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Abstract

We develop anomaly detection scores leveraging the independence between the
radial and angular components of vectors in extreme value settings. The angular
density is modeled as a Bayesian non-parametric mixture of projected gammas. The
resulting posterior predictive density is used for the angular score. For flexible cate-
gorical data modeling, we develop an extension of the projected gammas model using
a Dirichlet-multinomial kernel. This is coupled with our proposed anomaly detec-
tion score in mixed data settings. We evaluate the anomaly detection efficacy of our
proposed scores and find that they are generally superior to tested canonical methods.

Keywords: Bayesian non-parametrics, multivariate exteme values, categorical data, direc-
tional statistics,
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1 Introduction

Anomaly detection, describes a field of methods for identifying observations as anomalous ;

a term that requires defining. For this paper, following the general trend in the literature,

we define anomalies as observations that are in some manner different than non-anomalous

data. We interpret this to say that anomalies are data that were not produced by the same

generating distribution as non-anomalous data, and as such, we would expect observations

found in regions of relative data sparsity to be more likely to be anomalous than those

observations found in regions of high data abundance. We characterize this assumption as

anomalies stand apart. In the literature as here, the term normal data is used to refer to

data which are not anomalous. Normal data tend to cluster into homogenous groups, but

anomalous data are heterogenous in their differences.

Alternative names for the field of anomaly detection include outlier detection, and

novelty detection, though these terms have their own nuances. Outliers are characterized

as observations that are in some manner far from normal data. In a regression context,

they may have large fitted residuals, or exert large influence on model fits. Novelties in

contrast are data coming from a distribution that has not been seen before. A novelty

detection application will then assume a clean training data set containing no anomalies,

and identify observations not belonging to the distribution as trained. Chandola et al.

(2009) refer to this practice as semi-supervised anomaly detection. For our purpose, we

do not assume the existence of labels in the training dataset, and seek an algorithm that

can produce anomaly scores in the absence of class labels. As such, we will offer a brief

overview of unsupervised anomaly detection methods, as well as discussion of the methods

we are proposing here as competing models.

The complete field of anomaly detection is vast. However, most methods can be roughly

grouped into three core ideas: statistical model approaches, non-statistical model ap-
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proaches, and clustering methods. Common to all approaches is the assumption that

anomalous data will tend to stand apart from normal data.

Statistical models for anomaly detection attempt to model the distribution of data, with

the goal of estimating the data density around an observation. In specific applications, one

might make assumptions about the parametric form of the generating distribution of the

data, but for general application, a non-parametric density estimator is frequently used.

This might include algorithms such as k-Nearest Neighbors k-NN (Kramer, 2013); kernel

density estimation approaches such as the Parzen-Rosenblatt windowing method (Rosen-

blatt, 1956; Parzen, 1962); or even semi-parametric density estimation methods, such as

Gaussian mixture models (McNicholas, 2010). Local Outlier Factor Breunig et al. (2000)

is an example of an anomaly score using a non-parametric density estimator.

Clustering methods group data into clusters of similar observations. The grouping

methods tend to rely on distance metrics and generally make no assumptions regarding

the underlying distribution of the data. We can further sub-divide this sub-field into types

of clustering methods: linkage-based, centroid-based, and density-based. These methods

as applied to the field of anomaly detection assume that anomalous observations tend to

stand apart from non-anomalous data.

Linkage-based clustering methods group data based on pairwise distance point-to-point,

or between elements of clusters. Ackerman et al. (2010) offers a review of the topic. An

illustrative example is single linkage, where the distance between two clusters is defined

as the minimum distance between a point in each set. Similarly, complete linkage defines

the metric to be the maximum pairwise between a point in each set. The goal of the

linkage-based clustering algorithm is to maximize the total distance between clusters under

whatever metric of distance is used, along with minimizing distance within clusters. An

observation’s anomaly score might be a function of distance to its nearest neighbor within

its assigned cluster.
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Centroid based clustering methods instead generate cluster centroids according to some

metric. The algorithm used to find the cluster centroids depends on a chosen metric. The

very popular k-Means (Hartigan and Wong, 1979) is an example of this approach. Under

k-Means, cluster assignment is determined by minimizing within-cluster distance among k

clusters, which simultaneously maximizes between-cluster distance. For each observation,

and anomaly score may be obtained as a function of its distance to the nearest cluster

centroid.

Density based clustering methods use pairwise distances between observations to estab-

lish a measure of local density, then establish local modes as clusters. DBSCAN (Ester

et al., 1996) follows this approach, forming neighborhoods of observations and assigning

labels based on the neighborhood.

Non-statistical—or algorithmic—models beyond clustering are generally adaptations of

general classification methods, applied to unsupervised learning. The Isolation Forest (Liu

et al., 2008), adapted from random forests (Breiman, 2001), uses decision trees to iso-

late observations. Those observations that are more easily isolable are regarded as more

anomalous. One-class Support Vector Machines (Chang and Lin, 2011) is a variant of the

support vector machine classification system, optimized for anomaly detection. One-class

SVM uses support vectors to describe a decision boundary in kernel space around normal

behavior. A higher distance to that decision boundary on the anomalous side is regarded

as more anomalous.

The intersection of extreme value theory and anomaly detection is a current topic of re-

search. Some methods employ univariate EVT on estimated densities calculated via other

means, such as Clifton et al. (2011) using a Gaussian Mixture model, and Gu et al. (2021)

using a Gaussian process. Both then employ EVT on the estimated densities to establish a

decision threshold theoretically, avoiding the process of determining said threshold heuris-

tically. Beyond these applications, the applicability of extreme value theory to anomaly
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detection is predicated on the assumption that extreme observations are more likely to

be anomalous. A discussion on this point is provided by Goix et al. (2017), stating that

extreme observations exist at the border between anomalous and non-anomalous regions.

Indeed, for most datasets in our testing, the probability an individual observation is anoma-

lous is higher for data in the tails of the distribution. This relative abundance of anomalies

among extremes might cause a naive classifier that does not take into account the de-

pendence structure of extremes to classify all extremes as anomalous. If we follow the

assumption that anomalies stand apart, then extreme observations that cluster into a ho-

mogenous group should not be considered anomalous. For this reason, we desire a classifier

that considers the dependence structure of the extremes as well. Goix et al. (2017) offers

one such example. Their method is based on transforming the data to a standard Pareto

suing the transformation T (x) = 1/(1 − F̂ (x)) ∈ [1,∞), where F̂ corresponds to the

empirical distribution function. Then the the space [1,∞)d is partitioned into α-cones,

defined as subsets where in each dimension the observations are in excess of a α. α-cones

with few observations correspond to lower-density regions, so observations falling into these

cones are considered more likely to be anomalous.

A central result of multivariate EVT is that, conditional on an observation being ex-

treme, its radial component—or magnitude—is independent of its angular component. In

this paper, following Trubey and Sansó (2022), we fit a Bayesian non-parametric mixture

of projected gammas to the angular component, and use samples from its posterior predic-

tive distribution to compute an estimate of the density of the angular component. Direct

estimation of density via a fitted model is difficult, owing to the bounded nature of the

angular distribution. Instead, we employ non-parametric density estimators including k-

nearest neighbors and kernel density estimation to produce estimates of angular density.

Further, to expand the applicability of this algorithm, we produce an extension of the

BNP projected gamma model to include categorical data. Standing alone, this component
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represents a highly flexible density model for categorical data, and it efficiently pairs with

the projected gamma model for angular data. We develop several anomaly scoring metrics

applicable to the angular data, categorical data, and mixed data regimes. The major con-

tributions of this paper are thus three-fold: We develop an anomaly detection algorithm for

extreme data that accounts for the dependence structure between extremes, approaching

density estimation in a continuous space rather than discrete binning in a partition of the

space. We obtain a flexible model for multivariate categorical data that efficiently captures

the dependence structure between categories in multiple variables, as well as anomaly scores

in this setting. Finally, we provide a model that links the scores developed in these two

cases, tackling multivariate observations with components of different types.

The paper proceeds as follows: Section 2 provides a brief review of multivariate EVT,

explaining the separation of the radial and angular components of the extreme data, as

well as an introduction of the angular data model. Section 3 introduces our anomaly

scores for angular data, describing the density estimation methods employed, as well as

how radial information is incorporated. Section 4 introduces our flexible categorical data

model, along with anomaly scores based on it. Section 4.3 provides a link between the two

regimes; anomaly scores that include information from both categorical and angular data.

Section 4.4 employs the same rank transformation used in Goix et al. (2017) to apply the

angular data model to data not already assumed to be in excess of a threshold, widening the

applicability of our metrics. Section 5 provides the resulting performance of our anomaly

scores as applied to seven reference anomaly detection datasets, as well as comparing to

three canonical anomaly scoring methods. Finally, Section 6 provides concluding remarks

and discussion.
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2 Review of Extreme Value Theory

The use of methods based on extreme value theory to perform anomaly detection has the

advantage of focusing on the tail of the distribution, which is where anomalous observations

are more likely to be found. In the univariate case, asymptotic results provide a unique

parametric limiting extreme family. Software to infer the parameters of such family is

widely available (see, for example, Coles, 2001). A popular approach to study univariate

extremes, is to consider the observations that exceed a threshold, and calculate the excess

values, then use them for inference on the parameters of the generalized Pareto distribution

that correspond to the theoretical limit. This is known as the peaks over threshold approach

(PoT), and will be central to the methods in this paper. In the multivariate case the theory

for PoT is well developed (see, for example De Haan and Ferreira, 2006), and it indicates the

existence of a limiting distribution that has no parametric representation. This presents a

challenge for inference. Furthermore, the difficulty of using a PoT approach is compounded

by the fact that there is no unique definition of an exceedance of a multivariate threshold,

as there is an obvious dependence on the norm used to measure the vectors sizes.

The multivariate PoT model considered in this paper has been developed in Trubey

and Sansó (2022), and it is based on a representation of the limiting distribution proposed

in Rootzén et al. (2018). Let W = (W1, . . . ,Wd) be a d-dimensional random vector with

cumulative distribution F . Assume that there exist sequences of vectors an and bn, and

a d-variate distribution G such that limn→∞ F n(anw + bn) = G(w). G is a d-variate

generalized extreme value distribution. Then

lim
n→∞

Pr
[
a−1
n (W − bn) ≤ w | W ̸≤ bn)

]
=

logG(w ∧ 0)− logG(w)

logG(0)
= H(w).

where H is the multivariate Pareto distribution. Rootzén et al. (2018) provides a number

of stochastic representations for H. In particular Remark 1 justifies the representation

given in Ferreira and de Haan (2014), consisting of taking W , in the limit, as W = RV
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where R and V are independent. R = ||W ||∞ is distributed as a standard Pareto random

variable, and V = W /||W ||∞ is a random vector in Sd−1
∞ , the positive orthant of the

unit sphere in infinite norm, with distribution Φ. R and V are referred, respectively, as

the radial and angular components of H. The angular measure controls the dependence

structure of W in the tails. In view of this, to obtain a PoT model we seek a flexible model

for the distribution of V ∈ Sd−1
∞ . Our approach consists of a two-step analysis. We first

standardize and subsample using a multivariate threshold. Then we estimate the angular

measure.

Starting with a collection of observationswi ∈ Rd, i = 1, . . . , n, we perform thresholding

for each marginal. We use as threshold bq,l = F̂−1
ℓ (1 − 1/q), where F̂ℓ is the empirical

distribucion function for the ℓth component. t is chosen to obtain a large empricial quantile,

like 85 or 90%. Thresholded values are assumed to follow a generalized univariate Pareto

distribution, and are used to estimate the corresponding scale and shape parameters aℓ and

ξℓ. We then obtain the standardization

ziℓ =

(
1 + ξℓ

wiℓ − bℓ
aℓ

)1/ξℓ

+

(1)

where (·)+ indicates the positive parts function. Let ri = ||zi||∞ and let vi = zi/ri. Due to

the thresholding, i ranges from 1 to m ≤ n, and ri > 1. That is, all vectors have at least

one very large component.

Recall that the radial component R ∈ R+ follows a standard Pareto distribution, we

focus on describing the distribution of the angular component V ∈ Sd−1
∞ . For this purpose

we use the samples vi, i = 1, . . . ,m. A suitable distribution for V can be approximated by

projecting a distribution in Rd
+ onto Sd−1

p . Recall that the Lp norm is ∥s∥p = (
∑d

ℓ=1|s|
p
ℓ)

1/p.

For x ∈ Rd
+, we define the transformation

Tp(x) = (∥x∥p, x1/∥x∥p, . . . , xd−1/∥x∥p) =: (r,y),

where y = (y1, . . . , yd−1) ∈ Sd−1
p , r > 0, and yd =

(
1−

∑d−1
ℓ=1 y

p
ℓ

) 1
p
. Thus, a distribution
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Algorithm 1 Workflow to fit a distribution to data on Sd−1
∞ .

1: btℓ := F̂−1
ℓ

(
1− 1

t

)
; For wiℓ > btℓ, fit aℓ, ξℓ by likelihood-based method.

2: Transform ziℓ =
(
1 + ξℓ

wiℓ−btℓ
aℓ

)
+
for wi ̸< bt.

3: Transform (ri,vi) =
(
∥zi∥∞, zi

∥zi∥∞

)
.

4: yi =
zi

∥zi∥p is used to facilitate fitting f(α,β | y).

on X induces a distribution on Sd−1
p . In particular, assume that X has independent

components, each of them distributed as Ga(αℓ, βℓ), then it can be seen that the density of

y is

f(y | α,β) =
d∏

ℓ=1

[
βαℓ
ℓ

Γ(αℓ)
yαℓ−1
ℓ

] [
yd +

∑d−1
ℓ=1y

p
ℓ y

1−p
d

] Γ(
∑d

ℓ=1αℓ)(∑d
ℓ=1βℓyℓ

)∑d
ℓ=1 αℓ

, (2)

(see, Trubey and Sansó, 2022, for details). This distribution is a generalization to Sd−1
p of

the projected gamma distribution defined for p = 2 in Núñez-Antonio and Geneyro (2019).

We will denote its density as PGp(y|α,β).

Note that T is not differentiable at p = ∞, so we can not use it to directly model on Sd−1
∞ .

However, as p increases, the surface Sd−1
p will approach Sd−1

∞ . This means that a projected

gamma built on Sd−1
p with a sufficiently large p will serve to approximate a distribution

on Sd−1
∞ . This approximation is leveraged in Trubey and Sansó (2022) to obtain samples

of a distribution on Sd−1
∞ . To obtain a flexible model for Φ we use the projected gamma

density as the kernel of a random measure mixture model, based on the Pitman Yor (PY)

process introduced in Perman et al. (1992). Pitman-Yor processes are fully atomic random

measures that are specified by two parameters and a centering distribution. They can be

formulated, using a stick-breaking representation (Ishwaran and James, 2001a), as

Pr(α | · · · ) =
∞∑
j=1

pjδαj
;

∞∑
j=1

pj = 1, pj := χj

j−1∏
k=1

(1− χk)

where δαj
indicates a point mass at αj, and αj are sampled independently from G0.

χj ∼ Beta(1 − d, η + jd). d ∈ [0, 1), η > −d are refereed to as the discount and the
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concentration parameters, respectively. Pitman Yor processes have the advantage over the

more commonly used Dirichlet processes (Ferguson, 1974) of including a discount parameter

along with the concentration parameter, allowing greater control over the formation of new

clusters. A hierarchical formulation of the model for observations yi ∈ Sd−1
p , i = 1, . . . , n,

is

yi | αi ∼ PGp (yi | αi,1)

αi ∼ G

G ∼ PY (d, η,G0)

G0 = LN d (α | µ,Σ)

µ ∼ Nd (0,1)

Σ ∼ IWd (ν,Ψ) .

(3)

Here LN denotes a log-normal, N a normal, and IW an inverse Wishart. We refer

to this model as a Pitman–Yor mixture of projected gammas (PYPG). Details of the

implementation of this model using and adaptive MCMC approach are provided in the

supplementary material. As a kernel density, it was observed in Trubey and Sansó (2022)

that the unrestricted form of the PGp with both shape and rate parameters offered no

improvement in model fidelity on real data compared to the restricted form, where the rate

parameters are fixed at 1. For a more parsimonious model, and for compatibility with the

categorical model that will be developed in Section 4, in this paper we choose to use the

restricted form.

Mixtures of Pitman–Yor processes can be used to group observations into stochastically

assigned clusters, where all observations within a cluster share a set of parameters. Cluster

assignment is accomplished through data augmentation, where a cluster identifier φi is

sampled according to both cluster weight and kernel density of observation i given cluster

parameters. We make use of the blocked-Gibbs sampler on a truncated stick-breaking

representation of the Pitman–Yor model. Cluster weights are then sampled as

χj | nj, nk>j ∼ Beta

(
1 + nj − d, η +

J∑
k=j+1

nk + jd

)
; pj := χj

j−1∏
k=1

(1− χk) (4)

where nj is the number of observations in cluster j. In this form, the Dirichlet process is

a special case of the Pitman-Yor process where the discount parameter d := 0. Then the
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cluster identifier for observation i, φi, is sampled as

Pr [φi = j | p,α] =
pj PGp (yi | αj,1)∑J
k=1 pk PGp (yi | αk,1)

. (5)

Within the blocked-Gibbs algorithm, χ | φ are mutually independent, as are φ | χ. This

conditional independence offers an opportunity for parallelization, increasing the speed of

sampling.

The approach proposed in this section produces a sample of the angular measure of the

distribution of the tails of the sample. The method has a number of advantages for anomaly

detection: it focuses on the tails, which is where we are more likely to find anomalous

behavior; it accounts for asymptotic dependence between the different components of the

observation vector; it reduces the computational burden, by thinning the sample using

thresholding; and it decouples the radial component to the angular component, thanks to

independence.

3 Novelty Detection Methods

As previously stated, a novelty detection algorithm produces an anomaly score which pro-

vides a ranked ordering of observations in their likelihood of being anomalous, with higher

scores indicating more likely anomalous. Building on the notion that anomalies occur in

areas of low density, a general Bayesian anomaly score for observation xi, can be defined

as

Si =

[∫
Θ

f(xi | θ)dG(θ | D)

]−1

where D is the observed data and θ the distributional parameters. That is, the reciprocal

of the posterior predictive density at observation xi.

Given the independence between the angular and radial components of an extreme ob-

servation, we can consider sub-scores for the radial and angular components independently.
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That is,

Si = Si,r × Si,v = fr(ri)
−1 ×

[∫
Ω

fv(vi | α) dG(α | D)

]−1

By construction ri follows a standard Pareto distribution, so its density is fr(ri) = r−2
i .

As previously discussed in Section 2, the kernel PG∞, needed for density estimation on

the surface of Sd−1
∞ is not available in analytic form, thus, we resort to transforming the

data to Sd−1
p for a large but finite p. This makes estimation of distributional parameters

possible, but in the context of anomaly detection, a score based on PGp, for any p, is

problematic. In fact, the transformation from Rp
+ to Sd−1

p is not unique, as we can take

any of the components of the original vector as a reference. This implies that under

uniform α, the density can be changed by permuting the order of components. This

is not appropriate for anomaly detection, because a relative ordering of density between

observations is specifically what we’re trying to calculate. In addition we have observed

instabilities in the evaluation of (2) for small arguments, when the shape parameter is

small. On the other hand, we notice that T∞ is unique, as the reference is the largest value

of the array. Thus, we fit the mixture model in Sd−1
p , generate posterior predictive samples,

and transform those samples to Sd−1
∞ .

To avoid the problems of angular density evaluation in Sd−1
∞ we use a non-parametric

angular density estimator based on a sample from the posterior predictive distribution of

the model developed in Section 2. Here, we consider two well-established methods: k–

nearest neighbors, or kNN (Mack and Rosenblatt, 1979), and kernel density estimation, or

KDE (Parzen, 1962). For both of these methods we make use of pairwise distances between

observations from the dataset, and replicates from a posterior predictive sample.

As described in Trubey and Sansó (2022), the geodesic distance on Sd−1
∞ is expen-

sive to evaluate as the computational burden grows combinatorically with the number

of dimensions. As an alternative they propose an estimate of distance that is computa-

tionally cheap to evaluate, bearing a cost equivalent to that of a Euclidean norm. Let
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Cd−1
ℓ = {x : x ∈ Sd−1

∞ , xℓ = 1} comprise the ℓth face of Sd−1
∞ . For a pair of points on the

same face, the Euclidean distance corresponds to the geodesic, or length of the shortest

possible path between those two points. For a pair of points a ∈ Cd−1
ℓ , b ∈ Cd−1

ȷ , we can

rotate Cd−1
ȷ into the same hyperplane as Cd−1

ℓ . Transform b such that

b′ = Pȷℓ(b) =



bi for i ̸= ȷ, ℓ

1 for i = ℓ

2− bℓ for i = ȷ

g(a, b) = ∥a− b′∥2 (6)

After transformation, the Euclidean norm between a and b′ corresponds to a negative

definite kernel that provides an upper bound on geodesic distance on Sd−1
∞ between a and

b.

3.1 k-Nearest Neighbors Density estimation

We use the kernel g defined in Equation 6 to obtain a local posterior predictive density

based on a kNN estimator on Sd−1
∞ . To this end we consider a locally uniform density within

a d− 1–dimensional ball B, centered on observation vi. The radius Dk(vi) is calculated as

g
(
vi,v

∗
Nk(i)

)
, where v∗

Nk(i)
is the kth nearest neighbor of vi in a sample from the posterior

predictive distribution. The volume of the ball is calculated as

Vol(Bd−1
k ) =

π
d−1
2 Dk(vi)

d−1

Γ
(
d−1
2

+ 1
) . (7)

The density is thus estimated as f
(kNN)
v (vi | V ) ≈ k

N

(
Vol(Bd−1

k )
)−1

where N is the total

number of replicates of from the posterior predictive distribution. Taking the reciprocal of

the estimated angular density, the angular score under the kNN estimator is then

Sknn
i,v =

Nπ
d−1
2 Dk(vi)

d−1

kΓ
(
d−1
2

− 1
) (8)

In our experience, using a large posterior predictive sample, the resulting ordering of scores

was relatively robust to a choice of k between 2 and 10. We used k = 5 in our performance
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analysis.

3.2 Kernel Density Estimation

Kernel density estimation is an approach that makes use of kernel smoothing to produce

a semi-parametric estimate of the density function for a dataset. For a scalar bandwidth

parameter h,

fn(x) =

∫
Ω

1

h
Q
(
x− t

h

)
dFn(t) ≈ 1

Kh

K∑
k=1

Q
(
x− x∗

k

h

)
where x∗

k are random replicates from F . The choice of kernel function Q, and selection

of the bandwidth parameter h are both topics that have been extensively researched. In

practice the Gaussian kernel seems to be well regarded for its simplicity, flexibility, and

interpretability. The bandwidth parameter in this case corresponds to the standard devi-

ation of the kernel function. The multivariate Gaussian kernel is more flexible, accepting

a matrix as the bandwidth parameter. A larger bandwidth serves to smooth the resulting

density estimate, where a lower bandwidth is more responsive to individual observations

of data. Optimization of h is application and data specific, but there do exist various rules

of thumb based on summary statistics of the data. For our analysis, we are making use

of a distance analogue on Sd−1
∞ described in Equation (6), which precludes the ability to

describe bandwidth using a matrix. We therefore consider the univariate case of f in kernel

space, where ∥x− x∗∥ has been replaced with g(v,v∗).

For selection of the bandwidth parameter h, we employ Silverman’s rule of thumb

(Silverman, 2018), estimating ĥ =
(

4
d+2

) 1
d+4 n− 1

d+4 σ̂. This then requires the estimation

of σ̂, which in this case we calculate from pairwise distances. Recall that for a random

variable X, E
[
∥Xj −Xk∥2

]
= 2Var(X). In that case, σ̂ =

√
1

2N(N−1)

∑
j ̸=k g(v

∗
j ,v

∗
k),

where v∗
j ,v

∗
k are replicates from the posterior predictive distribution. Then σ̂ is used in

the aforementioned rule of thumb for h. Finally, the angular score under KDE is then
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calculated as

Skde
i,v = Ev∗

[
exp

{
−
(
g(vi,v

∗)

ĥ

)2
}]−1

≈

[
1

K

K∑
k=1

exp

{
−
(
g(vi,v

∗
k

ĥ

)2
}]−1

(9)

where v∗
k are again replicates from the posterior predictive distribution. We investigated

other methods of calculating bandwidth, as well as searched the neighborhood around our

bandwidth estimate for example datasets. The estimator following Silverman’s rule of

thumb as described consistently produced the most performant rank ordering of angular

anomaly scores on tested datasets.

Algorithm 2 Workflow for anomaly detection on Sd−1
∞ .

1: Take ri, yi according to Algorithm (1)

2: Fit y ∼ PYPG from Equation (3)

3: From α | y, sample ϱ∗
k | α ∼

∏
ℓ G(αℓ) for k = 1, . . . , K

4: Take v∗
k = T∞(ϱ∗

k)

5: Take Si,v as per Equations (8,9)

4 Binary and Categorical Data

In the previous sections we have used extreme value theory to obtain samples from the

tail distribution of a given sample of observations. Unfortunately those results can only

be applied to continuous random variables. Many applications of novelty detection include

both real and categorical data, so here we consider an extension of the projected gamma

mixture model to handle categorical observations.

Suppose C is a vector of M random categorical variables. Then Cm is a random

categorical variable, with Km ≥ 2 categories. Regard Wm as Cm, recoded in one-hot,

or multinomial, encoding, and W the concatenation of M one-hot encoded categorical

RV’s. That is, W is a binary vector of length K =
∑M

m=1Km;
∑K

k=1Wk = M ; and
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every m subset of W sums to 1. To account for over-dispersion, we consider a Dirichlet-

multinomial density for Wm. Recall that the Dirichlet distribution is a special case of

projected gamma, projected onto Sd−1
1 , with rate parameters uniformly fixed as βℓ = β = 1

by convention. We consider a Dirichlet-multinomial distribution, DM that is obtained

by integrating out the latent categorical probability vector from the product of Dirichlet

and multinomial distributions; DM(w | α) =
∫
π
M(w | π)D(π | α)dπ. Recalling that a

categorical random variable can be considered as a multinomial with size 1, we can further

simplify the Dirichlet-multinomial to a Dirichlet-categorical, reducing the computational

burden. Thus,

wm | αm ∼ DC(wm | αm) =
Γ(
∑d

ℓ=1 αmℓ)

Γ(1 +
∑d

ℓ=1 αmℓ)

d∏
ℓ=1

Γ(wmℓ + αmℓ)

Γ(αmℓ)
(10)

We then consider a concatenated Dirichlet-categorical (CDC) as a product of Dirichlet-

categorical densities. That is, CDC(w | α) =
∏M

m=1 DC(wm | αm). Then we can define a

Bayesian non-parametric categorical data model as:

wi | αi ∼ CDC (wi | αi)

αi ∼ G

G ∼ PY (d, η,G0)

G0 = LN (α | µ,Σ)

µ ∼ N (0,1)

Σ ∼ IW (ν,Ψ) .

(11)

Note that there exists a strong negative covariance between categories within a categorical

variable. To account for this in our proposed prior, the parameter Ψ is chosen as a block

diagonal matrix, with each m block corresponding to the mth categorical variable. Setting

the value of the diagonal to ψ0, the off-diagonals within them block are set to −ψ0d
−2
m where

dm is the number of categories in themth categorical variable. This value corresponds to the

covariance of a categorical variable where all category probabilities are equal. In addition

to the proposed log-normal model, we investigated using a product of gammas as the

centering distribution in Equation (11), but we observed that this choice induces numerical

instability. We observed that the log-normal distribution, with its squared exponential
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tails and ability to account for negative covariance within the prior, provided stable model

fitting.

4.1 Anomaly Detection Methods for Categorical Data

Anomaly scores analogous to the ones proposed in Section 3 can be obtained for categorical

variables by transforming the latent variables that define a Dirichlet-Multinomial distri-

bution on Sd−1
1 to Sd−1

∞ . We start by considering the cluster identifiers. Extrapolating

Equation (5) to the categorical model, cluster identifiers φi are sampled with probabilities

Pr[φi = j | α,p,wi] =
pj CDC (wi | αj)∑J

k=1 pk CDC (wi | αk)
for j = 1, . . . , J. (12)

For a given sample from the posterior for α, first we sample φi, then let αi = αφi
, and

sample

ϱi | αi ∼
d∏

ℓ=1

G (ϱiℓ | αiℓ, 1) . (13)

These are the latent variables that provide the core structure to the categorical data model.

In fact, the component probability vectors for the concatenated multinomial are obtained

by transforming ϱi onto
∏M

m=1 S
dm−1
1 to produce πi =

∏M
m=1 T1(ϱim). Anomaly scores

analogous to the ones proposed in the continuous case can then be obtained by letting

νi = T∞(ϱi), the transformation of ϱi onto Sd−1
∞ . It is important to notice that distance

metrics between projections of ϱi and replicates of ϱ∗ from the posterior predictive distri-

bution is straightforward. This provides a distinct advantage to the approach based on the

distance between the directly observed values wi and samples of W , obtained from the

corresponding posterior predictive distribution (Alamuri et al., 2014).

We develop four methods based on applications of the KNN and KDE metrics previ-

ously described. Making an abuse of notation for simplicity of presentation, let Ẽ [νi] :=

T∞(E [νi | wi]), the projection of the expectation of νi back onto Sd−1
∞ . Evaluating this

expectation by Monte Carlo approximation is equivalent calculating the spherical mean
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(Mardia et al., 1999), which takes the arithmetic mean of observations in Cartesian coor-

dinates, then projects back onto the sphere.

The hypercube KNN (hknn) metric applied to the latent projected Sd−1
∞ space uses the

negative definite kernel metric previously established to estimate distance between Ẽ[νi]

and ν∗. This score takes the form:

Shknn
i,ν =

N π
d−1
2

k Γ
(
d−1
2

+ 1
) Dk

(
Ẽ[νi]

)d−1

(14)

where Dk

(
Ẽ[νi]

)
measures the distance from Ẽ[νi] to the kth nearest replicate from a

sample from the posterior predictive distribution for ν∗. This projection places all the

class probabilities within the same sphere and subject to the same distance measure. Note

here we are first taking the expectation of νi, then the expectation of the kernel metric

raised to the d− 1 power.

The hkde score applied to the categorical space operates in much the same way. We

compute Ẽ[νi], and employ the same kernel metric to compute distance from a sample from

the posterior predictive distribution. From there, however, we use kernel density estimation

to compute local density for observation i. The score is then

Shkde
i,ν = Eν∗

exp
−1

2

(
g(Ẽ[νi],ν

∗)

ĥ

)2

−1

≈

 1

K

K∑
k=1

exp

−1

2

(
g(Ẽ[νi],ν

∗
k)

ĥ

)2

−1

(15)

We use the same previously described approach to choose h. An exploration of manually

tuning h did not consistently outperform the rule of thumb estimator.

Notice that the hkde score depends on two expectations that are computed in sequence.

A variant of the score is obtained by computing the expectations jointly:

S lhkde
i,ν = Eν∗,νi

[
exp

{
−1

2

(
g(νi,ν

∗)

ĥ

)2
}]−1

≈

 1

Kνi
Kν∗

Kνi∑
j=1

Kν∗∑
k=1

exp

{
−1

2

(
g(νi,j,ν

∗
k)

ĥ

)2
}−1

(16)

Computing this for a given sample is more expensive than hkde due to the double sum.
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However, plugging in an estimate of E [vwi
] removes a significant degree of uncertainty

around the distribution of vwi
, which may be relevant.

If, instead of projecting the unnormalized probability vectors onto a unified hypersphere

Sd−1
∞ , we normalize eachm-component onto its associated simplex, Sdm−1

1 . Using Manhattan

distance on the simplex, we obtain the latent simplex KDE (lskde).

S lskde
i,π = Eπi,π∗

[
exp

{
−1

2

(
∥πi − π∗∥1

ĥ

)2
}]

≈

 1

Kπ∗Kπi

Kπi∑
j=1

Kπ∗∑
k=1

exp

{
−1

2

(
∥πij − π∗

k∥
ĥ

)2
}−1

(17)

Using the normalized latent class probabilities offers the advantage of numerical stability:

diverging estimates of ϱ are isolated to the relevant m-component.

Algorithm 3 Workflow for anomaly detection for categorical data

1: Take w as the conatenation of m multinomial-encoded categorical variables.

2: Take d :=
∑M

m=1 dm as the dimensionality of the process

3: Fit w ∼ PYCDC from Equation (11)

4: From α | w, sample ϱ∗
k | α ∼

∏
ℓ G(αℓ) for k = 1, . . . , Kν ; then ν∗ = T∞(ϱ∗)

5: From αi | wi sampled as per Equations (12-13)

sample ϱik | αi ∼
∏

ℓ G(αℓ) for k = 1, . . . , Kνi

6: Take vik = T∞(ϱik); πik =
∏M

m=1 T1(ϱikm)

7: Take Siv as per Equations (14–17)

4.2 Mixed Models

To obtain a joint model for the density of a vector with mixed components we consider a

product kernel, then mix over the parameters that define both kernels in order to capture

the dependence between components. Thus,

(y,w) ∼
∫
α

PGp(y | αy,1) CDM(w | αw) dG(α) (18)
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with the distribution of α = (αy, αw) as defined in Equation 11. The dimensions are,

respectively, dy and dw. Note that for the projected gamma distribution, we restrict the

rate parameters to βℓ := 1. Also note that for the mixed model, the hyperparameter for the

covariance matrix Σα is taken as a blocked diagonal matrix, with the block corresponding

to the angular component being a diagonal matrix.

4.3 Mixed Model Anomaly Scores

Let d = dy + dw be the total number of dimensions. Then, for the mixed model, let

νi = T∞(Riyi,ϱiw), and ν = T∞(ϱ). The hknn score can be adapted to the mixed model

by re-projecting the angular data and the latent categorical component into the same

sphere. This requires moving yi back to Rdy
+ , by multiplying by the radial component

generated according to

Ri | α ∼ G

(
Ri

∣∣∣∣∣
dy∑
ℓ=1

αℓ, 1

)
. (19)

Then νi = T∞(Riyi,ϱiw) is the latent projection of both the real component and categorical

component into the same sphere. Also, let ν = T∞(ϱ) be the generic ν not specifically

dependent on observation i. To obtain the corresponding anomaly scores we can proceed

by using the expression in equations (14), (15) and (16) All three scores seek a unifying

approach for all data, projecting onto a the same sphere, and calculating a consistent

distance metric. An alternative is to, instead, evaluate distances between angular data

their own space, and, separately, latent posterior class probabilities in their own space,

with the appropriate distance metric for each. In effect, this approach combines hkde from

the angular component and lskde from the categorical component yielding:

S lmkde
i,v = Ev∗,π∗,πi

[
exp

{
−1

2

(
d (vi,v

∗)

ĥv∗

)2

− 1

2

(
∥πi − π∗∥1

ĥπ∗

)2
}]−1

≈

 1

Kπ∗Kπi

Kπi∑
j=1

Kπ∗∑
k=1

exp

{
−1

2

(
d(vi,v

∗
k)

ĥv∗

)2

− 1

2

(
∥πij − π∗

k∥1
ĥπ∗

)2
}−1 (20)
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This choice to evaluate each component within its own space presents some loss of infor-

mation as to the dependence structure between y and w within the score. We will explore

to what extent that loss of information is relevant.

Algorithm 4 Workflow for anomaly detection for mixed data

1: Take ri, yi according to Algorithm (1); wi as in Algorithm 3.

2: Fit (y,w) using mixed model from Equation (18)

3: From α | y,w, sample ϱ∗
k | α ∼

∏
ℓ G(αℓ) for k = 1, . . . , K

4: if Si,v is hknn, hkde, or lhkde then

5: From α | yi,wi: sample Ri according to Equation (19), ϱiw similar to Algorithm 3.

6: Take νi = Tinfty(Riyi,ϱiw); ν
∗ = T∞(ϱ∗).

7: Apply Score function.

8: else if Si,v is lmkde then

9: From α | yi,wi, sample ϱiw similar to Algorithm 3.

10: Take πi =
∏M

m=1 T1(ϱim); π
∗ =

∏M
m=1 T1(ϱ

∗)

11: Apply Score function.

12: end if

4.4 Relaxing the assumption of independence

A valid critique of the model presented thus far is that in order to justify modelling the

radial component of Z as independent to its angular component—the fundamental result

of the multivariate extreme value theory presented—it is necessary to subset data to those

observations X which exceeded a large threshold in at least one dimension. For some

applications, this represents a very powerful data reduction with little loss of information

pertaining to anomalies, as anomalies tend to be in the tails (see, for example, Table 1). For

other applications, this data reduction represents a significant loss of information about pos-

sible anomalies not corresponding to the tails. For this second group, one available avenue
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is to relax the assumption of independence between the angular and radial components.

Let ziℓ = 1/(1− F̂ (xiℓ)) be the rank-transformation to the standard Pareto scale. The

lower range of this transformation is bounded at 1. For data transformed in this manner,

let ri = ∥zi∥∞ be the radial component, vi = zi/ri the angular component of zi, and

yi its projection onto Sd−1
p . As no thresholding is performed we can no longer make the

assumption that angles are independent of radius. Instead, we can include the radius within

a joint model. As the radius is on the range [1,∞), we use the Pareto density, with shape

parameter αr as our choice of kernel.

(yi,wi, ri) ∼
∫
α

PGp(yi | αy,1) CDM(wi | αw) P(ri | αr) dG(α) (21)

As αr > 0, we augment the kernel parameters to α = (αy,αw, αr), and use a joint log-

normal as the center of the random measure prior for G. The scores developed previously

in Section 4.3 remain applicable.

5 Results

As mentioned in 3, our goal is to produce novelty scores to rank observations accord-

ing to how likely they are of being anomalous. This creates another problem: threshold

selection—anomaly scores beyond what level are determined anomalous? We mentioned

Clifton et al. (2011) and Gu et al. (2021) as examples of computing thresholds theoretically,

but in general, thresholds are determined heuristically, using performance criteria. In some

applications, heuristic determination can be extremely costly.

One such criteria is the receiver operating characteristics, or ROC, curve. For a given

score threshold, one can compute the true positive rate, or TPR, as the number of anoma-

lous observations with scores above the threshold, divided by the total number of anomalous

observations. The false positive rate, or FPR, is similarly the number of non-anomalous

observations above the threshold, divided by the total number of non-anomalous observa-
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tions. The ROC curve is formed as the TPR is plotted on the vertical axis against the

FPR on the horizontal axis for a range of possible thresholds. The curve is non-decreasing,

starting at the origin (0, 0), and ending at unity (1, 1). Threshold selection might include

specifying an acceptable FPR, and determining the threshold that produces that FPR.

In assessing model performance, we sideline the issue of threshold selection by observing

the whole ROC curve. Specifically, we look for the area under the ROC curve, (AuROC).

The better a classifier is, the closer its ROC curve will approach the upper left corner, and

the closer its AuROC will approach 1.

In developing our model, we employ the blocked Gibbs sampler for stick-breaking priors

detailed in Ishwaran and James (2001b). We set a discount factor of 0.1, and a concentration

parameter of 1.0. In our testing, in the neighborhood around these values we found the

resultant number of extant clusters to be relatively stable. We use (µ0 = 0d,Σµ = Id)

as prior parameters for µ, and (ν = d + 50,Ψ = νId) as prior parameters for Σ, except

for the categorical components of the shape vector as described in Section 4. Deviations

in µ0 towards the negative direction bias the model towards asymptotic independence,

which in our testing resulted in lower model fidelity. To update the cluster shape vectors,

we employ a joint proposal step in log-space using a multivariate normal proposal, where

the proposal covariance is informed with an adaptive Metropolis algorithm.(Haario et al.,

2001). To hasten updates to the shape parameters, and speed convergence of the model,

we employ a parallel tempering algorithm where parallel MCMC chains are sampled at an

ascending temperature ladder, where density is exponentiated to the reciprocal of the chain

temperature t: ft(θ) = f(θ)1/t. Chains with higher temperatures have flatter posteriors,

and thus more readily move around the parameter space. Chain states are randomly

exchanged via a Metropolis step with probability p1,2 = exp
{
(t−1

2 − t−1
1 )(L2 − L1)

}
, where

L refers to the energy, or log-density of the chain at its current state. The sample history

of the cold chain, where t := 1, is preserved as draws from the posterior distribution.
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Table 1: Characteristics of datasets used in the analysis. For a given model, N and A refer

to the number of observations and anomalies in the fitting set, respectively. M identifies

the number of categorical variables, with dv and dw identifying the total number of real

and categorical columns respectively. t is the time (in hours) to fit the model. Discrepancy

in d between peaks–over–threshold and rank–transformation reflects differences in data

transformation, as well as the additional column for the radial component in the rank–

transformed model.

Raw Peaks over Threshold Rank/Cat Rank-Transform Categorical

name N A q N A dv M dw d t N A dv M dw d t M d t

annthyroid 3600 270 0.85 715 150 6 16 32 38 7.45 1200 105 6 16 31 38 4.88

cardio 1831 176 0.85 715 152 15 10 21 36 9.17 1831 176 19 3 7 27 5.34

cover 19070 194 0.98 5504 194 9 4 9 18 5.35 1907 20 9 4 9 19 4.31 10 30 5.02

mammography 11183 260 0.95 2390 227 5 5 11 16 5.59 1864 42 6 3 5 12 3.87

pima 768 268 0.90 205 106 7 6 12 19 1.10 768 268 8 5 10 19 1.99 8 28 1.93

solarflare 1389 12 10 32 3.87

yeast 1484 90 0.90 343 35 6 5 11 17 1.64 1484 90 6 2 5 12 3.09 8 23 2.79

For each example dataset, the sampler was ran for 50, 000 iterations, discarding the first

40,000 as burn-in. The resulting chain was thinned, keeping only every 10th iteration. For

evaluating density under the posterior predictive distribution, we generate 10 replicates

from each iteration kept.

We compared our four proposed scores against three canonical novelty detection algo-

rithms, including isolation forest (iso) Liu et al. (2008), local outlier factor (lof) Breunig

et al. (2000), and one-class SVM (svm) Chang and Lin (2011). Each dataset was subject to

5-fold cross-validation, and out-of-sample performance scores were averaged to produce the

resulting performance tables seen in this section. This additional step of cross–validation

turned out to be unnecessary for our model, as out–of–sample performance did not markedly

differ from in–sample or full–sample performance for the tested datasets. Table 1 provides

a summary description of the datasets used in the analysis. For larger datasets, we subset-
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ted the raw data to reduce computation time for the rank–transformation and categorical

applications. Note that the categorical versions of cover, pima, and yeast are created from

discretizing the rank–transformation subsets. First, we present score efficacy on our purely

categorical data model, then mixed scoring with thresholding on continuous variables. Fi-

nally we present mixed scoring on rank-transformation data.

5.1 Categorical anomalies

The categorical transformation of cover, pima, and yeast discretized the real-valued and

ordinal variables in those datasets. For cover in particular, it seems this transformation

lost a significant amount of data. From Table 1, it seems a large portion of data regarding

anomalies is contained within the radial component, so a categorical transformation loses

that information. Likely for this reason, none of the methods offer exceptional performance

on this dataset. The dataset solarflare was also unique in our analysis, being the only truly

Table 2: Area under the ROC curve for various anomaly detection schemes, on strictly

categorical datasets. Reported here is arithmetic mean of out-of-sample performance for

5-fold cross-validation. Values closer to 1 are preferred.

dataset iso lof svm hknn hkde lhkde lskde

cover 0.384 0.515 0.424 0.586 0.523 0.558 0.450

pima 0.620 0.570 0.614 0.457 0.579 0.659 0.694

solarflare 0.893 0.402 0.887 0.435 0.632 0.768 0.875

yeast 0.620 0.580 0.622 0.406 0.708 0.650 0.702

categorical dataset used. Our algorithm lskde very slightly trailed the performance of one-

class SVM, the best performing algorithm on this dataset. On both pima and yeast, latent-

simplex KDE performed significantly better than any of the canonical methods. On this
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analysis, hkde and hknn both performed poorly. It seems the projection of the categorical

probability vectors into a unified sphere induces some loss of information.

5.2 Peaks-over-Threshold anomalies

We subjected six datasets to multivariate thresholding, only keeping observations that ex-

ceeded the threshold in at least one dimension. Table 1 indicates what quantile was used

for the threshold, as well as the number of anomalies in excess of the threshold. For cover,

we further sub-sampled the excesses to produce a more manageable sized dataset. For vari-

ables that did not exhibit properties that would allow for a peak-over-threshold model to

apply, these variables were instead converted to discrete values with two or three categories.

We built the mixed data model, and evaluated performance of the mixed scores, compared

against the canonical methods. Of particular interest here is the annthyroid dataset, for

which all of our scores performed comparably, and significantly better than the canonical

scores. Of the other tested datasets, on cardio, lmkde approached the performance of iso-

lation forest and one-class SVM, but all other methods performed worse. For the datasets

cover and mammography, hknn, lhkde, and lmkde performed comparably, and each signifi-

cantly better than any of the canonical methods. We see that lmkde, being the inheritor of

the latent simplex KDE score, performs reasonably well reliably among datasets thus far

in the peaks-over-threshold setting, but is outperformed by other metrics on each dataset.

We may see some effect of the loss of information relating to the dependence structure

between w and v on the derived performance. On that note, lhkde performed comparably

to lmkde on annthyroid, cover, pima, and yeast, but slightly exceeded its performance on

mammography. We saw in the categorical datasets, lskde performed generally well, so the

projection onto a unified sphere may induce loss of information. In that regard, it may be

the case that preserving information about the dependence structure between v and w had

a greater effect than a greater effect than preserving information within w specifically.
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Table 3: Area under the ROC curve for various anomaly detection schemes, on mixed data

where the real component has undergone the threshold standard Pareto transformation.

Reported here is arithmetic mean of out-of-sample performance for 5-fold cross-validation.

Values closer to 1 are preferred.

dataset iso lof svm hknn hkde lhkde lmkde

annthyroid 0.458 0.512 0.640 0.691 0.692 0.698 0.689

cardio 0.849 0.610 0.836 0.590 0.812 0.804 0.823

cover 0.606 0.512 0.684 0.832 0.698 0.719 0.714

mammography 0.594 0.616 0.725 0.675 0.750 0.757 0.725

pima 0.530 0.565 0.511 0.525 0.525 0.524 0.522

yeast 0.427 0.579 0.560 0.639 0.522 0.540 0.542

As to the poor performance of every method on pima and yeast, these reported AuROC

values are conditional on the data exceeding the multivariate threshold used in building the

model. As we see in Table 1, these datasets do not meet the assumption that anomalies are

concentrated in the tails. Scores depending on ri, the radius component of zi, or magnitude

of the extremal observation, are going to perform poorly relative to metrics that do not

make that assumption.

5.3 Rank Transformation anomalies

We subjected the same six datasets used in the peak-over-threshold model to rank trans-

formation on the real and ordinal variables. We then built the mixed model including

radius described in Section 4.4 on the transformed datasets. Large datasets used in rank-

transformation and categorical models were sub-sampled to reduce computation time. Note

that rank transformation preserves the entire dataset, so we should not consider the values
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in Table 4 to be comparable to the values in Table 3.

Table 4: Area under the ROC curve for various anomaly detection schemes, on mixed

data where the real component has undergone the rank standard Pareto transformation.

Reported here is arithmetic mean of out-of-sample performance for 5-fold cross-validation.

Values closer to 1 are preferred.

dataset iso lof svm hknn hkde lhkde lmkde

annthyroid 0.519 0.561 0.796 0.714 0.817 0.823 0.822

cardio 0.887 0.588 0.634 0.648 0.847 0.848 0.883

cover 0.898 0.680 0.931 0.833 0.960 0.960 0.960

mammography 0.896 0.806 0.940 0.700 0.928 0.930 0.845

pima 0.679 0.653 0.712 0.654 0.712 0.707 0.714

yeast 0.675 0.527 0.632 0.566 0.601 0.593 0.599

Here lmkde performs better than each of the canonical methods in four of six datasets,

performing slightly worse than one-class SVM on mammography, and significantly worse

than isolation forest on yeast. As we have stated before, yeast and pima are datasets that

do not quite meet our assumptions as to how anomalies are distributed, but our methods

still make a strong showing on pima.

6 Conclusion

In this paper, we have proposed a method of scoring observations as anomalous based on

their posterior-predictive angular density, using the result from multivariate extreme value

theory that—assuming the existence of a limiting behavior—given observations are in excess

of a high threshold, after transformation their angular distribution on Sd−1
∞ is independent

of the radial distribution on R+. In the anomaly detection setting, this independence
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allows us to separate anomaly scores into an angular and radial component, and treat

them separately. To define an angular anomaly score, a Bayesian non-parametric model is

developed on the angular data projected onto Sd−1
p , and as a true density on Sd−1

∞ is not

available, anomaly scores are obtained using a non-parametric estimator to that angular

density built on a sample from the posterior predictive distribution of the fitted model. The

non-parametric estimators we used were k-nearest neighbors, and kernel density estimation.

We then expanded the model to handle categorical data, recognizing that in the real

world data does not always fit our assumption of the existence of a limiting behavior. We

did this by developing a Bayesian non-parametric categorical data model that provides a

general approach for the exploration of the distribution of multivariate data. This was

then tied in with the previously defined angular model, providing an approach to mixed

data modelling. We explored various methods of defining an anomaly score based on the

categorical data, analogous to the scores considered for the angular data making use of of

latent class probability vectors. We applied the categorical scores to four datasets, three of

which were transformed to be categorical from mixed data. In this analysis, we observed

that lskde performed reliably well.

In addition, the analysis of six datasets performed with the mixed model indicated that

lmkde performed reliably well, better than canonical methods most of the time, but was

itself outperformed in some cases by other methods that project the latent probability

vector along with the angular vector into a unified space. Finally, As the data thresholding

process may not always be applicable, we applied the mixed model to data with its angular

component transformed via the standard Pareto rank ordering transformation. In this

setting, we observed that the latent models—lmkde and lskde—performed reliably well, as

well or better than canonical methods in five of six tested cases.

In this paper, we have presented a highly flexible model–based method for anomaly

detection that scales to moderately large dimensions and sample sizes. However, as seen in
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Table 1, even for the dimensions and sample sizes presented, model fitting can take several

hours. Scaling this model beyond some thousands of observations or tens of columns will

require a paradigm shift in how the model is fit. For this reason, we are investigating faster

means of model fitting, including a variational approach.
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