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Abstract

Habitat connectivity is essential to maintain viable and healthy populations due
to increased genetic flow, enhanced functional habitat, and repopulation potential
[1–4]. Conserving, enhancing, and restoring habitat connectivity has been identi-
fied as a priority to achieve global targets of halting extinctions and safeguarding
30% of our planet [5]. Computational constraints of existing connectivity models
have restricted these analyses to coarse scales and to a few charismatic species
and/or landscapes [6–8].
We introduce EcoScape, an efficient algorithm for computing the pixel-level
functional connectivity of species habitats. Informed by metapopulation theory,
Ecoscape computes the connectivity of each habitat pixel as the probability that
the pixel can be repopulated via propagation from other habitat locations, tak-
ing into account the species’ ecological preferences and dispersal abilities [9].
We provide a methodology based on open science data for applying EcoScape
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to any bird species. We show that for two forest/woodland bird species in Cal-
ifornia, EcoScape habitat connectivity values are highly correlated with relative
abundances reported in eBird [10]. EcoScape leverages Graphic Processing Units
(GPUs), and is hundreds of times faster than existing connectivity models. This
opens the way to mapping habitat connectivity at large scale and fine resolutions
for multiple species, offering guidance for current and future conservation efforts.

1 Main

Habitat connectivity is essential for the long-term viability of animal and plant popu-
lations because it enhances species movement in the landscape, increasing the amount
of functional habitat, and ultimately maintaining genetic diversity [11–14]. Conserving
and enhancing habitat connectivity has become increasingly important to allow shift-
ing distributions and species adaptation under future climatic scenarios [15–17] and
has thus been prioritized in global frameworks such as the Convention on Biological
Diversity (CBD) [18].

Conservation planning benefits from spatially-explicit models of habitat connectiv-
ity to inform decisions and evaluate outcomes [19]. To reach the CBD goal of protecting
30% of the planet to effectively safeguard biodiversity, we need to prioritize areas that
protect and enhance landscape connectivity for as many species as possible, while
considering future climatic scenarios [15, 16]. However, current efforts to map habitat
connectivity in current and future scenarios have focused on a few charismatic species
(e.g. large mammals) [20], limited spatial scales (e.g. specific landscapes) [21], or only
within protected areas [22].

Computational constraints have limited the scope and scale at which habitat con-
nectivity models are applied. Currently, widely used connectivity models are based on
electrical circuit theory [6, 23–26] and graph theory [7, 8]. These models are limited
in the scale and magnitude of data they can compute, and the speed at which they
can compute it [27, 28]; see recent advances using the Julia language [25, 28].

To make connectivity modeling a truly useful mechanism for informing conserva-
tion decisions, faster connectivity models are needed to allow modeling for large regions
and suites of species. As a step in this direction, we present EcoScape, an algorithm
for computing connectivity that is order of magnitudes faster than prior approaches.
EcoScape implements a propagation-based approach that is rooted in metapopulation
theory [29] and can be implemented very efficiently using Graphical Processing Units
(GPUs). In metapopulation theory, a species’ population is viewed as consisting of
individual subpopulations, each inhabiting a habitat patch. The local subpopulations
are unstable, and can locally become extinct; thus the long-term survival of the species
depends on the ability of the patches to be repopulated via dispersal from other source
patches [30, 31].

EcoScape computes the connectivity of each individual habitat pixel as the prob-
ability that the pixel can be repopulated from other habitat pixels. To estimate this
probability, EcoScape repeatedly simulates the species’ propagation from randomly-
chosen habitat locations, or seeds. The simulations take into account species-specific
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information, such as the dispersal distance of the species, its affinity for particular
landcovers, and its gap-crossing ability over unfavorable landcover. The sum of the
connectivity for all pixels within a species habitat yields the functionally connected
habitat (FCH).

We validate EcoScape’s approach on two California forest/woodland birds: Acorn
Woodpecker (Melanerpes formicivorus) and Steller’s Jay (Cyanocitta stelleri). These
species are easily detected and frequently observed non-migratory species that have
close association with forest/woodland, allowing for precise area-of-habitat estimation
[32]. We show that for these species, the connectivity computed by EcoScape is highly
correlated with relative abundance estimates derived from eBird records [10]. To the
best of our knowledge, this represents the first time a connectivity model has been
validated via fine-grained observations over an extended region.

EcoScape is hundreds of times faster than prior connectivity models [8, 25, 26, 28].
The efficiency of EcoScape is due to two factors. The propagation model has been
crafted to take full advantage of the high parallelism provided by modern graphic pro-
cessing units (GPUs) and machine-learning frameworks. Further, algorithms inspired
by circuit theory need to consider both current sources and sinks. Propagation mod-
els only require sources, allowing for faster and highly parallel computation as they
do not need to iterate through all sinks.

Finally, we provide a workflow that draws on the power of open biodiversity data
from global and citizen-science platforms such as the International Union for the Con-
servation of Nature (IUCN) [33], eBird [10], and AVONET [34] to enable the study
of all bird species. This eliminates one of the chief bottlenecks to the study of habi-
tat connectivity, namely, the fact that the extensive input required for each species is
generally not available [28].

Via efficient algorithms, and data workflows that can be applied to any bird species,
we aim to bring continental-scale connectivity analysis within reach: the study of
habitat connectivity at fine spatial resolutions, over continental extents, and for a large
suite of species.

2 EcoScape: Habitat Connectivity as Habitat
Repopulation

EcoScape computes the connectivity of habitat pixels as the probability that the pixels
can be repopulated via propagation from other habitat pixels.

The input to EcoScape consists of two spatial raster layers: a habitat layer h and
a landscape matrix permeability layer p. A habitat pixel hij at coordinates i, j can
have value 0 (non-habitat) or 1 (habitat). A permeability pixel pij has values in the
interval [0, 1]: 0 indicates no possibility of species propagation, and 1 full possibility of
propagation. Thus, permeability is inversely related to the standard matrix resistance
used in most existing connectivity methods [6, 24]. We assume that the permeability
in the habitat is p = 1.

The model also takes as input the dispersal distance d and the gap-crossing distance
g of the species. A gap-crossing distance of g indicates that birds can fly over up to
g−1 pixels regardless of landcover class. The dispersal distance d indicates how far the
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species can propagate from seeds. Both distances are expressed in pixels; we assume
that d is a multiple of g, or d = ng. A good rule of thumb is to choose a pixel size that
is only somewhat smaller than the gap-crossing g; in the study, we used 300m pixels
and g = 2.

EcoScape outputs two raster layers: a connectivity raster c, where cij ∈ [0, 1]
represents the probability that a habitat pixel ij can be repopulated, and a flow raster
f , where fij represents the amount of habitat repopulation that happened due to
propagation through pixel ij.

To compute connectivity, EcoScape repeatedly simulates how the species can
repopulate its habitat by propagating from randomly-chosen seed locations. In each
simulation, a habitat pixel is chosen as a seed randomly and independently with prob-
ability 1/d2, so that there is on average one seed for every d2-sized habitat region.
EcoScape initializes a repopulation raster layer r, setting it to 1 at seed pixels and
to 0 everywhere else. EcoScape then simulates n rounds of propagation (so d = ng),
updating in each round the repopulation rij of pixel ij via:

rij := max

{
rij , pij · max

kl∈Ng(ij)

(
Xkl · rkl

)}
, (1)

where pij ∈ [0, 1] is the landscape matrix permeability of pixel ij, Ng(ij) is a g-sized
neighborhood of ij, and Xkl ∈ [0.9, 1] is a random number chosen independently for
each kl. The neighborhood Ng(ij) consists of the pixels that are within gap-crossing
distance g from ij; thus, in each round the birds can propagate up to g pixels. To
obtain an efficient implementation, we let Ng(ij) be the square centered around ij
and with edge 2g + 1, that is, Ng(ij) = {kl | i − g ≤ k ≤ i + g, j − g ≤ l ≤ j + g}.
The random factor Xkl models the probability that the population at pixel kl will
propagate in the round. The random factor acts as a tie-breaker for the max operator.
Further, the randomness at each simulation step ensures that multiple propagation
paths are chosen, to avoid highlighting a single least-cost path [6, 14, 35].

The propagation (1) is loosely inspired by diffusion processes [9] and allows efficient
implementation on GPUs via a max-convolution computation in the machine-learning
framework PyTorch [36].

The connectivity layer c is obtained by computing the average r̄ of r over many
simulations and by clipping the result to the habitat via c = hr̄ (i.e., cij = hij r̄ij at
every pixel ij). Thus, cij = 0 if hij = 0, and 0 ≤ cij ≤ 1 if hij = 1. The total area
of habitat is H = a

∑
ij hij , where a is the area of a pixel. We define the function-

ally connected habitat (FCH) as FCH = a
∑

ij cij : in this sum, every habitat pixel
contributes an amount proportional to its area, and to the probability with which it
can be repopulated. The ratio FCH /H expresses FCH as a percentage of the area of
habitat that is functionally connected.

The flow layer is computed via

fij = pij
∂FCH

∂pij
. (2)

The flow fij through pixel ij represents the amount of repopulation due to propagation
through ij, as shown in the methods. Unlike connectivity, the flow can be non-zero
outside of the habitat. The flow value at pixels outside the habitat yields information
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(A) Habitat and landscape
matrix

(B) Connectivity layer (C) Flow layer
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Fig. 1: EcoScape connectivity computation on an artificial 40×60-pixel habitat and
landscape matrix. (A): habitat patches (in light green) are connected by high per-
meability matrix pixels (in dark green). (B): Connectivity layer. Larger patches have
higher connectivity; for equal-sized patches, connected patches have greater connec-
tivity than isolated ones. (C): Flow layer. Multiple paths connect habitat patches
according to the landscape matrix permeability.

on the role of landscape matrix pixels in maintaining connectivity. The flow can be
computed via back-propagation in PyTorch, considering FCH as the output, and p as
a layer of model parameters.

The efficiency of EcoScape depends on two factors. First, propagation (1) and flow
computation (2) can be implemented on modern machine-learning frameworks, and
take advantage of the large parallelism offered by GPU computation. Second, we argue
that propagation models for connectivity are inherently more efficient than circuit-
based ones. For example, to compute the connectivity of a pixel, Omniscape must
designate the pixel as a sink, select current sources, and solve the circuit equations to
compute the current into the pixel [26]; the process must be repeated for each pixel.
Propagation and diffusion, in contrast, can use just sources to compute repopulation
simultaneously at all pixels.

The EcoScape computation of connectivity and flow is illustrated on an artificial
landscape in Figure 1. We have implemented the algorithms in the Python package
[37];where we also provide sample Python notebooks that demonstrate how to produce
connectivity and flow layers for example species.

Functionally Connected Habitat and Equivalent Connected Area.

The functionally connected habitat (FCH) computed by EcoScape is closely related
to the widely used Equivalent Connected Area (ECA) [38]. Consider habitat patches
H1, . . . ,Hn, where patch Hk has area Ak, 1 ≤ k ≤ n, and assume as a simplification
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Fig. 2: Connectivity (A, B) and flow (C) layers for the Acorn Woodpecker (Melanerpes
formicivorus) in California using a 600m gap-crossing distance and 12 km dispersal
distance calculated using EcoScape. Panel A shows the bounding box expanded in
panels B and C

that the probability with which a bird can propagate from a patch Hk to patch Hl is
equal to Pkl, and is independent on the precise source and destination locations in the
patches. A seed occurs in patch Hk with probability proportional to Ak, and such seed
can repopulate the area Al of Hl with probability Pkl. Thus, the contribution of seeds
in Hk for the repopulation of Hl is AlAkPlk, and the total connectivity is proportional
to

∑
kl AkAlPkl, which is the ECA. Thus, the functionally connected habitat (FCH)

computed by EcoScape is consistent with established ideas in landscape connectivity
and metapopulation theory.

3 Results

We used EcoScape to compute the connectivity and flow layers for two non-
migratory bird species: Acorn Woodpecker (Melanerpes formicivorus) and Steller’s
Jay (Cyanocitta stelleri). The species were selected for their association with for-
est/woodland, and ease of detection, facilitating the validation with citizen-science
data. We studied these species in California at a resolution of 300m pixels. We obtained
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the habitat layer by refining eBird range maps [39] based on habitat preference data
from IUCN [40, 41] to produce an Area of Habitat map [32]. We produced the landscape
matrix permeability layer using a global habitat class map [40], species habitat prefer-
ences from IUCN, and habitat use frequency from eBird observations [10] (see Methods
for details). We used 600m (2 pixels) as the gap-crossing distance for both species.
The dispersal distances were derived from the species’ Hand-Wing Index (HWI) [34],
which is a good proxy for dispersal [42]. We used 12 km for Acorn Woodpecker and
1.8 km for Steller’s Jay. The layers and parameters used for these two example species
were obtained from open data sources in a fully automated approach, which can be
extended to more species (see Methods).

Figure 2 depicts the connectivity (A, B) and flow (C) layers for the Acorn Wood-
pecker. Habitat patches that are larger, and closer to other large patches, have higher
connectivity values, as expected; while small, isolated patches have connectivity val-
ues closer to zero. The flow layer shows the importance of habitat and non-habitat
pixels to the connectivity of the Acorn Woodpecker and is useful to identify existing
stepping stones and corridors that can be prioritized for conservation. In the area of
study, EcoScape estimated the FCH as 50,558 km2 (76% of the habitat) for the Acorn
Woodpecker, and 68,915 km2 (89% of the habitat) for the Steller’s Jay.

Precision.

EcoScape computes the connectivity and flow layers as the average of multiple sim-
ulations. We computed the standard deviation of the connectivity at every pixel. In
our study conditions, averaging 400 simulations resulted in fewer than 1% of pixels
having standard deviation greater than 0.02, or 2% of the overall connectivity value
range [0, 1]; no pixel had standard deviation greater than 0.05.

Correlation with eBird data.

We validated the connectivity layers computed by EcoScape (N=10,000 simulations)
by comparing them with relative abundance of birds, measured as the frequency of
observation for a species, derived from the citizen-science platform eBird [10]. eBird is
a citizen-science platform in which birdwatchers log sightings in checklists with obser-
vation events consisting of: date, geographical location, distance traveled, and count
for each species observed, among other data. We only considered complete eBird check-
lists with a maximum traveling distance of 2 km, during the breeding season (April
to June), from 2012 to 2018 to match the 2015 landcover used [40] and to exclude
the influence of the 2020 California wildfires (N=185,996 checklists). We grouped the
checklists using a ≈1 km grid, and computed the average number of individuals of the
species reported per checklist at each grid location within the study area (Acorn Wood-
pecker: N=6,818 grid locations; Steller’s Jay: N=5,806). This provides an observation
frequency at each of the above grid locations. We then subdivided the connectiv-
ity values [0, 1] into 10 intervals [0, 0.1), [0.1, 0.2), . . . , [0.9, 1], and we computed the
average observation frequency of the locations falling in each connectivity interval.
Finally, we measured the coefficient of determination R2 between the average obser-
vation frequencies in the 10 intervals, and the 10 interval endpoints, using as weights
the number of locations falling in each connectivity interval. The results indicate that
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Fig. 3: Average number of individuals reported per checklist within the species habitat
as a function of habitat connectivity at the checklist location. The area of a circle is
proportional to the number of habitat grid locations with checklists that fall within the
connectivity interval (total grid locations: Acorn Woodpecker: N=6,818; Steller’s Jay:
N=5,806). The connectivity was computed with EcoScape using gap-crossing distance
g = 600m, and dispersal distance of 12 km for Acorn Woodpecker and 1.8 km for
Steller’s Jay.

average relative bird abundances are strongly correlated with connectivity, with a coef-
ficient of determination R2 of 0.95 for Acorn Woodpecker and 0.90 for Steller’s Jay.
The relationship between sightings and connectivity for the two species is illustrated
in Figure 3; the data backing the figure is provided in the supplementary material. In
the supplementary material, we provide measurements of R2 for many values of the
gap-crossing distance g and number of crossings n. Intriguingly, the results show that
R2 remains high for d = ng equal to or below the dispersal distance predicted by the
Hand-Wing Index, and then declines, suggesting that longer distances do not explain
bird sightings.

Comparison with Omniscape and Patch Area.

Omniscape [26] is the habitat connectivity tool whose output can be most directly
compared to that of EcoScape. Omniscape uses a notion of analysis radius which is
equivalent to EcoScape’s dispersal distance, and computes connectivity as the amount
of current that can flow to a pixel from habitat locations within analysis radius from
the pixel. We have run Omniscape on the study area, using conductance values pro-
portional to our landscape matrix permeability (see the Methods, Section 5.5.2). The
results (Table 1) indicate that Omniscape’s and EcoScape’s outputs are both highly
correlated with eBird records; EcoScape is faster by a factor of about 100. We view
the fact that EcoScape’s results roughly match those of a widely-used tool such as
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EcoScape Omniscape Patch Area
Species R2 Time R2 Time R2 Time N

Acorn Woodpecker 0.95 16s 0.79 1866s 0.40 21s 6,818
Steller’s Jay 0.90 5s 0.97 772s 0.16 30s 5,806

Table 1: Time required to run EcoScape (400 simulations),
Omniscape, and patch-area computation, along with the coefficient
of determination R2 between output (connectivity, current, and
log patch area, respectively) and average sightings per checklist
reported in eBird, and number N of grid locations using in the
estimation of R2. The computation used Google Colab [43] with
A100 GPU (EcoScape and patch area) and an Intel i7 2.3GHz CPU
(Omniscape). In the case of patch size, the time reported is an
upper bound.

Omniscape [44] as additional validation of the proposed method. We note that the
parameters used by both tools can be fine-tuned, and the correlation values vary with
the precise values of landscape matrix permeability and conductance.

To test if our connectivity approach is more informative than merely considering
habitat patch size, we implemented a fast GPU-based algorithm for the computation
of patch sizes. Due to the very large range of patch sizes (from 0.1 km2 to over 10,000
km2), we use the log patch size as the model output. The results (Table 1) indicate
that while patch size can be computed efficiently, the correlation with eBird records is
weaker (full data backing this analysis can be found in the supplementary material).

Relation with other connectivity models.

The potential of diffusion to represent animal movement has been explored in [9, 45],
where the results are validated on a species of butterflies at a landscape scale.

Several habitat connectivity models relying on circuit and graph-theory are com-
putationally intensive, when compared to EcoScape. Efforts to speed them up have
included coding in the Julia language [25, 28], and stand-alone packages such as Gflow
[46] and ConScape [28]. The fastest current approach is ConScape [28], which can pro-
cess a 10,000 pixel territory in 72 seconds; EcoScape can process the same extent in
0.02 seconds, or over 1,000 times faster.

The outputs of EcoScape represent two layers that usually require running two
different pieces of software. Furthermore, EcoScape’s Functionally Connected Habitat
is calculated much faster and at higher resolution than the related Equivalent Con-
nected Area produced by graph-theory algorithms such as CONEFOR [8]. The flow
layer produced by EcoScape is akin to least cost path corridors identified by software
such as LinkageMapper [47] and Omniscape [26], but it is produced during the same
run as the connectivity layer.
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4 Discussion

EcoScape is a novel, propagation-based, pixel-level, and species-specific algorithm to
map functional habitat connectivity and flow at fine resolutions and continental scales.

Conserving, enhancing, and increasing habitat connectivity has been identified as
an important mechanism to combat habitat loss, fragmentation, and climate change
impacts [16, 48]. To achieve global targets of increased connectivity at landscape
scales, we must produce spatially-explicit models that highlight areas of high value
for conserving and restoring connectivity for multiple species [49, 50]. Current efforts
to address this challenge have fallen short because they only account for a few
charismatic and well-studied species (e.g. pumas [51], jaguars [52]), or are limited to
recommendations only within protected areas [22].

EcoScape contributes to this task by significantly speeding up the computation
of functional habitat connectivity, making it practical to map hundreds of species at
once. The speed of EcoScape also facilitates large-scale scenario exploration for con-
nectivity, e.g., with respect to future climate conditions [17] by replacing the habitat
and landcover layers with projected species distributions or habitat loss or gain, to
understand how current decisions will play out in the future (for example see [53]).

The workflow we developed relies on open data from IUCN, eBird, and AVONET,
and provides users Python packages for every step of the process, providing a starting
point for the study of any bird species globally. Dispersal distances, in particular, are
challenging to estimate for most species and the lack of information has limited the
application of connectivity models for lesser-known species. Though not perfect, we
propose using the Hand-Wing index [42] to estimate dispersal as an input for EcoScape
for birds. A similar idea has been explored with body mass for mammals [54], and
applied to existing connectivity models [55].

We also present the first validation of a habitat connectivity model via large-scale,
freely available citizen science data. Existing connectivity models have been tested
via simulation experiments [56], using animal tracking data [57, 58], and more rarely
with genetic data [59]. The limited availability of tracking data, which currently exists
mostly for large and charismatic fauna [60], has been an obstacle to the validation
of connectivity models for lesser-known species. In contrast, the validation framework
we introduced can be used for any bird species with sufficient eBird data [10], and
potentially for other taxa using data from iNaturalist [61] or other taxon-specific
citizen science platforms (e.g. eMammal).

As ecology and conservation enter the world of big data [27], technological chal-
lenges arise from processing and taking full advantage of the fine resolution and large
quantity of data. EcoScape addresses this challenge by providing users an efficient,
easy to use, and open way to map habitat connectivity and flow at fine resolutions
over continental scales. These advances will allow ecologists and conservation plan-
ners to fully consider a spectrum of lesser-known species and diverse scenarios in their
conservation plans.

Data accessibility statement.

All the data required for replicating the results is available at 10.5281/zenodo.8395864.
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Code availability statement.

The process for reproducing the results, and all the required code, are available on
github.com/ecoscape-earth/ecoscape-connectivity-paper-reproduction and archived at
10.5281/zenodo.8395874.

All code is open source. To promote usage and experimentation, the code is orga-
nized into modules that can be installed via the standard Python package manager
pip. The package ecoscape-connectivity provides the EcoScape algorithm implementa-
tion, while ecoscape-layers enables the preparation of the input habitat and landscape
matrix raster layers using IUCN and eBird data. These two packages rely in turn
on the package scgt (for Santa Cruz Geographical Toolkit), which simplifies working
on geographical raster layers. The packages include links to their open-source code
repositories and documentation.
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5 Methods

The overall data and processing flow used in this paper is illustrated in Figure 4. First,
we prepare the inputs used by the EcoScape algorithm, namely, the spatial layers
encoding the habitat and landscape matrix permeability. Next, we run the EcoScape
algorithm on these data, using as parameters a given gap-crossing and dispersal dis-
tance. Lastly, we analyze the connectivity layer produced by EcoScape, correlating it
with bird observations from the eBird citizen-science platform [10, 62], yielding the
validation for our proposed connectivity approach. Everything needed to reproduce
the results of this paper is provided in an open GitHub repository [63], accompanied
by detailed step-by-step instructions. The portions of code of general interest, such as
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Fig. 4: Flow chart of methods for running the functional habitat connectivity model
EcoScape, illustrating specific steps taken in the present analysis. The central square
shows model inputs including spatial layers as blue rectangles and numerical inputs as
green rectangles; yellow circles show user-provided inputs and our suggested sources;
gray hexagon show sister Python package ecoscape layers which is provided to
calculate the spatial model input layers; purple rectangles depict model output lay-
ers (Connectivity and Flow). Bottom right rectangle shows the validation of the
connectivity model used based on eBird data.

the EcoScape algorithm and the input layer preparation, have been published in open-
source Python packages that can be installed via the standard pip Python package
installer [37, 64]. In [63], we also provide sample Python notebooks that allow anyone
to experiment with the input layer generation and algorithms on Google Colab [21],
without requiring any installation.

We first describe technical aspects of the EcoScape algorithm and its implementa-
tion that expand on what is found in the main body of the paper. Then, we describe
the preparation of the inputs: habitat and landscape matrix permeability layers, and
gap-crossing and dispersal distance. Last, we describe the detailed techniques we used
for the statistical validation of the connectivity layer using citizen-science data from
eBird [10].

5.1 The EcoScape Algorithm And Its Implementation

EcoScape inputs.

The EcoScape algorithm takes three inputs:
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• A boolean (binary) habitat layer h, so that for a pixel ij, hij = 1 if the pixel is in
the habitat, and hij = 0 if it is outside.

• A landscape matrix permeability layer p, with 0 ≤ pij ≤ 1: we assume pij = 1 in the
habitat, and pij = 0 for landcovers with high resistance for the species; intermediate
values correspond to suitable but not ideal landcover for the species.

• A gap-crossing distance g, expressed in number of pixels, and a number of gaps n,
so that the dispersal distance d is d = n · g.

In practice, in our implementation, we do not provide p directly. Rather, we provide a
landcover layer t, where tij is an integer, describing the landcover class at pixel ij, along
with a permeability table D, giving the permeability D(t) ∈ [0, 1] for every landcover
class t. The permeability layer is then obtained as pij = D(tij). The advantage of this
approach is that, when studying multiple species on the same study area (as done in
this paper), we can use the same landcover layer; only the permeability table needs
to be modified to achieve the appropriate landscape matrix layer. Further, one can
experiment with different permeability values without having to rebuild a raster layer.

The EcoScape algorithm.

The EcoScape algorithm computes the connectivity of a habitat pixel as the proba-
bility that the pixel can be repopulated from other habitat locations via propagation
from randomly-chosen seeds. To do so, EcoScape performs a number of repopulation
simulations. At the beginning of each simulation, EcoScape initializes the repopulation
raster layer r via

rij = hij · δ(Yij < 1/d2) ,

where Yij is a random variable with value uniformly distributed in [0, 1] sampled inde-
pendently at each pixel, d is the dispersal distance, and δ is a characteristic function
so that δ(ϕ) is 1 if ϕ is true, and 0 otherwise. Thus, in each d×d square there is on
average one seed.

Once the raster layer r is initialized, EcoScape performs n iterations of the prop-
agation update (1). In the update, as mentioned, the random variable X is used to
break ties at random between source locations where c has the same value. If we did
not use such a random tie-break, the nature of the GPU implementation would favor
a fixed origin for the birds (in our experiments, the upper-left corner), leading to large
artifacts and invalidating the output. The randomness also ensures that the propaga-
tion is multi-path, rather than using exclusively the path of least resistance. We let
X assume values uniformly at random in the open interval (0.9, 1), sampled indepen-
dently at every pixel. The fact that X < 1 can be interpreted as the fact that birds at
a pixel have a small probability, at each propatation step, of choosing not to propagate
in the round.

The random tie-break can also be understood as follows. Let r(0) be the repopu-
lation layer after seed initialization, and let r(m) be the layer after the m-th iteration
of (1), so that (1) can be rewritten as

r
(m+1)
ij = max

{
r
(m)
ij , pij · max

kl∈Ng(ij)

(
Xkl · r(m)

kl

)}
. (3)
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Then, it is easy to see that the sequence r(0), r(1), r(2), . . . is monotonically increasing,

so that at each ij, r
(0)
ij ≤ r

(1)
ij ≤ r

(2)
ij ≤ · · · .

To track where the repopulation came from, we can define a source mapping S,
so that the repopulation at pixel ij came from neighboring pixel S(ij). We define
this mapping as follows. Initially, S(ij) = ⊥ at all ij, where ⊥ is a special symbol
indicating that the source is undefined (the population did not come from another

location). When we update the value at ij, that is, when r
(m)
ij < r

(m+1)
ij , there is a

unique neighbor kl ∈ Ng(ij) that provides the argmax in (3): this kl can be thought of
as the source of the increased bird population at ij, and therefore, we set S(ij) := kl.
When the value at ij is unchanged, we leave S(ij) unchanged.

The source mapping S defines a graph, with an edge from ij to kl when S(ij) = kl.
It is easy to see that this graph is a collection of trees, each tree having root in a
repopulation seed. Indeed, there can be no loops in the graph: S(ij) = kl implies

r
(m+1)
ij < r

(m)
kl at the time m + 1 of the last update of kl, and by monotonicity,

r
(n)
ij < r

(n)
kl after the last update n. Thus, the EcoScape algorithm can be understood

as a way to generate random dispersal trees rooted in the repopulation seeds. This
alternate characterization is essential to the computation of the flow layer. Finally,
the connectivity layer is obtained by clipping the repopulation to the habitat via
c = h r(n), where multiplication is pixel-wise.

The flow layer.

The flow at a pixel indicates how much of the connectivity is due to movement through

the pixel. To see this, let cij = c
(n)
ij be the connectivity, and let S be the source

mapping defined above. The locations that owe their repopulation to ij consists of ij,
its immediate descendants in the propagation trees, or the kl with S(kl) = ij, and
their descendants of any level: we call this the downstream region of ij (see Figure 5).
Precisely, the downstream region of ij is the set of pixels U(ij) that have a path in
the graph S to ij. Pixels in U(ij) were repopulated through ij.

If we change the permeability pij of ij by a small amount δ (small, so as not
to change the source mapping), the connectivity in the downstream region of ij will
change correspondingly, by δ(∂FCH /∂pij), where FCH = a

∑
ij cij . If we keep S fixed,

that is, if we fix the flow taken by the updates (3), the total habitat repopulation of
the downstream region of ij is pij(∂FCH /∂pij), or:

fij = a
∑

kl∈U(ij)

ckl = pij
∂FCH

∂pij
. (4)

This provides a way of computing the flow fij through a pixel ij using back-
propagation in a machine-learning framework.

Implementation.

The EcoScape connectivity algorithm is implemented on top of PyTorch, one of
the most widely-used and powerful machine-learning frameworks [36]. The ecoscape-
connectivity Python package provides the algorithm, and can be installed with pip.
We encode the EcoScape computation in PyTorch by having the initial repopulation
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Fig. 5: A repopulation layer r. The value rij is indicated in each pixel ij; pixel
in the habitat are depicted in green, and pixel (1, 3) is the (only) seed, with
r1,3 = 1. The source mapping S is depicted with arrows: for instance, we have
S(1, 2) = (1, 3) (pixel (1, 2) points to the sink (1, 3)) and S(2, 2) = (1, 2). Pixel
(2, 2) is highlighted with red cross-hatching, and its downstream region U(2, 2) =
{(2, 2), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)} is shown with a bold red border. We have
f2,2 = 0.87 + 0.85 + 0.83 + 0.82 = 3.37, so that the flow at (2, 2) corresponds to the
habitat repopulation that flowed through (2, 2).

layer r(0), consisting of the repopulation seeds, be the input. The landscape matrix
permeability p is a model parameter. The PyTorch model computes n multiplication
by a random layer followed by max-pool operations, and finally a multiplication by
p, corresponding to the updates (3). The output is the connectivity layer c = h s(n).
As p is a model parameter in PyTorch, we can let FCH = a

∑
ij cij and compute

∂FCH /∂pij via back-propagation; the flow layer is obtained via a multiplication by
pij , according to (4).

When the input layers are sufficiently small, they can be fed at once to the GPU;
otherwise, they can be fed in separate tiles.

When interested in both connectivity and flow layers, we divided our 3716×5377
study area in 2048×2048 tiles, each with a border of 256 pixels around it (some
tiles were smaller, at the extremes of the area). We fed these tiles, of overall size
(2048+2 ·256)× (2048+2 ·256) pixels, to an A100 NVidia GPU. The GPU processed
these tiles, and we used the output results only from the core part, excluding the
border. The purpose of the border was to provide context for the processing of the
core: in particular, seeds in the border region can cause repopulation in the core.
Thus, it is necessary for the border region to be larger than the dispersal distance:
this was easily true in our setting, as the longest dispersal distance we considered was
of 2 · 20 = 40 pixels.

When only the connectivity layer is desired, the PyTorch implementation can be
run in forward -mode, without storing the information required for back-propagation.
This speeds the computation and reduces the memory requirements. In this case, our
study area of 3716×5377 pixels could be sent at once to an NVidia A100 GPU.
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Connectivity and flow layers are obtained as the average of many simulations. As
the values produced by each simulation are statistically independent, the standard
deviation of the result decreases with the square root of the number of simulations.

While connectivity is bounded to the [0, 1] interval, the flow through a pixel is
not bounded (see Figure 5), and can assume large values if the pixel is helpful in
repopulating a large territory. To accommodate for the value range, the tool outputs
20 log10(1 + fij) rather than fij at each pixel ij, and such logarithmic scale has also
been used in our figures.

Limitations.

A limitation of the current algorithm consists in the use of a neighborhood Ng(ij) that
is square in shape: kl ∈ Ng(ij) if |k− i| ≤ g and |l−j| < g, where g is the gap-crossing
distance in pixels. We chose to use square neighborhoods for the sake of efficiency, as
they matched well the max-pool operators available in PyTorch. For larger values of
the gap-distance g, a round neighborhood may be preferable. We experimented with
variants, but for the small values of g considered in this paper more complex algorithms
did not lead to superior results, at least as measured by the fit with citizen-scientist
species observations.

5.2 eBird Data

The preparation of layers and the validation we present relied on bird records from the
citizen-science database eBird [10] downloaded January 2023 [62]. eBird data consists
of a collection of checklists. Each checklist is compiled by a birder visiting a location,
and counting how many birds of each species they were able to identify. Among other
data, a checklist contains:

• a location expressed as latitude/longitude pair,
• a date,
• the type of checklist, which can be stationary, traveling, or incidental (the latter
used for observations when the main goal was not birding),

• for traveling checklists, a length of travel,
• whether the checklist was a complete or partial list of observed species,
• and finally, a list of observed species, each with the count of individuals observed.

In this study, we filtered the checklists, keeping only those that:

• were located in California (our area of study),
• took place in 2012-2018, so as to match the time-frame of our landscape matrix
layer, which was derived from satellite observations in 2015,

• were traveling, as incidental checklists are unreliable, and we did not want to con-
sider stationary checklists, which are a minority and might behave differently from
traveling ones,

• were of length not exceeding 2 km,
• were complete.

The choice of limiting the analysis to checklists not exceeding 2 km was done to balance
data availability with the location accuracy of sightings. The shorter the distance

16



traveled, the more accurately we know the locations of the birds sighted, but the fewer
the checklists we select.

Once filtered, we clustered the checklists into a discrete set of locations according to
their geographical coordinates. For each checklist, we truncated latitude and longitude
to two decimal digits, forming a string: each location would correspond to one such
string. For instance, an observation occurring at coordinates (37.428992,−122.015710)
would be represented by the string “37.42;-122.01”, and all locations with this
string would be associated with the same location. Due to the rounding, a location
corresponds to an area of about 1 km2, which was an approximate match for our
checklist length upper-bound of 2 km (during a checklist, observers do not always
travel in straight lines).

5.3 Generation of the Input Layers

EcoScape requires as input the habitat and permeability raster layers in GeoTIFF
format, as well as gap-crossing and dispersal distances. EcoScape can work with any
permeability and habitat layers; the only requirement being that they are specified
in the same coordinate reference system (CRS). In particular, EcoScape can use as
habitat boolean raster layers produced by any species distribution model (SDM), and
can use as permeability raster layers any continuous landscape suitability map.

To develop the results of this paper, and to facilitate similar studies on other regions
and bird species, we created a Python package, ecoscape-layers [64], that automates
the generation of these layers using freely available data products from eBird and
IUCN. In our code repository for reproduction, we provide Python notebooks that
produce the inputs used for this paper [63]. Further, as part of the documentation for
the ecoscape-layers package, we provide sample code for generating input layers for
other species and regions.

To run the package, users need API tokens for eBird https://science.ebird.org/en/
status-and-trends/download-data and IUCN https://apiv3.iucnredlist.org/api/v3/
token. Users also need to specify the desired raster projection depending on their study
area; the bounds used to define the study area as coordinates; and the six-letter eBird
codes of the species of interest. These can be obtained as documented in the software
packages.

Landscape matrix layer.

We prepare the landscape matrix layer using the Jung et al. Level 2 habitat map from
2015 [40]. This map classifies global land covers into the habitat types as described by
the IUCN Red List Habitats Classification Scheme [41].

Habitat layer.

The EcoScape habitat layer is similar to an Area of Habitat map [32] which depicts
the suitable area within a species’ range based on habitat and elevation preferences.
In this study we do not consider elevation and only refined the range map by suitable
habitat due to inconsistencies in elevation limits.
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To create the habitat layer, the ecoscape-layers package uses the landscape
matrix layer produced above in conjunction with the range maps that can be down-
loaded from eBird at https://science.ebird.org/en/status-and-trends/range-maps. For
methodological details on how eBird range maps are computed, see Fink and
collaborators [39].

We refine the eBird ranges according to landcover class, using the habitat pref-
erence categories downloaded from the IUCN Red List [33], in combination with the
landscape matrix layers produced above. Users can decide what classifies as a habitat;
the options available are: selecting all forest habitat types (for forest specialist birds),
selecting only habitat types classified as “major importance” by the IUCN, or selecting
habitat types classified as “major importance” and/or “suitable” by the IUCN. Based
on the user-defined refining method, ecoscape-layers will create a binary habitat
layer of pixels that fall within the species’ range map and are classified as habitat
(value 1), and those in the range map but not classified as habitat (value 0).

Landscape matrix permeability.

The IUCN Red List habitat preferences provided for a bird species include the habitat
code, major importance, suitability, and seasonality for each habitat type listed for a
species. For each species, the ecoscape-layers package builds a table that associates
each landcover class with its permeability. Landcover classes deemed “suitable” and
of “major importance” as habitats are assigned a permeability of 1 (no resistance),
landcover classes that are “suitable” (but not “major importance”) get a permeability
of 0.9, and all other landcovers receive a permeability of 0.

We then fine-tuned these values according to eBird sightings. This step was nec-
essary, as IUCN occasionally did not list as suitable some landcover classes where in
fact the species are often recorded, and that thus, are clearly permeable to the species
(even when they may not be suitable as breeding habitat).

To do so, we considered all checklists as selected in Section 5.2; note that the
checklists have year-round occurrence, and are not restricted to the breeding season. To
measure where the sightings occurred, we created a new area of sightings geographical
raster layer, with the same spatial resolution as the landscape matrix layer, with pixels
initially set to value 0. We then considered all checklists; if a checklist reported a
sighting of the species, we set to 1 all pixels of the area of sightings layer within 1 km
of the checklist location. We then counted, for each landcover class i, the number Ki

of pixels in the area of sightings layer with value 1, where the corresponding landcover
pixel has value i. This gave us a measure of the area of landcover i where sightings
occurred, and avoids over-counting sightings that occur very close to each other.

Let IH be the landcover classes that are part of the habitat, and let K =
maxi∈IH Ki be the maximum sighting area for any habitat landcover class. For a land-
cover class i, let pIUCN

i be the permeability determined via IUCN. In our study, we
set the permeability of i via p = min(1,max(pIUCN

i ,Ki/K)), thus giving high per-
meability to the landcovers where a species is often sighted. Supplemental Table 1
in the supplementary materials reports the permeability of all landcover classes with
permeability over 0.01; landcover classes with lower permeability do not meaningfully
influence the results. The reproduction datasets contain full permeability results.

18

https://science.ebird.org/en/status-and-trends/range-maps


Layers for Acorn Woodpecker and Steller’s Jay.

For the study, we selected two forest/woodland associated bird species: Acorn Wood-
pecker (Melanerpes formicivorus), and Steller’s Jay (Cyanocitta stelleri). These
species were chosen due to their resident status, affinity to wooded habitats, abundant
eBird sighting records, and high detectability.

Our study region encompasses California, plus a 200 km buffer zone around it to
provide surrounding information for all California locations. We use a spatial resolution
of 300m pixels, reasoning that the gap crossing distance of all these birds is likely to
be greater than 300m. The layers used for the experiments were of 3716×5377 pixels;
they are provided as part of the reproducibility dataset [63].

For Acorn Woodpecker, we added to the list of suitable landcover classes the land-
cover type 308, Mediterranean type shrubby vegetation. In California, this landcover
class typically corresponds to sparse oak woodland, which is prime habitat for Acorn
Woodpeckers.

5.4 Gap-crossing and dispersal distance

To run EcoScape, users must provide values of species movement as gap-crossing
distance and dispersal distance, both expressed in pixels. As the name implies, the
gap-crossing distance is the longest amount of unfavorable landcover that a bird is
willing to fly over during dispersal. A bird with gap-crossing distance g can fly over
up to g− 1 pixels of the landscape matrix regardless of its permeability. The dispersal
distance d is the distance a species most commonly travels when dispersing. We do
not specify d directly, but rather, we specify the number n of gap-crossings, so that
d = ng.

If users have data on gap-crossing and/or dispersal distance for their study species,
such as from bird banding or movement studies, this is the ideal data to input into
EcoScape. However, these values are hard to encounter in the literature and only
exist for very few well-studied birds [65]. The recent release of the global AVONET
database [34], and proofs-of-concept for the Hand-Wing Index and its relationship to
gap-crossing abilities, such as those by Claramunt and collaborators in Amazonian
forest fragments [66], provide a framework for using the HWI as a proxy for bird
dispersal [42, 67]. If dispersal distance for the species of interest is not known, we
provide a way to calculate it from the HWI (provided freely in the global database
AVONET [34]). Using a dataset of known bird HWI and average dispersal distance,
we trained a linear regression model to predict dispersal distance. The trained linear
model predicts the dispersal distance d via the formula:

d = 0.734 ·HWI − 8.777 (5)

The gap-crossing distance has also shown to have a relationship to the HWI, but this
has only been explored for road crossing between forest fragments [66]. Given this
uncertainty, we use a gap-crossing of 2 pixels (600m) for all species in this study, except
in the sensitivity analysis reported below. We report the gap-crossing and dispersal
distance used in our example species in Table 2 and note that the dispersal distance
was calculated based on the HWI. As our knowledge of bird dispersal expands with
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Species Gap Distance N. gaps Dispersal

Acorn Woodpecker 2px (600m) 20 12 km
Steller’s Jay 2px (600m) 3 1.8 km

Table 2: Parameters for the EcoScape runs that cor-
respond to the dispersal distance estimated based on
the Hand-Wing Index (HWI).

increasingly smaller and cheaper GPS transmitters [60], EcoScape will be ready to
receive parameters on both gap-crossing and dispersal distance.

5.5 Validation with Citizen-Science Data

We validated the EcoScape connectivity layer for our example species by measuring
the correlation between the connectivity at a pixel, and the relative bird abundance
at that pixel, measured as the frequency of observation for the species. For validation,
we filtered the checklists as described in Section 5.2, and then we further considered
only the checklists that took place in the months April-May-June, as this is breeding
season for the species we considered. The filtering yielded N=185,996 checklists, and
N=18,336 locations in California with at least some checklist.

5.5.1 Ecoscape

We validated the connectivity layers for both EcoScape and existing algorithm
Omniscape [26] using eBird observations, and detail the methods below.

Given a habitat layer h with values in {0, 1} and a connectivity layer c computed
via EcoScape or Omniscape, we compute the correlation between c and eBird sightings
as follows. We consider the 18,336 locations with checklists in California. For each
location l, and for each of the two species considered in the study, we compute the
average number bl of individuals per species seen in a checklist at l.

Since connectivity is computed in the habitat only, we then filtered the locations,
keeping only those that occurred in the habitat of each species. Precisely, for each
location l, let ij be the pixel coordinates of the center of l: if any of the 3×3 pixels
around ij are in the habitat, we consider l to also be in the habitat. This yields 6,818
locations for the Acorn Woodpecker, and 5,806 for the Steller’s Jay.

Next, we sampled the values of the habitat and connectivity layers at each location.
We identified the pixel coordinates ij corresponding to the location center, and we
computed cl (the connectivity of the location) as the maximum connectivity in the
habitat, in the 3×3 pixels (thus, 900m × 900m) around ij. Precisely, remembering
that the habitat has values in {0, 1}:

cl = max
i−1≤k≤i+1

j−1≤m≤j+1

hkmckm .

Like most citizen-science data, eBird observations are affected by various types of
noise [68, 69]. Bird sightings are recorded by volunteers with variable skills [70], under
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variable conditions (length of outing, time of day, and so on), and in locations that
have different characteristics. Thus, we do not directly compare the connectivity with
the eBird-reported sightings at each location. Rather, we de-noise the data by binning
locations according to their connectivity. A detailed statistical justification for this is
reported in Section A.2 in the supplementary material.

We divide the habitat locations into 10 bins [0, 0.1), [0.1, 0.2), . . . , [0.9, 1), according
to their connectivity. Let the bins be B0, B0.1, . . . , B0.9, labeled according to their
lower bound. A location l with cl = 0.12, l will be put in B0.1. Let |B| be the number
of locations that are in bin B. For each bin B, we compute the average number of
individuals per species per checklist at locations in the bin: bB = E[bl | l ∈ B]. For
x = 0, 0.1, 0.2, . . . , 0.9, we measure the correlation between x and bBx , that is, between
the bin’s connectivity x, and the average number bBx of bird sightings per checklist in
the bin. Specifically, we compute a linear fit between x and bBx , where point (x, bBx)
has weight |Bx| equal to the number of locations in Bx, and we report the coefficient
of determination R2 of such linear fit. This provides a measure of the predictive power
of connectivity with regards to bird observations. The average sightings per checklist,
and the number of locations, that fall in each connectivity interval are reported in
Supplemental Table 3 in the supplementary material for the two species in the study.
The coefficient of determination R2 is computed from the data in that table.

We performed a sensitivity analysis, reported in Section A.4 of the supplementary
material, to examine how the results depend on the choice of gap-crossing and dispersal
distances. The analysis shows that for Acorn Woodpecker and Steller’s Jay, R2 is high
for dispersal distances up to those computed via the hand-wing index (see Section 5.4).

5.5.2 Omniscape

Table 3 provides the details of the Omniscape runs that have been used in our compari-
son with EcoScape. The block size reported in the table corresponds to the granularity
with which Omniscape considers sources for the current flow. A block size of 5 for the
Acorn Woodpecker implies that only the central pixel in each 5×5 tile is used as a
source. Omniscape’s running time is roughly proportional to the number of sources,
and hence, to the inverse of the square of the block size. A block size of 5 is perhaps a
bit coarse, and favors Omniscape in the timing comparison. In EcoScape, a seed den-
sity of 4 corresponds for the Acorn Woodpecker to 1 pixel every 402 = 1600 for each
of the 400 simulations; hence, every pixel is sampled with roughly 1/4 probability;
this compares with a 1/25 sampling probability in Omniscape. Due to these consider-
ations, and more in general, due to the large number of parameters involved in these
simulations, the comparison we present between Omniscape and EcoScape has value
only as it pertains to selected parameter choices.

For Omniscape, we used Julia 1.5.5 and Omniscape 0.5.8, run on Intel i7 2.3GHz
processor. For EcoScape, we relied on an A100 GPU on Google Colab. To obtain the
conductivity values Omniscape needs, we have taken our permeability layer p, with
values in [0, 1], and rescaled it to the interval [1, 11] via 1+10p. Table 1 gives a detailed
comparison of the running time of EcoScape and Omniscape, in runs with parameters
according to Tables 2 and 3.
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Species Radius Blocksize

Acorn Woodpecker 40px (12 km) 5
Steller’s Jay 6px (1.8 km) 1

Table 3: Parameters used in the Omniscape
runs that we used in the comparison with
EcoScape.

Once the current values are obtained, we divide the current values in 10 intervals,
as we do for EcoScape. The intervals are equal-sized, and we choose their size so that
the 10th interval contains a fraction 0.1 of the habitat locations with eBird checklists
(thus, the 10th interval starts at the 90% quantile). Proceeding in analogy of what
done for connectivity, we compute the average sightings per checklist in each of the
10 current intervals. Supplemental Table 4 in the supplementary materials reports the
average sightings per checklist, and the number of locations, that fall in each current
interval. From this data, we can compute the coefficient of determination R2 as the
coefficient of determination of the average sightings vs. the current in the interval,
using the number of locations as weights. The results, reported in Table 1, indicate
that the current computed by Omniscape correlates well with eBird bird frequency
observations.

5.5.3 Patch Size

To study the correlation between habitat patch size and species sightings reported in
eBird, we computed the size of all habitat patches, considering habitat pixels connected
(and thus belonging to the same patch) if they shared an edge or a corner. In the study
conditions, patch sizes range from 1 pixel (0.09 km2) to over 10,000 km2, and a direct
correlation between patch size and species observations would not have yielded useful
results. Rather, we studied the correlation between log-size, which is more uniformly
distributed, and sightings. Thus, we produced a connectivity-as-patch-size raster layer
c, where cij is equal to the log patch size to which pixel ij belongs. In this way, the
same setup we used for studying the correlation of EcoScape and Omniscape output
with sightings, enabled us to study the correlation of log patch size and sightings.

To group locations according to intervals of patch size, we formed equal-sized inter-
vals in log-patch size. As left endpoint of the smallest interval, we took the patch size
corresponding to the area of 1 pixel, or 0.09 km2. We then considered equal-spaced
intervals in log-patch size, assigning a patch size of size s to the interval ⌊log s⌋, where
log is the natural logarithm. This yielded 14 total intervals, and 12 non-empty inter-
vals, for the patch sizes in the area of study for both species, which is comparable to
the 10 intervals used for connectivity and current. We compute R2 as the coefficient
of determination between average sightings in the interval, and log-patch size corre-
sponding to the interval, using as weight the number of locations that fall in patches
with that size interval; this is the analogous of what we do for connectivity and current.
The detailed results are reported in the supplementary materials, Section A.6.

We note that while the algorithm we used to compute connected patches is reason-
ably efficient, it is by no means state of the art. The problem of computing connected
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image regions is important in image processing, and much work has been devoted to
speeding up the algorithm, including via low-level GPU programming; for a review of
approaches see, e.g., [71, 72].
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A Supplementary Material

A.1 Landcover Permeability

Supplemental Table 1 reports the permeability used in the study, for all IUCN land-
cover classes whose permeability was greater than 0.01. If the permeability is smaller
than 0.01, no meaningful propagation can occur. The reproduction datasets contain
full data on all landcover permeabilities, including those smaller than 0.01.

A.2 De-noising eBird observations

We provide here some statistical justification for the procedure we have employed to
de-noise eBird checklist data. We recall that we first cluster eBird checklists into loca-
tions according to their geographical coordinates, using rounded-off values of latitude
and longitude to attribute each checklist to a discrete location.

Once this is done, a simple way to de-noise the observations consists in restricting
the consideration to locations with at least a certain number of checklists, say 10
or 20, and computing the average number of birds per checklist in each location.
However, it turns out that relying on locations with many checklists for the validation
is rather ineffective, for two reasons. First, there are relatively few locations with
many checklists, and they tend not to occur in the middle of the forest habitats of our
species, but at the borders, where roads and cities occur. Among our total of 18,336
locations in California, only 3,169 had more than 10 checklists.

Second, and more interestingly, it turns out that even from a statistical point of
view, it is not useful to restrict consideration to locations with many checklists. We
can think of the noise associated with observations as the sum of two kinds of noise:
checklist noise and location noise.

Landcover Landcover Acorn Steller’s
Code Name Woodpecker Jay

104 1.4. Forest – Temperate 1.000 1.000
105 1.5. Forest – Subtropical/tropical dry 1.000 0.900
201 2.1. Savanna - Dry 0.034 0.000
304 3.4. Shrubland –Temperate 0.359 0.324
305 3.5. Shrubland – Subtropical/tropical dry 0.099 0.052
308 3.8. Shrubland – Mediterranean-type shrubby veg. . . 1.000 0.212
401 4.1. Grassland – Tundra 0.002 0.015
404 4.4. Grassland – Temperate 0.900 0.040
405 4.5. Grassland – Subtropical/tropical dry 0.900 0.001
500 5. Wetlands (inland) 0.032 0.017
505 5.5. Wetlands (inland) – Permanent freshwater . . . 0.045 0.032
900 9. Marine Neritic 0.015 0.006

1401 14.1 Arable Land 0.272 0.038
1402 14.2 Pastureland 1.000 0.221
1403 14.3 Plantations 0.909 0.259

Supplemental Table 1: IUCN landcover classes and their permeability for Acorn
Woodpecker and Steller’s Jay. All landcover classes with permeability greater than
0.01 for one or both species are listed.
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Species Checklist noise Location noise

Acorn Woodpecker 1.52 2.42
Steller’s Jay 1.29 1.77

Supplemental Table 2: Checklist and location
noise for the species under consideration.

Checklist noise is the noise in checklists occurring at the same location; in other
words, it is the standard deviation of the number of birds per checklist, in checklists
taken at the same location. To measure the checklist noise, we compute at each location
the standard deviation of the number of birds per checklist at that location. We then
average the standard deviation at all locations with at least 10 checklists.

Location noise is the standard deviation in average number of birds per checklist
measured on locations that are similar, for some measure of similarity. To measure
the location noise, we considered only locations with at least 10 checklists. For these
locations, we computed the average number of birds per checklist. We then considered
two location similar if their connectivity value were similar, computing the connectivity
with the parameters chosen for Figure 3. Hence, we divided the locations in 10 bins
[0, 0.1), [0.1, 0.2), . . . , [0.9, ] of connectivity. For each bin, we computed the standard
deviation of the locations’ number of birds per checklist. We then computed the average
over all bins.

It turns out that for our species, location noise is greater than checklist noise;
the values are reported in Supplemental Table 2. In other words, there is stronger
agreement between the number of birds seen in individual checklists compiled at the
same location, than there is about the average number of birds per checklist compiled
at equivalent locations from the point of view of connectivity. This most likely happens
because we have focused on species that are very easy to detect: if Acorn Woodpeckers
are breeding in a location, they are very likely to be detected and correctly recorded
by most observers, lowering checklist noise.

Averaging the checklists taken at the same location is effective for dealing with
checklist noise, but ineffective for location noise. As location noise is predominant, we
are better off considering all locations: this far improves coverage (from 3,169 loca-
tions with at least 10 checklists, to 18,336 locations), and more importantly, improves
coverage in the middle of the forested regions that constitute our habitats.

Supplemental Figure 1 provides another view into this phenomenon. The figure
reports the standard deviation of the reported species sightings across locations that
have the same connectivity, according to the location’s connectivity, and according to
the number of checklists available at the location. As we can see, more checklists per
location does not translate into lower standard deviation; the variability of sightings
across locations is not primarily a function of the number of checklists available. It is
likely that other factors, from availability of nutrients, to characteristics of the location
(sun exposure, humidity, amount of human traffic, and so forth) play a larger role.
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Connectivity Sightings N

0.000 0.504 272
0.100 0.607 175
0.200 0.878 245
0.300 0.839 294
0.400 0.956 377
0.500 1.088 714
0.600 1.246 993
0.700 1.620 1549
0.800 1.698 2151
0.900 1.853 48

(A) Acorn Woodpecker

Connectivity Sightings N

0.000 0.476 168
0.100 0.342 166
0.200 0.809 139
0.300 0.615 151
0.400 0.841 179
0.500 0.805 241
0.600 0.965 365
0.700 1.001 578
0.800 1.128 1133
0.900 1.401 2686

(B) Steller’s Jay

Supplemental Table 3: Data underlying Figure 3. Connectivity is the lower end-
point of each connectivity interval considered (e.g., the interval [0, 0.1) is listed as 0);
Sightings is the average of the number of sightings per checklist at locations in that
connectivity interval, and N is the number of locations averaged.

A.3 Sightings vs. Connectivity, Underlying Data

Supplemental Table 3 provides the data underlying Figure 3.

A.4 EcoScape Runs: Sensitivity Analysis

To analyze the sensitivity of EcoScape runs with respect to the values of gap and
dispersal distance, we have run it for our species for gap distances g = 1, 2, . . . , 6, and
for numbers of gap crossings n ranging from 2 to 40. Supplemental Figures 2A and 2B
report the coefficient of determination R2 between connectivity and sightings for each
parameter combination for the species considered in the study.

The results present a threshold effect: the coefficient of determination is high until
the dispersal distance d = ng reaches a critical threshold, then decreases. We hypoth-
esize that the distance threshold corresponds to the effective dispersal distance for the
species, that is, the distance at which dispersal routinely contributes to population
abundance. The threshold corresponds roughly to the dispersal distance obtained via
the Hand-Wing Index approach (see Section 5.4).

A.5 Omniscape Runs: Current Flow vs. Sightings

In Supplemental Figure 3, we report the average number of sightings vs. cumulative
current in habitat locations, as computed by Omniscape; the underlying data is pro-
vided in Supplemental Table 4. This figure is the equivalent of Figure 3 for EcoScape.
To produce Supplemental Figure 3, we set the 0.9 value to the 90% percentile of the
current range in the habitat for each species; this renormalization makes the graphs
comparable with the ones for EcoScape.
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Current, mA Sightings N

0.000 0.413 204
11.449 0.879 554
22.899 0.962 619
34.348 0.929 614
45.798 1.395 713
57.247 1.656 682
68.697 1.469 796
80.146 1.472 895
91.595 1.772 1059

103.045 1.620 682

(A) Acorn Woodpecker

Current, mA Sightings N

0.000 0.156 33
2.247 0.936 6
4.495 0.643 118
6.742 0.570 318
8.989 0.848 500

11.237 0.917 598
13.484 1.014 751
15.731 1.219 948
17.978 1.366 1953
20.226 1.435 581

(B) Steller’s Jay

Supplemental Table 4: Data underlying Supplemental Figure 3. Current is the lower
endpoint of each cumulative current interval considered (we use equal-sized intervals);
Sightings is the average of the number of sightings per checklist at locations in that
connectivity interval, and N is the number of locations averaged.

A.6 Patch Size vs. Sightings

Supplemental Figure 4 depicts the relationship between average species sightings in
eBird checklists, and size of habitat patches; the underlying data is provided in Sup-
plemental Table 5. The figure is computed with the same methodology as Figure 3,
using log patch size as connectivity measure.
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Patch size, km2 Sightings N M

0.090 0.658 821 13850
0.245 1.101 465 3818
0.665 1.096 286 1189
1.808 1.295 193 370
4.914 1.804 136 157

13.357 1.184 155 64
36.309 1.867 120 40
98.697 1.527 194 23

268.286 0.834 646 9
729.278 1.792 1117 6

1982.382 1.901 750 4
5388.673 — 0 0

14647.931 1.447 1935 1
39817.205 — 0 0

(A) Acorn Woodpecker

Patch size, km2 Sightings N M

0.090 0.667 485 23322
0.245 0.718 274 6535
0.665 0.935 216 2447
1.808 1.014 168 926
4.914 0.860 173 404

13.357 1.337 153 161
36.309 1.088 206 74
98.697 1.216 149 26

268.286 0.762 249 9
729.278 1.960 689 6

1982.382 1.108 381 3
5388.673 — 0 2

14647.931 — 0 0
39817.205 1.144 2663 1

(B) Steller’s Jay

Supplemental Table 5: Data underlying Supplemental Figure 4. Patch size is the
lower endpoint of each patch size interval considered, in km2 (we used intervals of size
1 in natural-logarithm scale, with the smallest interval starting at 1 pixel area or 0.09
km2); Sightings is the average of the number of sightings per checklist at locations
in that connectivity interval, N is the number of locations averaged, and M is the
number of patches having size in that interval. Note that for some intervals of patch
size, there were no patches, and hence no locations nor sightings.
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Supplemental Figure 1: Standard deviation of bird sightings at each location (mea-
sured as average over checklists at that location) according to the connectivity of the
habitat, and the number of checklists, at the location.
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(B) Steller’s Jay

Supplemental Figure 2: Coefficient of determination for connectivity as a predic-
tor of average bird sightings per checklist, according to the gap crossing distance g
(expressed in km; every pixel is 300m) and the number of gap crossings in a dispersal.
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Supplemental Figure 3: Average sightings per checklist vs. relative cumulative
current in habitat as computed by Omniscape.
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Supplemental Figure 4: Average species sightings per eBird checklist, vs. size of
habitat patches.
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