A spectral theorem on the cluster structure of real-world graphs

Sabyasachi Basu
Department of Computer Science and Engineering, University of California, Santa Cruz

Suman Kalyan Bera
Katana Graph

C. Seshadhri
Department of Computer Science and Engineering, University of California, Santa Cruz

Abstract
Partitioning a graph into clusters of vertices is a fundamental problem in computer science and applied mathematics. Arguably, the most important tool for graph partitioning is the Fielder vector or discrete Cheeger inequality. This result relates the eigenvalues of the normalized adjacency matrix to the low conductance cuts of the graph. However, the Cheeger inequality has little relevance on an important contemporary graph partitioning problem, that of community detection in massive real-world graphs. There are numerous, small, dense clusters in real-world graphs, while Cheeger inequalities focus on partitioning a graph into a few, large clusters. Inspired by the structure of real-world graphs, we define the spectral transitivity, a ratio of powers of eigenvalues of the normalized adjacency matrix. We discover that constant spectral transitivity implies that a constant fraction of the adjacency matrix is contained in nearly uniform submatrices. Our result is a new spectral theorem that relates the eigenvalues of the adjacency matrix to a cluster structure in the adjacency matrix. The latter structure mimics the observed cluster structure of real-world graphs.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Graph partitioning, Spectral graph theory, Social networks

1 Introduction
Graph partitioning or clustering is a fundamental problem in theoretical computer science. It has a rich history in the study of algorithms, applied mathematics, and computer science. One of the central tools in graph partitioning is the discrete Cheeger inequality, which goes back to seminal work of Fiedler, and Alon and Milman [9, 1]. This inequality relates the eigenvalues of the graph Laplacian to the graph conductance, showing a connection between the spectrum and graph structure. Consider an undirected graph $G = (V, E)$, where d_v denotes the degree of vertex v. The normalized adjacency matrix, denoted A, is defined as follows: $A_{uv} = 1/\sqrt{d_u d_v}$ if $(u, v) \in E$, and zero otherwise. The eigenvalues of this matrix are denoted $\lambda_1 \geq \lambda_2 \geq \lambda_3 \ldots \lambda_n \geq -1$.

We recall the definition of graph conductance. For any subset of vertices $S \subseteq V$, let $\text{Vol}(S) := \sum_{s \in S} d_s$. The conductance of set S is $\Phi(S) := E(S, \overline{S})/\min(\text{Vol}(S), \text{Vol}(\overline{S}))$. The conductance of the graph G, Φ_G, is defined as $\min_{S \subseteq V} \Phi(S)$. The classic Cheeger inequality relates the spectral gap, $1 - \lambda_2$, to the graph conductance.

▶ Theorem 1.1. (Cheeger inequality [6, 18]) $4\sqrt{1 - \lambda_2} \geq \Phi_G \geq (1 - \lambda_2)/4$

This theorem is the foundation of spectral graph theory. The proof also yields an efficient algorithm that finds a low conductance cut.

One of the most important contemporary applications of graph clustering is community detection in real-world sparse graphs [25, 24, 23, 10, 11]. Despite the wide applicability of the
Cheeger inequality in general, it is surprisingly irrelevant for network science applications. Firstly, conductance pertains to breaking the graph into two parts. There are higher order Cheeger inequalities that deal with k parts, but these are only applicable for $k = O(\log n)$ [20]. Real-world graphs have an extremely large number of small clusters, each of which is internally dense [21, 29]. Variants of the Cheeger inequalities cannot deal with large k (say, n^{δ}) and do not give edge density guarantees about the interior of clusters. We note that there are local partitioning theorems inspired by the proof of the Cheeger inequality that find small clusters or give some guarantees on internal structure [37, 20, 26, 27]. But these results do not connect the graph spectrum to graph structure.

Diffusion/PageRank based methods on real-world graphs find a large number of small sets with conductances around 0.1 or so [21, 13]. For real-world graphs, the connection between spectral gap and conductance does not seem to be the central theme. In fact, the commonly observed small world property implies a fairly large spectral gap [19]. Most real-world networks have a significant fraction of long-range edges or weak ties, that are not part of any community [22, 14, 19]. These edges essentially make the graph be an expander, in which case the Cheeger inequality has little to say. The spectral gap is sensitive to noise, so adding (say) a sparse Erdős-Rényi graph (or a set of random edges) on top of an existing graph could dramatically change the spectral graph and conductances. But that is exactly what is used for certain models for social networks [29].

Our main motivation is:

Can we relate the graph spectrum to the cluster properties of real-world graphs?

1.1 Main result

We take inspiration from a central property of real-world graphs, the abundance of triangles [36, 29]. This abundance is widely seen across graphs that come by disparate domains. Recent work in network science and data mining have used the triangles to effectively cluster graphs. There is much evidence that the triangle structure aids finding communities in graphs [28, 33, 3, 34].

In network science, the triangle count is often expressed in terms of the transitivity or global clustering coefficient [8, 35]. We define the spectral transitivity of the graph G.

- **Definition 1.2.** The spectral transitivity of G, denoted $\tau(G)$, is defined as follows\(^1\). (Recall that the λ_is are the eigenvalues of the normalized adjacency matrix.)

\[
\tau(G) = \frac{\sum_{i \leq n} \lambda_i^3}{\sum_{i \leq n} \lambda_i^2}.
\]

(1)

Standard arguments show that the spectral transitivity is a degree weighted transitivity. The numerator is a weighted sum over all triangles, while the denominator (squared Frobenius norm) is a weighted sum over edges (Lemma 3.5).

Observe that since $\lambda_i \leq 1$, $\tau \leq 1$. When τ reaches its maximum value of $1 - 1/(n-1)$, one can show that G is a clique (Lemma 3.6). We formalize the notion of "clique-like" submatrices through the concept of uniformity. For a symmetric matrix M and a subset S of its columns/rows, we use $M|_S$ to denote the square submatrix restricted to S (on both columns and rows).

\(^1\) If G (or the normalized adjacency matrix A) are obvious from context, we simply refer to τ instead of $\tau(G)$.
Definition 1.3. Let $\alpha \in (0, 1]$. Let A be the normalized adjacency matrix of a graph G. For any subset of vertices S, $|A|_S$ is called α-strongly uniform if at least an α-fraction of non-diagonal entries have values in the range $[\alpha/(|S| - 1), 1/\alpha(|S| - 1)]$. For $s \in S$, let $N(s, S)$ denote the neighborhood of s in S (we define edges by non-zero entries). An α-uniform matrix is strongly α-uniform if for at least an α-fraction of $s \in S$, $A|_{N(s, S)}$ is also α-uniform.

Observe that the normalized adjacency matrix of a clique is (strongly) 1-uniform. But submatrices of this matrix are not. Roughly speaking, a constant uniform submatrix corresponds to a dense subgraph of (say) size k where the total degrees of vertices is $\Theta(k)$. Strong uniformity is closely related to clustering coefficients, which is the edge density of neighborhoods. It is well-known that real-world graphs have high clustering coefficients [36, 29]. A strongly uniform submatrix essentially exhibits high clustering coefficients.

Our main theorem states that any graph with constant spectral transitivity can be decomposed into constant uniform blocks. We use $\|M\|_2$ to denote the Frobenius norm of matrix M.

Theorem 1.4 (Spectral Theorem). There exist absolute constants $\delta > 0$ and $c > 0$ such that the following holds. Let A be the normalized adjacency matrix of a graph with spectral transitivity τ. There exists a collection of disjoint sets of vertices X_1, X_2, \ldots, X_k satisfying the following conditions:

1. (Cluster structure) For all $i \leq k$, $A|_{X_i}$ is strongly $\delta \tau^c$-uniform.
2. (Coverage) $\sum_{i \leq k} \|A|_{X_i}\|_2^2 \geq \delta \tau^c \|A\|_2^2$.

We call this output the spectral triadic decomposition. Our proof also yields an efficient algorithm that computes the decomposition, whose running time is dominated by a triangle enumeration. Details in are given in Theorem 6.1 and §6.

1.2 Significance of Theorem 1.4

One can think of Theorem 1.4 as a type of Cheeger inequality that is relevant to the structure of real-world social networks. We explain how it captures many of the salient properties of clusters in real-world networks. In this discussion, we will assume that τ is a constant.

The spectral transitivity: We find it remarkable that a bound on a single spectral quantity, τ, implies such a rich decomposition. The spectral transitivity τ captures a key property of real-world graphs, the abundance of triangles. While there is a rich body of empirical work on using triangles to cluster graphs, there is no theory explaining why triangles are so useful. Theorem 1.4 gives a spectral-theoretic explanation.

The spectral transitivity is a weighted version of the transitivity, which is typically around 0.1 for real-world graphs². We also note that the final algorithm that computes the decomposition focuses on triangle cuts, which is a popular empirical technique for finding clusters in social networks [3, 34].

The strong uniformity of clusters: Each cluster X_i of the spectral triadic decomposition is (constant) strongly uniform. While there is no one definition of a "community" in real-world graphs, the definition of strong uniformity captures many basic concepts. Most

² Our experiments on these real-world graphs yield similar values for the spectral transitivity.
importantly, \(X_i\) is internally dense in edges. Let \(|X_i| = k\). Then \(\Omega(k^2)\) entries in \(X_i\) are \(\Omega(1/k)\), which (by averaging) implies that a constant fraction of \(X_i\) involves vertices of degree \(\Theta(k)\). Thus, a constant fraction of \(X_i\) vertices have a constant fraction of their neighbors in \(X_i\). Moreover, the submatrix of every neighborhood in \(X_i\) is also uniform. This is quite consistent with the typical notion of a social network community.

Crucially, Theorem 1.4 gives a condition on the internal structure of the decomposition. This addresses a key weakness of the Cheeger inequality.

The coverage condition: It is natural to measure the 'mass' of a matrix by the squared Frobenius norm. The clusters of spectral triadic decomposition of Theorem 1.4 capture a constant fraction of this squared norm. This is consistent with the fact that a constant fraction of the edges in a real-world graph are not community edges \([22, 14, 19, 29]\). Any decomposition into communities would avoid these 'long-range' edges, excluding a constant fraction of the matrix mass.

Robustness to noise: Taking the above point further, the non-community edges are often modeled as stochastic (or noisy). The underlying cluster structure of a real-world graph is robust to such perturbations. Adding (say) an Erdős-Rényi graph with \(\Theta(n)\) edges can only affect the spectral transitivity by a constant factor (by changing the Frobenius norm). Theorem 1.4 would only be affected by constant factors. Note that the spectral gap, on the other hand, can dramatically increase by such noise.

Spectral graph theory inspired by real-world graphs: We consider Theorem 1.4 as opening up a new direction in spectral graph theory. At a mathematical level, Theorem 1.4 is like a Cheeger inequality, where a spectral condition implies a graph theoretic property. But all aspects of Theorem 1.4 (the notion of spectral transitivity and the properties of the decomposition) are inspired by the observed properties of real-world graphs.

2 Related Work

Spectral graph theory is a deep field of study with much advancement over the past two decades. We refer the readers to the classic textbook by Chung \([7]\), and the tutorial \([31]\) and lecture notes \([30]\) by Spielman.

The cluster structure of real-world networks has attracted attention from the early days of network science \([12, 23]\). Fortunato's (somewhat dated) survey on community detection has details of the key results \([10]\). There is no definitive model for social networks, but it is generally accepted that they have many dense clusters with sparse connections between them \([5, 21, 29]\). The study of triangles and neighborhood density goes back to the early days of social science theory \([16, 17, 4, 8]\). Early network science papers popularized the notion of clustering coefficients and transitivity as useful measures \([36]\). The use of triangles to find such clusters is a more recent development in network science. A number of contemporary results explicit use triangle information for algorithmic purposes \([28, 33, 3, 34]\). Our main theorem is inspired by these applications.

While the Cheeger inequality by itself is not useful for real-world graph clustering, local versions of spectral clustering are extremely useful \([32, 2]\). We stress that these results do not relate the graph spectrum to the partitions. But the algorithm is inspired by the proof of the Cheeger inequality. Many results on the cluster structure of real-world graphs \([21, 13]\) use the Personalized PageRank method \([2]\). Some local partitioning methods yield bounds on the internal structure of clusters \([20, 26, 27]\).

Most relevant to our work is the result of Gupta, Roughgarden, and Seshadhri \([15]\). They prove a decomposition theorem for triangle-rich graphs, as measured by graph transitivity.
Their main result shows that a triangle-dense graph can be clustered into dense clusters. The results of [15] do not have any spectral connection, nor do they provide the kind of uniformity or coverage bounds of Theorem 1.4. Our main insight is in generalizations of their proof technique, which leads to connections with graph spectrum. We adapt the [15] proof to deal with normalized adjacency matrix, which adds many complications because of the non-uniformity of entries.

3 Preliminaries

We use V, E, T to denote the sets of vertices, edges, and triangles of G, respectively. For any subgraph H of G, we use V_H, E_H, T_H to denote the corresponding sets within H. For any edge e, let $T_H(e)$ denote the set of triangles in H containing e.

For any vertex v, let d_v denote the degree of v in G.

We first define the notion of weights for edges and triangles. We will think of edges and triangles as unordered sets of vertices.

- **Definition 3.1.** For any edge $e = (u, v)$, define the weight $wt(e)$ to be $\frac{1}{d_u d_v}$. For any triangle $t = (u, v, w)$, define the weight $wt(t)$ to be $\frac{1}{d_u d_v d_w}$.

For any set S consisting solely of edges or triangles, define $wt(S) = \sum_{s \in S} wt(s)$.

We state some basic facts that relate the sum of weights to sum of eigenvalue powers.

- **Claim 3.2.** $\sum_{i \leq |S|} \lambda^2(S)_i = 2 \sum_{e \in E(S)} wt(e)$

 Proof. By the properties of the Frobenius norm of matrices, $\sum_{i \leq |S|} \lambda^2_i = \sum_{s, t \in S} A_{s,t}^2$. Note that $A_{st} = A_{st}/\sqrt{d_s d_t}$. Hence, $\sum_{s, t} A_{s,t}^2 = 2 \sum_{e=(u,v) \in E(S)} \frac{wt}{1/d_u d_v}$. (We get a 2-factor because each edge (u, v) appears twice in the adjacency matrix.)

- **Claim 3.3.** $\sum_{i \leq |S|} \lambda^3(S)_i = 6 \sum_{t \in T(S)} wt(t)$.

 Proof. Note that $\sum_{i \leq |S|} \lambda^3(S)_i$ is the trace of $(A|S|^3)_i$. The diagonal entry $(A|S|^3)_i$ is precisely $\sum_{s \in S} \sum_{s' \in S} A_{is} A_{is'} A_{s'i}$. Note that $A_{is} A_{is'} A_{s'i}$ is non-zero iff (i, s, s') form a triangle. In that case, $A_{is} A_{is'} A_{s'i} = \frac{1}{\sqrt{d_i d_s d_s'} \cdot \sqrt{d_i d_s' d_i} \cdot \sqrt{d_i d_s d_i} = wt((i, s, s'))$. We conclude that $(A|S|^3)_i = 2 \sum_{t \in T(S)^{i,i}} wt(t)$. (There is a 2 factor because every triangle is counted twice.)

Thus, $\sum_{i \leq n} \lambda^3(S)_i = \sum_{t \in T} 2 \sum_{t \in T} wt(t) = 2 \sum_{t \in T} \sum_{i \leq n} wt(t) = 6 \sum_{t \in T} wt(t)$. (The final 3 factor appears because a triangle contains exactly 3 vertices.)

- **Claim 3.4.** $\sum_{t \in T(S)} wt(t) \leq ||A|S||_2^2/6$.

 Proof. By Claim 3.3 $\sum_{t \in T(S)} wt(t) = \sum_{i \leq |S|} \lambda^3(S)_i/6$. The maximum eigenvalue of A is 1, and since $A|S|$ is a submatrix, $\lambda(S)_1 \leq 1$ (Cauchy’s interlacing theorem). Thus, $\sum_{i \leq |S|} \lambda^3(S)_i \leq \sum_{i \leq |S|} \lambda^2(S)_i = ||A|S||_2^2$. (Cauchy’s interlacing theorem)

As a direct consequence of the previous claims applied on A, we get the following characterization of the spectral triadic content in terms of the weights.

- **Lemma 3.5.** $\tau = \frac{3}{2} \sum_{t \in T} wt(t) \sum_{e \in E} wt(e)$.
While the following bound is not necessary for our main result, it is instructive to see the largest possible value of the spectral transitivity.

Lemma 3.6. Consider normalized adjacency matrices A with n vertices. The maximum value of $\tau(A)$ is $1 - 1/(n - 1)$. This value is attained for the unique strongly 1-uniform matrix, the normalized adjacency matrix of the n-clique.

Proof. First, consider the normalized adjacency matrix A of the n-clique. All off-diagonal entries are precisely $1/(n - 1)$ and A can be expressed as $(n - 1)^{-1}(11^T - I)$. The matrix A is 1-regular. The largest eigenvalue is 1 and all the remaining eigenvalues are $-1/(n - 1)$. Hence, $\sum_1^3 = 1 - (n - 1)/(n - 1)^3 = 1 - 1/(n - 1)^2$. The sum of squares of eigenvalues is $\sum_1^3 = 1 + (n - 1)/(n - 1)^2 = 1 + 1/(n - 1)$. Dividing,

$$\frac{\sum_{i \leq n} \lambda_i^3}{\sum_{i \leq n} \lambda_i^2} = 1 - 1/(n - 1).$$

Since the matrix has zero diagonal, the trace $\sum_i \lambda_i$ is zero. We will now prove the following claim.

Claim 3.7. Consider any sequence of numbers $1 = \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ such that $\forall i, |\lambda_i| \leq 1$ and $\sum \lambda_i = 0$. If $\sum_1^3 \lambda_i^3 \geq (1 - 1/(n - 1)) \sum_1^3 \lambda_i^2$, then $\forall i > 1, \lambda_i = -1/(n - 1)$.

Proof. Let us begin with some basic manipulations.

$$\sum_{i > 1} \lambda_i^3 \geq [1 - 1/(n - 1)] \sum_{i > 1} \lambda_i^2$$

$$\Rightarrow 1 + \sum_{i > 1} \lambda_i^3 \geq [1 - 1/(n - 1)] \cdot (1 + \sum_{i > 1} \lambda_i^2)$$

$$\Rightarrow \sum_{i > 1} \lambda_i^3 \geq [1 - 1/(n - 1)] \sum_{i > 1} \lambda_i^2 - 1/(n - 1).$$

For $i > 1$, define $\delta_i := \lambda_i + 1/(n - 1)$. Note that $\sum_{i > 1} \lambda_i = -1$, so $\sum_{i > 1} \delta_i = 0$. Moreover, $\forall i > 1, \delta_i \leq 1 + 1/(n - 1)$. We plug in $\lambda_i = \delta_i - 1/(n - 1)$ in (3).

$$\sum_{i > 1} \left[\delta_i - 1/(n - 1) \right]^3 \geq [1 - 1/(n - 1)] \sum_{i > 1} \left[\delta_i - 1/(n - 1) \right]^2 - 1/(n - 1)$$

$$\Rightarrow \sum_{i > 1} \left[\delta_i^3 - 3\delta_i^2/(n - 1) + 3\delta_i/(n - 1)^2 - 1/(n - 1)^3 \right]$$

$$\geq [1 - 1/(n - 1)] \sum_{i > 1} \left[\delta_i^2 - 2\delta_i/(n - 1) + 1/(n - 1)^2 \right] - 1/(n - 1).$$

Recall that $\sum_{i > 1} \delta_i = 0$. Hence, we can simplify the above inequality.

$$\sum_{i > 1} \delta_i^3 - (3/(n - 1)) \sum_{i > 1} \delta_i^2 - 1/(n - 1)^2$$

$$\geq [1 - 1/(n - 1)] \sum_{i > 1} \delta_i^2 + 1/(n - 1) - 1/(n - 1)^2 - 1/(n - 1)$$

$$\Rightarrow \sum_{i > 1} \delta_i^3 \geq [1 + 2/(n - 1)] \sum_{i > 1} \delta_i^2.$$ (Canceling terms and rearranging)

Since $\delta_i \leq (1 + 1/(n - 1))$, we get that $\sum_{i > 1} \delta_i^3 \leq [1 + 1/(n - 1)] \sum_{i > 1} \delta_i^2$. Combining with the above inequality, we deduce that $[1 + 2/(n - 1)] \sum_{i > 1} \delta_i^2 \leq [1 + 1/(n - 1)] \sum_{i > 1} \delta_i^2$. This can only happen if $\sum_{i > 1} \delta_i^2$ is zero, implying all δ_i values are zero. Hence, for all $i > 1$,

$$\lambda_i = -1/(n - 1).$$
With this claim, we conclude that any matrix A maximizing the ratio of cubes and squares of eigenvalues has a fixed spectrum. It remains to prove that a unique normalized adjacency matrix has this spectrum. We use the rotational invariance of the Frobenius norm: sum of squares of entries of A is the same as the sum of squares of eigenvalues. Thus,

$$\sum_{(u,v) \in E} \frac{2}{d_u d_v} = 1 + \frac{1}{n-1} = \frac{n}{n-1}. \quad (4)$$

Observe that $\frac{2}{d_u d_v} \geq \frac{1}{(d_u (n-1))} + \frac{1}{(d_v (n-1))}$, since all degrees are at most $n-1$. Summing this inequality over all edges,

$$\sum_{(u,v) \in E} \frac{2}{d_u d_v} \geq \sum_{v \in V} \sum_{u \in N(v)} \frac{1}{d_v(n-1)} = \sum_{v \in V} \frac{d_v}{d_v(n-1)} = \frac{n}{n-1}. \quad (5)$$

Hence, for (4) to hold, for all edges (u,v), we must have the equality $\frac{2}{d_u d_v} = \frac{1}{(d_u (n-1))} + \frac{1}{(d_v (n-1))}$. That implies that for all edge (u,v), $d_u = d_v = n-1$. So all vertices have degree $(n-1)$, and the graph is an n-clique. \[\Box\]

We will need the following “reverse Markov inequality” for some intermediate proofs.

\begin{lemma}
Consider a random variable Z taking values in $[0,b]$. If $E[Z] \geq \sigma b$, then $\Pr[Z \geq \sigma b/2] \geq \frac{\sigma}{2}$.
\end{lemma}

\begin{proof}
In the following calculations, we will upper bound the conditional expectation by the maximum value (under that condition).

$$\sigma b \leq E[Z] = \Pr[Z \geq \sigma b/2] \cdot E[Z|Z \geq \sigma b/2] + Pr[Z \leq \sigma b/2] \cdot E[Z|Z \leq \sigma b/2] + \frac{1}{2} \cdot Pr[Z^2 \geq \sigma b/2] \cdot b \geq \frac{\sigma}{2}$$

We rearrange to complete the proof. \[\Box\]

\section{4 Cleaned graphs and extraction}

For convenience, we set $\varepsilon = \tau/6$.

\begin{definition}
A connected subgraph H is called clean if $\forall e \in E(H)$, $\text{wt}(T_H(e)) \geq \varepsilon \text{wt}(e)$.
\end{definition}

\begin{algorithm}
\textbf{Extract}(H)
\begin{enumerate}
\item Pick $v \in V(H)$ that minimizes d_v.
\item Construct the set $L := \{u|(u,v) \in E(H), d_u \leq 2 \varepsilon^{-1} d_v\}$ (L is the set of low degree neighbors of v in H.)
\item For every vertex $w \in V(H)$, define ρ_w to be the total weight of triangles of the form (w,u,u') where $u, u' \in L$.
\item Sort the vertices in decreasing order of ρ_w, and construct the “sweep cut” C to be the smallest set satisfying $\sum_{w \in C} \rho_w \geq (1/2) \sum_{w \in V(H)} \rho_w$.
\item Output $X := \{v\} \cup L \cup C$.
\end{enumerate}
\end{algorithm}

The main theorem of this section follows.
Theorem 4.2. Suppose the subgraph H is connected and clean. Let X denote the output of the procedure $\text{Extract}(H)$. Then

$$\sum_{t \in T(H), t \subseteq X} \text{wt}(t) \geq \left(\varepsilon^2/2000\right) \sum_{t \in T(H), t \cap X \neq \emptyset} \text{wt}(t)$$

(The triangle weight contained inside X is a constant fraction of the triangle weight incident to X.)

Moreover, $A|_X$ is strongly $\delta\varepsilon^{12}$-uniform.

We will need numerous intermediate claims to prove this theorem. We use v, L, and C as defined in $\text{Extract}(H)$. We use N to denote the neighborhood of v in H. Note that $L \subseteq N$.

For any vertex $u \in N$, we define the set of partners $P(u)$ to be $\{w : (u,v,w) \in T_H\}$.

The following lemma is an important tool in our analysis.

Lemma 4.3. For any $u \in N$, $\sum_{w \in P(u) \cap L} d_{tw}^{-1} \geq \varepsilon/2$.

Proof. Let $e = (u,v)$. Since H is clean, $\text{wt}(T_H(e)) \geq \varepsilon \text{wt}(e)$. Expanding out the definition of weights,

$$\sum_{w: (u,v,w) \in T_H} \frac{1}{d_vd_w} \geq \frac{\varepsilon}{d_v} \implies \sum_{w \in P(u)} d_{tw}^{-1} \geq \varepsilon.$$ \hspace{1cm} (9)

Note that L (as constructed in $\text{Extract}(H)$) is the subset of N consisting of vertices with degree at most $2\varepsilon^{-1}d_v$. For $w \in N \setminus L$, we have the lower bound $d_w \geq 2\varepsilon^{-1}d_v$. Hence,

$$\sum_{w \in N \setminus L} d_{tw}^{-1} \leq |N \setminus L| (\varepsilon/2)d_v^{-1} \leq d_v \times (\varepsilon/2)d_v^{-1} = \varepsilon/2.$$ \hspace{1cm} (10)

In the calculation below, we split the sum of (9) into the contribution from L and from outside L. We apply (10) to bound the latter contribution.

$$\varepsilon \leq \sum_{w \in P(u)} d_{tw}^{-1} \leq \sum_{w \in P(u) \cap L} d_{tw}^{-1} + \sum_{w \in N \setminus L} d_{tw}^{-1} \leq \sum_{w \in P(u) \cap L} d_{tw}^{-1} + \varepsilon/2.$$ \hspace{1cm} (11)

Claim 4.4. $|L| \geq \varepsilon d_v/2$

Proof. Since H is connected, there must exist some edge $e = (u,v) \in E(H)$. By Lemma 4.3,

$$\sum_{w \in P(u) \cap L} d_{tw}^{-1} \geq \varepsilon/2.$$ Hence, $\sum_{w \in L} d_{tw}^{-1} \geq \varepsilon/2$. Since v is the vertex in $V(H)$ minimizing d_v, for any $w \in V(H)$, $d_w \geq d_v$. Thus,

$$\varepsilon/2 \leq \sum_{w \in L} d_{tw}^{-1} \leq \sum_{w \in L} d_{tw}^{-1} = |L|d_v^{-1}.$$ \hspace{1cm} (12)

Claim 4.5. $\sum_{e \in E(H), e \subseteq L} \text{wt}(e) \geq \varepsilon^2/8$.

Proof. By Lemma 4.3, $\forall w \in L$, $\sum_{w' \in P(w) \cap L} d_{w'w}^{-1} \geq \varepsilon/2$. We multiply both sides by d_{w}^{-1} and sum over all $w \in L$.

$$\sum_{w \in L} \sum_{w' \in P(w) \cap L} (d_w d_{w'})^{-1} \geq (\varepsilon/2) \sum_{w' \in L} d_{w'}^{-1}.$$ \hspace{1cm} (13)

By Lemma 4.3, $\sum_{w \in L} d_{w}^{-1} \geq \varepsilon/2$. Note that $w' \in P(w)$ only if $(w, w') \in E(H)$. Hence,

$$\sum_{w \in L} \sum_{w' \in L \text{ s.t. } (w, w') \in E(H)} \text{wt}(w, w') \geq \varepsilon^2/4.$$ Note that the summation counts all edges twice, so we divide by 2 to complete the proof.
We now come to the central calculations of the main proof. Recall, from the description of Extract, that \(\rho_w \) is the total triangle weight of the triangles \((w, u, u')\), where \(u, u' \in L\). We will prove that \(\sum_w \rho_w \) is large; moreover, there are a few entries that dominate the sum. The latter bound is crucial to arguing that the sweep set \(C\) is not too large.

\[\sum_{w \in V(H)} \rho_w \geq \varepsilon^3/8. \]

Proof. Note that \(\sum_{w \in V(H)} \rho_w \) is equal to \(\sum_{e \in E(H), c \subseteq L} \text{wt}(T_H(e)) \). Both these expressions give the total weight of all triangles in \(H\) that involve two vertices in \(L\). Since \(H\) is clean, for all edges \(e \in E(H)\), \(\text{wt}(T_H(e)) \geq \varepsilon \text{wt}(e) \). Hence, \(\sum_{e \in E(H), c \subseteq L} \text{wt}(T_H(e)) \geq \varepsilon \sum_{e \in E(H), c \subseteq L} \text{wt}(e) \). Applying Claim 4.5, we can lower bound the latter by \(\varepsilon^3/8 \). □

We now show that a few \(\rho_w \) values dominate the sum, using a somewhat roundabout argument. We upper bound the sum of square roots.

\[\sum_{w \in V(H)} \sqrt{\rho_w} \leq 2\varepsilon^{-1} \sqrt{d_w} \]

Proof. Let \(c_w \) be the number of vertices in \(L\) that are neighbors (in \(H\)) of \(w\). Note that for any triangle \((u, u', w)\) where \(u, u' \in L\), both \(u\) and \(u'\) are common neighbors of \(w\) and \(v\). The number of triangles \((u, u', w)\) where \(u, u' \in L\) is at most \(c_w^2\). The weight of any triangle in \(H\) is at most \(d_w^{-3}\), since \(d_w\) is the lowest degree (in \(G\)) of all vertices in \(H\). As a result, we can upper bound \(\rho_w \leq d_w^{-3}c_w^2 \).

Taking square roots and summing over all vertices,

\[\sum_{w \in V(H)} \sqrt{\rho_w} \leq d_w^{-3/2} \sum_{w \in V(H)} c_w \]

Note that \(\sum_{w \in V(H)} c_w \) is exactly the sum over \(u \in L\) of the degrees of \(u\) in the subgraph \(H\). Every edge incident to \(u \in L\) gives a unit contribution to the sum \(\sum_{w \in V(H)} c_w\). By definition, every vertex in \(L\) has degree in \(H\) at most \(2\varepsilon^{-1}d_w\). The size of \(L\) is at most \(d_w\).

Hence, \(\sum_{w \in V(H)} c_w \leq 2\varepsilon^{-1}d_w^2 \). Plugging into (14), we deduce that \(\sum_{w \in V(H)} \sqrt{\rho_w} \leq 2\varepsilon^{-1} \sqrt{d_w}. \) □

We now prove that the sweep cut \(C\) is small, which is critical to proving Theorem 4.2.

\[|C| \leq 144\varepsilon^{-5}d_w. \]

Proof. For convenience, let us reindex vertices so that \(\rho_1 \geq \rho_2 \geq \rho_3 \ldots \). Let \(r \leq n\) be an arbitrary index. Because we index in non-increasing order, note that \(\sum_{j \leq n} \rho_j \geq r\rho_r \).

Furthermore, \(\forall j > r, \rho_j \leq \rho_r \).

\[\sum_{j > r} \rho_j \leq \sqrt{\rho_r} \sum_{j > r} \sqrt{\rho_j} \leq \sqrt{\frac{\sum_{j \leq n} \rho_j}{r}} \sum_{j \leq n} \sqrt{\rho_j} = \left[\frac{\sum_{j \leq n} \sqrt{\rho_j}}{\sqrt{r} \cdot \sqrt{n}} \right] \sum_{j \leq n} \rho_j \]

(15)

Observe that Claim 4.7 gives an upper bound on the numerator, while Claim 4.6 gives a lower bound on (a term in) the denominator. Plugging those bounds in (15),

\[\sum_{j > r} \rho_j \leq 2\varepsilon^{-1} \sqrt{d_w} \sum_{j \leq n} \rho_j \leq \frac{1}{\sqrt{r} \cdot \varepsilon^{3/2}} \cdot 6\sqrt{d_u} \cdot \varepsilon^{3/2} \sum_{j \leq n} \rho_j \]

(16)

Suppose \(r > 144\varepsilon^{-5}d_w\). Then \(\sum_{j > r} \rho_j < (1/2) \sum_{j \leq n} \rho_j \). The sweep cut \(C\) is constructed with the smallest value of \(r\) such that \(\sum_{j > r} \rho_j < (1/2) \sum_{j \leq n} \rho_j \). Hence, \(|C| \leq 144\varepsilon^{-5}d_w\). □
A spectral theorem on the cluster structure of real-world graphs

An additional technical claim we need bounds the triangle weight incident to a single vertex.

Claim 4.9. For all vertices \(u \in V(H) \), \(\text{wt}(T_H(u)) \leq (2d_v)^{-1} \).

Proof. Consider edge \((u, w) \in E(H) \). We will prove that \(\text{wt}(T_H((u, w))) \leq d^{-1}_w d^{-1}_v \). Recall that \(d_v \) is the smallest degree among vertices in \(H \). Furthermore, \(|T_H((u, w))| \leq d_w \), since the third vertex in a triangle containing \((u, w) \) is a neighbor of \(w \).

\[
\text{wt}(T_H((u, v))) = \sum_{z : (z, u, w) \in T(H)} d_z d_w d_v \leq \frac{1}{d_u d_v} \sum_{z : (z, u, w) \in T(H)} \frac{1}{d_w} \leq \frac{1}{d_u d_v} \frac{d_w}{d_v} = \frac{1}{d_u d_v}
\]

We now bound \(\text{wt}(T_H(u)) \) by summing over all neighbors of \(u \) in \(H \).

\[
\text{wt}(T_H(u)) = (1/2) \sum_{w : (u, w) \in E(H)} \text{wt}(T_H((u, w))) \leq (1/2) \sum_{w : (u, w) \in E(H)} d_u d_v = \frac{1}{2d_v} \sum_{w : (u, w) \in E(H)} \frac{1}{d_u} \leq \frac{1}{2d_v} \times \frac{d_u}{d_v} = \frac{1}{2d_v}.
\]

\[
4.1 \quad \text{The proof of Theorem 4.2}
\]

Proof. (of Theorem 4.2) By construction of \(X \) as \(\{v\} \cup L \cup C \), all the triangles of the form \((w, u, u') \), where \(w \in C \) and \(u, u' \in L \), are contained in \(X \). The total weight of such triangles is at least \(\sum_{v \leq n} p_v / 2 \), by the construction of \(C \). By Claim 4.6, \(\sum_{v \leq n} p_v / 2 \geq \varepsilon_1^3 / 16 \).

Let us now bound that total triangle weight incident to \(X \) in \(H \). Observe that \(|X| = 1 + |L| + |C| \) which is at most \(1 + d_v + \varepsilon^{-5} 144 d_v \), by Claim 4.8. We can further bound \(|X| \leq \varepsilon^{-5} 146 d_v \). By Claim 4.9, the total triangle weight incident to a vertex is at most \((2d_v)^{-1} \). Hence, the total triangle weight incident to all of \(X \) is at most \(73 \varepsilon^{-5} \).

Thus, the triangle weight contained in \(X \) is at least \(\varepsilon^3 / 2000 \times (2d_v)^{-1} \) times the triangle weight incident to \(X \). The ratio is at least \(\varepsilon^5 / 2000 \), completing the proof of the first statement.

Proof of uniformity of \(\mathcal{A}_X \): We first prove a lower bound on the uniformity of \(\mathcal{A}_X \).

For convenience, let \(B \) denote the set \(\{e|e \in E(H), e \subseteq L\} \). By Claim 4.5, \(\sum_{e \in B} \text{wt}(e) \geq \varepsilon^2 / 8 \).

There are at most \(\binom{d_v}{2} \) \((d_v/2) \) edges in \(B \). For every edge \(e, \text{wt}(e) \leq 1/d_v \). Let \(k \) denote the number of edges in \(B \) whose weight is at least \(\varepsilon^2 / 16 \).

\[
\frac{\varepsilon^2}{8} \leq \sum_{e \in B} \text{wt}(e) \leq \sum_{e \in B} \text{wt}(e) / \varepsilon^2 d_v^{-2} / 16 \leq |B| \times \varepsilon^2 d_v^{-2} / 16 + k d_v^{-2} \leq d_v^2 + 2 d_v^{-2} / 16 + k d_v^{-2} \leq \varepsilon^2 / 16 + k d_v^{-2}.
\]

Rearranging, \(k \geq \varepsilon^2 d_v^2 / 16 \).

Hence, there are at least \(\varepsilon^2 d_v^2 / 16 \) edges contained in \(X \) with weight at least \(\varepsilon^2 d_v^{-2} / 16 \).

Consider the random variable \(Z \) that is the weight of a uniform random edge contained in \(X \). Since \(|X| \leq \varepsilon^{-5} 144 d_v \), the number of edges in \(X \) is at most \(\varepsilon^{-10} (144)^2 d_v^2 \). So,

\[
\mathbb{E}[Z] \geq \frac{\varepsilon^2 d_v^2 / 16}{\varepsilon^{-10} (144)^2 d_v^2} \times \varepsilon^2 d_v^{-2} / 16 \geq 2 \delta \varepsilon^{14} d_v^{-2}.
\]
The maximum value of Z is the largest possible weight of an edge in $\mathcal{E}(H)$, which is at most d_v^{-2}. Applying the reverse Markov bound of Lemma 3.8, $\Pr[Z \geq \delta \varepsilon^4 d_v^{-2}] \geq \delta \varepsilon^{14}$. Thus, an ε^{14} fraction of edges in $|X|$ have weight at least $\delta \varepsilon^4 d_v^{-2} \geq \delta \varepsilon c/|X|^2$. Moreover, every edge has weight at most $d_v^{-2} \leq 1/(\delta \varepsilon c|X|^2)$. So we prove the uniformity of \mathcal{A}_X.

The largest possible weight for any edge in $\mathcal{E}(H)$ is d_v^{-2}. The size of $|X|$ is at least d_v and at most $\varepsilon^{-5} 144 d_v$. Hence, \mathcal{A}_X is at least $\delta \varepsilon^{12}$-uniform.

Proof of strong uniformity: For strong uniformity, we need to repeat the above argument within neighborhoods in X. We prove in the beginning of this proof that the total triangle weight inside X is at least $\varepsilon^3/16$. We also proved that $|X| \leq 146 \varepsilon^{-5} d_v$. Consider the random variable Z that is the triangle weight contained in X incident to a uniform random vertex in X. Note that $\mathbb{E}[Z] \geq (\varepsilon^3/16)/(146 \varepsilon^{-5} d_v) \geq 2 \delta \varepsilon^8 d_v^{-1}$. By Claim 4.9, Z is at most $(2d_v)^{-1}$. Applying Lemma 3.8, $\Pr[Z \geq \delta \varepsilon^8 d_v^{-1}] \geq \delta \varepsilon^8$. This means that at least $\delta \varepsilon^8 |X|$ vertices in X are incident to at least $\delta \varepsilon^8 d_v^{-1}$ triangle weight inside X.

Consider any such vertex u. Let $N(u)$ be the neighborhood of u in X. Every edge e in $N(u)$ forms a triangle with u with weight $\text{wt}(e)/d_u$. Hence, noting that $d_u \geq d_v$,

$$\sum_{e \subseteq N(u)} \text{wt}(e) d_u^{-1} \geq \delta \varepsilon^8 d_u^{-1} \implies \sum_{e \subseteq N(u)} \text{wt}(e) \geq \delta \varepsilon^8. \quad (18)$$

There are at most $|X|^2 \leq \varepsilon^{-10}(146)^2 d_v^2$ edges in $N(u)$. Let Z denote the weight of a uniform random edge in $N(u)$. Note that $\mathbb{E}[Z] \geq \delta \varepsilon^8/(\varepsilon^{-10}(146)^2 d_v^2) \geq 2 \delta \varepsilon^8 d_v^{-2}$. The maximum weight of an edge is at most d_v^{-2}. By Lemma 3.8, at least $\delta \varepsilon^{18}$ fraction of edges in $N(u)$ have a weight of at least $\delta \varepsilon^{18} d_v^{-2}$. Since $|N(u)| \leq |X| \leq \varepsilon^{-5} 146 d_v$, this implies that $N(u)$ is also $\delta \varepsilon^{\varepsilon}$-uniform. Hence, we prove strong uniformity as well.

5 Obtaining the decomposition

Algorithm 2 Decompose(G)

1. Initialize X to be an empty family of sets, and initialize subgraph $H = G$.
2. while H is non-empty do
 3. while H is not clean do
 4. Remove an edge $e \in E(H)$ from H such that $\text{wt}(\mathcal{T}_H(e)) < (\varepsilon) \text{wt}(e)$.
 5. end while
 6. Add output $\text{Extract}(H)$ to X.
 7. Remove these vertices from H.
8. end while

We first describe the algorithm that obtains the decomposition promised in Theorem 1.4. We partition all the triangles of G into three sets depending on how they are affected by $\text{Decompose}(G)$. (i) The set of triangles removed by the cleaning step of Step 4, (ii) the set of triangles contained in some $X_i \in X$, or (iii) the remaining triangles. Abusing notation, we refer to these sets as T_C, T_X, and T_R respectively. Note that the triangles of T_R are the triangles “cut” when X_i is removed.

\triangleright **Claim 5.1.** $\text{wt}(T_C) \leq (\tau/6) \sum_{e \in E} \text{wt}(e)$.
Theorem 4.2, each

consider an edge e removed at Step 4 of Decompose. Recall that ε is set to $\tau/6$. At

that removal, the total weight of triangles removed (cleaned) is at most $(\tau/6)\text{wt}(e)$. An edge

can be removed at most once, so the total weight of triangles removed by cleaning is at most

$(\tau/6) \sum_{e \in E} \text{wt}(e)$. \hfill \triangleright

\textbf{Proof.} (of Theorem 1.4) Let us denote by H_1, H_2, \ldots, H_k the subgraphs of which Extract

is called. Let the output of Extract(H_i) be denoted X_i. By the uniformity guarantee of

Theorem 4.2, each $A|_{X_i}$ is $\delta \tau^c$-uniform.

It remains to prove the coverage guarantee. We now sum the bound of Theorem 4.2

over all X_i. (For convenience, we expand out ε as $\tau/6$ and let δ' denote a sufficiently small

constant.)

\begin{equation}
\sum_{i \leq k} \sum_{t \in T(H_i), t \subseteq X_i} \text{wt}(t) \geq (\delta' \tau^8) \sum_{i \leq k} \sum_{t \in T(H_i), t \cap X \neq \emptyset} \text{wt}(t).
\end{equation}

The LHS is precisely $\text{wt}(T_X)$. Note that a triangle appears at most once in the double

summation in the RHS. That is because if $t \cap X_i \neq \emptyset$, then t is removed when X_i is removed.

Since H_i is always clean, the triangles of T_G cannot participate in this double summation.

Hence, the RHS summation is $\text{wt}(T_X) + \text{wt}(T_R)$ and we deduce that

\begin{equation}
\text{wt}(T_X) \geq \delta' \tau^6(\text{wt}(T_X) + \text{wt}(T_R))
\end{equation}

Note that $\text{wt}(T_c) + \text{wt}(T_x) + \text{wt}(T_x) = \sum_{t \in T} \text{wt}(t)$. There is where the definition of τ

makes its appearance. By Lemma 3.5, we can write the above equality as $\text{wt}(T_c) + \text{wt}(T_x) + \text{wt}(T_x) =

(\tau/3) \sum_{e \in E} \text{wt}(e)$. Applying Claim 5.1, (20), and the relation of edge weights to the Frobenius

norm (Claim 3.2),

\begin{equation}
(\delta' \tau^8)^{-1} \text{wt}(T_X) \geq (\tau/6) \sum_{e \in E} \text{wt}(e) \implies \text{wt}(T_X) \geq \delta' \tau^c \|A\|_2^2 \quad \text{by Claim 3.2}
\end{equation}

By Claim 3.4, $\sum_{i \leq k} \|A|_{X_i}\|_2^2 \geq \text{wt}(T_X)$, completing the proof of the coverage bound. \hfill \triangleright

\section{Algorithmics and implementation}

We discuss theoretical and practical implementations of the procedures computing the

decomposition of Theorem 1.4. The main operation required is a triangle enumeration of

G; there is a rich history of algorithms for this problem. The best known bound for sparse

graph is the classic algorithm of Chiba-Nishizeki that enumerates all triangles in $O(m\alpha)$
time, where α is the graph degeneracy.

We first provide a formal theorem providing a running time bound. We do not explicitly

describe the implementation through pseudocode, and instead explain the main details in

the proof.

\textbf{Theorem 6.1.} There is an implementation of Decompose(G) whose running time is

$O(R + (m + n + T) \log n)$, where R is the running time of listing all triangles. The space

required is $O(T)$ (where T is the triangle count).

\textbf{Proof.} We assume an adjacency list representation where each list is stored in a dictionary

data structure with logarithmic time operations (like a self-balancing binary tree).

We prepare the following data structure that maintains information about the current

subgraph H. We initially set $H = G$. We will maintain all lists as hash tables so that

elementary operations on them (insert, delete, find) can be done in $O(1)$ time.
These data structures can be initialized by enumerating all triangles, indexing them, and preparing all the lists. This can be done in $O(R)$ time.

We describe the process to remove an edge from H. When edge e is removed, we go over all the triangles in $T(H)$ containing e. For each such triangle t and edge $e' \in t$, we remove t from the triangle list of e'. We then update $\text{wt}(T_H(e'))$ by reducing it by $\text{wt}(t)$. If $\text{wt}(T_H(e'))$ is less than $\text{wt}(e)$, we add it to U. Finally, if the removal of e removes a vertex v from $V(H)$, we remove v from the priority queue Q. Thus, we can maintain the data structures. The running time is $O(|T_H(e)|)$ plus an additional $\log n$ for potentially updating Q. The total running time for all edge deletes is $O(T + n \log n)$.

With this setup in place, we discuss how to implement Decompose. The cleaning operation in Decompose can be implemented by repeatedly deleting edges from the list U, until it is empty.

We now discuss how to implement Extract. We will maintain a max priority queue R maintaining the values $\{\rho_w\}$. Using Q as defined earlier, we can find the vertex v of minimum degree. By traversing its adjacency list in H, we can find the set L. We determine all edges in L by traversing the adjacency lists of all vertices in L. For each such edge e, we enumerate all triangles in H containing e. For each such triangle t and $w \in t$, we will update the value of ρ_w in R.

We now have the total $\sum_w \rho_w$ as well. We find the sweep cut by repeatedly deleting from the max priority queue R, until the sum of ρ_w values is at least half the total. Thus, we can compute the set X to be extracted. The running time is $O((|X| + |E(X)| + |T(X)|) \log n)$, where $E(X), T(X)$ are the set of edges and triangles incident to X.

Overall, the total time for all the extractions and resulting edge removals is $O((n + m + T) \log n)$. The initial triangle enumeration takes R time. We add to complete the proof.

References

A spectral theorem on the cluster structure of real-world graphs

