OTUs in group m, while the mixture locations vary by j for each m.

Recall that rim is a normalizing factor of group m of sample i. Similar to (7), we

consider a flexible infinite mixture model for rim;

rim | ψr
ml, ω

r
ml

indep∼ Hm =

∞∑
l=1

ψr
ml

{
ωr
mlN(ξ

r
ml, u

2
r) + (1− ωr

ml)N

(
νrm − ωr

mlξ
r
ml

1− ωr
ml

, u2r

)}
, (8)

where νrm and u2r are fixed. The prior and posterior expectations of rim are νrm in

(8), and E(log(y⋆imj) | Gmj, Hm) fixed at ναmj + νrm. Each group has different means,

as indicated in our motivating application as illustrated in Supp. Fig 16. We jointly

specify values of ναmj and νrm using observed counts. For example, we first fix νrm at

the average of the logarithm of the total count, νrm = 1
N

∑N
i=1 log

(∑Jm
j=1 yimj

)
, and set

ναmj = 1
N

∑N
i=1 {log(yimj + 0.01)− νrm}. We consider the following priors for ψr

ml, ω
r
ml

and ξrml; assume ξrml | νrm, u2ξr
iid∼ N(νrm, u

2
ξr), ω

r
ml | arω, brω

iid∼ Be(arω, b
r
ω), ψ

r
m1 = V r

m1 and
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Figure 3: A graphical representation of Sp-BGFM. Fixed hyperparameters are in boxes
with dashed lines, while random parameters are in boxes with solid lines. Observables are
represented within circles.

ψr
ml = V r

ml

∏l−1
ℓ′=1(1 − V r

ml′), l > 1, where V r
ml | cr

iid∼ Be(1, cr). Here, u2ξr , a
r
ω, b

r
ω, and c

r are

fixed.

In addition, the model is extended to accommodate covariates xi using regression in

µimj;

µimj = rim + αsimj + x′
iβmj. (9)

Assume βmjp
iid∼ N(0, u2β) with fixed u2β. Regression coefficients βmjp quantify the change

in the abundance of OTU j of group m from its baseline abundance by xip. Especially,

in a case of a categorical covariate, βmjp shows an effect on the baseline abundance of the

OTU for the level represented by xp, and βmjp − βmjp′ can be used to infer the effect by

the difference in levels between xp and xp′ .

A graphical representation of Sp-BGFM is shown in Fig 3. In Supp. §2, we illustrate the
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distribution of observables under Sp-BGFM to examine the distributions of OTUs’ count.

Specifically, how the model with (1)-(3) and (7) accommodates the dependence between

OTU counts, excess zeros and large between-sample variability is illustrated with various

examples.

2.2 Prior Calibration and Posterior Computation

The prior of Σ in (4) requires specification of fixed hyperparameters K, aϕ, aτ and bτ . The

number K of latent factors is assumed to be fixed. For cases with N ≪ J , a relatively small

value of K is more desirable to obtain reliable estimation of Σ. For our simulation studies

and real data analyses, we empirically set a value for K; we perform principle component

analysis (PCA) for the sample covariance matrix of log-transformed normalized counts and

fix K at a value such that the K largest eigenvalues explain 95% of the total variance.

Given a sufficiently large value of K, the model may let τk close to 0 for unneeded latent

factors. If desired, a prior can be considered for K, e.g., a geometric or truncated Poisson

distribution. In addition, specifications of aϕ, aτ and bτ may need careful attention. Similar

to Bhattacharya et al. (2015), we observed that estimates of λmjk tend to be overly shrunken

toward zero with aϕ = 1/J . We also observed that aϕ = 1/2 recommended in Bhattacharya

et al. (2015) for the Dir-Laplace distribution does not efficiently produce joint sparsity under

the Dir-HS distribution. After careful exploration, we used aϕ = 1/(0.2 × J), which gives

approximately 1/20 for a dataset with J ≈ 100 as in our motivating example. By setting

the scale parameter of τk to bτ/J in (4), the prior for λmjk is appropriately scaled under

the constraint
∑

m,j ϕmjk = 1. We fixed aτ = 0.1 and bτ = 1/J for the analyses in § 3 and

§ 4. We performed a thorough sensitivity analysis by varying the values of K, aϕ, aτ , and

bτ and found that the model’s performance remains robust within a reasonable range of

these values. See Supp. §5 for sensitivity analyses related to the real data analysis in § 4.

Collecting terms, let θ = {λmjk, ϕmjk, τk, ζmkj, v
2
m, αsimj, ω

α
ml, V

α
ml, ξ

α
mjl, rim, ω

r
ml, V

r
ml, ξ

r
ml,

15



βmjp} a vector of all random parameters. We utilize Markov Chain Monte Carlo (MCMC)

simulations to generate samples of θ from their posterior distribution. To facilitate the pos-

terior computation, we introduce sample-specific latent vectors ηi
iid∼ NK(0, IK). We then

have y⋆imj | µimj,λmj,ηi, v
2
m

indep∼ log-N(µimj + λ
′
mjηi, v

2
m) as independent log-normal vari-

ables, which results in significant computational efficiency. The joint posterior distribution

of the augmented model is

p(θ,y⋆,η | y,x) ∝
N∏
i=1

M∏
m=1

Jm∏
j=1

p(yimj ≤ y⋆imj < yimj + 1 | ηi,θ)
N∏
i=1

p(ηi | θ)p(θ). (10)

We further augment the model by introducing latent variables to facilitate updates of

ri, αsi , and ζmkj. We use the blocked Gibbs sampling algorithm (Ishwaran and James,

2001) by considering a finite-dimensional truncation of the stick-breaking processes in (7)

and (8). We set the truncation levels Lr
m and Lα

m to sufficiently large values. Under

the augmented model, all model parameters except ϕk can be updated through Gibbs

steps. We use adaptive MH algorithm (Haario et al., 2001) for an efficient update of

ϕk. Details of the MCMC algorithm are in Supp. §3. R codes are available at https:

//github.com/shuang-jie/SP-BGFM.

3 Simulation

3.1 Simulation 1

For Simulation 1, we considered a case without covariates and evaluated the estimation of

interaction between OTUs in two groups. We let M = 2 with J1 = 150 and J2 = 50 OTUs.

We assumed one sample from each of S = 20 subjects, and we had N = 20. To specify Σtr,

we let Ktr = 5. We then simulated λtrmjk from N(0, 1) and shifted away from zero by 1 for

OTUs 1-25 and 51-75 in group 1 and OTUs 1-25 in group 2 to ensure that those OTUs have

large covariances. For the remaining OTUs, we let λtrmjk = 0 for all k. Thus, 80% of OTUs
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Figure 4: [Simulation 1] The upper right and lower left triangles of a heatmap illustrate
the estimates ρ̂mm′

jj′ of correlations and their truth, respectively. The horizontal and vertical
lines are to divide the groups. The estimates in panels (a)-(c) are from Sp-BGFM, MOFA
and SPIEC-EASI.

do not interact with the other OTUs. We then let Σtr = ΛtrΛtr,′ + V tr with v2,trm = 0.52 for

all m. The correlation matrix corresponding to Σtr is illustrated in the lower triangle of

Fig 4(a). For the normalized abundance level, we first set ξα,trmj1 = −5, ξα,trmj2 ∼ N(4, 1) and

ξα,trmj3 ∼ N(10, 1) and simulated ψtr
mj = (ψtr

mj1, ψ
tr
mj2, ψ

tr
mj3) ∼ Dir(30, 40, 30) independently for

each (m, j). The three values, ξα,trmjl , l = 1, 2 and 3, represent zero, small and large counts,

respectively. We then let αtr
simj = ξα,trmjl with probability ψtr

mjl for si ∈ {1, . . . , S}. We next

simulated size factors rtrim
iid∼ Unif(0, 2). Finally, we generated y⋆,tr

i from log-NJ(µ
tr
i ,Σ

tr)

with µtr
i = rtri +α

tr
si
and obtain count vectors yi = ⌊y⋆,tr

i ⌋. Under this setup, approximately

30% of yimj’s are 0.

We specified the hyper-parameters values as discussed in § 2.2. In addition, we let

K = 10, cr = cα = 1, Lr
m = Lα

m = 50, av = bv = 3, arω = brω = aαω = bαω = 5. We ran

MCMC for 105 iterations and discarded the first half for burn-in. It took 67 minutes on an

Apple M1 chip laptop. We examined trace plots to assess the convergence and mixing of

the MCMC chain and did not observe any evidence of slow mixing and convergence issues.

For easy interpretation, we consider correlations ρmm′

jj′ = Σmm′

jj′ /(Σmm
jj Σm′m′

j′j′ ) instead of

Σ. Fig 4 (a) compares posterior median estimates ρ̂mm′

jj′ of correlations to their truth. As

shown in the figure, Sp-BGFM capably identifies zeroes in the truth and efficiently shrinks
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(a) Group 1, OTU 30 (b) Group 1, OTU 133 (c) Group 2, OTU 31

Figure 5: [Simulation 1] Posterior predictive estimates of the marginal distribution of log-
transformed counts are plotted for three arbitrarily chosen OTUs, OTUs 30 and 133 of
group 1 and OTU 31 of group 2 for model checking. Crosses are log-transformed observed
counts after normalization based on a posterior estimate of the scale factors rim.

the corresponding λmjk to zero, leading to an accurate reconstruction of the truth. We per-

formed posterior predictive checking to assess model fit as follows; we first set the sample

size factors rpred = (rpred1 , rpred2 ) for an unobserved sample and estimated the posterior pre-

dictive distribution of a count vector, Pr(ypred = y | rpred,D) =
∫
A(y)

∫
f(ỹ⋆ | rpred,θ)f(θ |

D)dθdy, where D = {Y1,Y2} denotes observed data. We approximated it with posterior

samples of θ drawn from the posterior simulation. Fig 5 illustrates marginal predictive

distribution estimates of log-transformed counts for three arbitrarily chosen OTUs with

rpredm = 0, m = 1, 2. If the model fits well, the observed data should look plausible under

the posterior predictive distribution (Gelman et al., 2013). To avoid numerical issues, we

added 1 to the posterior predictive samples of y. The observed counts, marked with crosses

in the figure, are also scaled according to rpred after normalization by a posterior estimate

of their scale factor for compatibility, log(⌊yimj/ exp(r̂im − rpredm )⌋+ 1), where r̂im is a pos-

terior estimate of rim. The comparison of the predictive density estimates to the empirical

distribution of the normalized observed counts suggests that the model offers a good fit to

the data, accounting for excess zeros and multimodality, even with N = 20 for J = 200.

For comparison, we fit MOFA(Argelaguet et al., 2018) and SPIEC-EASI (Tipton et al.,

2018) to the simulated data. We used R packages, MOFA2 and SpiecEasi to apply their
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Method Sim 1 Sim 2 Sim 3 Sim 4 Sim 5
Sp-BGFM 0.065 0.123 0.234 0.000 0.109
MOFA 0.229 0.364 0.316 0.107 0.235

SPIEC-EASI 0.150 0.306 0.306 0.004 0.205

Table 1: Root mean square error (RMSE) of the correlations ρmm′

jj′ is computed for Sim-

ulations 1-5. Estimates ρ̂mm′

jj′ are obtained from three methods, Sp-BGFM, MOFA and
SPIEC-EASI. The smallest RMSE is in bold.

methods. Prior to fitting, the OTU counts were clr-transformed and re-centered with

default settings in the packages. Their correlation estimates ρ̂mm′

jj′ are compared to the

truth in Fig 4 (b)-(c). They yield poor estimates and fail to recover the true interaction

structure, potentially due to their assumption of mean zero and/or the normalization of the

observed counts prior to analysis. The root mean square error (RMSE) of ρmm′

jj′ is used to

quantify the differences between the estimates from Sp-BGFM, MOFA, and SPIEC-EASI

and the truth. The results are presented in Tab 1. Additional comparison of Sp-BGFM to

REBACCA(Ban et al., 2015), COAT(Cao et al., 2019) and Zi-LN (Prost et al., 2021) that

analyze a single count table, is provided in Supp. §4.1. Comparing their estimates to the

truth, those alternative methods perform poorly in uncovering the true dependence among

the OTUs.

3.2 Simulation 2

For Simulation 2, we set M = 2, J1 = 150, J2 = 50, S = 20 and N = 40 with a binary

covariate. We used the vine method in Lewandowski et al. (2009) and generated an ar-

bitrary covariance matrix to specify Σtr. The correlation matrix corresponding to Σtr is

shown in the lower triangle of Fig 6(a). The OTUs are rearranged within a group for a

better illustration. For abundances, we generated αtr
simj and r

tr
im similarly as in Simulation

1, but we used the empirical proportions of zero counts from the multi-domain skin micro-

biome dataset in § 4 for αtr
simj to simulate a dataset closely resembling the skin microbiome

dataset. In addition, we incorporated a categorical covariate with two levels to investigate
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Figure 6: [Simulation 2] The upper right and lower left triangles of a heatmap illustrate
estimates ρ̂mm′

jj′ of correlations and their truth, respectively. The horizontal and vertical
lines are to divide the groups. The estimates in panels (a)-(c) are from Sp-BGFM, MOFA
and SPIEC-EASI, respectively.

the estimation of βmjp and Σ in a complex setting. A sample was generated under each

level for a subject, resulting in N = 40. We imposed sparsity on βtr by letting them zero

with a large probability. We then let µtr
imj = rtrim + αtr

simj + x′
iβ

tr
mj and generated y⋆,tr

i from

log-NJ(µ
tr
i ,Σ

tr). We finally let count vectors yi = ⌊y⋆,tr
i ⌋, and the overall zero count rate

is 45%. Details of simulation set-up are in Supp. §4.2.

The fixed hyperparameters are specified the same as those in Simulation 1. For the

prior of βmjp, we set u2β = 3. The MCMC simulation, consisting of 105 iterations, took

approximately 98 minutes to complete on an Apple M1 chip laptop. We discarded the first

half of the iterations as burn-in, and the remaining half was used for making inferences.

The trace plots demonstrated a good mixing of the MCMC chain.

The upper triangle of Fig 6(a) illustrates the posterior estimates ρ̂mm′

jj′ under Sp-BGFM.

Figs 7(a) and (b) show the posterior median estimates of βmj1 − βmj2 (dots) with their

95% credible interval estimates (vertical lines) for groups 1 and 2, respectively. Sp-BGFM

performs well in capturing the true within-domain and across-domain dependence structure

among the OTUs, despite the arbitrary specification of Σtr and the added complexity due

to the covariate in the true data generating process. In addition, the covariate effects βmjp

are well estimated.
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Figure 7: [Simulation 2] Posterior estimates of covariate effect βmj1 − βmj2 under Sp-BGFM
are plotted against the truth in panels (a) and (b) for two groups, m = 1 and 2. The pos-
terior median estimates are denoted by dots, and the 95% credible estimates with vertical
lines. In panels (c) and (d), the estimates of βmjp under metagenomeSeq are plotted for
two groups.

We also check the model fit using posterior predictive checking. We set rpredm = 0 for

m = 1, 2 and estimate the distribution of ypred for the two conditions, x = (1, 0) and (0, 1),

similar to the procedure used in Simulation 1. The predictive distribution estimates are

illustrated in Fig 8 for some selected OTUs. The solid and dashed lines are for conditions,

x = (1, 0) and (0, 1), respectively. The observed normalized counts are shown with dots

and crosses on the top of the figures after log transformation. For the OTUs in the figure,

posterior estimates of βmj1 − βjm2, are 1.68, -2.65 and 2.07 with 95% credible intervals

(0.98, 2.26), (-3.44, -2.02), and (1.11, 2.92), respectively. Their true values are 2.15, -2.42,

and 1.97, respectively. The figures show an adequate model fit under Sp-BGFM and depict
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(a) Group 1 OTU 12 (e) Group 1 OTU 32 (f) Group 2 OTU 11

Figure 8: [Simulation 2] Posterior predictive estimates of the marginal distribution of log-
transformed counts for three arbitrarily chosen OTUs, OTUs 1 and 32 of group 1 and OTU
161 of group 2 for model checking. Dots and crosses are log-transformed observed counts
after normalization based on a posterior estimate of the scale factors rim for x =(1, 0) and
(0, 1), respectively. The solid and dashed lines represent the conditions with x =(1, 0) and
(0, 1), respectively.

the covariate’s impact on the prediction of counts for those OTUs.

Figs 6(b) and (c) compare the correlation estimates obtained from MOFA and SPIEC-

EASI to the truth. For Sp-BGFM, MOFA, and SPIEC-EASI, RMSEs of ρmm′

jj′ are computed

and shown in Tab 1. The estimates from the additional comparators, REBACCA, COAT

and Zi-LN, are shown in Supp. Fig. 7. The estimates of the comparators are very poor and

fail to recover Σtr, potentially due to a lack of consideration for covariates and/or assump-

tion of mean zero. In addition, we compare our Sp-BGFM to metagenomeSeq (Paulson

et al., 2013) in the estimation of βmjp. MetagenomeSeq transforms counts log2(yimj+1) and

builds a zero-inflated normal mixture model. For the non-zero part, the mean function is

modeled through regression. It uses the CSS normalization method to estimate sample size

factors and includes as an offset to account for differences between samples in sequencing

depth. Figs 7(c) and (d) illustrate point estimates of βmj1 − βmj2 under metagenomeSeq.

MetagenomeSeq does not provide interval estimates. Comparison of the plots in panels

(a) and (b) to those in panels (c) and (d) suggests that Sp-BGFM offers more accurate

estimates of covariate effects with uncertainty quantification.
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3.3 Additional Simulations

We conducted additional simulation studies, Simulations 3, 4, and 5, to further examine

the robustness of Sp-BGFM. In Simulation 3, we kept the setup of Simulation 2 and used

Σtr arbitrarily specified by the vine method in Lewandowski et al. (2009) to generate data.

However, no covariate was considered. Sp-BGFM recovers the true microbial interaction

structure well, as shown in Supp. Fig. 8. In Simulation 4, we simulated count vectors

from multinomial distributions, where the total count, i.e., the number of trials, was sim-

ulated from a normal distribution whose parameters were empirically specified using the

real dataset in § 4. The true OTU dependence structure is well recovered under Sp-BGFM,

as shown in Supp. Fig 10. Especially, Supp. Fig 11 illustrates that the model-based nor-

malization through rim provides a reasonable basis for estimating α and Σ. For Simulation

5, we generated a multi-domain count dataset using the functions in R package SpiecEasi

(Kurtz et al., 2015). The functions take a real microbiome count dataset and a correlation

matrix as input and generate a count table from a zero-inflated negative binomial distri-

bution through normal-copula functions. OTU counts have a dependence structure as in

the provided correlation matrix, and their marginal distributions are similar to those in

the provided dataset. We used the multi-domain skin microbiome dataset in § 4 and corre-

lation matrices randomly generated by the vine method. Supp. Fig 13 demonstrates that

Sp-BGFM does an excellent job of capturing the true within-domain and cross-domain

dependence structure and provides a reasonable fit to the simulated data, although the

dataset was generated from a model significantly different from the assumed model.

For comparisons, we fit the comparators, MOFA and SPEIC-SASI, to the datasets of

Simulations 3-5 and compared their results to the truth and those of Sp-BGFM, indicating

favorable performance of Sp-BGFM. The RMSEs of ρmm′

jj′ are computed for Sp-BGFM and

the comparators, and they are presented in Tab 1. Details of Simulations 3-5 are reported

in §4.3-§4.5 of the Supplementary Materials, respectively.
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Figure 9: [Multi-domain skin microbiome] The upper right triangle of the heatmaps in (a)-
(c) has correlation estimates ρ̂mm′

jj′ under Sp-BGFM, MOFA and SPIEC-EASI, respectively.

Empirical correlation estimates ρ̃mm′

jj′ are shown in the lower triangles.

4 Multi-domain Skin Microbiome Data Analysis

To fit Sp-BGFM for the multi-domain skin microbiome data, we removed OTUs having

extremely low counts on average or having zero counts in too many samples. In particular,

we included only the OTUs that have a non-zero count in at least two samples under each

condition and an average count larger than ten under each condition for analysis. After

pre-processing, 75 bOTUs and 39 vOTUs were left for analysis, so J1 = 75 and J2 = 39.

The proportions of zeros are 42.97% and 44.10% for bOTUs and vOTUs, respectively.

Empirical correlation estimates ρ̃mm′

jj′ among the OTUs are computed using the OTU counts

normalized using CSS, and illustrated in the lower triangle of Fig 9(a). We used K = 15,

and all other hyperparameters were specified at the same values as in the simulation studies

of § 3. We implemented posterior inference using MCMC posterior simulation. The Markov

chain ran for 105 iterations, and the initial half was discarded as burn-in. The posterior

simulation took approximately 4.82 minutes for every 10,000 iterations on an Apple M1 chip

laptop. The trace plots indicated that the MCMC chain mixed well. We also performed

sensitivity analysis on the specification of the fixed hyperparameters. Details of MCMC

simulation diagnostics and prior sensitivity analyses are included in Supp. §5.

The upper right triangle of Fig 9(a) illustrates posterior median estimates ρ̂mm′

jj′ of cor-
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relations. The OTUs are rearranged within a group for a better illustration. Supp. Fig 17

illustrates ρ̂mm′

jj′ for the OTUs that have |ρ̂mm′

jj′ | > 0.5 with any other OTU j′, j′ ̸= j. Supp.

Tabs 1 and 2 have taxonomic information of those OTUs. Here, 0.5 is an arbitrary choice to

illustrate a smaller set of OTUs that have large estimates. While the overall estimated in-

teraction structure is sparse, some OTU subsets within a group have large positive values of

ρ̂mm
jj′ . Interestingly, many of these OTUs have zero counts across samples concurrently, po-

tentially suggesting potential microbial co-existence patterns. Positive correlations among

bacteria are expected because some bacterial infections are known to be polymicrobial.

That is, infections occur with microorganisms from different genera. Specifically, the gen-

era, Actinomyces, Actinotignum, Campylobacter, Helcococcus and Porphyromonas, which

are bOTUs 3, 4, 10, 24 and 56, respectively, have large positive correlation estimates with

ρ̂mm
jj′ ≥ 0.72, m = 1. Previous research has indicated potential relations between some

of the species of those OTUs. Actinomyces and Helcococcus, which are bacteria that can

adapt and survive in environments with or without oxygen, were found in diabetic patients

with osteomyelitis, a serious bone infection typically in the foot (Van Asten et al., 2016).

Additionally, Actinomyces-associated infections are frequently found to occur with other

bacteria including Campylobacter and Porphyromonas that might synergistically enhance

the infection process (Könönen and Wade, 2015). In the oral microbiome, species of Acti-

nomyces, Campylobacter, and Porphyronomas are also known to be related to periodontal

diseases (Noiri et al., 1997). Synergistic interactions between the microbes of these OTUs

have not been found in chronic wounds. However, the identified positive correlations align

with previous findings under other biological contexts and support further investigations

into the relationship between these bacterial species in the context of chronic wound heal-

ing. In addition, vOTUs 2, 9, 10, 13, 29, 32, 34 and 38 are estimated to have ρ̂mm
jj′ ≥ 0.65,

m = 2 with each other, implying that they coexist and their abundance is related with that

of the others. Especially, vOTUs 2, 9, 10 and 13, corresponding to Aquisalimonas phage,
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Grimontella phage, Klebsiella phage, and Methylomonas phage, are annotated. With the

exception of Klebsiella which is a pathogen in the human microbiome, little is known about

those phage hosts. The positive correlation estimates among those vOTUs may reflect the

richness or scarcity of the common environment, as virion production is influenced by

environmental factors such as nutrient availability. Correlations among the phages reflect

potential interactions among the hosts, the phages, or the phages and hosts, and the results

may suggest the need for further studies to gain additional biological context.

Different from the previous analyses that focused on a single domain, Sp-BGFM pro-

vides inference on interactions among microorganisms in both within and different domains.

From Fig 9(a), the overall cross-domain interaction is scarce, except for Staphylococcus au-

reus (bOTU 65), a prominent skin pathogen. Interestingly, it has a negative correlation

estimate with a subset of phages, vOTU 2, 6, 8, 9, 10, 13, 28, 29, 31, 32, 34, 36 and 38,

that are positively correlated with each other. The colonization of S. aureus is found asso-

ciated with disruption in the healthy composition of skin microbiota (Di Domenico et al.,

2019). The negative correlations may suggest potential adversarial relationships between

S. aureus and these phages (or their host) and call for further investigation to enhance our

understanding of the underlying biological process. Additionally, the pair, Pseudomonas

(bOTU 59) and Pseudomonas phage (vOTU 18), is estimated to have a positive correlation

0.38, aligning with their inherent ecological relations (i.e., Pseudomonas phage occurs with

Pseudomonas bacteria).

In contrast to MOFA and SPEICE-EASI, Sp-BGFM also produces inferences on mean

microbial abundances and their association with covariates. Fig 10 illustrates inference on

covariate effects βmjp − βmjp′ , p ̸= p′. Recall that βmjp, p = 1, 2 and 3, quantify changes in

abundance compared to the baseline abundance. In the figure, dots represent the posterior

median estimates of βmjp − βmjp′ , while vertical lines illustrate their 95% credible interval

estimates. The interval estimates that do not contain zero are in red. Supp. Tabs 1
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Figure 10: [Multi-domain skin microbiome] The left and right columns display the posterior
median estimates of βmjp − βmjp′ for bacterial and viral OTUs, respectively. Vertical lines
represent their corresponding 95% credible interval estimates. The interval estimates that
do not include 0 are marked in red bold.

and 2 have taxonomic information of the OTUs whose interval estimates do not contain

zero. Overall, the bOTUs tend to be enriched in the healthy condition compared to the
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pre- and post-treatment conditions. In contrast, vOTUs tend to be enriched in the pre-

and post-treatment conditions. Changes in abundance between pre- and post-treatment

conditions are relatively minimal for bOTUs and vOTUs. This could be due to the fact

that the post-treatment samples were taken quite quickly after the treatment, while any

significant changes might take longer to occur. Within the wound samples, vOTUs 1, 18

and 23, corresponding to Acinetobacter phage, Proteus phage and Staphylococcus phage,

are found enriched as also reported in Verbanic et al. (2022). Similar to the findings in Fig

2 of Verbanic et al. (2020), bOTUs 27, 29 and 53, corresponding to the genera, Kocuria,

Micrococcus and Paracoccus, are significantly more abundant in the healthy skin samples.

Interestingly, the abundance of vOTU 2 (Aquisalimonas phage) is found to be statistically

significantly different between the pre- and post-treatment conditions. Little is known

about this phage, and the result suggests follow-up experiments for further examination.

Supp. Fig. 18 illustrates posterior predictive density estimates of an OTU’s count under

the different conditions for some selected OTUs, bOTUs 1, bOTU 69 and vOTU 17, for

model assessment. The figure also demonstrates the effects of the experimental conditions

on the prediction. Overall, the comparison of the posterior predictive density estimates to

empirical distributions of the observed counts indicates a reasonable model fit to the data.

For comparison, we applied MOFA and SPIEC-EASI to the skin microbiome data.

Fig 9(b) and (c) illustrate ρ̂mm′

jj′ under the comparators. The inference under MOFA sug-

gests a large number of interactions compared to that under Sp-BGFM. While some in-

teractions have been identified, such as the interaction between Staphylococcus and other

species (Alonzo III, 2022; Christensen et al., 2016), it is unclear whether the high number of

interactions aligns with the relative scarcity of known interspecies interactions in the skin

and the lack of universal dynamics compared to the gut microbiome (Bashan et al., 2016).

On the other hand, in contrast, SPIEC-EASI does not suggest any significant interactions

and fails to capture interactions related to known mechanisms for chemical communication
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among species (e.g., secreted by Staphylococcus species). The estimates from the additional

comparators, REBACCA, COAT and Zi-LN, are in Supp. Fig. 9. Supp. Fig. 10 illustrates

estimates of covariate effects under metagenomeSeq. The point estimates of coefficients

under metagenomeSeq suggest that abundance of the bOTUs tends to be higher in the

healthy condition compared to the post-treatment condition, which is similar to the in-

ference under Sp-BGFM. However, it does not provide any uncertainty associated with

the point estimates, and their statistical significance cannot be determined. Note that

the comparators for estimating OTU interactions do not take into account covariates, and

metagenomeSeq that estimates covariate effects does not consider potential interactions

among OTUs.

5 Conclusions

We developed Sp-BGFM, a sparse Bayesian group factor model for analyzing multiple count

tables data from multi-domain microbiome studies. The Dir-HS distribution was developed

to efficiently induce joint sparsity and used as a prior for factor loadings. The model pro-

duces a reliable estimate of covariance matrices even with small sample sizes. Additionally,

Sp-BGFM incorporates nonparametric mixtures of multivariate rounded kernels to capture

inter-subject variability and improves inference on the dependence structure. The model

also accommodates covariates through regression. Simulation studies and real data analysis

confirm the robust performance of Sp-BGFM compared to other alternatives. The model

is applicable to the analysis of multiple count tables data in any application.

Sp-BGFM can be extended by relaxing model assumptions further. One possible exten-

sion is to incorporate a hierarchical Dirichlet process (HDP) in Teh et al. (2004) or to adopt

a common atom model in Denti et al. (2023). These approaches facilitate the construction

of domain and OTU-specific distributions through a hierarchical structure. Specifically,

an HDP allows Gmj in (2) to share mixture components, with mixture weights differing
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across OTUs. Another extension incorporates a fully nonparametric regression model to

accommodate covariates x more flexibly. This can be achieved using a dependent Dirichlet

process (DDP) model (MacEachern, 1999; Quintana et al., 2022) by letting ψα
ml and/or ξ

⋆
mjl

of Gmj in (2) depend on x. The distribution of y is marginally a DP-distributed random

probability distribution that varies flexibly with x. It is important to note that while these

extended models offer greater flexibility, obtaining inference with reasonable uncertainty

bounds may require a sufficiently large sample size.

A potentially interesting avenue for further research is to integrate taxonomy rank

information into analysis. In microbiome studies, utilizing a phylogenetic tree from 16S

rRNA gene sequencing can enhance OTU interaction estimation (Washburne et al., 2018).

For example, Chung et al. (2022) incorporated branch split information using a latent

position model and a truncated Gaussian copula model. Adapting a similar idea, Sp-

BGFM can include taxonomy level-specific factor loadings, denoted as ΛT
m. Assigning

OTUs latent factor loadings based on their phylogeny may allow to capture interaction

structures integrating phylogenetic relatedness. This approach has the potential to enhance

the inference of interaction structures in other domains.

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY: The Supplement includes an examination of the properties of

the Dir-HS distribution and the distributions of OTUs’ count under Sp-BGFM. It

also provides a detailed description of the MCMC sampling algorithm. Additionally,

the supplement presents further results from simulation studies and the analysis of

multi-domain skin microbiome data. (pdf file)
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