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Abstract9

Partitioning a graph into clusters of vertices is a fundamental problem in computer science and10

applied mathematics. Arguably, the most important tool for graph partitioning is the Fielder vector11

or discrete Cheeger inequality. This result relates the eigenvalues of the normalized adjacency matrix12

to the low conductance cuts of the graph. However, the Cheeger inequality has little relevance on13

an important contemporary graph partitioning problem, that of community detection in massive14

real-world graphs. There are numerous, small, dense clusters in real-world graphs, while Cheeger15

inequalities focus on partitioning a graph into a few, large clusters. Inspired by the structure of16

real-world graphs, we define the spectral transitivity, a ratio of powers of eigenvalues of the normalized17

adjacency matrix A. We discover that constant spectral transitivity implies that a constant fraction18

of A is contained in nearly uniform submatrices. Our result is a new spectral theorem that relates19

the eigenvalues of A to a cluster structure in A. The latter structure mimics the observed cluster20

structure of real-world graphs.21
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1 Introduction25

Graph partitioning or clustering is a fundamental problem in theoretical computer science.26

It has a rich history in the study of algorithms, applied mathematics, and computer science.27

One of the central tools in graph partitioning is the discrete Cheeger inequality, which goes28

back to seminal work of Fiedler, and Alon and Milman [9, 1]. This inequality relates the29

eigenvalues of the graph Laplacian to the graph conductance, showing a connection between30

the spectrum and graph structure. Consider an undirected graph G = (V, E), where dv31

denotes the degree of vertex v. The normalized adjacency matrix, denoted A, is defined as32

follows: Auv = 1/
√

dudv if (u, v) ∈ E, and zero otherwise. The eigenvalues of this matrix33

are denoted 1 = λ1 ≥ λ2 ≥ λ3 . . . λn ≥ −1.34

We recall the definition of graph conductance. For any subset of vertices S ⊆ V , let35

Vol(S) :=
∑

s∈S ds. The conductance of set S is Φ(S) := E(S, S)/ min(Vol(S), Vol(S)). The36

conductance of the graph G, ΦG, is defined as minS⊆V Φ(S). The classic Cheeger inequality37

relates the spectral gap, 1 − λ2, to the graph conductance.38

▶ Theorem 1.1. (Cheeger inequality [6, 18]) 4
√

1 − λ2 ≥ ΦG ≥ (1 − λ2)/439

This theorem is the foundation of spectral graph theory. The proof also yields an efficient40

algorithm that finds a low conductance cut.41

One of the most important contemporary applications of graph clustering is community42

detection in real-world sparse graphs [25, 24, 23, 10, 11]. Despite the wide applicability of the43
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Cheeger inequality in general, it is surprisingly irrelevant for network science applications.44

Firstly, conductance pertains to breaking the graph into two parts. There are higher order45

Cheeger inequalities that deal with k parts, but these are only applicable for k = O(log n) [20].46

Real-world graphs have an extremely large number of small clusters, each of which is internally47

dense [21, 29]. Variants of the Cheeger inequalities cannot deal with large k (say, nδ) and48

do not give edge density guarantees about the interior of clusters. We note that there are49

local partitioning theorems inspired by the proof of the Cheeger inequality that find small50

clusters or give some guarantees on internal structure [37, 20, 26, 27]. But these results do51

not connect the graph spectrum to graph structure.52

Diffusion/PageRank based methods on real-world graphs find a large number of small53

sets with conductances around 0.1 or so [21, 13]. For real-world graphs, the connection54

between spectral gap and conductance does not seem to be the central theme. In fact,55

the commonly observed small world property implies a fairly large spectral gap [19]. Most56

real-world networks have a significant fraction of long-range edges or weak ties, that are not57

part of any community [22, 14, 19]. These edges essentially make the graph be an expander,58

in which case the Cheeger inequality has little to say. The spectral gap is sensitive to noise,59

so adding (say) a sparse Erdős-Rényi graph (or a set of random edges) on top of an existing60

graph could dramatically change the spectral graph and conductances. But that is exactly61

what is used for certain models for social networks [29].62

Our main motivation is:63

Can we relate the graph spectrum to the cluster properties of real-world graphs?64

1.1 Main result65

We take inspiration from a central property of real-world graphs, the abundance of tri-66

angles [36, 29]. This abundance is widely seen across graphs that come by disparate domains.67

Recent work in network science and data mining have used the triangles to effectively cluster68

graphs. There is much evidence that the triangle structure aids finding communities in69

graphs [28, 33, 3, 34].70

In network science, the triangle count is often expressed in terms of the transitivity or71

global clustering coefficient [8, 35]. We define the spectral transitivity of the graph G.72

▶ Definition 1.2. The spectral transitivity of G, denoted τ(G), is defined as follows1. (Recall73

that the λis are the eigenvalues of the normalized adjacency matrix.)74

τ(G) =
∑

i≤n λ3
i∑

i≤n λ2
i

. (1)75

Standard arguments show that the spectral transitivity is a degree weighted transitivity.76

The numerator is a weighted sum over all triangles, while the denominator (squared Frobenius77

norm) is a weighted sum over edges (Lemma 3.5).78

Observe that since λi ≤ 1, τ ≤ 1. When τ reaches its maximum value of 1 − 1/(n − 1),79

one can show that G is a clique (Lemma 3.6). We formalize the notion of "clique-like"80

submatrices through the concept of uniformity. For a symmetric matrix M and a subset S81

of its columns/rows, we use M |S to denote the square submatrix restricted to S (on both82

columns and rows).83

1 If G (or the normalized adjacency matrix A) are obvious from context, we simply refer to τ instead of
τ(G).
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▶ Definition 1.3. Let α ∈ (0, 1]. Let A be the normalized adjacency matrix of a graph G.84

For any subset of vertices S, |A|S is called α-strongly uniform if at least an α-fraction of85

non diagonal entries have values in the range [α/(|S| − 1), 1/α(|S| − 1)].86

For s ∈ S, let N(s, S) denote the neighborhood of s in S (we define edges by non-zero87

entries). An α-uniform matrix is strongly α-uniform if for at least an α-fraction of s ∈ S,88

A|N(s,S) is also α-uniform.89

Observe that the normalized adjacency matrix of a clique is (strongly) 1-uniform. But90

submatrices of this matrix are not. Roughly speaking, a constant uniform submatrix91

corresponds to a dense subgraph of (say) size k where the total degrees of vertices is92

Θ(k). Strong uniformity is closely related to clustering coefficients, which is the edge93

density of neighborhoods. It is well-known that real-world graphs have high clustering94

coefficients [36, 29]. A strongly uniform submatrix essentially exhibits high clustering95

coefficients.96

Our main theorem states that any graph with constant spectral transitivity can be97

decomposed into constant uniform blocks. We use ∥M∥2 to denote the Frobenius norm of98

matrix M .99

▶ Theorem 1.4 (Spectral Theorem). There exist absolute constants δ > 0 and c > 0 such100

that the following holds. Let A be the normalized adjacency matrix of a graph with spectral101

transitivity τ .102

There exists a collection of disjoint sets of vertices X1, X2, . . . , Xk satisfying the following103

conditions:104

1. (Cluster structure) For all i ≤ k, A|Xi is strongly δτ c-uniform.105

2. (Coverage)
∑

i≤k ∥A|Xi
∥2

2 ≥ δτ c∥A∥2
2.106

We call this output the spectral triadic decomposition. Our proof also yields an efficient107

algorithm that computes the decomposition, whose running time is dominated by a triangle108

enumeration. Details in are given in Theorem 6.1 and §6.109

1.2 Significance of Theorem 1.4110

One can think of Theorem 1.4 as a type of Cheeger inequality that is relevant to the structure111

of real-world social networks. We explain how it captures many of the salient properties of112

clusters in real-world networks. In this discussion, we will assume that τ is a constant.113

The spectral transitivity: We find it remarkable that a bound on a single spectral114

quantity, τ , implies such a rich decomposition. The spectral transitivity τ captures a key115

property of real-world graphs, the abundance of triangles. While there is a rich body of116

empirical work on using triangles to cluster graphs, there is no theory explaining why triangles117

are so useful. Theorem 1.4 gives a spectral-theoretic explanation.118

The spectral transitivity is a weighted version of the transitivity, which is typically119

around 0.1 for real-world graphs2. We also note that the final algorithm that computes the120

decomposition focuses on triangle cuts, which is a popular empirical technique for finding121

clusters in social networks [3, 34].122

The strong uniformity of clusters: Each cluster Xi of the spectral triadic decomposi-123

tion is (constant) strongly uniform. While there is no one definition of a "community" in124

real-world graphs, the definition of strong uniformity captures many basic concepts. Most125

2 Our experiments on these real-world graphs yield similar values for the spectral transitivity.
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importantly, Xi is internally dense in edges. Let |Xi| = k. Then Ω(k2) entries in Xi are126

Ω(1/k), which (by averaging) implies that a constant fraction of Xi involves vertices of degree127

Θ(k). Thus, a constant fraction of Xi vertices have a constant fraction of their neighbors128

in Xi. Moreover, the submatrix of every neighborhood in Xi is also uniform. This is quite129

consistent with the typical notion of a social network community.130

Crucially, Theorem 1.4 gives a condition on the internal structure of the decomposition.131

This addresses a key weakness of the Cheeger inequality.132

The coverage condition: It is natural to measure the "mass" of a matrix by the squared133

Frobenius norm. The clusters of spectral triadic decomposition of Theorem 1.4 capture a134

constant fraction of this squared norm. This is consistent with the fact that a constant135

fraction of the edges in a real-world graph are not community edges [22, 14, 19, 29]. Any136

decomposition into communities would avoid these "long-range" edges, excluding a constant137

fraction of the matrix mass.138

Robustness to noise: Taking the above point further, the non-community edges are139

often modeled as stochastic (or noisy). The underlying cluster structure of a real-world graph140

is robust to such perturbations. Adding (say) an Erdős-Rényi graph with Θ(n) edges can141

only affect the spectral transitivity by a constant factor (by changing the Frobenius norm).142

Theorem 1.4 would only be affected by constant factors. Note that the spectral gap, on the143

other hand, can dramatically increase by such noise.144

Spectral graph theory inspired by real-world graphs: We consider Theorem 1.4 as145

opening up a new direction in spectral graph theory. At a mathematical level, Theorem 1.4146

is like a Cheeger inequality, where a spectral condition implies a graph theoretic property.147

But all aspects of Theorem 1.4 (the notion of spectral transitivity and the properties of the148

decomposition) are inspired by the observed properties of real-world graphs.149

2 Related Work150

Spectral graph theory is a deep field of study with much advancement over the past two151

decades. We refer the readers to the classic textbook by Chung [7], and the tutorial [31] and152

lecture notes [30] by Spielman.153

The cluster structure of real-world networks has attracted attention from the early days154

of network science [12, 23]. Fortunato’s (somewhat dated) survey on community detection155

has details of the key results [10]. There is no definitive model for social networks, but it156

is generally accepted that they have many dense clusters with sparse connections between157

them [5, 21, 29]. The study of triangles and neighborhood density goes back to the early days158

of social science theory [16, 17, 4, 8]. Early network science papers popularized the notion of159

clustering coefficients and transitivity as useful measures [36]. The use of triangles to find160

such clusters is a more recent development in network science. A number of contemporary161

results explicit use triangle information for algorithmic purposes [28, 33, 3, 34]. Our main162

theorem is inspired by these applications.163

While the Cheeger inequality by itself is not useful for real-world graph clustering, local164

versions of spectral clustering are extremely useful [32, 2]. We stress that these results do165

not relate the graph spectrum to the partitions. But the algorithm is inspired by the proof166

of the Cheeger inequality. Many results on the cluster structure of real-world graphs [21, 13]167

use the Personalized PageRank method [2]. Some local partitioning methods yield bounds168

on the internal structure of clusters [20, 26, 27].169

Most relevant to our work is the result of Gupta, Roughgarden, and Seshadhri [15]. They170

prove a decomposition theorem for triangle-rich graphs, as measured by graph transitivity.171
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Their main result shows that a triangle-dense graph can be clustered into dense clusters.172

The results of [15] do not have any spectral connection, nor do they provide the kind of173

uniformity or coverage bounds of Theorem 1.4. Our main insight is in generalizations of their174

proof technique, which leads to connections with graph spectrum. We adapt the [15] proof175

to deal with normalized adjacency matrix, which adds many complications because of the176

non-uniformity of entries.177

3 Preliminaries178

We use V, E, T to denote the sets of vertices, edges, and triangles of G, respectively. For any179

subgraph H of G, we use VH , EH , TH to denote the corresponding sets within H. For any180

edge e, let TH(e) denote the set of triangles in H containing e.181

For any vertex v, let dv denote the degree of v (in G).182

We first define the notion of weights for edges and triangles. We will think of edges and183

triangles as unordered sets of vertices.184

▶ Definition 3.1. For any edge e = (u, v), define the weight wt(e) to be 1
dudv

. For any185

triangle t = (u, v, w), define the weight wt(t) to be 1
dudvdw

.186

For any set S consisting solely of edges or triangles, define wt(S) =
∑

s∈S wt(s).187

We state some basic facts that relate the sum of weights to sum of eigenvalue powers.188

Let S ⊂ V be any subset of vertices, and let A|S denote the submatrix of A restricted to S.189

We use λi(S) to denote the ith largest eigenvalue of the symmetric submatrix A|S . Abusing190

notation, we use ES and TS to denote the edges and triangles contained in the graph induced191

on S.192

▷ Claim 3.2.
∑

i≤|S| λ2(S)i = 2
∑

e∈E(S) wt(e)193

Proof. By the properties of the Frobenius norm of matrices,
∑

i≤|S| λ2
i =

∑
s,t∈S A2

st. Note194

that Ast = Ast/
√

dsdt. Hence,
∑

s,t A2
s,t = 2

∑
e=(u,v)∈E(S) 1/dudv. (We get a 2-factor195

because each edge (u, v) appears twice in the adjacency matrix.) ◀196

▷ Claim 3.3.
∑

i≤|S| λ3(S)i = 6
∑

t∈T (S) wt(t).197

Proof. Note that
∑

i≤|S| λ3(S)i is the trace of (A|S)3. The diagonal entry (A|S)3
ii is precisely198 ∑

s∈S

∑
s′∈S AisAss′As′i. Note that AisAss′As′i is non-zero iff (i, s, s′) form a triangle. In199

that case, AisAss′As′i = 1/
√

dids · 1/
√

dsds′ · 1/
√

ds′di = wt((i, s, s′)). We conclude that200

(A|S)3
ii is 2

∑
t∈T (S),t∋i wt(t). (There is a 2 factor because every triangle is counted twice.)201

Thus,
∑

i≤n λ3(S)i =
∑

i 2
∑

t∈T,t∋i wt(t) = 2
∑

t∈T

∑
i∈t wt(t) = 6

∑
t∈T wt(t). (The202

final 3 factor appears because a triangle contains exactly 3 vertices.) ◀203

▷ Claim 3.4.
∑

t∈T (S) wt(t) ≤ ∥A|S∥2
2/6.204

Proof. By Claim 3.3
∑

t∈T (S) wt(t) =
∑

i≤|S| λ3(S)i/6. The maximum eigenvalue of A205

is 1, and since A|S is a submatrix, λ(S)1 ≤ 1 (Cauchy’s interlacing theorem). Thus,206 ∑
i≤|S| λ3(S)i ≤

∑
i∈|S| λ2(S)i = ∥A|S∥2

2. ◀207

As a direct consequence of the previous claims applied on A, we get the following208

characterization of the spectral triadic content in terms of the weights.209

▶ Lemma 3.5. τ =
3
∑

t∈T
wt(t)∑

e∈E
wt(e)

.210
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While the following bound is not necessary for our main result, it is instructive to see the211

largest possible value of the spectral transitivity.212

▶ Lemma 3.6. Consider normalized adjacency matrices A with n vertices. The maximum213

value of τ(A) is 1 − 1/(n − 1). This value is attained for the unique strongly 1-uniform214

matrix, the normalized adjacency matrix of the n-clique.215

Proof. First, consider the normalized adjacency matrix A of the n-clique. All off-diagonal
entries are precisely 1/(n − 1) and A can be expressed as (n − 1)−1(11T − I). The matrix A
is 1-regular. The largest eigenvalue is 1 and all the remaining eigenvalues are −1/(n − 1).
Hence,

∑
i λ3

i = 1 − (n − 1)/(n − 1)3 = 1 − 1/(n − 1)2. The sum of squares of eigenvalue is∑
i λ2

i = 1 + (n − 1)/(n − 1)2 = 1 + 1/(n − 1). Dividing,∑
i≤n λ3

i∑
i≤n λ2

i

= 1 − 1/(n − 1).

Since the matrix has zero diagonal, the trace
∑

i λi is zero. We will now prove the following216

claim.217

▷ Claim 3.7. Consider any sequence of numbers 1 = λ1 ≥ λ2 . . . ≥ λn such that ∀i, |λi| ≤ 1218

and
∑

i λi = 0. If
∑

i λ3
i ≥ (1 − 1/(n − 1))

∑
i λ2

i , then ∀i > 1, λi = −1/(n − 1).219

Proof. Let us begin with some basic manipulations.220 ∑
i

λ3
i ≥ [1 − 1/(n − 1)]

∑
i

λ2
i (2)221

=⇒ 1 +
∑
i>1

λ3
i ≥ [1 − 1/(n − 1)] · (1 +

∑
i>1

λ2
i )222

=⇒
∑
i>1

λ3
i ≥ [1 − 1/(n − 1)]

∑
i>1

λ2
i − 1/(n − 1). (3)223

For i > 1, define δi := λi + 1/(n − 1). Note that
∑

i>1 λi = −1, so
∑

i>1 δi = 0. Moreover,224

∀i > 1, δi ≤ 1 + 1/(n − 1). We plug in λi = δi − 1/(n − 1) in (3).225 ∑
i>1

[
δi − 1/(n − 1)

]3
≥ [1 − 1/(n − 1)]

∑
i>1

[
δi − 1/(n − 1)

]2
− 1/(n − 1)226

=⇒
∑
i>1

[
δ3

i − 3δ2
i /(n − 1) + 3δi/(n − 1)2 − 1/(n − 1)3

]
227

≥ [1 − 1/(n − 1)]
∑
i>1

[
δ2

i − 2δi/(n − 1) + 1/(n − 1)2
]

− 1/(n − 1).228

Recall that
∑

i>1 δi = 0. Hence, we can simplify the above inequality.229 ∑
i>1

δ3
i − (3/(n − 1))

∑
i>1

δ2
i − 1/(n − 1)2

230

≥ [1 − 1/(n − 1)]
∑
i>1

δ2
i + 1/(n − 1) − 1/(n − 1)2 − 1/(n − 1)231

=⇒
∑
i>1

δ3
i ≥ [1 + 2/(n − 1)]

∑
i>1

δ2
i . (Canceling terms and rearranging)232

Since δi ≤ (1 + 1/(n − 1)), we get that
∑

i>1 δ3
i ≤ [1 + 1/(n − 1)]

∑
i>1 δ2

i . Combining with233

the above inequality, we deduce that [1 + 2/(n − 1)]
∑

i>1 δ2
i ≤ [1 + 1/(n − 1)]

∑
i>1 δ2

i . This234

can only happen if
∑

i>1 δ2
i is zero, implying all δi values are zero. Hence, for all i > 1,235

λi = −1/(n − 1). ◀236
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With this claim, we conclude that any matrix A maximizing the ratio of cubes and squares237

of eigenvalues has a fixed spectrum. It remains to prove that a unique normalized adjacency238

matrix has this spectrum. We use the rotational invariance of the Frobenius norm: sum of239

squares of entries of A is the same as the sum of squares of eigenvalues. Thus,240 ∑
(u,v)∈E

2
dudv

= 1 + 1
n − 1 = n

n − 1 . (4)241

Observe that 2
dudv

≥ 1/(du(n − 1)) + 1/(dv(n − 1)), since all degrees are at most n − 1.242

Summing this inequality over all edges,243 ∑
(u,v)∈E

2
dudv

≥
∑
v∈V

∑
u∈N(v)

1
dv(n − 1) =

∑
v∈V

dv

dv(n − 1) = n

n − 1 . (5)244

Hence, for (4) to hold, for all edges (u, v), we must have the equality 2
dudv

= 1/(du(n − 1)) +245

1/(dv(n − 1)). That implies that for all edge (u, v), du = dv = n − 1. So all vertices have246

degree (n − 1), and the graph is an n-clique. ◀247

We will need the following “reverse Markov inequality" for some intermediate proofs.248

▶ Lemma 3.8. Consider a random variable Z taking values in [0, b]. If E[Z] ≥ σb, then249

Pr[Z ≥ σb/2] ≥ σ/2.250

Proof. In the following calculations, we will upper bound the conditional expectation by the251

maximum value (under that condition).252

σb ≤ E[Z] = Pr[Z ≥ σb/2] · E[Z|Z ≥ σb/2] + Pr[Z (6)253

≤ σb/2] · E[Z|Z ≤ σb/2] (7)254

≤ Pr[Z ≥ σb/2] · b + σb/2 (8)255

We rearrange to complete the proof. ◀256

4 Cleaned graphs and extraction257

For convenience, we set ε = τ/6.258

▶ Definition 4.1. A connected subgraph H is called clean if ∀e ∈ E(H), wt(TH(e)) ≥ εwt(e).259

Algorithm 1 Extract(H)

1: Pick v ∈ V (H) that minimizes dv.
2: Construct the set L := {u|(u, v) ∈ E(H), du ≤ 2ε−1dv} (L is the set of low degree

neighbors of v in H.)
3: For every vertex w ∈ V (H), define ρw to be the total weight of triangles of the form

(w, u, u′) where u, u′ ∈ L.
4: Sort the vertices in decreasing order of ρw, and construct the “sweep cut" C to be the

smallest set satisfying
∑

w∈C ρw ≥ (1/2)
∑

w∈V (H) ρw.
5: Output X := {v} ∪ L ∪ C.

The main theorem of this section follows.260
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▶ Theorem 4.2. Suppose the subgraph H is connected and clean. Let X denote the output
of the procedure Extract(H). Then∑

t∈T (H),t⊆X

wt(t) ≥ (ε8/2000)
∑

t∈T (H),t∩X ̸=∅

wt(t)

(The triangle weight contained inside X is a constant fraction of the triangle weight incident261

to X.)262

Moreover, A|X is strongly δε12-uniform.263

We will need numerous intermediate claims to prove this theorem. We use v, L, and C as264

defined in Extract(H). We use N to denote the neighborhood of v in H. Note that L ⊆ N .265

For any vertex u ∈ N , we define the set of partners P (u) to be {w : (u, v, w) ∈ TH}.266

The following lemma is an important tool in our analysis.267

▶ Lemma 4.3. For any u ∈ N ,
∑

w∈P (u)∩L d−1
w ≥ ε/2.268

Proof. Let e = (u, v). Since H is clean, wt(TH(e)) ≥ εwt(e). Expanding out the definition269

of weights,270 ∑
w:(u,v,w)∈TH

1
dudvdw

≥ ε

dudv
=⇒

∑
w∈P (u)

d−1
w ≥ ε. (9)271

Note that L (as constructed in Extract(H)) is the subset of N consisting of vertices with272

degree at most 2ε−1dv. For w ∈ N \ L, we have the lower bound dw ≥ 2ε−1dv. Hence,273 ∑
w∈N\L

d−1
w ≤ |N \ L|(ε/2)d−1

v ≤ dv × (ε/2)d−1
v = ε/2. (10)274

In the calculation below, we split the sum of (9) into the contribution from L and from275

outside L. We apply (10) to bound the latter contribution.276

ε ≤
∑

w∈P (u)

d−1
w ≤

∑
w∈P (u)∩L

d−1
w +

∑
w∈N\L

d−1
w ≤

∑
w∈P (u)∩L

d−1
w + ε/2. (11)277

◀278

▷ Claim 4.4. |L| ≥ εdv/2279

Proof. Since H is connected, there must exist some edge e = (u, v) ∈ E(H). By Lemma 4.3,280 ∑
w∈P (u)∩L d−1

w ≥ ε/2. Hence,
∑

w∈L d−1
w ≥ ε/2. Since v is the vertex in V (H) minimizing281

dv, for any w ∈ V (H), dw ≥ dv. Thus,282

ε/2 ≤
∑
w∈L

d−1
w ≤

∑
w∈L

d−1
v = |L|d−1

v . (12)283

◀284

▷ Claim 4.5.
∑

e∈E(H),e⊆L wt(e) ≥ ε2/8.285

Proof. By Lemma 4.3, ∀w ∈ L,
∑

w′∈P (w)∩L d−1
w′ ≥ ε/2. We multiply both sides by d−1

w and286

sum over all w ∈ L.287 ∑
w∈L

∑
w′∈P (w)∩L

(dwdw′)−1 ≥ (ε/2)
∑

w′∈L

d−1
w′ . (13)288

By Lemma 4.3,
∑

w′∈L d−1
w′ ≥ ε/2. Note that w′ ∈ P (w) only if (w, w′) ∈ E(H). Hence,289 ∑

w∈L

∑
w′∈L,(w,w′)∈E(H) wt((w, w′)) ≥ ε2/4. Note that the summation counts all edges290

twice, so we divide by 2 to complete the proof. ◀291
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We now come to the central calculations of the main proof. Recall, from the description292

of Extract, that ρw is the total triangle weight of the triangles (w, u, u′), where u, u′ ∈ L.293

We will prove that
∑

w ρw is large; moreover, there are a few entries that dominate the sum.294

The latter bound is crucial to arguing that the sweep set C is not too large.295

▷ Claim 4.6.
∑

w∈V (H) ρw ≥ ε3/8.296

Proof. Note that
∑

w∈V (H) ρw is equal to
∑

e∈E(H),e⊂L wt(TH(e)). Both these expressions297

give the total weight of all triangles in H that involve two vertices in L. Since H is298

clean, for all edges e ∈ E(H), wt(TH(e)) ≥ εwt(e). Hence,
∑

e∈E(H),e⊂L wt(TH(e)) ≥299

ε
∑

e∈E(H),e⊂L wt(e). Applying Claim 4.5, we can lower bound the latter by ε3/8. ◀300

We now show that a few ρw values dominate the sum, using a somewhat roundabout301

argument. We upper bound the sum of square roots.302

▷ Claim 4.7.
∑

w∈V (H)
√

ρw ≤ 2ε−1√
dv303

Proof. Let cw be the number of vertices in L that are neighbors (in H) of w. Note that for304

any triangle (u, u′, w) where u, u′ ∈ L, both u and u′ are common neighbors of w and v. The305

number of triangles (u, u′, w) where u, u′ ∈ L is at most c2
w. The weight of any triangle in H306

is at most d−3
v , since dv is the lowest degree (in G) of all vertices in H. As a result, we can307

upper bound ρw ≤ d−3
v c2

w.308

Taking square roots and summing over all vertices,309 ∑
w∈V (H)

√
ρw ≤ d−3/2

v

∑
w∈V (H)

cw (14)310

Note that
∑

w∈V (H) cw is exactly the sum over u ∈ L of the degrees of u in the subgraph311

H. (Every edge incident to u ∈ L gives a unit contribution to the sum
∑

w∈V (H) cw.) By312

definition, every vertex in L has degree in H at most 2ε−1dv. The size of L is at most dv.313

Hence,
∑

w∈V (H) cw ≤ 2ε−1d2
v. Plugging into (14), we deduce that

∑
w∈V (H)

√
ρw ≤314

2ε−1√
dv. ◀315

We now prove that the sweep cut C is small, which is critical to proving Theorem 4.2.316

▷ Claim 4.8. |C| ≤ 144ε−5dv.317

Proof. For convenience, let us reindex vertices so that ρ1 ≥ ρ2 ≥ ρ3 . . .. Let r ≤ n be318

an arbitrary index. Because we index in non-increasing order, note that
∑

j≤n ρj ≥ rρr.319

Furthermore, ∀j > r, ρj ≤ ρr.320

∑
j>r

ρj ≤ √
ρr

∑
j>r

√
ρj ≤

√∑
j≤n ρj

r

∑
j≤n

√
ρj =

[ ∑
j≤n

√
ρj

√
r ·

√∑
j≤n ρj

] ∑
j≤n

ρj (15)321

Observe that Claim 4.7 gives an upper bound on the numerator, while Claim 4.6 gives a322

lower bound on (a term in) the denominator. Plugging those bounds in (15),323

∑
j>r

ρj ≤ 2ε−1√
dv√

r · ε3/2/
√

8

∑
j≤n

ρj ≤ 1√
r

· 6
√

dv

ε5/2 ·
∑
j≤n

ρj . (16)324

Suppose r > 144ε−5dv. Then
∑

j>r ρj < (1/2)
∑

j≤n ρj . The sweep cut C is constructed325

with the smallest value of r such that
∑

j>r ρj < (1/2)
∑

j≤n ρj . Hence, |C| ≤ 144ε−5dv. ◀326
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An additional technical claim we need bounds the triangle weight incident to a single327

vertex.328

▷ Claim 4.9. For all vertices u ∈ V (H), wt(TH(u)) ≤ (2dv)−1.329

Proof. Consider edge (u, w) ∈ E(H). We will prove that wt(TH((u, w))) ≤ d−1
u d−1

v . Recall
that dv is the smallest degree among vertices in H. Furthermore, |TH((u, w))| ≤ dw, since
the third vertex in a triangle containing (u, w) is a neighbor of w.

wt(TH((u, v))) =
∑

z:(z,u,w)∈T (H)

1
dudwdz

≤ 1
dudv

∑
z:(z,u,w)∈T (H)

1
dw

≤ 1
dudv

× dw

dw
= 1

dudv

We now bound wt(TH(u)) by summing over all neighbors of u in H.330

wt(TH(u)) = (1/2)
∑

w:(u,w)∈E(H)

wt(TH((u, w)))331

≤ (1/2)
∑

w:(u,w)∈E(H)

1
dudv

= 1
2dv

∑
w:(u,w)∈E(H)

1
du

332

≤ 1
2dv

× du

du
= 1

2dv
.333

◀334

4.1 The proof of Theorem 4.2335

Proof. (of Theorem 4.2) By construction of X as {v} ∪ L ∪ C, all the triangles of the form336

(w, u, u′), where w ∈ C and u, u′ ∈ L, are contained in X. The total weight of such triangles337

is at least
∑

v≤n ρv/2, by the construction of C. By Claim 4.6,
∑

v≤n ρv/2 ≥ ε3/16.338

Let us now bound that total triangle weight incident to X in H. Observe that |X| =339

1 + |L| + |C| which is at most 1 + dv + ε−5144dv, by Claim 4.8. We can further bound340

|X| ≤ ε−5146dv. By Claim 4.9, the total triangle weight incident to a vertex is at most341

(2dv)−1. Hence, the total triangle weight incident to all of X is at most 73ε−5.342

Thus, the triangle weight contained in X is at least ε3/16
73ε−5 times the triangle weight343

incident to X. The ratio is at least ε8/2000, completing the proof of the first statement.344

Proof of uniformity of A|X : We first prove a lower bound on the uniformity of A|X .345

For convenience, let B denote the set {e|e ∈ E(H), e ⊆ L. By Claim 4.5,
∑

e∈B wt(e) ≥ ε2/8.346

There are at most
(

dv

2
)

≤ d2
v/2 edges in B. For every edge e, wt(e) ≤ 1/d2

v. Let k denote the347

number of edges in B whose weight is at least ε2/16.348

ε2

8 ≤
∑
e∈B

wt(e)≤ε2d−2
v /16

wt(e) +
∑
e∈B

wte≥ε2d−2
v /16

wt(e)349

≤ |B| × ε2d−2
v /16 + kd−2

v350

≤ d2
v × ε2d−2

v /16 + kd−2
v351

= ε2/16 + kd−2
v .352

Rearranging, k ≥ ε2d2
v/16.353

Hence, there are at least ε2d2
v/16 edges contained in X with weight at least ε2d−2

v /16.354

Consider the random variable Z that is the weight of a uniform random edge contained in355

X. Since |X| ≤ ε−5144dv, the number of edges in X is at most ε−10(144)2d2
v. So,356

E[Z] ≥ ε2d2
v/16

ε−10(144)2d2
v

× ε2d−2
v /16 ≥ 2δε14d−2

v . (17)357
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The maximum value of Z is the largest possible weight of an edge in E(H), which is at most358

d−2
v . Applying the reverse Markov bound of Lemma 3.8, Pr[Z ≥ δε14d−2

v ] ≥ δε14. Thus, an359

ε14 fraction of edges in |X| have weight at least δε14d−2
v ≥ δεc/|X|2. Moreover, every edge360

has weight at most d−2
v ≤ 1/(δεc|X|2). So we prove the uniformity of A|X .361

The largest possible weight for any edge in E(H) is d−2
v . The size of |X| is at least dv362

and at most ε−5144dv. Hence, A|X is at least δε12-uniform.363

Proof of strong uniformity: For strong uniformity, we need to repeat the above364

argument within neighborhoods in X. We prove in the beginning of this proof that the total365

triangle weight inside X is at least ε3/16. We also proved that |X| ≤ 146ε−5dv. Consider366

the random variable Z that is the triangle weight contained in X incident to a uniform367

random vertex in X. Note that E[Z] ≥ (ε3/16)/(146ε−5dv) ≥ 2δ′ε8d−1
v . By Claim 4.9, Z368

is at most (2dv)−1. Applying Lemma 3.8, Pr[Z ≥ δ′ε8d−1
v ] ≥ δε8. This means that at least369

δ′ε8|X| vertices in X are incident to at least δ′ε8d−1
v triangle weight inside X.370

Consider any such vertex u. Let N(u) be the neighborhood of u in X. Every edge e in371

N(u) forms a triangle with u with weight wt(e)/du. Hence, noting that du ≥ dv,372 ∑
e⊆N(u)

wt(e)d−1
u ≥ δ′ε8d−1

v =⇒
∑

e⊆N(u)

wt(e) ≥ δ′ε8. (18)373

There are at most |X|2 ≤ ε−10(146)2d2
v edges in N(u). Let Z denote the weight of a uniform374

random edge in N(u). Note that E[Z] ≥ δ′ε8/(ε−10(146)2d2
v) ≥ 2δε18d−2

v . The maximum375

weight of an edge is at most d−2
v . By Lemma 3.8, at least δε18 fraction of edges in N(u) have376

a weight of at least δε18d−2
v . Since |N(u)| ≤ |X| ≤ ε−5146dv, this implies that N(u) is also377

δεc-uniform. Hence, we prove strong uniformity as well.378

◀379

5 Obtaining the decomposition380

Algorithm 2 Decompose(G)

1: Initialize X to be an empty family of sets, and initialize subgraph H = G.
2: while H is non-empty do
3: while H is not clean do
4: Remove an edge e ∈ E(H) from H such that wt(TH(e)) < (ε)wt(e).
5: end while
6: Add output Extract(H) to X.
7: Remove these vertices from H.
8: end while
9: Output X.

We first describe the algorithm that obtains the decomposition promised in Theorem 1.4.381

We partition all the triangles of G into three sets depending on how they are affected by382

Decompose(G). (i) The set of triangles removed by the cleaning step of Step 4, (ii) the set383

of triangles contained in some Xi ∈ X, or (iii) the remaining triangles. Abusing notation,384

we refer to these sets as TC , TX , and TR respectively. Note that the triangles of TR are the385

triangles “cut" when Xi is removed.386

▷ Claim 5.1. wt(TC) ≤ (τ/6)
∑

e∈E wt(e).387
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Proof. Consider an edge e removed at Step 4 of Decompose. Recall that ε is set to τ/6. At388

that removal, the total weight of triangles removed (cleaned) is at most (τ/6)wt(e). An edge389

can be removed at most once, so the total weight of triangles removed by cleaning is at most390

(τ/6)
∑

e∈E wt(e). ◀391

Proof. (of Theorem 1.4) Let us denote by H1, H2, . . . , Hk the subgraphs of which Extract392

is called. Let the output of Extract(Hi) be denoted Xi. By the uniformity guarantee of393

Theorem 4.2, each A|Xi
is δτ c-uniform.394

It remains to prove the coverage guarantee. We now sum the bound of Theorem 4.2395

over all Xi. (For convenience, we expand out ε as τ/6 and let δ′ denote a sufficiently small396

constant.)397 ∑
i≤k

∑
t∈T (H),t⊆X

wt(t) ≥ (δ′τ8)
∑
i≤k

∑
t∈T (H),t∩X ̸=∅

wt(t). (19)398

The LHS is precisely wt(TX). Note that a triangle appears at most once in the double399

summation in the RHS. That is because if t ∩ Xi ≠ ∅, then t is removed when Xi is removed.400

Since Hi is always clean, the triangles of TC cannot participate in this double summation.401

Hence, the RHS summation is wt(TX) + wt(TR) and we deduce that402

wt(TX) ≥ δ′τ8(wt(TX) + wt(TR)) (20)403

Note that wt(Tc)+wt(Tx)+wt(Tr) =
∑

t∈T wt(t). There is where the definition of τ makes404

its appearance. By Lemma 3.5, we can write the above equality as wt(Tc)+wt(Tx)+wt(Tr) =405

(τ/3)
∑

e∈E wt(e). Applying Claim 5.1, (20), and the relation of edge weights to the Frobenius406

norm (Claim 3.2),407

(δ′τ8)−1wt(TX) ≥ (τ/6)
∑
e∈E

wt(e) =⇒ wt(TX) ≥ δτ c∥A∥2
2 (by Claim 3.2) (21)408

By Claim 3.4,
∑

i≤k ∥A|Xi
∥2

2 ≥ wt(TX), completing the proof of the coverage bound. ◀409

6 Algorithmics and implementation410

We discuss theoretical and practical implementations of the procedures computing the411

decomposition of Theorem 1.4. The main operation required is a triangle enumeration of412

G; there is a rich history of algorithms for this problem. The best known bound for sparse413

graph is the classic algorithm of Chiba-Nishizeki that enumerates all triangles in O(mα)414

time, where α is the graph degeneracy.415

We first provide a formal theorem providing a running time bound. We do not explicitly416

describe the implementation through pseudocode, and instead explain the main details in417

the proof.418

▶ Theorem 6.1. There is an implementation of Decompose(G) whose running time is419

O(R + (m + n + T ) log n), where R is the running time of listing all triangles. The space420

required is O(T ) (where T is the triangle count).421

Proof. We assume an adjacency list representation where each list is stored in a dictionary422

data structure with logarithmic time operations (like a self-balancing binary tree).423

We prepare the following data structure that maintains information about the current424

subgraph H. We initially set H = G. We will maintain all lists as hash tables so that425

elementary operations on them (insert, delete, find) can be done in O(1) time.426
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1. A list of all triangles in T (H) indexed by edges. Given an edge e, we can access a list of427

triangles in T (H) containing e.428

2. A list of wt(TH(e)) values for all edges e ∈ E(H).429

3. A list U of all (unclean) edges such that wt(TH(e)) < εwt(e).430

4. A min priority queue Q storing all vertices in V (H) keyed by degree dv. We will assume431

pointers from v to the corresponding node in Q.432

These data structures can be initialized by enumerating all triangles, indexing them, and433

preparing all the lists. This can be done in O(R) time.434

We describe the process to remove an edge from H. When edge e is removed, we go over435

all the triangles in T (H) containing e. For each such triangle t and edge e′ ∈ t, we remove t436

from the triangle list of e′. We then update wt(TH(e′)) by reducing it by wt(t). If wt(TH(e′))437

is less than wt(e), we add it to U . Finally, if the removal of e removes a vertex v from V (H),438

we remove v from the priority queue Q. Thus, we can maintain the data structures. The439

running time is O(|TH(e)|) plus an additional log n for potentially updating Q. The total440

running time for all edge deletes is O(T + n log n).441

With this setup in place, we discuss how to implement Decompose. The cleaning operation442

in Decompose can be implemented by repeatedly deleting edges from the list U , until it is443

empty.444

We now discuss how to implement Extract. We will maintain a max priority queue R445

maintaining the values {ρw}. Using Q as defined earlier, we can find the vertex v of minimum446

degree. By traversing its adjacency list in H, we can find the set L. We determine all edges447

in L by traversing the adjacency lists of all vertices in L. For each such edge e, we enumerate448

all triangles in H containing e. For each such triangle t and w ∈ t, we will update the value449

of ρw in R.450

We now have the total
∑

w ρw as well. We find the sweep cut by repeatedly deleting from451

the max priority queue R, until the sum of ρw values is at least half the total. Thus, we can452

compute the set X to be extracted. The running time is O((|X| + |E(X)| + |T (X)|) log n),453

where E(X), T (X) are the set of edges and triangles incident to X.454

Overall, the total time for all the extractions and resulting edge removals is O((n + m +455

T ) log n). The initial triangle enumeration takes R time. We add to complete the proof. ◀456
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