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Abstract

We propose a new family of error distributions for model-based quantile regression,

which is constructed through a structured mixture of normal distributions. The construc-

tion enables fixing specific percentiles of the distribution while, at the same time, allowing

for varying mode, skewness and tail behavior. It thus overcomes a practical limitation

of the asymmetric Laplace distribution – the most commonly used error model for para-

metric quantile regression – for which the skewness of the error density is fully specified

when a particular percentile is fixed. We develop a Bayesian formulation for the proposed

quantile regression model, including conditional lasso regularized quantile regression based

on a hierarchical Laplace prior for the regression coefficients, and a Tobit quantile regres-

sion model. Posterior inference is implemented via Markov Chain Monte Carlo methods.

The flexibility of the new model relative to the asymmetric Laplace distribution is studied

through relevant model properties, and through a simulation experiment to compare the

two error distributions in regularized quantile regression. Moreover, model performance in

linear quantile regression, regularized quantile regression, and Tobit quantile regression is

illustrated with data examples that have been previously considered in the literature.
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1 Introduction

Quantile regression offers a practically important alternative to traditional mean regression,

and forms an area with a growing literature in terms of both methodology and applications.

Parametric quantile regression models are typically built from the asymmetric Laplace (AL)

distribution the density of which is

fAL
p (y | µ, σ) =

p(1− p)

σ
exp

{
− 1

σ
ρp (y − µ)

}
, y ∈ R (1)

where ρp(u) = u[p− I(u < 0)], with I(·) denoting the indicator function. Here, σ > 0 is a scale

parameter, p ∈ (0, 1), and µ ∈ R corresponds to the pth percentile,
∫ µ
−∞ fAL

p (y | µ, σ)dy = p.

Hence, a model for pth quantile regression can be developed by expressing µ as a function

of available covariates x, for instance, µ = xTβ yields a linear quantile regression structure.

Note that maximizing the likelihood with respect to β under an AL response distribution

corresponds to minimizing for β the check loss function,
∑n

i=1 ρp(yi −xT
i β), used for classical

semiparametric estimation in linear quantile regression (Koenker, 2005).

The AL distribution has received attention in the Bayesian literature, originating from

work on inference for linear quantile regression (Yu and Moyeed, 2001; Tsionas, 2003; Yang

et al., 2016). Particularly relevant to the Bayesian framework are the different mixture rep-

resentations of the distribution (Kotz et al., 2001), which have been exploited to construct

posterior simulation algorithms (Kozumi and Kobayashi, 2011), as well as to explore different

modeling scenarios; see, for instance, Lum and Gelfand (2012) and Waldmann et al. (2013).

The objective of this work is to address the practical limitations of the AL distribution

when used as an error model for quantile regression. It has been shown that using the AL

distribution for the errors in linear quantile regression can result in posterior consistency for the

regression coefficients, under various conditions on the covariate space and the true underlying

response distribution (Sriram et al., 2013). However, the specific asymptotic arguments do not

address key inferential objectives, such as credible interval estimation or prediction for new

responses. More importantly, focusing on effective finite sample inference, the AL quantile

regression error distribution is arguably limited from a modeling perspective. Indeed, its

limitations are reflected in different types of inference even for relatively large amounts of

data, as demonstrated with the simulation study of Section 4. The most striking modeling

limitation is that the skewness of the error density is fully determined when a specific percentile

is chosen, that is, when p is fixed. In particular, the error density is symmetric in the case of

median regression, since for p = 0.5, the AL reduces to the Laplace distribution. Moreover,
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the mode of the error distribution is at zero, for any p, which results in rigid error density tails

for extreme percentiles (an illustration is given in Figure 1 discussed in Section 2).

The literature includes Bayesian nonparametric models for the error distribution in the

special case of median regression (Walker and Mallick, 1999; Kottas and Gelfand, 2001; Han-

son and Johnson, 2002) and in general quantile regression (Kottas and Krnjajić, 2009; Reich

et al., 2010). The Bayes nonparametrics literature has also explored inference methods for

simultaneous quantile regression (Taddy and Kottas, 2010; Tokdar and Kadane, 2012; Reich

and Smith, 2013; Yang and Tokdar, 2017; Das and Ghosal, 2018; Chen and Tokdar, 2021).

However, work on parametric alternatives to AL quantile regression errors is limited, and the

existing models do not overcome all the limitations discussed above. For instance, although the

class of skew distributions studied in Wichitaksorn et al. (2014) includes the AL as a special

case, it shares the same restriction with the AL as a quantile regression error model in that

it has a single parameter that controls both skewness and percentiles. Zhu and Zinde-Walsh

(2009) and Zhu and Galbraith (2011) explored the family of asymmetric exponential power

distributions, which does not include the AL distribution. For a fixed probability p, the density

function has four free parameters and allows for different decay rates in the left and the right

tails. However, similar to the AL, the mode of the distribution is fixed at the quantile µ by

construction.

More flexible parametric quantile regression error models are arguably useful both to ex-

pand the inferential scope of the asymmetric Laplace in the standard quantile regression set-

ting, as well as to provide building blocks for model development under more complex data

structures. The limited scope of results in this direction may be attributed to the challenge

of defining sufficiently flexible distributions that are parameterized by percentiles and, at the

same time, allow for practicable modeling and inference methods.

Seeking to fill this gap, we propose a new family of distributions that is parameterized

in terms of percentiles, and overcomes the restrictive aspects of the AL distribution. The

distribution is developed constructively building from a mixture representation of the AL

distribution. In particular, we introduce a shape parameter to obtain a distribution that has

more flexible skewness and tail behaviour than the AL distribution, while retaining the AL

distribution as a special case of the new model (for a specific value of the extra parameter). The

latter enables connections with the check loss function which are useful in studying the utility

of the new model in the context of regularized quantile regression. Owing to its hierarchical

mixture representation, the proposed distribution preserves the important feature of ready to

implement posterior inference for Bayesian quantile regression.
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In Section 2, we develop the new distribution and discuss its properties relative to the AL

distribution. In Section 3, we formulate the Bayesian quantile regression model, including a

prior specification for the regression coefficients that encourages shrinkage resulting in regular-

ized quantile regression, and a Tobit quantile regression formulation. In Section 4, we present

results from a simulation study to compare the performance of the AL and the proposed distri-

bution in regularized quantile regression, under different scenarios for the underlying response

distribution, for both extreme and more central percentiles, and for different sample sizes. The

methodology is illustrated with three data examples in Section 5, focusing again on comparison

with the AL quantile regression model. Finally, Section 6 concludes with a summary.

2 The generalized asymmetric Laplace distribution

We first construct the general, four-parameter version of the new distribution as an extension

of the AL distribution (Section 2.1). Next, in Section 2.2, we develop the version of the

distribution that enables its use as an error model in quantile regression.

2.1 The general construction

The construction of the new distribution is motivated by the most commonly used mixture

representation of the AL density. In particular,

fAL
p (y | µ, σ) =

∫
R+

N(y | µ+ σA(p)z, σ2B(p)z) Exp(z | 1) dz (2)

where A(p) = (1− 2p)/{p(1− p)} and B(p) = 2/{p(1− p)} (e.g., Kotz et al., 2001). Moreover,

N(m,W ) denotes the normal distribution with mean m and variance W , and Exp(1) denotes

the exponential distribution with mean 1. We use such notation throughout to indicate either

the distribution or its density, depending on the context.

The mixture formulation in (2) enables exploration of extensions to the AL distribution.

Extending the Exp(1) mixing distribution is not a fruitful direction in terms of evaluation of the

intergal, and, more importantly, with respect to fixing percentiles of the resulting distribution.

However, both goals are accomplished by replacing the normal kernel in (2) with a skew normal

kernel (Azzalini, 1985). In its original parameterization, the skew normal density is given by

fSN(y | ξ, ω, λ) = 2ω−1 ϕ(ω−1(y − ξ)) Φ(λω−1(y − ξ)), where ϕ(·) and Φ(·) denote the density

and distribution function, respectively, of the standard normal distribution. Here, ξ ∈ R is

a location parameter, ω > 0 a scale parameter, and λ ∈ R the skewness parameter. Key to
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our construction is the fact that the skew normal density can be written as a location normal

mixture with mixing distribution given by a standard normal truncated on R+ (Henze, 1986).

More specifically, reparameterize (ξ, ω, λ) to (ξ, τ, ψ), where τ > 0 and ψ ∈ R, such that λ =

ψ/τ and ω = (τ2 + ψ2)1/2. Then, fSN(y | ξ, τ, ψ) =
∫
R+ N(y | ξ + ψs, τ2)N+(s | 0, 1) ds, where

N+(0, 1) denotes the standard normal distribution truncated over R+.

The proposed model, referred to as generalized asymmetric Laplace (GAL) distribution, is

built by adding a shape parameter, α ∈ R, to the mean of the normal kernel in (2) and mixing

with respect to a N+(0, 1) variable. More specifically, the full mixture representation for the

density function, f(y | p, α, µ, σ), of the new distribution is as follows∫
R+

∫
R+

N(y | µ+ σαs+ σA(p)z, σ2B(p)z) Exp(z | 1)N+(s | 0, 1) dz ds. (3)

Note that, integrating over s in (3), the GAL density can be expressed in the form of (2) with

the N(y | µ+σA(p)z, σ2B(p)z) kernel replaced with a skew normal kernel, which, in its original

parameterization, has location parameter µ+ σA(p)z, scale parameter σ{α2 +B(p)z}1/2, and
skewness parameter α{B(p)z}−1/2. Evidently, when α = 0, f(y | p, 0, µ, σ) reduces to the AL

density.

To obtain the GAL density, we integrate out first z and then s in (3). The integrand

of
∫
R+ N(y | µ + σαs + σA(p)z, σ2B(p)z) Exp(z | 1) dz can be recognized to be proportional

to a generalized inverse-Gaussian density. Therefore, integrating out z, f(y | p, α, µ, σ) =∫
R+ p(1− p)σ−1 exp

{
−σ−1 [p− I(y < µ+ σαs)] [y − (µ+ σαs)]

}
N+(s | 0, 1) ds. This integral

involves a normal density kernel, but care is needed with the limits of integration which depend

on the sign of y − µ and of α. Combining the resulting expressions from all possible cases, we

obtain that for α ̸= 0, the GAL density, f(y | p, α, µ, σ), is given by

2
p(1− p)

σ

([
Φ

(
y∗

α
− pα−α

)
− Φ(−pα−α)

]
exp

{
−pα−y

∗ +
1

2
( pα−α)

2

}
I

(
y∗

α
> 0

)
+Φ

[
pα+

α− y∗

α
I

(
y∗

α
> 0

)]
exp

{
−pα+

y∗ +
1

2
(pα+

α)2
})

(4)

where y∗ = (y − µ)/σ, pα+ = p− I(α > 0), pα− = p− I(α < 0), with p ∈ (0, 1).

2.2 Parameterization for quantile regression

The GAL distribution with density in (4) has four parameters. The introduction of the shape

parameter α changes the interpretation for parameter p, in particular, for α ̸= 0, p no longer

corresponds to the probability at the quantile. Here, we develop a reparameterization of

the GAL distribution, which allows for a meaningful comparison between the AL and GAL
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densities from a fixed quantile point of view, and thus for the use of the GAL distribution as

an error model for quantile regression.

When α > 0, the distribution function of (4) at µ is given by
∫ µ
−∞ f(y | p, α, µ, σ)dy =

2 pΦ[(p− 1)α] exp
{
(p− 1)2α2/2

}
. Hence, letting γ = (1− p)α, we can write∫ µ

−∞
f(y | p, γ, µ, σ) dy = p g(γ) with g(γ) = 2Φ(−|γ|) exp(γ2/2).

We use |γ| above, since this is the general form of g(γ) that applies also in the α < 0 case.

Note that, for γ ∈ R−, dg(γ)/dγ = 2h(γ) exp(γ2/2), where h(γ) = ϕ(γ) + γΦ(γ). The

function h(γ) is monotonically increasing in R−, since dh(γ)/dγ = Φ(γ) > 0. Moreover,

h(0) = (2π)−1/2 > 0, and limγ→−∞ h(γ) = 0. Therefore, h(γ) > 0 for γ ∈ R−, and thus g(γ)

is monotonically increasing in R−. Since g(γ) is an even function, it also obtains that it is

monotonically decreasing in R+.

Consider now setting
∫ µ
−∞ f(y | p, γ, µ, σ) dy = p g(γ) = p0. Then, the fact that g(γ) is

decreasing in R+ combined with g(γ) > p0, imply that for each γ > 0 in the domain that

respects the condition of p ∈ (0, 1) and α > 0, there is a unique solution of p that ensures∫ µ
−∞ f(y | p, γ, µ, σ) dy = p0, and subsequently a unique α based on γ = (1− p)α. For α < 0,

setting
∫∞
µ f(y | p, γ, µ, σ) dy = 1− p0 and letting γ = pα leads to the same argument.

The above connection between (p0, γ) and (p, α) suggests that by reparameterization with

desired p0 ∈ (0, 1) and γ = [I(α > 0)− p]|α|, we can derive a new family of distributions with

the percentile for fixed p0 given by µ, and with an additional shape parameter γ. For γ ̸= 0,

the density, fp0(y | γ, µ, σ), of such quantile-fixed GAL distribution is

2 p(1−p)
σ

({
Φ
(
−pγ+

y∗

|γ| +
pγ−
pγ+

|γ|
)
− Φ

(
pγ−
pγ+

|γ|
)}

exp

{
−pγ−y

∗ + γ2

2

(
pγ−
pγ+

)2
}
I
(

y∗

γ > 0
)

+ Φ
[
−|γ|+ pγ+

y∗

|γ| I
(

y∗

γ > 0
)]

exp
{
−pγ+

y∗ + γ2

2

})
(5)

where p ≡ p(γ, p0) = I(γ < 0)+{[p0−I(γ < 0)]/g(γ)}, pγ+ = p−I(γ > 0), pγ− = p−I(γ < 0),

and y∗ = (y − µ)/σ.

In practice, we work with the mixture representation of the quantile-fixed GAL density,

which emerges from (3) and the reparameterization discussed above. More specifically,

fp0
(y | γ, µ, σ) =

∫
R+

∫
R+

N(y | µ+ σ C |γ|s+ σAz, σ2Bz) Exp(z | 1)N+(s | 0, 1) dz ds (6)

where C = [I(γ > 0) − p]−1, and A and B are the functions of p given in (2). Since p is a

function of γ and p0, A, B and C are all functions of parameter γ.

The parameter γ has bounded support over interval (L,U), where L is the negative root

of g(γ) = 1 − p0 and U is the positive root of g(γ) = p0. For instance, γ takes values
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Figure 1: Density function of quantile-fixed generalized asymmetric Laplace distribution with µ = 0, σ = 1

and different values of γ, for p0 = 0.05, 0.5 and 0.75. In all cases, the solid line corresponds to the asymmetric

Laplace density (γ = 0) with µ = 0 and σ = 1.

in (−0.07, 15.90), (−1.09, 1.09) and (−2.90, 0.39) when p0 = 0.05, p0 = 0.5 and p0 = 0.75,

respectively. When γ = 0, the density reduces to the quantile-fixed AL density, which is also

a limiting case of (5). The density function is continuous for all possible γ values.

The quantile-fixed GAL distribution has three parameters, µ, σ and γ. Note that Y has

density fp0(· | γ, µ, σ) if and only if (Y − µ)/σ has density fp0(· | γ, 0, 1). Hence, similarly to

the AL distribution, µ is a location parameter and σ is a scale parameter. The new parameter

γ allows for more flexible distributional shapes relative to the quantile-fixed AL distribution.

As demonstrated in Figure 1, γ controls skewness and tail behavior, allowing for both left and

right skewness when the median is fixed, as well as for both heavier and lighter tails than

the asymmetric Laplace, the difference being particularly emphatic for extreme percentiles.

Moreover, as the shape parameter γ varies, the mode is no longer held fixed at µ; it is less

than µ when γ < 0 and greater than µ when γ > 0. The above attributes render the proposed

distribution more practical than the AL distribution in the context of quantile regression.

The complex form of the density in (5) is not an obstacle from a practical perspective,

since its hierarchical mixture representation in (6) facilitates study of model properties and

Markov chain Monte Carlo (MCMC) posterior simulation. The latter is developed in Section

3.1. As an example of the former, we derive the characteristic function, φGAL(t), of the GAL

distribution. Based on (6),

φGAL(t) =

∫ ∞

−∞
eity fp0(y | γ, µ, σ) dy =

∫
R+

∫
R+

φN(t) Exp(z | 1)N+(s | 0, 1) dz ds

where φN(t) is the characteristic function of the N(µ+σ C |γ|s+σAz, σ2Bz) distribution. The
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integral w.r.t. z can be analytically evaluated, and the integral w.r.t. s can be recognized as

the characteristic function of the N+(0, 1) distribution at t σ C |γ|. The resulting expression is

given by

φGAL(t) =
2 exp{itµ− 0.5 t2σ2C2γ2}Φ(i σ C |γ| t)

1 + 0.5 t2σ2B − i tσA
. (7)

Finally, we note that parameter γ satisfies likelihood identifiability. Consider the location-

scale standardized density, fp0(· | γ, 0, 1), which is effectively the model for the errors in

quantile regression. Then, assume fp0(y | γ1, 0, 1) = fp0(y | γ2, 0, 1), for all y ∈ R. Given that

parameter γ controls the mode of the density, this implies that γ1 and γ2 must have the same

sign. Working with either of the two cases (that is, γ1 > 0 and γ2 > 0 or γ1 < 0 and γ2 < 0)

in expression (5), we arrive at g(γ1) = g(γ2). Since function g(·) is monotonic in either R− or

R+ (increasing in R−, decreasing in R+), g(γ1) = g(γ2) implies γ1 = γ2.

3 Bayesian quantile regression with GAL errors

3.1 Inference for linear quantile regression

Consider continuous responses yi and the associated covariate vectors xi, for i = 1, . . . , n. The

linear quantile regression model is set up as yi = xT
i β + ϵi, where the ϵi arise independently

from a quantile-fixed GAL distribution with
∫ 0
−∞ fp0(ϵ | γ, 0, σ)dϵ = p0. Owing to the mixture

representation of the GAL distribution, given in (6), the model for the data can be expressed

hierarchically as follows

yi | β, γ, σ, zi, si
ind.∼ N(yi | xT

i β + σ C |γ|si + σAzi, σ
2Bzi), i = 1, ..., n

zi, si
ind.∼ Exp(zi | 1)N+(si | 0, 1), i = 1, ..., n (8)

where, again, A, B and C are all functions of parameter γ. The Bayesian model is completed

with priors for β, σ and γ. Here, we assume a normal prior N(m0,Σ0) for β and an inverse-

gamma prior IG(aσ, bσ) for σ, with mean bσ/(aσ − 1) provided aσ > 1. For any specified p0,

γ is defined over an interval (L,U) with fixed finite endpoints, and thus a natural prior for γ

is given by a rescaled Beta distribution, with the uniform distribution available as a default

choice.

The augmented posterior distribution, which includes the zi and the si, can be explored via

MCMC based on Gibbs sampling updates for all parameters other than γ. As in Kozumi and
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Kobayashi (2011), we set vi = σzi, i = 1, . . . , n. Denote by GIG(ν, a, b) the generalized inverse-

Gaussian distribution with density given by fGIG(x) ∝ xν−1 exp{−0.5(a/x+ bx)}. Then, the

posterior simulation method is based on the following updates.

1. Sample β from N(m∗,Σ∗), with covariance matrix Σ∗ = [Σ−1
0 +

∑n
i=1 xix

T
i /(Bσvi)]

−1

and mean vector m∗ = Σ∗{Σ−1
0 m0 +

∑n
i=1 xi[yi − (σC|γ|si +Avi)]/(Bσvi)}.

2. For each i = 1, ..., n, sample vi from a GIG(0.5, ai, bi) distribution, where ai = [yi −
(xT

i β + σC|γ|si)]2/(Bσ), and bi = 2/σ +A2/(Bσ).

3. For each i = 1, ..., n, sample si from a normal N(µsi , σ
2
si) distribution truncated on R+,

where σ2si = [(Cγ)2σ/(Bvi) + 1]−1 and µsi = σ2siC|γ|[yi − (xT
i β +Avi)]/(Bvi).

4. Sample σ from a GIG(ν, c, d) distribution, where ν = −(aσ+1.5n), c = 2bσ+2
∑n

i=1 vi+∑n
i=1[yi − (xT

i β +Avi)]
2/(Bvi), and d =

∑n
i=1(Cγsi)

2/(Bvi).

5. We sample γ using a slice sampling update (Neal, 2003) which requires no accept/reject

step and sensitive tuning parameters. In particular, we implement slice sampling based

on stepping-out and shrinkage procedures (Scheme (3), Section 4.1 and Method (ii),

Section 4.2 of Neal 2003).

Parameter γ can be alternatively updated with a random walk Metropolis step, imple-

mented on the logit scale over (L,U), with a normal proposal distribution. However, in ad-

dition to requiring less tuning, we have found the slice sampling approach to provide better

mixing chains.

Based on the hierarchical model structure, the posterior predictive error density can be

expressed as

p(ϵ | data) =
∫

N(ϵ | σC|γ|s+ σAz, σ2Bz) Exp(z | 1)N+(s | 0, 1)π(γ, σ | data) ds dz dγ dσ,

and thus estimated through Monte Carlo integration, using the posterior samples for (γ, σ).

3.2 Quantile regression with regularization

Since the GAL distribution is constructed through modifying the mixture representation of the

AL distribution, it retains some of the useful properties of the AL distribution. In particular,

working with the hierarchical representation of the GAL distribution, we are able to retrieve

an extended version of the check loss function which corresponds to asymmetric Laplace errors.
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Consider the collapsed posterior distribution, π(β, γ, σ, s1, ..., sn | data), that arises from

(8) by marginalizing over the zi. Then, the corresponding posterior full conditional for β can

be expressed as

π(β | γ, σ, s1, ..., sn, data) ∝ π(β) exp

{
− 1

σ

n∑
i=1

ρp(yi − xT
i β − σH(γ)si)

}

where π(β) is the prior density for β, H(γ) = γg(γ)/{g(γ) − |p0 − I(γ < 0)|}, and p =

I(γ < 0) + {[p0 − I(γ < 0)]/g(γ)}, with p0 the probability associated with the specified

quantile modeled through xT
i β. Hence, ignoring the prior contribution, finding the mode of

the posterior full conditional for β is equivalent to minimizing with respect to β the adjusted

loss function
∑n

i=1 ρp(yi − xT
i β − σH(γ)si); note that in the special case with asymmetric

Laplace errors, that is, for γ = 0, this reduces to the check loss function with p = p0.

Based on the above structure, the positive-valued latent variables si can be viewed as

response-specific weights that are adjusted by real-valued coefficient H(γ), which is fully spec-

ified through the shape parameter γ. The result is the real-valued, response-specific terms

σH(γ)si, which reflect on the estimation of β the effect of outlying observations relative to the

AL distribution. A promising direction to further explore this structure is in the context of

variable selection. For instance, Li et al. (2010) study connections between different versions

of regularized quantile regression and different priors for β, working with asymmetric Laplace

errors. The main example is lasso regularized quantile regression, which can be connected to

the Bayesian asymmetric Laplace error model through a hierarchical Laplace prior for β. We

consider this prior below extending the AL error distribution to the proposed GAL distribu-

tion. This can be viewed as a more general perspective to explore regularization by adjusting

the loss function, through the response distribution, in addition to the penalty term, through

the prior for the regression coefficients.

Here, we denote by β the d-dimensional vector of regression coefficients excluding the

intercept β0. Then, the Laplace conditional prior structure for β is given by

π(β | σ, λ) =
d∏

k=1

λ

2σ
exp

{
−λ
σ
|βk|

}
=

d∏
k=1

∫
R+

1√
2πω

exp

{
−
β2k
2ω

}
η2

2
exp

{
−η

2

2
ω

}
dω.

The second expression above utilizes the normal scale mixture representation for the Laplace

distribution, which has been exploited for posterior simulation in the context of lasso mean re-

gression (Park and Casella, 2008). Moreover, to facilitate Markov chain Monte Carlo sampling,

we reparameterize in terms of η = λ/σ and place a gamma prior on η2. The lasso regularized

version of model (8) is completed with a normal prior for β0, and with the priors for the other
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parameters as given in Section 3.1. The posterior simulation algorithm is similar with the one

described in Section 3.1 with the exception of the updates for β0, β = (β1, . . . , βd)
⊤, and η2.

Using the mixture representation of the Laplace prior, each βk can be sampled from a normal

distribution, whereas η2 has a gamma posterior full conditional distribution. Details of the

posterior simulation steps are available in the Supplementary Material.

3.3 Tobit quantile regression

Tobit regression offers a modeling strategy for problems involving range constraints on the

response variable (Amemiya, 1984). The standard Tobit regression model can be viewed in the

context of censored regression where the responses are left censored at a threshold c; without

loss of generality, we take c = 0. The responses can be written as yi = max{0, y∗i }, where yi are
the observed values and y∗i are latent if y∗i ≤ 0. In the context of quantile regression, Yu and

Stander (2007) and Kozumi and Kobayashi (2011) applied the AL-based model to the latent

responses y∗i . Here, we consider the Tobit quantile regression setting with GAL errors.

Consider a data set of n+k observations on covariates and associated responses y = (yo,0),

where yo = (yo1, ..., y
o
n) consists of positive-valued observed responses with the remaining k re-

sponses censored from below at 0. Assuming the GAL distribution for the latent responses, we

can express the likelihood as
∏n

i=1 fp0(y
o
i | γ,xT

i β, σ)
∏k

j=1

∫ 0
−∞ fp0(w | γ,xT

n+jβ, σ) dw. Using

data augmentation (Chib, 1992), let w = (w1, ..., wk) be the unobserved (latent) responses

corresponding to the k data points that are left-censored at 0. Then, using again the hierarchi-

cal representation of the GAL distribution, we can write the joint posterior distribution that

includes w as

p(β, γ, σ, {si}, {vi},w | data) ∝ π(β, γ, σ)
∏n

i=1N(y
o
i | xT

i β + σC|γ|si +Avi, σBvi)∏k
j=1N

−(wj | xT
n+jβ + σC|γ|sn+j +Avn+j , σBvn+j)

∏n+k
i=1 Exp(vi | σ−1)N+(si | 0, 1)

where π(β, γ, σ) denotes the prior for the model parameters, and vi = σzi. Here, N− denotes

a truncated normal on R−, and Exp(v |σ−1) an exponential distribution with mean σ.

Regarding posterior inference, the posterior full conditional for each auxiliary variable wj is

given by a truncated normal distribution. And, given the augmented data (yo,w), the model

parameters and the latent variables {(vi, si) : i = 1, ..., n+ k} can be sampled as before.

Although results are not reported here, we have tested the posterior simulation algorithm

on simulated data sets based on GAL errors, with n = 400 observations and a censoring rate

that ranged from 20% to 40%. Under this scenario, the posterior distributions successfully

captured the true values of all parameters in their 95% credible intervals.
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4 Simulation study

Here, we present results from a simulation study designed to compare the lasso regularized

quantile regression models with AL and GAL errors, under different sample sizes. We follow

a standard simulation setting from the literature regarding the linear regression component

(Tibshirani, 1996; Zou and Yuan, 2008; Li et al., 2010). For the underlying data-generating

error distributions, we consider four scenarios with different types of skewness and tail behavior.

For model comparison, we evaluate the accuracy in variable selection, inference for the

regression coefficients (estimation accuracy, and empirical coverage of credible intervals), and

posterior predictive performance, using relevant assessment criteria.

4.1 Simulation settings

We consider synthetic data generated from the linear quantile regression setting, with p0 =

0.05, 0.25 and 0.5 to study model performance for both extreme and more central percentiles.

The rows of the design matrix were generated independently from an 8-dimensional nor-

mal distribution with zero mean vector and covariance matrix with elements 0.5|i−j|, for

1 ≤ i, j ≤ 8. We consider a relatively sparse vector of regression coefficients, in particular, β =

(3, 1.5, 0, 0, 2, 0, 0, 0).

Data were simulated under four different error distributions:

• N(µ, 9), with µ chosen such that the p0th quantile is 0.

• Laplace(µ, 3), with µ chosen such that the p0th quantile is 0.

• 0.1N(µ, 1) + 0.9N(µ+ 1, 5), with µ chosen such that the p0th quantile is 0.

• Log-transformed generalized Pareto(σ, ξ), with ξ = 3 and σ chosen such that the p0th

quantile is 0. Based on the parameterization in Embrechts et al. (1997), the error density

is given by f(ϵ |σ, ξ) = σ−1{1 + ξσ−1 exp(ϵ)}−(1+ξ−1) exp(ϵ), for ϵ ∈ R.

The normal and Laplace error distributions are symmetric about zero under median regression.

The parameters of the two-component normal mixture are selected such that the resulting error

distribution is skewed. Finally, the log-transformed generalized Pareto distribution is included

to study model performance under an error density which is both skewed and does not have

exponential tails. With the exception of median regression under the second scenario, both

the GAL and AL models are misspecified in terms of the error distribution.
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For each setting of the simulation study, we generated 100 sets of responses and design

matrices, each with n observations for training the models. Here, we report results for sample

sizes n = 100 and n = 1000. In the Supplementary Material, we provide additional results

based on a single data set of size n = 10000. One of the comparison criteria (discussed in the

next section) involves out-of-sample prediction. To compute the particular criterion, for each

one of the 100 replicated data sets, we generate a test set with N responses and covariates.

For all sample sizes n of the training data sets, we use N = 100 for the size of the test data

sets.

4.2 Criteria for comparison

We consider a number of criteria to assess different aspects of model performance. Details for

each criterion are provided below.

Correct inclusions and exclusions for predictors. Since Bayesian lasso regression only

shrinks the covariate effects, we consider a threshold on the effect size for the purpose of vari-

able selection. Following Hoti and Sillanpää (2006), we calculate the standardized effects as

β∗j = (sxj/sy)βj , j = 1, . . . , d, where sxj is the empirical standard deviation of predictor xj

and sy is the empirical standard deviation of the response. For each posterior sample, if the

standardized effect is greater than 0.1 in absolute value, we consider the predictor as included.

We count the number of correct inclusions and exclusions (CIE) in the posterior sample and

divide it by d to normalize it to a number between 0 and 1. By averaging over all the posterior

samples, we obtain the mean standardized CIE for each simulated data set.

Root mean square error for regression coefficient estimates. To assess estimation accu-

racy of the regression coefficients, we consider root mean square error (RMSE). For each train-

ing data set, we calculate the RMSE for βk using RMSE =

√
M−1

∑M
m=1(β

(m)
k − βk)2, where

M is the posterior sample size and β
(m)
k is the m-th posterior sample for βk, for k = 1, . . . , d. In

Section 4.3, we aggregate results by averaging over all regression coefficient estimates to obtain

the average RMSE for each training data set. In the Supplementary Material, we provide the

more detailed results pertaining to each individual βk, for k = 1, . . . , d.

Coverage probability of credible intervals for the regression coefficients. Using

the 100 replicated data sets, we compute the empirical coverage probability of the 95% pos-

terior credible interval for each regression coefficient βk, for k = 1, . . . , d. The Supplementary
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Material reports the results for all combinations of the percentile value (p0 = 0.05, 0.25, 0.5),

sample size (n = 100, 1000), and true error distribution.

Interval score for predictions. To assess performance in out-of-sample prediction, we

apply the interval score (IS) from Gneiting and Raftery (2007). For j = 1, . . . , N , denote by ỹj

the j-th response in the test set, and let (lj , uj) be the corresponding (1− α)100% prediction

interval, obtained using the associated covariate vector, x̃j , from the test set. Then, the IS for

predicting the j-th new response is defined as

IS(ỹj , lj , uj) = (uj − lj) +
2

α
(lj − ỹj)I(ỹj < lj) +

2

α
(ỹj − uj)I(ỹj > uj).

Note that the particular score combines a reward for a narrow prediction interval with a

penalty incurred when the realized response is outside the prediction interval. The aggregated

prediction interval score for the test data set is IStest = N−1
∑N

j=1 IS(ỹj , lj , uj).

4.3 Results

We use the same hierarchical Laplace prior for β = (β1, . . . , β8)
⊤ under the AL and GAL

models, with a gamma prior for η2 with prior mean 1 and variance 10. Such prior specification

is relatively non-informative in the sense that it does not favor shrinkage for the regression

coefficients, resulting in marginal prior densities for the βk that place substantial probability

mass away from 0. The shape parameter γ of the GAL error distribution is assigned a uniform

prior. For both models, the scale parameter σ receives an inverse gamma prior IG(2, 2), and

the intercept β0 a N(0, 100) prior.

Results under both models and for each simulated data set are based on 5000 posterior

samples, collected after appropriate burn-in and thinning. As an example of computing times,

for a data set with n = 1000, it took about 5/3.2 minutes for the MCMC sampler of the

GAL/AL lasso regularized quantile regression model to complete 55000 iterations, implemented

in the R environment on a computer with a 2-GHz Intel Core i5 processor and 32-GB RAM.

Within each simulation scenario, we summarize results from the 100 data sets using the

median and standard deviation (SD) of the values for the performance assessment criteria

discussed in Section 4.2. Results are reported in Table 1 through Table 3, where we use

boldface to indicate the model supported by the particular criterion under each setting.

Results from the first comparison criterion (CIE) are reported in Table 1. When n = 100,

the GAL-based model correctly includes/excludes regression coefficient values more often than
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Error distribution

Log-transformed

p0 Model Normal Laplace Normal mixture generalized Pareto

n = 100

0.05 GAL 0.842 (0.057) 0.774 (0.062) 0.911 (0.047) 0.884 (0.046)

AL 0.721 (0.099) 0.610 (0.100) 0.820 (0.079) 0.817 (0.087)

0.25 GAL 0.857 (0.062) 0.840 (0.058) 0.918 (0.047) 0.879 (0.055)

AL 0.812 (0.070) 0.784 (0.073) 0.896 (0.059) 0.884 (0.058)

0.50 GAL 0.844 (0.067) 0.841 (0.058) 0.896 (0.055) 0.889 (0.055)

AL 0.848 (0.070) 0.847 (0.058) 0.882 (0.057) 0.863 (0.063)

n = 1000

0.05 GAL 1.000 (0.003) 0.997 (0.011) 1.000 (0.000) 1.000 (0.001)

AL 0.995 (0.033) 0.863 (0.096) 1.000 (0.009) 1.000 (0.011)

0.25 GAL 1.000 (0.002) 1.000 (0.002) 1.000 (0.000) 1.000 (0.000)

AL 1.000 (0.012) 0.998 (0.013) 1.000 (0.000) 1.000 (0.000)

0.50 GAL 1.000 (0.002) 1.000 (0.001) 1.000 (0.000) 1.000 (0.000)

AL 1.000 (0.002) 1.000 (0.001) 1.000 (0.000) 1.000 (0.001)

Table 1: Simulation study. Median (SD) across the 100 simulated data sets for the standardized number of

correctly included/excluded predictors, based on the training data for sample size n = 100 and n = 1000.

the AL model for almost all combinations of lower percentiles (p0 = 0.05 and p0 = 0.25) and

the underlying error distribution. The differences in the mean standardized CIE values are

largest for p0 = 0.05, they decrease when p0 = 0.25, and they become fairly small in the case of

median regression where the results for the two models are balanced. The CIE performance is

improved for both models when the sample size increases to n = 1000. Except for three cases

(where the GAL model is favored), both models achieve optimal performance. The results in

Table 1 suggest that we should not expect to distinguish the GAL and AL models in terms of

CIE for sample sizes greater than 1000. Indeed, using one data set with sample size n = 10000,

both models result in mean standardized CIE value of 1 for all 12 combinations of p0 and true

error distribution (refer to the Supplementary Material).

Table 2 summarizes the average RMSE results. As with the CIE criterion, the GAL and AL

models are comparable in median regression (under both sample sizes), although it is worth

noting that the GAL model fares better when the underlying error distribution is skewed.
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Error distribution

Log-transformed

p0 Model Normal Laplace Normal mixture generalized Pareto

n = 100

0.05 GAL 0.48 (0.07) 0.68 (0.11) 0.35 (0.05) 0.43 (0.06)

AL 0.66 (0.14) 1.06 (0.29) 0.47 (0.10) 0.52 (0.12)

0.25 GAL 0.46 (0.07) 0.56 (0.08) 0.34 (0.05) 0.44 (0.07)

AL 0.51 (0.09) 0.63 (0.11) 0.36 (0.06) 0.43 (0.07)

0.50 GAL 0.48 (0.09) 0.55 (0.08) 0.36 (0.06) 0.44 (0.08)

AL 0.49 (0.09) 0.54 (0.08) 0.38 (0.06) 0.48 (0.08)

n = 1000

0.05 GAL 0.16 (0.02) 0.23 (0.03) 0.11 (0.02) 0.14 (0.02)

AL 0.22 (0.04) 0.44 (0.11) 0.17 (0.03) 0.18 (0.04)

0.25 GAL 0.16 (0.02) 0.18 (0.02) 0.11 (0.02) 0.14 (0.02)

AL 0.17 (0.03) 0.22 (0.04) 0.12 (0.02) 0.13 (0.02)

0.50 GAL 0.16 (0.02) 0.16 (0.02) 0.12 (0.02) 0.14 (0.02)

AL 0.16 (0.02) 0.16 (0.02) 0.12 (0.02) 0.16 (0.02)

Table 2: Simulation study. Median (SD) across the 100 simulated data sets for the average RMSE of the

regression coefficient estimates, based on the training data for sample size n = 100 and n = 1000.

For essentially all other combinations of p0, sample size, and true error distribution, the GAL

model outperforms the AL model in terms of RMSE, with the differences more notable when

p0 = 0.05. As previously mentioned, the Supplementary includes the full RMSE results for

each regression coefficient, which reveal the same pattern on the comparison between the two

models. As also shown in the Supplementary Material, if the sample size is increased to

n = 10000 (using a single training data set), the GAL model again produces smaller average

RMSE when p0 = 0.05, whereas the two models are practically indistinguishable for p0 = 0.25

and p0 = 0.5.

For additional assessment of inference for the regression coefficients, we obtained the em-

pirical coverage probability of the 95% posterior credible interval for each βk, for k = 1, . . . , 8

(refer to the Supplementary Material). When p0 = 0.05, the GAL model outperforms the AL

model across all βk, for all underlying error distributions, and for both sample sizes. For each

of the 4 remaining quantile and sample size combinations (p0 = 0.25, 0.5, and n = 100, 1000),
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Error distribution

Log-transformed

p0 Model Normal Laplace Normal mixture generalized Pareto

n = 100

0.05 GAL 15.14 (1.58) 25.54 (4.22) 11.07 (1.13) 18.05 (3.15)

AL 23.87 (2.16) 39.04 (5.12) 18.19 (1.56) 21.97 (2.40)

0.25 GAL 15.39 (1.99) 23.87 (4.56) 11.22 (1.16) 18.60 (2.78)

AL 18.68 (1.98) 28.47 (4.46) 13.29 (1.31) 18.08 (2.12)

0.50 GAL 16.81 (2.29) 24.64 (4.62) 12.00 (1.49) 19.77 (2.90)

AL 15.57 (0.99) 24.40 (4.15) 11.32 (0.90) 19.02 (3.37)

n = 1000

0.05 GAL 14.18 (1.41) 25.20 (4.80) 10.20 (1.13) 17.29 (2.46)

AL 24.24 (1.41) 41.63 (3.91) 17.45 (1.17) 21.58 (1.52)

0.25 GAL 16.72 (2.30) 23.79 (4.37) 12.03 (2.07) 16.97 (2.84)

AL 18.04 (1.62) 28.43 (4.65) 12.77 (1.13) 17.20 (2.39)

0.50 GAL 15.16 (3.25) 23.96 (3.86) 11.12 (1.11) 23.37 (3.90)

AL 14.98 (0.77) 23.61 (3.95) 10.79 (0.61) 19.82 (3.16)

Table 3: Simulation study. Median (SD) across the 100 simulated data sets for the prediction interval scores,

based on test data sets of size N = 100. Results are shown for sample sizes of n = 100 and n = 1000 for the

training data sets.

there are 32 coverage probabilities to compare (8 regression coefficients, 4 error distributions).

Excluding the ties between the two models, the empirical coverage of the GAL model is closer

to the nominal coverage than the AL model for 15/29 (p0 = 0.25, n = 100), 28/31 (p0 = 0.25,

n = 1000), 19/25 (p0 = 0.5, n = 100), and 11/23 (p0 = 0.5, and n = 1000) of the credible

intervals. However, the differences in the coverage probabilities are smaller/much smaller for

p0 = 0.25/0.5 compared to the results under p0 = 0.05. With respect to this criterion, the

empirical evidence in favor of GAL errors is most compelling for extreme percentiles, and it is

noteworthy that such evidence is equally strong for the sample sizes of n = 100 and n = 1000.

Turning to out-of-sample predictive performance, Table 3 reports results for the interval

score criterion. We observe a similar pattern with the earlier results, that is, the GAL model

is favored at lower percentiles. The differences in the interval scores are smallest in the median

regression case (with the AL model preferred). The relative differences are largest for p0 = 0.05,
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(a) p0 = 0.05 (b) p0 = 0.25 (c) p0 = 0.5

Figure 2: Simulation study. Posterior mean and 95% interval estimates of the error density under the lasso

regularized quantile regression model with AL (red) and GAL (blue) errors, for p0 = 0.05 (left column), p0 = 0.25

(middle column), and p0 = 0.5 (right column). From top to bottom the true error density (solid line) is: normal

(first row), Laplace (second row), normal mixture (third row), and log-transformed generalized Pareto (last

row). Results are based on a single data set of size n = 1000 under each combination of p0 value and true error

distribution.

and they remain essentially the same as the training data sets size increases from n = 100 to

n = 1000. The pattern in the comparative results for the GAL and AL models extends to

n = 10000, based on analysis with a single data set (refer to the Supplementary Material).
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Finally, for a graphical comparison of error density estimates, we consider results from

a single simulated data set of size n = 1000, under each of the four scenarios for the true

error density and for each of the three p0 values. Again, both the GAL and AL model are

misspecified in essentially all scenarios (the exception being median regression with Laplace

errors). As shown in Figure 2, in all cases, the GAL model provides better estimates of the

underlying error density. The GAL and AL error density estimates are generally difficult to

distinguish when p0 = 0.5, except for the log-transformed generalized Pareto scenario where the

GAL model captures the tails of the true error density noticeably better than the AL model.

Observing the estimates for p0 = 0.25 and p0 = 0.05, the superior performance of the GAL

model becomes more emphatic as the percentile becomes more extreme. In the Supplementary

Material, we provide additional graphical comparisons to study the effect of the sample size,

based again on a single simulated data set with both smaller (n = 100) and larger (n = 10000)

sample size. Regarding the comparison of the GAL and AL model error density estimates, the

empirical evidence is very similar to Figure 2. Particularly important to note is that the AL

model estimates do not improve as the sample size increases from n = 1000 to n = 10000.

In summary, the lasso regularized Bayesian quantile regression model performs better with

GAL errors than AL errors, with the improved performance becoming more conspicuous as the

percentile becomes more extreme. The simulation examples offer evidence that the GAL model

is more robust than the AL model to non-standard error distributions, particularly for extreme

quantiles. Overall, the two models yield comparable results in the case of median regression.

Performance of both models generally improves with increasing sample size, especially under

the CIE and RMSE criteria. However, we note that, for extreme percentiles, the GAL model

outperforms the AL model to the same extent as the sample size increases from n = 100 to

n = 1000 with respect to both coverage of credible intervals for the regression coefficients and

prediction of new responses. Moreover, increasing the sample size does not overcome the rigid

AL distribution tails (for lower/higher percentiles) as reflected in error density estimates.

5 Data examples

In this section, we consider three data examples to illustrate the Bayesian quantile regression

models developed in Sections 3.1, 3.2, and 3.3. The main focus is on comparison of inference

results between models based on the GAL distribution and those assuming an AL distribution

for the errors.

We have implemented both models with priors for their parameters that result in essentially
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the same prior predictive error densities. The two models were applied with the same prior

distributions for β and σ. More specifically, for the data sets of Sections 5.1 and 5.3, we used

an independent N(0, 100) for each regression coefficient, and an IG(2, 2) prior for the scale

parameter σ. For the data example of Section 5.2, we used a N(0, 100) prior for the intercept,

and the same gamma prior for η2 and conditional Laplace prior for the remaining regression

coefficients with the simulation study (see Section 4.3). Finally, a uniform prior was placed

on the shape parameter γ of the GAL error distribution. For all data examples, the posterior

densities for model parameters were fairly concentrated relative to the corresponding prior

densities.

5.1 Immunoglobulin-G data

We illustrate the proposed model, referred to as model M1, with a data set commonly used

in additive quantile regression; see, for instance, Yu and Moyeed (2001). The analysis focuses

on comparison with the simpler model based on asymmetric Laplace errors, referred to as

model M0. The data set contains the immunoglobulin-G concentration (in grams per litre) for

n = 298 children aged between 6 months and 6 years. As in earlier applications of quantile

regression for these data, we use a quadratic regression function β0 + β1x + β2x
2 to model

immunoglobulin-G concentration quantiles against covariate age (x).

We first compare the AL and GAL error models across a range of quantiles, in particular,

for p0 = 0.05, 0.25, 0.5, 0.75, 0.85, 0.95. The Bayesian information criterion (BIC) favors the

GAL-based model at all six quantiles; see Table 4. The improvement in performance over

the AL model is particularly conspicuous at the two extreme percentiles. In fact, the relative

difference in BIC values is larger for p0 = 0.75 and 0.95 compared to 0.25 and 0.05, respectively,

suggesting that the GAL model is particularly beneficial (relative to the AL model) in modeling

higher immunoglobulin-G concentration quantiles. Table 4 also reports posterior mean and

interval estimates for the shape parameter γ of the GAL error distribution. For all six quantile

regressions, the 95% posterior credible interval for γ does not include the value of 0, which

corresponds to AL errors. Median regression is the only case where 0 is within the effective

range of the posterior distribution for γ, i.e., it can be seen at the right tail of the posterior

density for γ. Both the BIC values and the estimates for γ provide strong support for the GAL

model relative to AL errors.

Turning to inference results, Figure 3 plots regression function and error density estimates

for median regression and for 0.85-th quantile regression, under the AL and GAL models. The
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Quantile Model Posterior mean (95% CrI) for γ log-likelihood BIC

p0 = 0.05 M0 -667 1357

M1 4.70 (3.52, 6.40) -615 1258

p0 = 0.25 M0 -632 1287

M1 1.25 (0.75, 2.01) -625 1278

p0 = 0.5 M0 -633 1289

M1 -0.62 (-0.82, -0.40) -624 1276

p0 = 0.75 M0 -654 1331

M1 -1.54 (-1.91, -1.19) -620 1268

p0 = 0.85 M0 -686 1395

M1 -2.28 (-2.79, -1.84) -625 1278

p0 = 0.95 M0 -761 1545

M1 -4.55 (-5.40, -3.83) -646 1320

Table 4: Immunoglobulin-G data. Posterior mean and 95% credible interval (CrI) for the shape parameter γ of

the GAL error distribution, and log-likelihood and Bayesian information criterion (BIC) under the asymmetric

Laplace and generalized asymmetric Laplace models, denoted by M0 and M1, respectively.

GAL model estimates a relatively small amount of skewness in the median regression error

density, which can not be uncovered under the symmetric AL error density. Consistent with

the BIC results and the estimates for γ (Table 4), the difference in the error density estimates

is more emphatic for p0 = 0.85. Under the AL model, both the shape and the skewness of

the error distribution are predetermined by p0 and the mode is forced to be at 0, resulting in

a rigid heavy left tail. The GAL model, on the contrary, yields an error density that has a

much thinner left tail, concentrating more of its probability mass around the mode, which is

not at 0. The effect of the different error density estimates is reflected in the inference for the

quantile regression function, especially at larger values of age.

5.2 Boston housing data

We apply the lasso regularized quantile regression model to the realty price data from the

Boston Standard Metropolitan Statistical Area (SMSA) in 1970 (Harrison and Rubinfeld,

1978). The data set contains 506 observations. We take the log-transformed corrected median

value of owner-occupied housing in USD 1000 (LCMEDV) as the response, and consider the

following predictors: point longitudes in decimal degrees (LON), point latitudes in decimal de-
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Figure 3: Immunoglobulin-G data. Posterior mean and 95% interval estimates for: the quantile regression

function β0 + β1x+ β2x
2 against age (x) (left column panels); and, for the error density (right column panels).

Results are reported for two quantiles, corresponding to p0 = 0.5 (top row panels) and p0 = 0.85 (bottom row

panels), under the AL model (red) and the GAL model (blue).

grees (LAT), per capita crime (CRIM), proportions of residential land zoned for lots over 25000

square feet per town (ZN), proportions of non-retail business acres per town (INDUS), a fac-

tor indicating whether tract borders Charles River (CHAS), nitric oxides concentration (parts

per 10 million) per town (NOX), average numbers of rooms per dwelling (RM), proportions of

owner-occupied units built prior to 1940 (AGE), weighted distances to five Boston employment

centers (DIS), index of accessibility to radial highways per town (RAD), full-value property-tax

rate per USD 10,000 per town (TAX), pupil-teacher ratios per town (PTRATIO), transformed

African American population proportion (B), and percentage values of lower status population

(LSTAT).

We consider the quantiles that correspond to p0 = 0.1 and p0 = 0.9 and compare the

maximum a posteriori estimates (MAP) of regression coefficients, along with 95% credible

intervals, for standardized covariates under the lasso regularized quantile regression models
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Figure 4: Boston housing data. Posterior point and 95% interval estimates for the regression coefficients of the

10th quantile lasso regularized model under AL and GAL errors.

Figure 5: Boston housing data. Posterior point and 95% interval estimates for the regression coefficients of the

90th quantile lasso regularized model under AL and GAL errors.
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Quantile Model Posterior mean (95% CrI) for γ log-likelihood BIC

p0 = 0.1 M0 124 -142

M1 1.85 (1.54, 2.20) 188 -264

p0 = 0.9 M0 -7 120

M1 -2.42 (-2.75, -2.11) 141 -170

Table 5: Boston housing data. Posterior mean and 95% credible interval (CrI) for the shape parameter γ of

the GAL error distribution, and log-likelihood and Bayesian information criterion (BIC) under the asymmetric

Laplace and generalized asymmetric Laplace models, denoted by M0 and M1, respectively.

with AL and GAL errors (Figure 4 and 5). For both quantiles, the widths of the 95% credible

intervals for the regression coefficients are overall comparable between the two models, but

some of the posterior point estimates are different. For instance, under the 10th quantile

regression, the GAL model shrinks the effects of per capita crime (CRIM) and property-tax

rate (TAX) to a greater extent compared to the AL model. A similar pattern can be observed

for the index of accessibility to radial highways (RAD) for the 90th quantile. Moreover, the

two models reach different conclusions on the effect of latitude (LAT) for the 10th quantile

regression. Although the posterior point estimates suggest a higher housing price as latitude

increases adjusting for all other covariates, the 95% credible interval under the GAL model

includes 0, whereas the one under the AL model does not.

Focusing on inference under the GAL model, we note that, although it selects some common

variables for the two quantiles, there is also some discrepancy. For instance, each of higher

proportions of residential land zoned for lots over 25000 square feet per town (ZN) and having

tracts bordering Charles river (CHAS) increase the price at the 90% percentile, while higher

nitrogen oxide value (NOX) has a negative influence on the 90% percentile price. However,

none of these covariates has a significant effect on the realty value at the 10% percentile.

Finally, note that for both the 10th and 90th quantile regression, 0 is fairly far away from

the endpoints of the 95% credible interval for the GAL model shape parameter γ (Table 5),

which suggests that GAL errors are more suitable than AL errors also for this data example.

This is further supported by the BIC results reported in Table 5. Note in particular the

considerable difference in the BIC values for the 90th quantile regression models.
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Quantile Model Posterior mean (95% CrI) for γ log-likelihood BIC

p0 = 0.05 M0 −1975 4004

M1 5.22 (4.43, 6.24) −1874 3809

p0 = 0.5 M0 −1867 3789

M1 0.58 (0.39, 0.81) −1845 3750

p0 = 0.95 M0 −1967 3989

M1 −4.16 (−5.5, −3.06) −1854 3769

Table 6: Labor supply data. Posterior mean and 95% credible interval (CrI) for the shape parameter γ

of the GAL error distribution, and log-likelihood and Bayesian information criterion (BIC) values under the

asymmetric Laplace and generalized asymmetric Laplace models, denoted by M0 and M1, respectively.

5.3 Labor supply data

We illustrate the Tobit quantile regression model with the female labor supply data from Mroz

(1987), which was taken from the University of Michigan Panel Study of Income Dynamics for

year 1975. The data set includes records on the work hours and other relevant information of

753 married white women aged between 30 and 60 years old. Of the 753 women, 428 worked

at some time during 1975, with the corresponding fully observed responses given by the wife’s

work hours (in 100 hours). For the remaining 325 women, the observed zero work hours

correspond to negative values for the latent “labor supply” response. We use the quantile

regression function considered in Kozumi and Kobayashi (2011), where an AL-based Tobit

quantile regression model was applied to the same data set. The linear predictor includes

an intercept, income which is not due to the wife (nwifeinc), education of the wife in years

(educ), actual labor market experience in years (exper) and its quadratic term (expersq),

age of the wife (age), number of children less than 6 years old in household (kidslt6), and

number of children between ages 6 and 18 in household (kidsge6). We compare the results

from the Bayesian Tobit quantile regression model assuming AL errors (model M0) and GAL

errors (model M1).

Table 6 summarizes the posterior distribution of γ under the GAL model, and presents

results from criterion-based comparison of the two models for p0 = 0.05, 0.5 and 0.95. Since

there is censoring in the data, we use the revised BIC from Volinsky and Raftery (2000). In all

three cases, the 95% credible interval for γ excludes 0, and the GAL-based model is associated

with lower BIC values. The results support the GAL-based model more emphatically for the

extreme percentiles than for median regression.
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Figure 6: Labor supply data. Posterior densities for the 5th (blue), 50th (orange) and 95th quantile (green) of

labor supply (in 100 hours) for women with 0, 1, 2 or 3 children less than 6 years old. The solid (dashed) lines

correspond to the posterior densities under the GAL (AL) model.

Figure 6 shows the posterior distributions of labor supply quantiles corresponding to p0 =

0.05, 0.5 and 0.95 for women with 0, 1, 2 and 3 children less than 6 years old. For all other

predictors, we use the observed medians as input values to represent an average wife. As the

number of young children increases, the AL model estimates the 5th quantile and the median

of labor supply of an average wife to be closer to each other. Under the GAL model, the

distance between the densities of the 5th quantile and median labor supply also decreases with

increasing number of young children, albeit at a lower rate. When estimating the 95th quantile,

the proposed model is more conservative than the AL model about the labor contribution of

an average wife with an increasing number of children less than 6 years old. When there are 3

children less than 6 years old in the household, the center of the posterior distribution for the
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95th quantile is below zero under the GAL model, meaning that even at the top 5th percentile

of labor supply, an average wife may still produce negative labor supply as she takes care of

many young family members. More specifically, the posterior probability of the 95th labor

supply quantile being positive is 0.19 under the GAL model, as opposed to 0.97 under the AL

model. These results demonstrate that the choice of error distribution in quantile regression

can have a substantial effect on practically important conclusions for a particular application.

6 Summary

We have studied Bayesian quantile regression with a new error distribution that extends the

asymmetric Laplace (AL) distribution, commonly used as a parametric error model for quantile

regression. The generalized asymmetric Laplace (GAL) distribution has more flexible skewness

and tail behavior than the asymmetric Laplace in the context of quantile regression. Owing

to the hierarchical structure of the new distribution, posterior inference and prediction can be

readily implemented via Markov chain Monte Carlo methods. Synthetic and real data examples

have been used to demonstrate improved performance of the proposed error distribution, com-

pared with asymmetric Laplace errors, in conditional lasso regularized quantile regression and

in Tobit quantile regression. Improved inference and prediction are particularly noteworthy in

regression modeling through extreme quantiles.

Our motivation for this work was to develop a distribution that retains the useful features

of the AL distribution (parameterization in terms of percentiles, relatively straightforward pos-

terior simulation) while extending the inferential scope of quantile regression modeling with

AL errors. A further objective was to provide a building block for more general model struc-

tures that incorporate a quantile regression component. Indeed, since the first version of this

paper was made available (Yan and Kottas, 2017), the utility of the GAL distribution has

been explored by other authors, including: ordinal quantile regression based on latent con-

tinuous responses (Rahman and Karnawat, 2019); semiparametric additive quantile regression

(Kobayashi et al., 2021); inference for dynamic quantile linear models (Barata et al., 2022);

and, quantile regression methods for different types of random effects models (Nascimento and

Gonçalves, 2022; Yu and Yu, 2023; Jeliazkov et al., 2023). The methodological development

that prompted the GAL distribution construction involves quantile mixture regression (Yan,

2017) built from structured mixtures of generalized asymmetric Laplace densities, to synthesize

information from multiple parts of the response distribution in inference for variable selection.
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Supplementary Material for “A New Family of Error

Distributions for Bayesian Quantile Regression”

A MCMC algorithms

A.1 GAL-based quantile regression with lasso regularization

Recall that in the lasso regularized model, the intercept, β0, is separated from the rest of the

regression coefficients, β. Based on the prior structure of Section 3.2, the hierarchical model

for the data can be written as

yi | β, γ, σ, zi, si
ind.∼ N(yi | β0 + xT

i β + σ C |γ|si + σAzi, σ
2Bzi), i = 1, ..., n

zi, si
ind.∼ Exp(zi | 1)N+(si | 0, 1), i = 1, ..., n,

β |ω1, . . . , ωd ∼
d∏

k=1

N(βk | 0, ωk), ω1, . . . , ωd | η2 ∼
d∏

k=1

Exp(ωd | η2/2),

γ, β0, σ, η
2 ∼ π(γ)N(β0 |µβ0 , σ

2
β0
) IG(σ | aσ, bσ)Ga(η2 | aη2 , bη2),

where β = (β1, . . . , βd)
⊤, π(γ) is the rescaled Beta distribution supported over the interval

(L,U), and Ga(· | a, b) denotes the gamma distribution with mean a/b.

As in Section 3.1, we set vi = σzi, i = 1, . . . , n, and denote by GIG(ν, a, b) the general-

ized inverse-Gaussian distribution with density fGIG(x) ∝ xν−1 exp{−0.5(a/x + bx)}. Then,

posterior samples for the model parameters can be obtained through the following steps.

1. Sample β0 from N(µ∗β0
, σ2∗β0

), with variance σ2∗β0
= (σ−2

β0
+

∑n
i=1(Bσvi)

−1)−1 and mean

µ∗β0
= σ2∗β0

{
∑n

i=1[yi − (x⊤
i β + σC|γ|si +Avi)]/(Bσvi)}.

2. Sample β from N(m∗,Σ∗), with covariance matrix Σ∗ = [Ω−1 +
∑n

i=1 xix
T
i /(Bσvi)]

−1

and mean vector m∗ = Σ∗{
∑n

i=1 xi[yi − (β0 + σC|γ|si + Avi)]/(Bσvi)}, where Ω is a

d× d diagonal matrix and the (k, k)-th diagonal entry is ωk, k = 1, . . . , d.

3. For each i = 1, ..., n, sample vi from a GIG(0.5, ai, bi) distribution, where ai = [yi− (β0+

xT
i β + σC|γ|si)]2/(Bσ), and bi = 2/σ +A2/(Bσ).

4. For each i = 1, ..., n, sample si from a normal N(µsi , σ
2
si) distribution truncated on R+,

where σ2si = [(Cγ)2σ/(Bvi) + 1]−1 and µsi = σ2siC|γ|[yi − (β0 + xT
i β +Avi)]/(Bvi).
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5. Sample σ from a GIG(ν, c, d) distribution, where ν = −(aσ+1.5n), c = 2bσ+2
∑n

i=1 vi+∑n
i=1[yi − (β0 + xT

i β +Avi)]
2/(Bvi), and d =

∑n
i=1(Cγsi)

2/(Bvi).

6. Update γ using slice sampling based on stepping-out and shrinkage procedures (Scheme

(3), Section 4.1 and Method (ii), Section 4.2 of Neal 2003).

7. Sample ωk from a GIG(0.5, β2k, η
2) distribution, for k = 1, . . . , d.

8. Sample η2 from a Ga(η2 | aη2 + d, bη2 + 0.5
∑d

k=1 ωk) distribution.

A.2 AL-based quantile regression

The hierarchical representation of the AL-based quantile regression is

yi | β, σ, zi
ind.∼ N(yi | xT

i β + σAzi, σ
2Bzi), i = 1, ..., n

zi
ind.∼ Exp(zi | 1) i = 1, ..., n,

β, σ ∼ N(β | m0,Σ0) IG(σ | aσ, bσ).

We set vi = σzi, i = 1, . . . , n and implement the MCMC algorithm based on Kozumi and

Kobayashi (2011) as follows.

1. Sample β from N(m∗,Σ∗), with covariance matrix Σ∗ = [Σ−1
0 +

∑n
i=1 xix

T
i /(Bσvi)]

−1

and mean vector m∗ = Σ∗{Σ−1
0 m0 +

∑n
i=1 xi[yi −Avi)]/(Bσvi)}.

2. For each i = 1, ..., n, sample vi from a GIG(0.5, ai, bi) distribution, where ai = (yi −
xT
i β)

2/(Bσ) and bi = 2/σ +A2/(Bσ).

3. Sample σ from a IG(c, d) distribution, where c = aσ + 1.5n and d = bσ +
∑n

i=1 vi +

0.5
∑n

i=1(yi − x⊤
i β −Avi)

2/(Bvi).

The MCMC algorithm for the AL-based model with lasso regularization can be obtained

similarly according to Section A.1.

B Additional simulation results

We provide additional results for the simulation study (Section 4 of the paper) that compares

the lasso regularized quantile regression models with AL and GAL errors. Section 4.3 of the

paper provides discussion of the results presented here, as well as of the ones included in the

main paper.

33



Tables 1-6 show the RMSE of the regression coefficients β = (β1, . . . , β8)
⊤, for sample

sizes n = 100 and n = 1000. For each k = 1, ..., 8, the RMSE of the corresponding regression

coefficient estimate is defined as RMSE =

√
M−1

∑M
m=1(β

(m)
k − βk)2, whereM is the posterior

sample size, and β
(m)
k is the m-th posterior sample for βk.

Tables 7-12 provide the empirical coverage probability of the 95% posterior credible interval

for each regression coefficient βk, for k = 1, . . . , 8. Results are reported for all combinations

of the percentile value (p0 = 0.05, 0.25, 0.5), sample size (n = 100, 1000), and true error

distribution.

To further access model performance with larger samples, we simulate a single data set with

sample size n = 100, 1000, 10000, for each p0 and error distribution considered in the simulation

study. This results in 36 data sets in total. Tables 13-15 show the results for correct inclusion

and exclusion, average RMSE, and prediction interval score under both models. Moreover,

using each of the 36 data sets, Figures 1-4 plot the posterior mean and 95% interval estimates

of the error density under the GAL and AL models, for each of the different scenarios for p0,

sample size n, and true error distribution.
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Table 1: RMSE (p0 = 0.05, n = 100)

Model Normal Laplace Normal mixture Log generalized Pareto

β1 GAL 0.50 (0.16) 0.79 (0.32) 0.37 (0.12) 0.46 (0.18)

AL 0.61 (0.26) 1.20 (0.55) 0.46 (0.23) 0.55 (0.32)

β2 GAL 0.56 (0.19) 0.82 (0.25) 0.41 (0.15) 0.49 (0.17)

AL 0.68 (0.30) 1.23 (0.64) 0.53 (0.25) 0.59 (0.31)

β3 GAL 0.50 (0.19) 0.67 (0.23) 0.35 (0.11) 0.43 (0.14)

AL 0.64 (0.31) 1.10 (0.71) 0.46 (0.20) 0.52 (0.27)

β4 GAL 0.45 (0.14) 0.64 (0.22) 0.35 (0.12) 0.43 (0.15)

AL 0.62 (0.33) 1.11 (0.75) 0.45 (0.24) 0.49 (0.23)

β5 GAL 0.58 (0.21) 0.80 (0.28) 0.41 (0.13) 0.50 (0.17)

AL 0.75 (0.36) 1.23 (0.64) 0.54 (0.23) 0.61 (0.29)

β6 GAL 0.49 (0.17) 0.68 (0.27) 0.35 (0.12) 0.41 (0.11)

AL 0.73 (0.38) 1.18 (0.73) 0.46 (0.21) 0.51 (0.25)

β7 GAL 0.45 (0.15) 0.61 (0.19) 0.34 (0.09) 0.41 (0.13)

AL 0.62 (0.32) 0.93 (0.49) 0.42 (0.18) 0.50 (0.26)

β8 GAL 0.42 (0.14) 0.59 (0.22) 0.31 (0.10) 0.37 (0.12)

AL 0.56 (0.25) 0.91 (0.46) 0.42 (0.24) 0.44 (0.23)

Table 2: RMSE (p0 = 0.05, n = 1000)

Model Normal Laplace Normal mixture Log generalized Pareto

β1 GAL 0.16 (0.16) 0.23 (0.23) 0.11 (0.11) 0.14 (0.14)

AL 0.22 (0.10) 0.42 (0.22) 0.16 (0.09) 0.18 (0.08)

β2 GAL 0.17 (0.17) 0.24 (0.24) 0.11 (0.11) 0.15 (0.15)

AL 0.24 (0.12) 0.47 (0.26) 0.16 (0.09) 0.19 (0.08)

β3 GAL 0.16 (0.16) 0.23 (0.23) 0.12 (0.12) 0.15 (0.15)

AL 0.23 (0.13) 0.44 (0.24) 0.17 (0.09) 0.20 (0.10)

β4 GAL 0.17 (0.17) 0.24 (0.24) 0.12 (0.12) 0.14 (0.14)

AL 0.24 (0.13) 0.48 (0.26) 0.18 (0.09) 0.18 (0.08)

β5 GAL 0.17 (0.17) 0.26 (0.26) 0.12 (0.12) 0.14 (0.14)

AL 0.23 (0.11) 0.50 (0.29) 0.18 (0.09) 0.19 (0.10)

β6 GAL 0.16 (0.16) 0.24 (0.24) 0.12 (0.12) 0.15 (0.15)

AL 0.22 (0.12) 0.50 (0.31) 0.16 (0.09) 0.19 (0.09)

β7 GAL 0.16 (0.16) 0.23 (0.23) 0.11 (0.11) 0.14 (0.14)

AL 0.23 (0.11) 0.43 (0.23) 0.18 (0.09) 0.19 (0.10)

β8 GAL 0.15 (0.15) 0.21 (0.21) 0.10 (0.10) 0.13 (0.13)

AL 0.21 (0.10) 0.39 (0.22) 0.15 (0.07) 0.16 (0.09)
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Table 3: RMSE (p0 = 0.25, n = 100)

Model Normal Laplace Normal mixture Log generalized Pareto

β1 GAL 0.50 (0.17) 0.61 (0.20) 0.36 (0.12) 0.45 (0.14)

AL 0.54 (0.23) 0.68 (0.25) 0.36 (0.13) 0.43 (0.13)

β2 GAL 0.51 (0.14) 0.64 (0.17) 0.41 (0.14) 0.52 (0.17)

AL 0.54 (0.17) 0.71 (0.22) 0.41 (0.15) 0.52 (0.19)

β3 GAL 0.47 (0.15) 0.55 (0.16) 0.32 (0.10) 0.45 (0.16)

AL 0.51 (0.18) 0.64 (0.23) 0.34 (0.12) 0.45 (0.18)

β4 GAL 0.46 (0.15) 0.54 (0.20) 0.33 (0.09) 0.40 (0.13)

AL 0.50 (0.21) 0.58 (0.19) 0.36 (0.13) 0.39 (0.14)

β5 GAL 0.56 (0.19) 0.67 (0.21) 0.40 (0.13) 0.52 (0.19)

AL 0.60 (0.24) 0.72 (0.24) 0.41 (0.14) 0.50 (0.20)

β6 GAL 0.46 (0.17) 0.54 (0.19) 0.33 (0.09) 0.41 (0.12)

AL 0.49 (0.21) 0.61 (0.25) 0.36 (0.11) 0.41 (0.13)

β7 GAL 0.46 (0.15) 0.52 (0.16) 0.34 (0.10) 0.42 (0.13)

AL 0.50 (0.21) 0.58 (0.23) 0.35 (0.11) 0.41 (0.14)

β8 GAL 0.43 (0.14) 0.47 (0.14) 0.30 (0.09) 0.41 (0.16)

AL 0.44 (0.15) 0.53 (0.22) 0.32 (0.11) 0.40 (0.16)

Table 4: RMSE (p0 = 0.25, n = 1000)

Model Normal Laplace Normal mixture Log generalized Pareto

β1 GAL 0.15 (0.15) 0.17 (0.17) 0.11 (0.11) 0.14 (0.14)

AL 0.16 (0.07) 0.21 (0.08) 0.11 (0.04) 0.14 (0.05)

β2 GAL 0.17 (0.17) 0.21 (0.21) 0.12 (0.12) 0.15 (0.15)

AL 0.18 (0.07) 0.26 (0.09) 0.12 (0.05) 0.15 (0.05)

β3 GAL 0.16 (0.16) 0.18 (0.18) 0.11 (0.11) 0.14 (0.14)

AL 0.18 (0.08) 0.23 (0.09) 0.12 (0.05) 0.14 (0.05)

β4 GAL 0.17 (0.17) 0.18 (0.18) 0.12 (0.12) 0.14 (0.14)

AL 0.19 (0.08) 0.23 (0.10) 0.13 (0.05) 0.14 (0.05)

β5 GAL 0.17 (0.17) 0.19 (0.19) 0.12 (0.12) 0.14 (0.14)

AL 0.19 (0.08) 0.24 (0.09) 0.13 (0.05) 0.14 (0.05)

β6 GAL 0.16 (0.16) 0.18 (0.18) 0.11 (0.11) 0.14 (0.14)

AL 0.18 (0.08) 0.22 (0.08) 0.12 (0.04) 0.14 (0.05)

β7 GAL 0.17 (0.17) 0.18 (0.18) 0.11 (0.11) 0.14 (0.14)

AL 0.18 (0.07) 0.21 (0.08) 0.12 (0.05) 0.14 (0.05)

β8 GAL 0.14 (0.14) 0.17 (0.17) 0.11 (0.11) 0.12 (0.12)

AL 0.16 (0.06) 0.21 (0.08) 0.11 (0.05) 0.13 (0.04)
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Table 5: RMSE (p0 = 0.5, n = 100)

Model Normal Laplace Normal mixture Log generalized Pareto

β1 GAL 0.51 (0.18) 0.58 (0.19) 0.37 (0.12) 0.47 (0.19)

AL 0.52 (0.19) 0.57 (0.18) 0.38 (0.13) 0.53 (0.22)

β2 GAL 0.57 (0.21) 0.64 (0.19) 0.42 (0.13) 0.50 (0.17)

AL 0.57 (0.19) 0.62 (0.20) 0.42 (0.13) 0.56 (0.20)

β3 GAL 0.49 (0.18) 0.55 (0.20) 0.35 (0.11) 0.43 (0.14)

AL 0.49 (0.17) 0.54 (0.19) 0.35 (0.11) 0.46 (0.17)

β4 GAL 0.49 (0.17) 0.56 (0.17) 0.37 (0.11) 0.41 (0.14)

AL 0.50 (0.17) 0.55 (0.17) 0.38 (0.13) 0.45 (0.16)

β5 GAL 0.61 (0.24) 0.66 (0.24) 0.42 (0.16) 0.51 (0.17)

AL 0.61 (0.24) 0.65 (0.24) 0.42 (0.17) 0.55 (0.18)

β6 GAL 0.47 (0.19) 0.53 (0.18) 0.38 (0.16) 0.42 (0.14)

AL 0.48 (0.21) 0.52 (0.19) 0.38 (0.17) 0.44 (0.15)

β7 GAL 0.45 (0.15) 0.52 (0.20) 0.36 (0.12) 0.42 (0.14)

AL 0.46 (0.17) 0.51 (0.19) 0.36 (0.13) 0.46 (0.15)

β8 GAL 0.40 (0.13) 0.45 (0.13) 0.31 (0.10) 0.41 (0.16)

AL 0.41 (0.14) 0.44 (0.12) 0.32 (0.11) 0.43 (0.16)

Table 6: RMSE (p0 = 0.5, n = 1000)

Model Normal Laplace Normal mixture Log generalized Pareto

β1 GAL 0.16 (0.16) 0.16 (0.16) 0.13 (0.13) 0.14 (0.14)

AL 0.16 (0.07) 0.16 (0.05) 0.13 (0.05) 0.16 (0.06)

β2 GAL 0.18 (0.18) 0.18 (0.18) 0.13 (0.13) 0.15 (0.15)

AL 0.18 (0.07) 0.18 (0.06) 0.14 (0.05) 0.18 (0.06)

β3 GAL 0.16 (0.16) 0.17 (0.17) 0.12 (0.12) 0.14 (0.14)

AL 0.16 (0.05) 0.17 (0.05) 0.12 (0.04) 0.16 (0.06)

β4 GAL 0.17 (0.17) 0.16 (0.16) 0.12 (0.12) 0.13 (0.13)

AL 0.17 (0.06) 0.16 (0.05) 0.13 (0.05) 0.16 (0.05)

β5 GAL 0.18 (0.18) 0.18 (0.18) 0.13 (0.13) 0.14 (0.14)

AL 0.18 (0.06) 0.18 (0.06) 0.13 (0.05) 0.17 (0.06)

β6 GAL 0.17 (0.17) 0.16 (0.16) 0.12 (0.12) 0.14 (0.14)

AL 0.17 (0.06) 0.16 (0.04) 0.12 (0.05) 0.16 (0.05)

β7 GAL 0.17 (0.17) 0.16 (0.16) 0.11 (0.11) 0.15 (0.15)

AL 0.17 (0.06) 0.16 (0.05) 0.12 (0.04) 0.16 (0.05)

β8 GAL 0.15 (0.15) 0.15 (0.15) 0.10 (0.10) 0.13 (0.13)

AL 0.16 (0.05) 0.15 (0.05) 0.11 (0.04) 0.15 (0.05)
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Table 7: Empirical coverage of the 95% credible interval (p0 = 0.05, n = 100)

Model Normal Laplace Normal mixture Log generalized Pareto

β1 GAL 0.91 0.88 0.94 0.95

AL 0.79 0.62 0.74 0.80

β2 GAL 0.90 0.91 0.90 0.93

AL 0.73 0.67 0.76 0.77

β3 GAL 0.92 0.97 0.97 0.95

AL 0.74 0.75 0.79 0.82

β4 GAL 0.98 0.97 0.97 0.97

AL 0.76 0.79 0.81 0.86

β5 GAL 0.90 0.92 0.93 0.94

AL 0.67 0.67 0.75 0.78

β6 GAL 0.97 0.93 0.96 0.99

AL 0.69 0.70 0.81 0.82

β7 GAL 0.97 0.95 0.98 0.96

AL 0.81 0.83 0.87 0.83

β8 GAL 0.98 0.97 0.97 0.96

AL 0.83 0.77 0.82 0.85

Table 8: Empirical coverage of the 95% credible interval (p0 = 0.05, n = 1000)

Model Normal Laplace Normal mixture Log generalized Pareto

β1 GAL 0.94 0.93 0.94 0.88

AL 0.66 0.59 0.69 0.69

β2 GAL 0.94 0.93 0.96 0.91

AL 0.68 0.61 0.68 0.76

β3 GAL 0.96 0.92 0.94 0.94

AL 0.72 0.57 0.68 0.64

β4 GAL 0.89 0.90 0.92 0.97

AL 0.68 0.59 0.64 0.76

β5 GAL 0.91 0.92 0.94 0.97

AL 0.70 0.60 0.68 0.74

β6 GAL 0.94 0.95 0.98 0.95

AL 0.77 0.58 0.77 0.70

β7 GAL 0.92 0.93 0.94 0.97

AL 0.69 0.64 0.64 0.73

β8 GAL 0.94 0.93 0.92 0.95

AL 0.69 0.63 0.73 0.73
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Table 9: Empirical coverage of the 95% credible interval (p0 = 0.25, n = 100)

Model Normal Laplace Normal mixture Log generalized Pareto

β1 GAL 0.93 0.97 0.94 0.98

AL 0.83 0.88 0.91 0.97

β2 GAL 0.98 0.99 0.90 0.91

AL 0.94 0.93 0.91 0.89

β3 GAL 0.97 0.99 0.97 0.94

AL 0.91 0.94 0.96 0.91

β4 GAL 0.96 0.97 0.97 0.98

AL 0.88 0.99 0.93 0.97

β5 GAL 0.91 0.93 0.92 0.94

AL 0.86 0.87 0.87 0.92

β6 GAL 0.97 0.99 0.99 0.99

AL 0.93 0.94 0.94 0.99

β7 GAL 0.99 1.00 0.97 0.98

AL 0.90 0.96 0.98 0.96

β8 GAL 0.97 0.99 0.98 0.94

AL 0.95 0.97 0.95 0.93

Table 10: Empirical coverage of the 95% credible interval (p0 = 0.25, n = 1000)

Model Normal Laplace Normal mixture Log generalized Pareto

β1 GAL 0.95 0.96 0.93 0.85

AL 0.88 0.89 0.88 0.86

β2 GAL 0.96 0.91 0.92 0.91

AL 0.93 0.85 0.86 0.91

β3 GAL 0.93 0.96 0.98 0.94

AL 0.88 0.87 0.91 0.89

β4 GAL 0.93 0.96 0.90 0.90

AL 0.85 0.89 0.88 0.92

β5 GAL 0.95 0.96 0.94 0.93

AL 0.83 0.89 0.83 0.90

β6 GAL 0.95 1.00 0.95 0.94

AL 0.89 0.91 0.89 0.92

β7 GAL 0.94 0.98 0.95 0.93

AL 0.87 0.90 0.88 0.92

β8 GAL 0.93 0.94 0.94 0.95

AL 0.89 0.87 0.86 0.93
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Table 11: Empirical coverage of the 95% credible interval (p0 = 0.5, n = 100)

Model Normal Laplace Normal mixture Log generalized Pareto

β1 GAL 0.95 0.95 0.90 0.96

AL 0.91 0.94 0.91 0.91

β2 GAL 0.94 0.95 0.93 0.95

AL 0.92 0.96 0.93 0.92

β3 GAL 0.95 0.95 0.99 0.97

AL 0.94 0.96 0.99 0.97

β4 GAL 0.96 0.98 0.95 0.96

AL 0.97 0.98 0.92 0.95

β5 GAL 0.88 0.92 0.87 0.95

AL 0.85 0.92 0.85 0.96

β6 GAL 0.96 0.98 0.90 0.95

AL 0.96 0.96 0.88 0.96

β7 GAL 0.98 0.96 0.95 0.96

AL 0.97 0.97 0.94 0.97

β8 GAL 0.97 0.98 0.96 0.93

AL 0.98 0.97 0.94 0.96

Table 12: Empirical coverage of the 95% credible interval (p0 = 0.5, n = 1000)

Model Normal Laplace Normal mixture Log generalized Pareto

β1 GAL 0.88 0.92 0.79 0.93

AL 0.89 0.92 0.81 0.90

β2 GAL 0.87 0.92 0.88 0.92

AL 0.87 0.91 0.84 0.89

β3 GAL 0.92 0.95 0.92 0.96

AL 0.93 0.95 0.95 0.95

β4 GAL 0.89 0.94 0.93 0.97

AL 0.91 0.96 0.92 0.94

β5 GAL 0.89 0.96 0.91 0.96

AL 0.90 0.95 0.90 0.93

β6 GAL 0.91 0.98 0.94 0.95

AL 0.90 0.99 0.89 0.91

β7 GAL 0.86 0.97 0.95 0.93

AL 0.89 0.97 0.95 0.93

β8 GAL 0.90 0.97 0.96 0.96

AL 0.91 0.97 0.96 0.95
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Table 13: Correct inclusion and exclusion for different n

n Model Normal Laplace Normal mixture Log generalized Pareto

0.05 102 GAL 0.71 0.75 0.95 0.81

AL 0.67 0.68 0.83 0.69

103 GAL 1.00 0.99 1.00 1.00

AL 0.94 0.87 1.00 1.00

104 GAL 1.00 1.00 1.00 1.00

AL 1.00 1.00 1.00 1.00

0.25 102 GAL 0.94 0.90 0.93 0.89

AL 0.93 0.81 0.91 0.90

103 GAL 1.00 1.00 1.00 1.00

AL 1.00 0.99 1.00 1.00

104 GAL 1.00 1.00 1.00 1.00

AL 1.00 1.00 1.00 1.00

0.50 102 GAL 0.78 0.83 0.89 0.88

AL 0.76 0.83 0.90 0.87

103 GAL 1.00 1.00 1.00 1.00

AL 1.00 1.00 1.00 1.00

104 GAL 1.00 1.00 1.00 1.00

AL 1.00 1.00 1.00 1.00
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Table 14: Average RMSE for different n

n Model Normal Laplace Normal mixture Log generalized Pareto

0.05 102 GAL 0.62 0.63 0.32 0.45

AL 0.74 0.84 0.38 0.53

103 GAL 0.16 0.24 0.13 0.14

AL 0.31 0.39 0.11 0.13

104 GAL 0.05 0.09 0.03 0.04

AL 0.06 0.14 0.08 0.05

0.25 102 GAL 0.37 0.54 0.31 0.44

AL 0.38 0.70 0.33 0.43

103 GAL 0.16 0.18 0.10 0.13

AL 0.17 0.22 0.10 0.13

104 GAL 0.04 0.05 0.03 0.05

AL 0.05 0.06 0.03 0.05

0.50 102 GAL 0.53 0.63 0.33 0.48

AL 0.54 0.63 0.33 0.54

103 GAL 0.15 0.20 0.10 0.17

AL 0.14 0.19 0.12 0.19

104 GAL 0.05 0.05 0.04 0.05

AL 0.05 0.05 0.04 0.05
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Table 15: Prediction interval score for different n

n Model Normal Laplace Normal mixture Log generalized Pareto

0.05 102 GAL 15.26 21.92 14.40 24.33

AL 23.34 33.05 19.33 25.48

103 GAL 12.30 18.92 10.65 16.52

AL 23.84 36.92 17.88 21.76

104 GAL 16.93 22.52 10.43 23.36

AL 27.71 39.75 17.05 23.97

0.25 102 GAL 15.84 23.46 10.17 27.59

AL 21.64 29.36 12.25 19.29

103 GAL 19.43 22.91 11.57 20.95

AL 16.17 27.73 11.33 20.69

104 GAL 15.33 27.94 11.32 18.40

AL 18.21 31.29 12.53 20.56

0.50 102 GAL 17.61 27.37 12.22 21.13

AL 16.22 27.46 11.51 24.38

103 GAL 22.60 20.30 13.20 22.33

AL 16.43 20.39 11.92 18.85

104 GAL 14.28 33.78 10.90 28.85

AL 14.15 33.97 10.60 22.57
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Figure 1: Simulation under the normal error density (solid black line). Posterior mean and 95% interval estimates

of the error density under the asymmetric Laplace model (red) and the generalized asymmetric Laplace model

(blue), for p0 = 0.05 (left column), p0 = 0.25 (middle column), p0 = 0.5 (right column), and for sample size

n = 100 (top row), n = 1000 (middle row), n = 10000 (bottom row).
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Figure 2: Simulation under the Laplace error density (solid black line). Posterior mean and 95% interval

estimates of the error density under the asymmetric Laplace model (red) and the generalized asymmetric

Laplace model (blue), for p0 = 0.05 (left column), p0 = 0.25 (middle column), p0 = 0.5 (right column), and for

sample size n = 100 (top row), n = 1000 (middle row), n = 10000 (bottom row).
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Figure 3: Simulation under the normal mixture error density (solid black line). Posterior mean and 95% interval

estimates of the error density under the asymmetric Laplace model (red) and the generalized asymmetric Laplace

model (blue), for p0 = 0.05 (left column), p0 = 0.25 (middle column), p0 = 0.5 (right column), and for sample

size n = 100 (top row), n = 1000 (middle row), n = 10000 (bottom row).
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Figure 4: Simulation under the log-transformed generalized Pareto error density (solid black line). Posterior

mean and 95% interval estimates of the error density under the asymmetric Laplace model (red) and the

generalized asymmetric Laplace model (blue), for p0 = 0.05 (left column), p0 = 0.25 (middle column), p0 = 0.5

(right column), and for sample size n = 100 (top row), n = 1000 (middle row), n = 10000 (bottom row).
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