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May 16, 2023

Abstract

We propose a constructive approach to building temporal point processes that
incorporate dependence on their history. The dependence is modeled through the
conditional density of the duration, i.e., the interval between successive event times,
using a mixture of first-order conditional densities for each one of a specific number of
lagged durations. Such a formulation for the conditional duration density accommo-
dates high-order dynamics, and it thus enables flexible modeling for point processes
with memory. The implied conditional intensity function admits a representation
as a local mixture of first-order hazard functions. By specifying appropriate fami-
lies of distributions for the first-order conditional densities, with different shapes for
the associated hazard functions, we can obtain either self-exciting or self-regulating
point processes. From the perspective of duration processes, we develop a method to
specify a stationary marginal density. The resulting model, interpreted as a depen-
dent renewal process, introduces high-order Markov dependence among identically
distributed durations. Furthermore, we provide extensions to cluster point processes.
These can describe duration clustering behaviors attributed to different factors, thus
expanding the scope of the modeling framework to a wider range of applications.
Regarding implementation, we develop a Bayesian approach to inference and model
checking. We investigate point process model properties analytically, and illustrate
the methodology with both synthetic and real data examples.
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Sansó (bruno@soe.ucsc.edu) are Professors in the Department of Statistics, University of California, Santa
Cruz. This research is part of the Ph.D. dissertation of X. Zheng, completed at University of California,
Santa Cruz.

1



1 Introduction

Temporal point processes are stochastic models for sequences of random events that occur

in continuous time, with irregular durations, i.e., intervals between successive arrival times.

Throughout this article, event time and arrival time will be used interchangeably for the

occurrence time of an event. Data corresponding to point patterns are common in a wide

range of applications, such as earthquake occurrences (Ogata, 1988), recurrent events (Cook

et al., 2007), financial high frequency trading and orders (Hautsch, 2011), and neural

spike trains (Tang and Li, 2021), to name a few. For many point patterns, it is believed

that occurrence of a future event depends on the past. This motivates the use of point

processes with memory, for example, the Hawkes process (Hawkes, 1971) with full memory,

or renewal processes with lagged dependence. The goal of this article is to propose a

modeling framework for point processes with high-order memory, relaxing the independent

duration assumption in the traditional renewal process, and including the ability to model

duration clustering behaviors that are present in applications such as health care (Yang

et al., 2018), climatology (Cowpertwait, 2001), and finance (O’Hara, 1995).

A popular way to model point process dependence is by specifying the process condi-

tional intensity, namely, the instantaneous event rate conditional on the process history.

Under this approach, the Hawkes process has been used extensively in the literature. The

conditional intensity of the Hawkes process is decomposed into a baseline intensity and a

triggering component. The triggering component is commonly specified through an excita-

tion function, such as an exponential or power law kernel. As a result, a new event causes a

jump in the conditional intensity, and thus the Hawkes process is said to be a self-exciting

point process. We refer to Reinhart (2018) and references therein for a review.

This article explores an alternative approach for modeling point processes with mem-

ory. Specifically, we consider models for the durations. As these correspond to discrete-time
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stochastic processes, a time series model for dependent durations induces conditional den-

sities on the arrival times. We refer to the conditional densities as conditional arrival densi-

ties, and notice that they uniquely determine the distribution of the resulting point process

(Daley and Vere-Jones, 2003). In fact, a point process can be equivalently characterized by

its conditional intensity or the conditional arrival densities. The latter approach benefits

from the vast literature on conditional density modeling. In contrast, building models for

conditional intensities requires mathematical validation of the proposed intensity function

to obtain a well-defined point process model. Regarding inference, both approaches involve

integration to obtain the corresponding normalizing term of the likelihood function. The

conditional intensity approach requires integration of the intensity function, while the inte-

gration required for duration models is more efficient as it involves a conditional cumulative

distribution function (c.d.f.). Thus, constructing point processes using duration models,

usually coupled with a limited memory assumption, can be computationally attractive. In

Section 2, we provide more detailed discussion of the two approaches.

Statistical models for durations date back at least to Wold (1948) who proposed a first-

order Markov chain with an additive model representation. Subsequent developments (Ja-

cobs and Lewis, 1977; Gaver and Lewis, 1980) investigate specific families for the duration

process stationary marginal distribution. Since durations are positive-valued, a structure

with an additive error process is in general restrictive. A popular class of models in finance

is built from the autoregressive conditional duration (ACD) structure (Engle and Russell,

1998). The ACD model assumes independent and identically distributed (i.i.d.) multiplica-

tive errors for the durations, with each multiplicative factor modeled as a linear function

of the past factors and durations. Extensions of this class of models provide additional

flexibility through the multiplicative factor specification or the error distribution choice.

We refer to Pacurar (2008) and Bhogal and Thekke Variyam (2019) for comprehensive

reviews. For these models, the conditional intensity function is obtained by scaling the
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baseline hazard function with multiplicative factors. The baseline hazard corresponds to

the error distribution, typically chosen within a parametric family. A restriction of ACD

models is their limited capacity to handle non-linear dynamics. Regarding computation,

the ACD model structure complicates inference when the assumption of high-order memory

is necessary. In particular, estimating the correlated multiplicative factors can be difficult

and may require approximations (Strickland et al., 2006).

A different approach to modeling duration dependence involves mixture transition dis-

tribution (MTD) models (Le et al., 1996), which describe the transition density of a time

series as a weighted combination of first-order conditional densities for each one of a spec-

ified number of lags. Hassan and Lii (2006) propose a bivariate MTD model for the joint

conditional distribution of the duration and a continuous mark, i.e., a random variable

associated with the point events. Hassan and El-Bassiouni (2013) extend the model to

include a discrete mark. However, this work does not investigate point process properties,

such as stationarity, and it requires certain families of distributions for the duration and

mark, which can be practically restrictive. Hassan and Lii (2006) point out that the choice

of parameterization is non-trivial to ensure model stability and prediction capability.

In this article, we introduce a class of temporal point process models that builds on the

idea of modeling duration process dynamics with MTD models. In general, it is difficult

to model dependent, positive-valued durations using traditional high-order autoregressive

models without transforming the durations. The challenges include model inference un-

der a constrained, possibly high-dimensional parameter space. For example, coefficients

need to be restricted to avoid negative-valued durations, and practical implementation for

stationarity conditions is difficult. The aforementioned work that uses MTD models at-

tempts to handle the former issue, albeit under restrictive structures. A key contribution

of the present article is the development of an MTD point process (MTDPP) constructive

framework that provides flexible modeling of high-order dynamics for the duration process,
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without parameter constraints. The framework allows modeling for various types of prac-

tically relevant point patterns, such as those with self-excitation or self-regulation effects.

In addition, it provides efficient implementation of model inference. The MTDPP likeli-

hood evaluation grows linearly with the number of events, thus delivering computational

scalability, especially for large point patterns with high-order memory.

Within the MTDPP framework, we provide easily-implemented conditions to construct

point processes given a pre-specified family for the duration marginal distribution, and ob-

tain a limit result for the mean value function analogous to that for renewal processes. The

resulting class of models has identically distributed, high-order dependent durations, and

can be interpreted as a class of dependent renewal processes. This relaxes the assumption

of independent durations that may be restrictive in practice.

Moreover, we develop a model extension for duration clustering, using a two-component

mixture model for the conditional duration density. In particular, one component of the

mixture corresponds to an independent duration model that accounts for external factors.

The other component is an MTDPP that models self-excitation. Point patterns of this

type can be found, for instance, in hospital emergency department visits of patients, where

long durations may be observed between clusters of multiple visits in short bursts (Yang

et al., 2018), and in financial markets where fluctuation can be caused by either external or

internal processes (Filimonov and Sornette, 2012). The model extension accounts for the

possibility of two different factors that may drive the point process dynamics.

The rest of the article is organized as follows. Section 2 introduces the MTDPP frame-

work, including study of model properties, approaches to constructing various types of

MTDPP models, and the extension to cluster point processes. Section 3 develops the

Bayesian model formulation, Markov chain Monte Carlo (MCMC) inference, and a model

validation method. In Section 4, we illustrate the proposed methodology with synthetic

and real data examples. Finally, Section 5 concludes with a summary and discussion.
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2 Temporal MTD point processes

We consider a temporal point process N(t) defined on the positive half-line R+, where

N(t) =
∑

i≥1 1{ti≤t} is a right-continuous, integer-valued function, and t1, t2, · · · ∈ R+

denote the event times. A temporal point process is usually modeled by its conditional

intensity, λ∗(t) ≡ λ(t |Ht) = limdt→0E[dN(t) |Ht]/dt, where dN(t) = N(t + dt) − N(t),

and Ht is the process history up to but not including t. The point process has memory

if λ∗(t) depends on the process history. A Poisson process is an example of a memoryless

process. A renewal process has limited memory, in particular, Ht = tN(t), where tN(t) is the

most recent arrival time before t. In contrast, the evolution of a Hawkes process depends

on the entire past. Given an observed point pattern {ti}ni=1 over (0, T ), the likelihood is

p(t1, . . . , tn) =

(
n∏
i=1

λ∗(ti)

)
exp

(
−
∫ T

0

λ∗(t)dt

)
, (1)

where the last component of (1) corresponds to the normalizing term, which is typically

analytically intractable, especially when λ∗(t) has a complicated form.

An alternative way to characterize the point process probability structure is to use

the collection of conditional arrival densities, denoted as p∗i (t) ≡ pi(t |Ht), supported on

(ti−1,∞), with associated conditional survival functions S∗i (t) = 1 −
∫ t
ti−1

p∗i (u)du. When

i = 1, p∗1(t) ≡ p1(t) and S∗1(t) = 1−
∫ t

0
p∗1(u)du, where p1 is the marginal density of the first

event time. Now, the likelihood for point pattern {ti}ni=1 observed in (0, T ) is given by

p(t1, . . . , tn) =

(
n∏
i=1

p∗i (ti)

)(
1−

∫ T

tn

p∗n+1(u)du

)
. (2)

Similar to (1), the last component of (2) defines the likelihood normalizing term, i.e.,

the probability of no events occurring in the interval (tn, T ). Since the normalizing term

corresponds to a conditional c.d.f., it may be available in closed-form for particular model
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formulations for the conditional arrival densities.

Using the collection of conditional densities p∗i and survival functions S∗i , we can define

the hazard functions as λ∗i (t) = p∗i (t)/S
∗
i (t), for i = 1, . . . , n. The hazard function is

naturally interpreted as the conditional instantaneous event rate. Consequently, given

the set of arrival times, we can write the conditional intensity of the process as λ∗(t) =

λ∗i (t), ti−1 < t ≤ ti, 1 ≤ i ≤ n. Since p∗i (t) = λ∗i (t) exp(−
∫ t
ti−1

λ∗i (u)du), we can use the

form in (2) to recover the likelihood in (1).

Although there is an one-to-one correspondence between modeling the conditional in-

tensity and the conditional arrival densities, the computational cost may be different. For

instance, for the Hawkes process, the conditional intensity involves the sum of the exci-

tation function over all points from the past, which poses challenges to model estimation

(Veen and Schoenberg, 2008), and the likelihood evaluation cost grows quadratically with

the number of observed points. Point process models defined using conditional arrival den-

sities typically assume limited memory, with an autoregressive structure on the durations.

The resulting likelihood based on (2) is similar to that of an autoregressive time series, with

an extra term that corresponds to a survival function. In general, the likelihood formulation

in (2) facilitates model-based inference for temporal point processes with memory.

2.1 Conditional duration density

Consider an ordered sequence of arrival times 0 = t0 < t1 < · · · < tn < T , and denote

the durations by xi = ti − ti−1, for i = 1, . . . , n. The memory of the process is modeled

by specifying an MTD structure for the conditional duration densities. In particular, the

density of xi conditional on the past L durations is modeled as a weighted combination

of first-order transition densities, each of which depends on a specific past duration, i.e.,

f(xi |xi−1, . . . , x1) =
∑L

l=1wl fl(xi |xi−l), where wl ≥ 0, for all l, and
∑L

l=1 wl = 1. Trans-

forming the conditional density of xi to that for ti = ti−1+xi, for every i, creates conditional
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arrival densities that uniquely determine the point process. The construction is motivated

above for durations xi with i > L. The formal MTDPP definition is given as follows.

Definition 1. Let N(t) be a temporal point process defined on R+ with event arrival times

t1, t2, · · · ∈ R+. Denote by f ∗(t− tN(t)) ≡ f(t− tN(t) |Ht) the conditional duration density.

Then N(t) is said to be an MTD point process if (i) t ∼ f0 for N(t) = 0; (ii) for 1 ≤ N(t) ≤

L− 1, the conditional duration density

f ∗(t− tN(t)) =

N(t)−1∑
l=1

wl fl(t− tN(t) | tN(t)−l+1 − tN(t)−l) + (1−
N(t)−1∑
r=1

wr)fN(t)(t− tN(t) | t1);

(3)

(iii) for N(t) ≥ L, the conditional duration density

f ∗(t− tN(t)) =
L∑
l=1

wl fl(t− tN(t) | tN(t)−l+1 − tN(t)−l). (4)

In both (3) and (4), the weights wl ≥ 0, for l = 1, . . . , L, with
∑L

l=1 wl = 1.

Remark 1. The marginal density f0 and the conditional density f ∗(t − tN(t)) define the

conditional arrival densities p∗i for point pattern {ti}ni=1, by taking p∗1(t) = f0(t) and p∗i (t) =

f ∗(t− ti−1), t > ti−1, for i = 2, . . . , n. Thus, specification of densities f0(t) and f ∗(t− tN(t))

suffices to characterize the probability structure of the resulting MTDPP.

Remark 2. The two different expressions (3) and (4) for the conditional duration density

allow us to study stationarity conditions for the MTDPP (Section 2.2). Regarding inference,

Equation (4) is the relevant expression, since we work with a conditional likelihood. For

brevity, we will use (4) to discuss model properties throughout the rest of the article.

The specification of the conditional density f ∗(t − tN(t)) involves the first-order con-

ditional density fl, for l = 1, . . . , L. Following Zheng et al. (2022), we build fl from a

bivariate positive-valued random vector (Ul, Vl) with joint density fUl,Vl and marginals fUl
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and fVl , by taking fl = fUl|Vl as the conditional density of Ul given Vl. In general, there

are two strategies to define the joint density fUl,Vl , one through specific marginal densities,

and the other through a pair of compatible conditional densities (Arnold et al., 1999).

The two conditional densities fUl|Vl and fVl|Ul
are said to be compatible if there exists a

bivariate density with its conditionals given by fUl|Vl and fVl|Ul
. We note that each strategy

has its own benefits depending on the modeling objective. In Section 2.3, we illustrate

construction of the conditional densities fl with various examples for different goals.

An important consequence of using the MTD model for the conditional duration density

is a mixture formulation for the implied conditional intensity λ∗(t) ≡ h∗(t − tN(t)) =

f ∗(t− tN(t))/S
∗(t− tN(t)), where h∗(t− tN(t)) and S∗(t− tN(t)) are the hazard and survival

function, respectively, associated with f ∗(t−tN(t)). Let hl and Sl be the hazard and survival

function associated with fl. Then, we can write the conditional intensity λ∗(t) as

λ∗(t) =
L∑
l=1

w∗l (t)hl(t− tN(t) | tN(t)−l+1 − tN(t)−l), (5)

with weights w∗l (t) = wl Sl(t− tN(t) | tN(t)−l+1− tN(t)−l)/S
∗(t− tN(t)), where S∗(t− tN(t)) =∑L

l=1wl Sl(t − tN(t) | tN(t)−l+1 − tN(t)−l). Note that w∗l (t) ≥ 0 and
∑L

l=1w
∗
l (t) = 1 for all

t. The time-dependent weights, w∗l (t), provide local adjustment, and thus the flexibility to

accommodate a wide range of conditional intensity shapes.

In addition to model flexibility, the mixture formulation of λ∗(t) guides modeling choice.

Each mixture component hl is a first-order hazard function. If we select fl such that hl ≤ Bl,

for constant Bl > 0, and for all l, then λ∗(t) ≤
∑L

l=1w
∗
l (t)Bl, for every t. Similarly, we

can find a lower bound for λ∗(t). For both cases, if hl → B as t → ∞ for all l, we have

that λ∗(t) → B as t → ∞. On the other hand, if one of the component hazard functions

hl →∞ as t→∞, then λ∗(t)→∞. Moreover, choosing fl such that hl has certain shapes

results in particular types of point processes. A point process is said to be self-exciting
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if a new arrival causes the conditional intensity to jump, and is called self-regulating (or

self-correcting) if a new arrival causes the conditional intensity to drop. If hl monotonically

decreases, for all l, the resulting MTDPP is self-exciting; see Section 2.3 for details.

2.2 Model properties

We first investigate stationarity for MTDPPs. We focus on conditions for first-order strict

stationarity, such that the MTDPP has a stationary marginal density, fX , for the duration

process. The constructive approach to build fl as the conditional density Ul | Vl based

on random vector (Ul, Vl) allows us to obtain a stationary marginal density fX , using the

approach in Zheng et al. (2022). We summarize the conditions in the following proposition.

Proposition 1. Consider an MTD point process N(t) with event arrival times t1, t2, · · · ∈

R+. Let {Xi : i ≥ 1} be the duration process, with x1 = t1, and xi = ti − ti−1, for

i ≥ 2. The duration process has a stationary marginal density fX if: (i) t ∼ fX for

N(t) = 0; (ii) the density fl in (3) and (4) is taken to be the conditional density fUl|Vl of

a bivariate positive-valued random vector (Ul, Vl) with marginal densities fUl
and fVl, such

that fUl
(x) = fVl(x) = fX(x), for all x ∈ R+ and for all l.

We refer to the class of MTDPPs that satisfies the conditions in Proposition 1 as

stationary MTDPPs. Compared to renewal processes that have i.i.d. durations, stationary

MTDPPs can be interpreted as dependent renewal processes, where the durations are

identically distributed, and Markov-dependent, up to L-order. In fact, the independence

assumption in classical renewal processes is often unrealistic (Coen et al., 2019). For

example, in reliability engineering, times to failure between component replacements can be

correlated (Modarres et al., 2017). Another example involves the analysis of the recurrence

interval distribution for extreme events, which is illustrated in Section 4.2.

For the class of stationary MTDPPs, it is possible to obtain a limit result analogous
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to that of renewal processes. In renewal theory, the rate of renewals (e.g., component

replacement) in the long run corresponds to the rate at which N(t) goes to infinity, i.e.,

limt→∞N(t)/t. The following theorem summarizes the limit result for stationary MTDPPs.

Theorem 1. Consider an MTD point process N(t) such that its duration process has

stationary marginal density fX with finite mean µ > 0 and finite variance. It holds that,

as t→∞, N(t)/t→ 1/µ almost surely.

Similar to the classical renewal theorem, Theorem 1 shows the average renewal rate,

the difference being that the MTDPP allows dependence among waiting times between re-

newals. Another rate of general interest concerns the mean-value function m(t) = E[N(t)],

that is, limt→∞m(t)/t. The MTDPP function m(t) involves integration with respect to

the probability distribution of the point process, and thus, in general, it is not analytically

available. However, a useful upper bound for the rate limt→∞m(t)/t can be obtained for

MTDPPs with bounded component hazard functions, as summarized below.

Proposition 2. Consider an MTD point process N(t) with conditional intensity given

by (5), such that, for all l, the component hazard functions satisfy hl ≤ Bl. Then,

limt→∞m(t)/t ≤
∑L

l=1wlBl.

In the context of using stationary MTDPPs for modeling renewals, Proposition 2 implies

that the expected average renewal rate is no larger than a convex sum of the hazard rate

upper bounds. In summary, the results of this section can guide modeling choices, combined

with the approaches to constructing MTDPPs presented in Section 2.3.

2.3 Construction of MTD point processes

We provide guidance to construct MTDPPs, focusing on the conditional density fl. As

discussed in Section 2.1, we derive fl from a bivariate density fUl,Vl , which can be specified

through compatible conditionals fUl|Vl and fVl|Ul
, or through marginals fUl

and fVl . The
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former is particularly useful when the objective is to construct self-exciting or self-regulating

MTDPPs, by choosing fUl|Vl such that its associated hazard function is monotonically

decreasing or increasing, respectively. We illustrate this approach in Example 1.

In light of Proposition 1, the strategy of constructing MTDPPs through pre-specified

marginals is natural for modeling dependent renewal processes. This strategy is also useful

when interest lies in the shape of the marginal hazard function. For example, Grammig

and Maurer (2000) point out that it may be more appropriate to consider non-monotonic

hazard functions for modeling financial duration processes. We implement this MTDPP

construction approach using bivariate copula functions for fUl,Vl , illustrated in Example 2.

Example 1: Self-exciting and self-regulating MTDPPs

We derive MTDPPs based on bivariate Lomax distributions. The Lomax distribution

is a shifted version of the Pareto Type I distribution, denoted as P (u | b, a) = ab−1(1 +

ub−1)−(a+1), where a > 0 is the shape parameter, and b > 0 is the scale parameter. In

this example, we derive a new pair of compatible conditionals, based on the pair of Lomax

conditionals in Arnold et al. (1999). The definition is given in the following proposition.

Proposition 3. Consider a bivariate Lomax random vector (X, Y ) with density fX,Y (x, y) ∝

(λ0 + λ1x+ λ2y)−(α+1). Let (U, V ) = (αX,αY ). Then, the bivariate random vector (U, V )

has conditionals fU |V (u|v) = P (u |λ−1
1 (αλ0 + λ2v), α) and fV |U(v|u) = P (v |λ−1

2 (αλ0 +

λ1u), α), and marginals fU(u) = P (u |λ−1
1 αλ0, α − 1) and fV (v) = P (v |λ−1

2 αλ0, α − 1),

where λ0 > 0, λ1 > 0, λ2 > 0, and α > 1.

Since (X, Y ) is scaled by α, we refer to the distribution of (U, V ) as the bivariate scaled-

Lomax distribution. The difference with the original Lomax distribution is that the shape

parameter of the scaled-Lomax distribution is part of the scale parameter.

To construct an MTDPP, we start with bivariate scaled-Lomax densities fUl,Vl with

parameters αl, λ0l, λ1l, λ2l. We simplify the parameterization by setting λl = λ1l = λ2l, and
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letting φl = λ0l/λl, which yields fUl|Vl(u|v) = P (u |αlφl + v, αl), where φl > 0 and αl > 1,

for all l. Taking fl ≡ fUl|Vl , we obtain the conditional duration density,

f ∗(t− tN(t)) =
L∑
l=1

wl P (t− tN(t) |αlφl + tN(t)−l+1 − tN(t)−l, αl). (6)

We complete the scaled-Lomax MTDPP construction with f0(t) = P (t |α1φ1, α1 − 1).

Based on Proposition 1, if αl = α and φl = φ, for all l, the model has stationary

duration density P (αφ, α − 1). The next result describes the limiting behavior of the

stationary scaled-Lomax MTDPP conditional duration distribution.

Proposition 4. Consider the stationary scaled-Lomax MTDPP with marginal duration

density P (αφ, α− 1). As α→∞, the conditional duration distribution converges in distri-

bution to the exponential distribution with rate parameter φ−1.

According to (5), the conditional intensity of the scaled-Lomax MTDPP can be ex-

pressed as λ∗(t) =
∑L

l=1 w
∗
l (t) {φl + α−1

l (t − tN(t) + tN(t)−l+1 − tN(t)−l)}−1. For each l,

the lth component of the conditional intensity is bounded above by φ−1
l . Thus, λ∗(t) ≤∑L

l=1w
∗
l (t)φ

−1
l , for any t, and, using Proposition 2, limt→∞m(t)/t ≤

∑L
l=1wl φ

−1
l .

Finally, we note that if we remove α from the scale parameter component in (6), such

that fl = P (t − tN(t) |φl + tN(t)−l+1 − tN(t)−l, αl) and f0(t) = P (t |φ1, α1 − 1), then fl cor-

responds to the bivariate Lomax distribution of Arnold et al. (1999). The resulting point

process is referred to as the Lomax MTDPP. Since the hazard function of a Lomax distri-

bution is monotonically decreasing, both the scaled-Lomax MTDPP and Lomax MTDPP

are self-exciting point processes. A self-regulating MTDPP can be constructed through

compatible conditionals associated with monotonically increasing hazard functions, such

as gamma conditionals; see Arnold et al. (1999) for relevant bivariate distributions.
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Example 2: Dependent renewal MTDPPs

Motivated by Proposition 1, we can select a stationary density fX , and take fUl
= fVl = fX ,

for all l. Given the desired marginals, what remains is to specify the joint density fUl,Vl

to obtain fUl|Vl . In this example, we introduce the idea of specifying a bivariate copula

function C : [0, 1]2 → [0, 1] to build fUl,Vl , which provides a general scheme to construct

MTDPPs given a stationary marginal fX .

Let FUl,Vl be the joint c.d.f. of the random vector (Ul, Vl), and denote by FUl
, FVl the

corresponding marginal c.d.f.s. Given FUl
and FVl , there exists a unique copula Cl such that

FUl,Vl(u, v) = Cl(FUl
(u), FVl(v)), and the joint density fUl,Vl is given by cl(u, v)fUl

(u)fVl(v),

where cl(u, v) = ∂2C(FUl
(u), FVl(v))/(∂FUl

∂FVl) is the copula density (Sklar, 1959). Hence,

based on a marginal duration density fX and a copula Cl, we have fl(u) ≡ fUl|Vl(u | v) =

cl(u, v)fX(u). The conditional duration density of the resulting MTDPP is

f ∗(t− tN(t)) =
L∑
l=1

wl cl(t− tN(t), tN(t)−l+1 − tN(t)−l)fX(t− tN(t)). (7)

We refer to this class of models as copula MTDPPs. Their conditional intensity in (5)

involves hazard function components hl(u | v) = fl(u | v)/Sl(u | v), where Sl(u | v) = 1 −

∂Cl(FUl
(u), FVl(v))/∂FVl . A closed-form expression for hl relies on the specific copula func-

tion (e.g., a Gaussian copula leads to an analytically intractable hl).

For certain copulas, the conditional and marginal densities belong to the same family of

distributions. In particular, consider the three-parameter Burr density, Burr(x | γ, λ, ψ) =

ψγxγ−1λ−γ{1 + (x/λ)γ}−(ψ+1), with shape parameters γ > 0, ψ > 0, and scale parameter

λ > 0. The associated hazard function is monotonically decreasing when 0 < γ ≤ 1,

and hump-shaped when γ > 1. In the supplementary material, we provide details for the

derivation of a bivariate Burr distribution built from Burr marginals and a heavy right tail

copula, such that the conditionals are also Burr distributions.
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To construct a class of Burr MTDPPs, for each l, we specify fUl,Vl with the bivariate

Burr density such that the marginals are fUl
(x) = fVl(x) = fX(x) = Burr(x | γ, λ, κ − 1),

where κ > 1. Then, the conditional density, fUl|Vl(u | v) = Burr(u | γ, λ̃(v), κ), where λ̃(v) =

(λγ + vγ)1/γ. Hence, the conditional duration density of the Burr MTDPP is

f ∗(t− tN(t)) =
L∑
l=1

wl Burr(t− tN(t) | γ, λ̃(tN(t)−l+1 − tN(t)−l), κ), (8)

with stationary marginal fX(t− tN(t)) = Burr(t− tN(t) | γ, λ, κ− 1).

In fact, the stationary Burr MTDPP model includes special cases. If γ = 1, it becomes

a Lomax MTDPP with stationary marginal P (t − tN(t) |λ, κ − 1). Moreover, when κ =

2, it reduces to a model with stationary log-logistic marginal LL(t − tN(t)) | γ, λ), where

LL(x | γ, λ) = γxγ−1λ−γ{1 + (x/λ)γ}−2.

2.4 Extension to MTD cluster point processes

A self-exciting MTDPP encourages clustering behavior for the arrival times. In practice,

there may exist different factors that drive the duration process dynamics. As an example

form hydrology, durations of dry spells can be classified into two types, corresponding to

cyclonic and anticyclonic weather (Cowpertwait, 2001). A point process model for such

data should be able to account for the two weather types, as the lengths of the dry spells

may be distinctly different. Similar examples can also be found in Li et al. (2021). Here, we

extend MTDPPs to MTD cluster point processes (MTDCPPs), based on a two-component

mixture model. The definition is given as follows.

Definition 2. Let N(t) be a temporal point process defined on R+ with event arrival times

t1, t2, · · · ∈ R+. Let f ∗(t− tN(t)) be the conditional duration density of a self-exciting MTD

point process. Then, N(t) is said to be an MTD cluster point process if (i) t ∼ fI for
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N(t) = 0; (ii) for N(t) ≥ 1, the conditional duration density is given by

f ∗C(t− tN(t)) = π0 fI(t− tN(t)) + (1− π0) f ∗(t− tN(t)), (9)

where 0 ≤ π0 ≤ 1, and fI is a density on R+.

Similar to the MTDPP, we use densities fI and f ∗C to define the conditional arrival

densities p∗i of event time ti, for an observed point pattern {ti}ni=1, by taking p∗1(t) = fI(t)

and p∗i (t) = f ∗C(t−ti−1), t > ti−1, for i = 2, . . . , n. When π0 = 1, the MTDCPP reduces to a

renewal process; furthermore, if fI corresponds to the exponential distribution, it becomes

a Poisson process. When π0 = 0, the model becomes an MTDPP.

Let hI be the hazard function associated with fI . The conditional intensity of the

MTDCPP extends the mixture form in (5) as follows:

λ∗C(t) = π0(t)hI(t− tN(t)) +
L∑
l=1

πl(t)hl(t− tN(t) | tN(t)−l+1 − tN(t)−l), (10)

where π0(t) = π0 SI(t − tN(t))/S
∗
C(t − tN(t)), πl(t) = (1 − π0)wl Sl(t − tN(t) | tN(t)−l+1 −

tN(t)−l)/S
∗
C(t− tN(t)), for l = 1, . . . , L, S∗C(t− tN(t)) = π0SI(t− tN(t)) + (1−π0)S∗(t− tN(t)),

and we have that πl(t) ≥ 0, for l = 0, . . . , L, and
∑L

l=0 πl(t) = 1, for all t.

Compared to the MTDPP conditional intensity function, the MTDCPP conditional

intensity has an extra term contributed by component fI , with appropriately renormalized

time-dependent weights. If we take an exponential density with rate parameter µ for fI ,

and a stationary Lomax MTDPP for f ∗, we refer to the resulting model as the Lomax

MTDCPP. Note that we consider the stationary Lomax instead of the stationary scaled-

Lomax MTDPP to avoid potential identifiability issues, indicated by Proposition 4.
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3 Bayesian implementation

3.1 Conditional likelihood and prior specification

Let {ti}ni=1 be the observed temporal point pattern over the interval (0, T ), with durations

x1 = t1 and xi = ti − ti−1, for i = 2, . . . , n. We outline the approach to posterior inference

for the MTDCPP model based on a conditional likelihood (the MTDPP is a special case

with π0 = 0). Further details for the specific MTDPP and MTDCPP models illustrated in

Section 4 are provided in the supplementary material.

The point process likelihood can be expressed equivalently using {ti} or {xi}. For

brevity, we use the latter, and, for notational convenience, let xn+1 = T − tn. Thus,

combining (2), (4), and (9), the likelihood conditional on (x1, . . . , xL) is

p(x1, . . . , xn+1 ; π0,w,φ,θ) ∝
n∏

i=L+1

{
π0fI(xi |φ) + (1− π0)

L∑
l=1

wlfl(xi |xi−l,θl)

}

×

(
1−

∫ xn+1

0

{
π0fI(u |φ) + (1− π0)

L∑
l=1

wlfl(u |xn+1−l,θl)

}
du

) (11)

where w = (w1, . . . , wL)>, and the vectors φ and θ = {θl}Ll=1 collect the parameters of the

independent duration density fI and the MTDPP component densities, respectively.

A Bayesian model formulation involves priors for the probability π0, the MTDPP weight

vector w, as well as density parameters φ and θ. The priors for φ and θ depend on

particular choices of the densities fI and fl. For π0, we consider a beta prior Beta(π0 |u0, v0)

(without further information, we take the uniform prior, Beta(π0 | 1, 1)).

We take the weights wl as increments of a c.d.f. G, i.e., wl = G(l/L)−G((l−1)/L), for

l = 1, . . . , L, where G has support on the unit interval. Flexible estimation of the weights

depends on the shape of G. Thus, we consider a Dirichlet process (DP) prior (Ferguson,

1973) which supports general distributional shapes for G, denoted as DP(α0, G0), where

G0 = Beta(a0, b0) is the baseline c.d.f., and α0 > 0 is the precision parameter. Given G0
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and α0, the vector of weightsw follows a Dirichlet distribution with shape parameter vector

α0(a1, . . . , aL)>, where al = G0(l/L)−G0((l−1)/L), for l = 1, . . . , L. The prior expectation

is E(w) = (a1, . . . , aL)>. We denote this prior for the weights as CDP(· |α0, a0, b0). As

it is natural to assume that near lagged durations contribute more than distant ones, our

default choice for G0 is Beta(1, b0), with b0 > 1, such that the weights exhibit a decreasing

pattern in prior expectation. The DP-based prior for the weights supports the strategy

of fitting an over-specified model, i.e., with a large value of L. Model inference induces

the contribution of the lagged durations, assigning large weights to important ones. In

practice, the autocorrelation function (ACF) and partial autocorrelation function (PACF)

of the observed duration time series can also be used to guide the choice of L.

3.2 Posterior simulation

We outline an MCMC posterior simulation method for the model parameters. For more effi-

cient notation, we rewrite the MTDCPP transition density as f ∗C(xi) =
∑L

l=0 πlf
c
l (xi |φ,θl),

where f c0 = fI , f
c
l = fl, πl = (1− π0)wl, for l = 1, . . . , L, and

∑L
l=0 πl = 1.

We augment the model with configuration variables `i, taking values in {0, 1, . . . , L},

with discrete distribution
∑L

l=0 πl δl(`i), where δl(`i) = 1 if `i = l and 0 otherwise, for

i = L+ 1, . . . , n. Therefore, `i = 0 indicates that the duration xi is generated from fI , and

`i = l indicates that xi is generated from the lth component of the MTDPP, for l = 1, . . . , L.

Note that the likelihood normalizing term in (11) can be written as
∑L

l=0 πl S
c
l (xn+1 |φ,θl),

where Sc0 = SI and Scl = Sl, for l = 1, . . . , L. Similarly with the observed durations, we can

introduce a configuration variable `n+1 to identify the component of the mixture for xn+1.
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The posterior distribution of the augmented model is proportional to

p(φ)×
L∏
l=1

p(θl)×Dir(w |α0a1, . . . , α0aL)× Beta(π0 |u0, v0)

×

{
n∏

i=L+1

f c`i(xi |φ,θl)
L∑
l=0

πl δl(`i)

}{
Sc`n+1

(xn+1 |φ,θl)
L∑
l=0

πl δl(`n+1)

}

Posterior updates for parameters φ and {θl} depend on fI and fl, respectively. Imple-

mentation details for the models of Section 4 are provided in the supplementary material.

The posterior full conditional distribution of `i is a discrete distribution on {0, ..., L} with

probabilities proportional to πlf
c
l (xi |φ,θl), for i = L + 1, . . . , n, and with probabilities

proportional to πlS
c
l (xn+1 |φ,θl), for i = n + 1. Let Ml = |{i : `i = l}|, for l = 0, ..., L,

where |{·}| returns the size of set {·}. Given the configuration variables, we update the

weights w with a Dirichlet posterior full conditional distribution with parameter vector

(α0a1 + M1, . . . , α0aL + ML)>. The beta prior for π0 yields a conjugate posterior full

conditional distribution, Beta(π0 |u0 +M0, v0 +
∑L

l=1Ml).

3.3 Inference for point process functionals and model checking

Using the MCMC algorithm, we obtain posterior samples that provide full inference for

any functional of the point process. For example, given the posterior draws for the model

parameters, we obtain posterior realizations for the conditional intensity function by eval-

uating (5) or (10) over a grid of time points. Similarly, for stationary MTDPPs, we can

obtain point and interval estimates for the marginal duration density.

For model assessment, we use the time-rescaling theorem (Daley and Vere-Jones, 2003),

according to which {Λ∗(ti)}ni=1 is a realization from a unit rate Poisson process, where

Λ∗(t) =
∫ t

0
λ∗(u)du is the conditional cumulative intensity, and {t1 < t2 < ... < tn} is the

observed point pattern. Hence, if the model is correctly specified, U∗i = 1−exp{−(Λ∗(ti)−
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Λ∗(ti−1))}, for i = 1, . . . , n, are independent uniform random variables on (0, 1). Thus, the

model can be assessed graphically using quantile-quantile plots for the estimated U∗i .

For MTDPP models, Λ∗(ti) =
∑i

j=1

∫ tj
tj−1

h∗(u − tj−1)du, and thus Λ∗(ti) − Λ∗(ti−1) =∫ ti
ti−1

h∗(u− ti−1)du. Using the relationship between the conditional survival and cumultive

intensity functions, we have S∗(t − ti−1) = exp(−
∫ t
ti−1

h∗(u − ti−1)du), for ti−1 < t ≤ ti.

Therefore, S∗(ti − ti−1) = exp{−(Λ∗(ti) − Λ∗(ti−1))}, which allows us to obtain posterior

samples for the U∗i from U∗i = 1− S∗(ti − ti−1) = 1−
∑L

l=1 wl Sl(ti − ti−1 | ti−l − ti−l−1,θl).

Replacing survival function S∗ with S∗C , the approach can also be used for MTDCPPs.

4 Data illustrations

We illustrate the scope of the modeling framework through one synthetic and two real

data examples. In the simulation example, we explore inference results for conditional

intensities and duration hazard functions of different shapes. The goal of the first real

data example is to demonstrate the practical utility of stationary MTDPPs for scenarios

where the independence assumption of renewal processes needs to be relaxed. The second

real data example examines the capacity of MTDCPPs to detect and quantify duration

clustering behaviors; this was also evaluated through a simulation study, the details of

which can be found in the supplementary material. Also available in the supplementary

material are graphical model assessment results for all data examples, obtained using the

approach of Section 3.3; the results indicate good model fit for all data examples.

The results for each example are based on posterior samples collected every fourth

iteration from a Markov chain of 25000 iterations with a burn-in of 5000 samples. We

implemented all algorithms in the R programming language, with C++ code integrated to

update latent variables, on a computer with a 2-GHz Intel Core i5 processor and 32-GB

RAM. The computing time was about 2 minutes and 20 minutes for the synthetic data
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and for the first real data example, respectively. The second real data example involves

121 point patterns; the average computing time for a point pattern was around 5 minutes.

4.1 Simulation experiment

We generated data from three stationary MTDPP models (discussed in Section 2.3) with

scaled-Lomax, Burr, and log-logistic marginal marginal duration distributions. The respec-

tive parameters were set at (φ, α) = (0.5, 5), (λ, γ, κ) = (1, 2, 6), and (λ, γ) = (1, 2), such

that the hazard function for the durations is decreasing for the scaled-Lomax MTDPP, and

hump-shaped for the other two models; see Figure 1. The model order was L = 3 for all

simulations, with decaying weights w = (0.5, 0.3, 0.2). For each simulated point pattern,

we chose the observation window to obtain around 2000 event times.

We applied the Burr MTDPP model in (8), with L = 3, to the three synthetic data sets.

Recall that the hazard function of the marginal Burr(γ, λ, κ − 1) duration distribution is

decreasing when γ ≤ 1, and hump-shaped when γ > 1. We thus assigned a Ga(1, 1) prior

to γ, where Ga(a, b) denotes the gamma distribution with mean a/b. Moreover, the mth

moment of the Burr(γ, λ, κ − 1) distribution exists if γ(κ − 1) > m. Independently of γ,

we placed a truncated gamma prior, Ga(6, 1)1(κ > 1), on κ. Since E(κ) = 6.004, the prior

choice for γ and κ implies that, in prior expectation, the first five moments of the marginal

duration distribution exist. The scale parameter λ was assigned a Ga(1, 1) prior, and the

vector of weights a CDP(5, 1, 2) prior.

Figure 1 plots point and interval estimates for the point process conditional intensity, as

well as for the duration process marginal density and its associated hazard function. Note

that, although the true data generating mechanisms correspond to MTDPPs, the Burr

MTDPP is a mis-specified model for two of the simulated data sets. However, the model

is able to distinguish between monotonically decreasing and hump-shaped shapes for the

hazard function associated with the marginal duration distribution. Overall, based on a
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(a) scaled-Lomax (b) Burr (c) Log-logistic

Figure 1: Synthetic data example. The first, second, and third rows plot posterior means (blue dashed
lines) and 95% credible interval estimates (grey bands) for the conditional intensity, marginal duration
density, and marginal duration hazard function. The black solid lines correspond to the true functions.

single process realization, the Burr MTDPP model provided reasonably accurate estimates

for different point process functionals, with uncertainty bands that effectively contain the

true functions.

4.2 IVT recurrence interval analysis

Integrated water vapor transport (IVT) is a vector representing the total amount of water

vapor being transported in an atmospheric column. Atmospheric rivers (ARs), which are

corridors of enhanced IVT, play a vital role in transporting moisture into western North
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America. Identifying and tracking ARs is central to understanding high-impact weather

events, such as extreme precipitation and flooding (Hughes et al., 2022). Rutz et al.

(2019) review several of the AR detection algorithms, most of which use IVT thresholds as

input. Typically, an IVT threshold is chosen based on a specified quantile. Appropriately

thresholding the IVT is important to improve AR detection; e.g., Barata et al. (2022)

provide a time-varying quantile estimate of the IVT using a dynamic statistical model.

In this example, we take on a different perspective to study the IVT, based on the

general idea that strong ARs tend to associate with extreme IVT magnitudes. We obtain a

collection of recurrent events for which the IVT magnitude exceeds a given threshold. The

collection is considered as a realization of a point process. Modeling extreme events using a

point process approach is motivated by the asymptotic behavior of threshold exceedances.

This approach assumes that, for a large threshold, the exccedances and the associated event

times can be considered as a marked Poisson process; see, e.g., Kottas and Sansó (2007)

and further references therein. On the other hand, the Poisson process assumption may be

too restrictive, as well as unsuitable for applications where the inferential interest lies in

the stationary distribution of the durations between event times. Studying the recurrence

interval distribution is important in many areas, including study of earthquakes above a

certain magnitude (Corral, 2004), extreme returns (Jiang et al., 2018), and large volatilities

(Jiang et al., 2016). Depending on the correlation structure of the original time series, the

recurrence interval distribution may exhibit different types of tail behavior, such as power

law. Furthermore, the recurrence intervals themselves can be dependent (Santhanam and

Kantz, 2008). In this case, a generalization of the renewal process is needed in order to

capture the dependence among durations.

Here, we demonstrate the potential of MTDPPs for the aforementioned goal, that is,

simultaneous modeling the stationary recurrence interval distribution and capturing the

intervals dependence. The data set involves a time series of average daily IVT magnitude
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(a) Average daily IVT magnitude (b) PACF of the durations (c) Histogram of the durations

(d) Harmonic function µ(t) (e) Estimated weights (f) Stationary marginal estimate

Figure 2: Recurrence interval analysis. Panel (a) shows the average daily IVT magnitude with the 0.95
quantile (red line) fixed over time. Panels (b) and (c) plot the PACF and histogram of the recurrence
intervals, respectively. Panel (d) shows the harmonic function µ(t) for an one-year window. Panel (e)
shows inference results for the weights. Panel (f) is the close view of the stationary marginal estimate,
specifically at the tail of the marginal density. In Panels (d), (e), and (f), the blue dashed line and the
light grey polygon correspond to the posterior mean and the pointwise 95% credible interval estimates,
respectively. The red dotted line in panel (e) is the prior mean.

calculated using ERA5, a climate reanalysis that provides hourly estimates of atmospheric

variables. The time series, shown in Figure 2(a), has 14965 observations, spanning from

January 1, 1979 to December 31, 2019, with all February 29s omitted, corresponding to

the Santa Cruz city in California. The data are publicly available in the R package exdqlm.

Using the 0.95 quantile threshold, we obtained 749 point events of IVT exceedances. The

PACF and histogram of the durations in Figure 2(b)-(c) suggest dependence in the dura-

tions and a heavy right tail for the recurrence interval distribution.

We consider the scaled-Lomax MTDPP model. As previously discussed in Section

2.3, the model has a stationary scaled-Lomax marginal distribution P (αφ, α − 1) for the

recurrence intervals, and the conditional duration distribution converges to the exponential

distribution with rate parameter φ−1, as α→∞. Let {ti} and {xi} be the observed event
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times and durations, respectively. To account for potential seasonality, we use the following

multiplicative model, xi = µ(ti)zi, with log µ(ti) =
∑J

j=1{β1j sin(jωti) + β2j cos(jωti)},

where ω = 2π/T0, and T0 = 365 is the period for daily data. We assume the stationary

scaled-Lomax MTDPP model for the zi, such that the conditional duration density is

f ∗(xi) = µ(ti)
−1
∑L

l=1 wlP (µ(ti)
−1xi |αφ+ µ(ti−l)

−1xi−l, α).

On the basis of the ACF and PACF plots, we chose MTDPP model order L = 15. We

took J = 5, and assigned mean-zero, dispersed normal priors to the regression parameter

vector. The shape and scale parameters α and φ received Ga(6, 1)1(α > 1) and Ga(1, 1)

priors, respectively. For the weights, we consider a CDP(w | 5, 1, 6) prior, which implies a

decreasing trend in prior expectation (see Figure 2(e)).

The posterior mean and 95% credible interval estimates of the harmonic component co-

efficients imply the presence of annual and semiannual seasonality. The posterior estimates

of the corresponding coefficients (β11, β21, β22) are−0.59 (−0.86,−0.31), −0.71 (−1.08,−0.36),

and −0.52 (−0.82,−0.20). Figure 2(d) shows the function µ(t) evaluated at a grid over a

period of one year. Smaller durations between high IVT magnitudes tend to appear from

November to March, corresponding to high atmospheric river frequency during that pe-

riod. In fact, this time interval corresponds to the usual flooding period in California (e.g.,

the most recent floods in California were caused by multiple atmospheric rivers between

December 2022 and March 2023). Figure 2(e) shows the estimated weights. Lags one, two,

four and five are the most influential, which suggests serial dependence in the durations.

The posterior mean and 95% credible interval estimates of α and φ were 2.01 (1.73, 2.37)

and 5.03 (3.40, 7.00), respectively. Note that the stationary marginal distribution of the

process {zi} is P (z |αφ, α − 1), with finite mean for α > 2 and finite variance for α > 3.

Inference for α suggests that, even after adjusting for seasonality, the distribution of the

recurrence intervals is heavy tailed. In fact, Figure 2(f) shows a tail for the marginal den-

sity that decays very slowly, in particular when compared to the histogram of the observed
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durations in Figure 2(c), where the seasonality is not accounted for. The heavy-tailed

recurrence interval distribution also indicates a cluster phenomenon of the IVT extremes.

4.3 Mid-price changes of the AUD/USD exchange rate

Financial markets involve complex human activities, with both external and internal factors

driving market dynamics. It is suggested that, for high-frequency financial data, only a

small portion of the price movements is caused by external factors such as relevant news

releases (Filimonov and Sornette, 2012). Therefore, to understand the financial market

microstructure, it is important to quantify the degree of market reflexivity, measured as the

proportion of price movements due to internal rather than external processes. The Hawkes

process and its extensions have been used to study market reflexivity, where each price move

is considered as an event (Filimonov and Sornette, 2012; Wheatley et al., 2016; Chen and

Stindl, 2018). The Hawkes process admits a branching structure that allows for separating

endogenous from exogenous events, including a branching ratio parameter that can be used

to quantify market reflexivity. Here, we explore modeling for market reflexivity from the

duration clustering perspective using the MTDCPP, where the probability (1− π0) in (9)

can be interpreted as the proportion of price movements due to endogenous interaction. At

the end of the section, we discuss our findings relative to Hawkes process based models.

We analyze the price movements of the AUD/USD foreign exchange rate. A price

movement is recorded when there is a mid-price change, where mid-price is defined as the

average of the best bid and ask prices. A detailed explanation of using mid-price change as

a measure of price movements can be found in Filimonov and Sornette (2012). The data

consists of 121 non-overlapping point patterns, with total number of events ranging from

108 to 3961. Each point pattern corresponds to an one-hour time window of the trading

week from 20:00:00 Greenwich Mean Time (GMT) July 19 to 21:00:00 GMT July 24 in

year 2015. Analyzing sequences of point patterns within small time windows avoids to
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(a) Exponential distribution waiting time (b) Lomax MTDPP scale parameter φ

(c) Lomax MTDPP shape parameter α (d) Reflexivity level (1− π0)

Figure 3: AUD/USD foreign exchange market reflexivity analysis. Time series of the posterior means (solid
lines) and pointwise 95% credible intervals (grey polygons) for parameters 1/µ, φ, α, (1−π0), based on the
MTDCPP model. Vertical dashed lines correspond to midnight and midday GMT. The red dashed line in
panel (a) corresponds to the averages of the observed durations of the one hour windows.

some extent the issue of nonstationarity, such as diurnal pattern. We refer to Chen and

Stindl (2018) for more details about the data, which is available in R package RHawkes

(Chen and Stindl, 2022).

We considered the Lomax MTDCPP model, that is, model (9) with fI given by the

exponential density with rate parameter µ, and f ∗ corresponding to the stationary Lo-

max MTDPP. We used a Beta(1, 1) prior for probability π0, and a Ga(1, 1) prior for

µ. For the stationary Lomax MTDPP, the shape and scale parameters received priors

Ga(α | 6, 1)1(α > 1) and Ga(φ | 1, 1), respectively. Based on the autocorrelation and par-

tial autocorrelation functions of the observed durations, we chose model order L = 15 for

all point patterns, and the mixture weights were assigned a CDP(w | 5, 1, 6) prior, which

elicits a decreasing pattern in the weights.
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We applied the model to each of the 121 point patterns. Figure 3 shows the time series

of posterior mean and interval estimates for four parameters: exponential distribution

parameter 1/µ, Lomax MTDPP scale and shape parameters φ and α, and the endogenous

probability (1 − π0). Note that the exponential distribution and Lomax MTDPP are

regarded as drivers of external and internal factors for waiting times between successive

mid-price changes, respectively. The estimates of the mean waiting time 1/µ for external

factors shows obvious diurnal pattern, with peaks and troughs appearing around midnight

and midday GMT, respectively. The posterior estimates of φ for all point patterns seem

more volatile, with relatively high and low values occuring at midnight and midday GMT,

whereas the posterior estimates of α reflect an opposite pattern. The mean of the stationary

marginal distribution of the Lomax MTDPP is φ/(α−2), provided that α > 2. Thus, given

the patterns of estimated φ and α, the estimates of the mean waiting time for internal

factors appear high and low around midnight and midday GMT, respectively. In addition,

small values of α around midnight GMT suggest a heavy-tailed duration distribution of

the Lomax MTDPP during that period. This indicates that mid-price changes tend to

cluster around midnight GMT, which corresponds to the opening time of Asian markets

(23:00-1:00 GMT).

As shown in Figure 3(d), the estimates of the market reflexivity (1 − π0) fluctuate

heavily over the whole trading week, with most of them greater than 0.5. The posterior

means of (1− π0) for the 121 point patterns range from 0.29 to 0.95 with median 0.76 and

quartiles (0.64, 0.87), suggesting that the market dynamics are mostly driven by internal

processes. A similar conclusion was drawn by Chen and Stindl (2018) where a renewal

Hawkes (RHawkes) process was used for the same data. The RHawkes process (Wheat-

ley et al., 2016) extends the Hawkes process to capture dependence between clusters, by

replacing the immigrant Poisson process with a renewal process. Both the Hawkes and

RHawkes process models include the branching ratio parameter which quantifies market
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reflexivity. The branching ratio parameter estimates reported by Chen and Stindl (2018)

range from 0.29 to 0.98 with median 0.66 and quartiles (0.53, 0.80). Under a different

stochastic model structure, the Lomax MTDCPP is able to quantify the extent to which

the observed dynamics are caused by internal factors versus external influences.

Finally, we note that using the MTDCPP for the present example does not require

any stationarity assumptions. In contrast, stationarity is essential for both the Hawkes

and RHawkes processes in order to use the branching ratio as an estimator for the market

reflexivity. However, as discussed in Filimonov and Sornette (2012), market activities are

typically nonstationary. The lack of stationarity is typically attributed to seasonal trends,

which can be addressed by splitting the time window into small intervals, as shown in this

example. Still, one has to balance the size of the intervals and the number of the events

within the interval to ensure reliable estimates are produced. Moreover, even after removing

seasonality, stationarity is not necessarily guaranteed. Therefore, MTDCPP models may

be useful in applications where stationarity assumptions are not plausible.

5 Summary and discussion

We have developed a new class of stochastic models for temporal point patterns with

self-excitation or self-regulation effects, identically distributed but dependent durations, or

clustered durations. The modeling framework allows for different approaches to building

the point process: through marginal duration distributions, when the inferential goal per-

tains to the intervals between event times; or through conditional hazard functions, when

interest lies in the point process dependence structure on its history. Both strategies con-

nect naturally to existing point process models. The former is analogous to renewal process

modeling, while the latter involves the same motivation with Hawkes processes. Our main

objective is to provide a new modeling and inference tool for a range of applications in-
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volving temporal point patterns. To the best of our knowledge, the proposed class of point

processes is the first one that enables simultaneous modeling of high-order dependence and

stationary durations, with computationally efficient inference.

Our framework builds from a structured mixture model for the point process conditional

duration density. The resulting point process has restricted memory, i.e., its evolution de-

pends on recent events. This assumption is generally suitable for relatively large point

patterns. For scenarios where one anticipates more extensive history dependence, a large

value for the order of the mixture model can be used. The nonparametric prior for the

weights allows efficient inference with a large order. On the other hand, there are appli-

cations where data correspond to many processes that exhibit a relatively small number

of point events, such as the analysis of recurrent event gap times for multiple patients in

medical studies. For such data, a small order is more appropriate. In fact, even the special

case where the conditional duration density depends on the most recent lag provides a

meaningful generalization of renewal processes commonly used for this type of analysis.

In many applications, point patterns include information on marks, that is, random

variables associated with each point event, such that the data generating mechanism cor-

responds to a marked point process. Consider, for instance, continuous marks, y. The

marked point process intensity can be developed from λ∗(t,y) = λ∗g(t)m
∗
t (y), where λ∗g(t)

is the conditional intensity for the event times (referred to as the ground process intensity),

and m∗t (y) is the time-dependent mark distribution (Daley and Vere-Jones, 2003). The

proposed framework can be utilized for marked point processes by combining an MTDPP

or MTDCPP model for the ground process with a model for the mark distribution.
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Supplementary material

The supplementary material includes proofs for the theoretical results, details for the bivari-

ate Burr distribution, MCMC implementation details, an additional simulation experiment,

and model checking results.
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Supplementary Material for “Mixture Modeling
for Temporal Point Processes with Memory”

A Proofs

Proof of Theorem 1. Consider a stationary MTD point process, that is, the correspond-

ing duration process {Xi : i ≥ 1} has a stationary marginal distribution. Thus, the du-

rations X1, . . . , XN(t) are a collection of dependent random variables that are identically

distributed. We assume that the first and second moments with respect to the stationary

marginal distribution exist and are finite.

Denote by E(Xi) = µ for all i. Let TN(t) =
∑N(t)

i=1 Xi be the last arrival time prior

to time t. We have TN(t) < t < TN(t)+1, and
TN(t)

N(t) < t
N(t) <

TN(t)+1

N(t) , for N(t) ≥ 1.

Note that TN(t)/N(t) is the average of the durations X1, . . . , XN(t). By the strong law

of large numbers for dependent non-negative random variables (Korchevsky and Petrov

2010), we have that, as t → ∞, TN(t)/N(t) → µ a.s., since as t → ∞, N(t) → ∞.

Observing that TN(t)+1/N(t) = {TN(t)+1/(N(t) + 1)}{(N(t) + 1)/N(t)}, where the first

term TN(t)+1/(N(t) + 1) → µ a.s., and the second term (N(t) + 1)/N(t) → 1, we can

conclude that N(t)/t→ 1/µ a.s..

Proof of Proposition 2. The definition of the conditional intensity function λ∗(t) yields

that m(t) = E[N(t)] = E[
∫ t
0 λ

∗(u)du], where the expectation is taken with respect to the

probability distribution of the point process. Since our interest is in limt→∞m(t)/t, consider

time t large enough such that N(t) ≥ L.

Recall that λ∗(t) ≡ h∗(t − tN(t)) = f∗(t − tN(t))/S
∗(t − tN(t)), where h

∗(t − tN(t)) and

S∗(t−tN(t)) are the hazard and survival functions, respectively, associated with f∗(t−tN(t)).

Let t0 = 0. We have that

∫ t

0
λ∗(u)du =

N(t)∑
i=1

∫ ti

ti−1

h∗(u− ti−1)du+

∫ t

tN(t)

h∗(u− tN(t))du

=

N(t)∑
i=1

(− log{S∗(ti − ti−1)})− log{S∗(t− tN(t))}.

(1)
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For i = 1, . . . , N(t), by Jensen’s inequality, we have that

− log{S∗(ti − ti−1)} = − log

{
L∑
l=1

wlSl(ti − ti−1 | ti−l − ti−1−l)

}

≤
L∑
l=1

wl (− log{Sl(ti − ti−1 | ti−l − ti−1−l)})

=

L∑
l=1

wl

∫ ti

ti−1

hl(u− ti−1 | ti−l − ti−1−l)du

= Λ̃∗(ti − ti−1),

(2)

where Λ̃∗(a − tk) =
∑L

l=1wl
∫ a
tk
hl(u − tk | tk−l+1 − tk−l)du. Similarly, applying Jensen’s

inequality, we obtain − log{S∗(t − tN(t))} ≤ Λ̃∗(t − tN(t)), and combining (1) and (2), we

have that ∫ t

0
λ∗(u)du ≤

N(t)∑
i=1

Λ̃∗(ti − ti−1) + Λ̃∗(t− tN(t)).

If hl ≤ Bl for all l, then Λ̃∗(ti − ti−1) ≤
∑L

l=1wl(ti − ti−1)Bl, for i = 1, . . . , N(t), and

Λ̃∗(t− tN(t)) ≤
∑L

l=1wl(t− tN(t))Bl. Then we have that

∫ t

0
λ∗(u)du ≤

N(t)∑
i=1

L∑
l=1

wl(ti − ti−1)Bl +
L∑
l=1

wl(t− tN(t))Bl

= tN(t)

L∑
l=1

wlBl + (t− tN(t))
L∑
l=1

wlBl = t
L∑
l=1

wlBl.

Hence, the function m(t) ≤ t
∑L

l=1wlBl. It follows that limt→∞m(t)/t ≤
∑L

l=1wlBl.

Proof of Proposition 3. Let (U, V ) = (αX,αY ), where the joint density of (X,Y ) is

fX,Y (x, y) ∝ (λ0+λ1x+λ2y)
−(α+1), which corresponds to the bivariate Lomax distribution

of Arnold et al. (1999). By change of variable, we obtain the joint density of (U, V ), namely,

fU,V (u, v) ∝ (λ0 + λ1u/α+ λ2v/α)
−(α+1), (3)

with normalizing constant C =
∫∞
0

∫∞
0 (λ0 + λ1u/α+ λ2v/α)

−(α+1)dudv = αλ
−(α−1)
0 {(α−

2



1)λ1λ2}−1. It follows that the marginal density of U is

fU (u) = C−1

∫ ∞

0
α−2(λ0 + λ1u/α+ λ2v/α)

−(α+1)dv

= (α− 1)(λ0α)
−1λ1{1 + (λ0α)

−1λ1u}−α.

Since u and v are symmetric in (3), the marginal density fV (v) = (α − 1)(λ0α)
−1λ2{1 +

(λ0α)
−1λ2v}−α. It follows that fU |V (u | v) = fU,V (u, v)/fV (v) = αλ1(αλ0 + λ2v)

−1{1 +

λ1u(αλ0+λ2v)
−1}−(α+1). Similarly, we have that fV |U (v |u) = fU,V (u, v)/fU (u) = αλ2(αλ0+

λ1u)
−1{1 + λ2v(αλ0 + λ1u)

−1}−(α+1).

Proof of Proposition 4. Consider the stationary scaled-Lomax MTDPP with marginal

duration density P (αϕ, α− 1). Suppose N(t) ≥ 1. The survival function of the conditional

duration distribution can be expressed as

S∗(t− tN(t)) =

tL∑
l=1

w∗
l

(
1 +

t− tN(t)

αϕ+ tN(t)−l+1 − tN(t)−l

)−α
,

where tL = min{N(t)− 1, L}. In particular, for N(t) ≥ L, w∗
l = wl, for l = 1, . . . , L. When

1 ≤ N(t) < L, w∗
l = 1, . . . , tL − 1, and w∗

tL
= 1−

∑tL−1
r=1 wr. It follows that the weights w∗

l

satisfy
∑tL

l=1w
∗
l = 1 for N(t) ≥ 1.

Then, for N(t) ≥ 1, we have that

S∗(t− tN(t)) =

tL∑
l=1

w∗
l

{(
1 +

t− tN(t)

αϕ+ tN(t)−l+1 − tN(t)−l

)−(αϕ+tN(t)−l+1−tN(t)−l)
}1/ϕ

×
(
1 +

t− tN(t)

αϕ+ tN(t)−l+1 − tN(t)−l

)(tN(t)−l+1−tN(t)−l)/ϕ

.

(4)

As α → ∞, the limits of the first term and the second term in the lth mixture compo-

nent of (4) are exp(−(t − tN(t))ϕ
−1) and 1, respectively. More specifically, the limit of

the first term is obtained by using the results that (i) limn→∞(1 + x/n)n = exp(x); (ii)

limn→∞ g1(n)/g2(n) = limn→∞ g1(n)/ limn→∞ g2(n), provided that both limn→∞ g1(n) and

limn→∞ g2(n) exist, and limn→∞ g2(n) ̸= 0.

Since
∑tL

l=1w
∗
l = 1, it follows that, as α → ∞, the survival function of the conditional

duration distribution converges to exp(−(t − tN(t))ϕ
−1), i.e., the survival function of the

exponential distribution with rate parameter ϕ−1.
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B Bivariate Burr distribution

We consider the following three-parameter Burr distribution (Tadikamalla, 1980). A ran-

dom variable X is said to follow the Burr distribution, denoted as Burr(γ, λ, ψ), if the

cumulative distribution function (c.d.f.) of X is F (x) = 1− (1 + (x/λ)γ)−ψ.

Consider a bivariate random vector (X,Y ), with marginal c.d.f.s for X and Y given by

F (x) = 1 − (1 + (x/λ)γ)−ψ and F (y) = 1 − (1 + (y/λ)γ)−ψ, respectively. The joint c.d.f.

F (x, y) is specified by the heavy right tail (HRT) copula given by

C(u, v) = u+ v − 1 +
[
(1− u)−1/a + (1− v)−1/a − 1

]−a
, (5)

where 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, and a > 0 (Frees and Valdez, 1998).

We set the copula parameter to be the same as the second shape parameter of the Burr

distribution, that is, a = ψ. Replace u and v with F (x) and F (y), respectively, in (5).

Then, the joint c.d.f. of the random vector (X,Y ) is given by

F (x, y) = F (x) + F (y)− 1 +
[
(1− F (x))−1/ψ + (1− F (y))−1/ψ − 1

]−ψ
= 1−

(
1 +

(x
λ

)γ)−ψ
−
(
1 +

(y
λ

)γ)−ψ
+
[
1 +

(x
λ

)γ
+
(y
λ

)γ]−ψ
.

The conditional c.d.f. of Y given X = x is F (y |x) = ∂C(F (x), F (y))/∂F (x). Note that

∂C(u, v)/∂u = 1−
[
(1− u)−1/ψ

]ψ+1 [
(1− u)−1/ψ + (1− v)−1/ψ − 1

]−(ψ+1)
. It follows that

F (y |x) = 1−
[
1 +

(x
λ

)γ]ψ+1 [
1 +

(x
λ

)γ
+ 1 +

(y
λ

)γ
− 1

]−(ψ+1)

= 1−

[
1 +

( y
λ

)γ
1 +

(
x
λ

)γ
]−(ψ+1)

= 1−
[
1 +

yγ

λγ + xγ

]−(ψ+1)

= 1−
[
1 +

(
y

λ̃(x)

)γ]−(ψ+1)

,

(6)

where λ̃(x) = (λγ + xγ)1/γ . Therefore, the conditional distribution of Y given X = x is a

Burr distribution, Burr(γ, λ̃(x), ψ+1). Since the HRT copula is symmetric in its arguments,

the conditional distribution of X given Y = y is also a Burr distribution.

We note that the bivariate Burr distribution defined through the HRT copula and Burr

marginals was considered in Venter (2002). However, the expressions for the conditional

4



c.d.f.s reported in Venter (2002) include an error. Equation (6) provides the corrected

expression for the conditional c.d.f. of Y given X.

C Implementation details

We outline the posterior simulation steps for the Burr MTDPP and the Lomax MTDCPP

models illustrated in the data examples. Given an observed point pattern {ti}ni=1 over the

time window (0, T ), we let x1 = t1 and xi = ti − ti−1 for i = 2, . . . , n. For notational

convenience, we take xn+1 = T − tn. Our posterior inference is based on a likelihood,

conditional on (x1, . . . , xL). Posterior samples of model parameters and latent variables are

obtained by iteratively sampling from their posterior full conditional distributions.

Burr MTDPP We associate each xi with a latent variable ℓi such that P (ℓi = l) =∑L
l=1wlδl(ℓi). With customary priors for (γ, λ, κ), we obtain the joint distribution

Ga(λ |uλ, vλ)×Ga(γ |uγ , vγ)×Ga(κ |uκ, vκ)1(κ > 1)×Dir(w |α0a1, . . . , α0aL)

×

{
n∏

i=L+1

Burr
(
xi | γ, λ̃(xi−ℓi), κ

) L∑
l=1

wlδl(ℓi)

}{
S
(
xn+1 | γ, λ̃(xn+1−ℓn+1), κ

) L∑
l=1

wlδl(ℓn+1)

}
,

where λ̃(v) = (λγ+vγ)1/γ , and S
(
xn+1 | γ, λ̃(xn+1−ℓi), κ

)
is the survival function associated

the Burr distribution. In particular, S
(
xn+1 | γ, λ̃(xn+1−ℓi), κ

)
= (1+{xn+1/λ̃(xn+1−ℓi)}γ)−κ.

LetMl = |{i : ℓi = l}|, for l = 1, . . . , L. The posterior full conditional distribution ofw is

Dir(w |α0α1+M1, . . . , α0αL+ML)
⊤. The posterior full conditional distribution of ℓi is a dis-

crete distribution on {1, . . . , L}, with probabilities proportional to wlBurr
(
xi | γ, λ̃(xi−l), κ

)
,

for i = L + 1, . . . , n, and with probabilities proportional to wlS
(
xn+1 | γ, λ̃(xn+1−l), κ

)
for i = n + 1. Let x = (x1, . . . , xn+1)

⊤ and θ = {λ, γ, κ, {ℓi}n+1
i=L+1}. Take p(x,θ) ={∏n

i=L+1Burr(xi | γ, λ̃(xi−ℓi), κ)
}
S(xn+1 | γ, λ̃(xn+1−ℓn+1), κ). To update λ and γ, we use

random walk Metropolis steps with target densities, respectively, Ga(λ |uλ, vλ) p(x,θ) and

Ga(γ |uγ , vγ) p(x,θ). The posterior full conditional distribution of κ is a truncated gamma

distribution, Ga(κ |uκ + n− L, vκ +
∑n+1

i=L+1 log(1 + {xi/λ̃(xi−ℓi)}γ))1(κ > 1).
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Extended scaled-Lomax MTDPP Let xi = µ(ti)zi, with logµ(ti) =
∑J

j=1{β1j sin(jωti)+

β2j cos(jωti)}. The conditional duration density is

f∗(xi) = µ(ti)
−1

L∑
l=1

wlP
(
µ(ti)

−1xi |αϕ+ µ(ti−l)
−1xi−l, α

)
,

and the conditional survival function is S∗(xi) =
∑L

l=1wlS(µ(ti)
−1xi |αϕ+µ(ti−l)−1xi−l, α),

where S is the survival function associated with the scaled-Lomax distribution. In partic-

ular, S(zi |αϕ+ zi−l, α) = (1 + {αϕ+ zi−l}−1zi)
−α.

Denote β = (β11, . . . , β1J , β21, . . . , β2J)
⊤, and let β̃k be the kth component of β, for k =

1, . . . , 2J . We introduce a collection of configuration variables {ℓi}n+1
i=L+1 such that P (ℓi =

l) =
∑L

l=1wlδl(ℓi). With customary priors for (β, α, ϕ), we obtain the joint distribution

2J∏
k=1

N(β̃k |µβ̃k , σ
2
β̃k
)×Ga(α |uα, vα)1(α > 1)×Ga(ϕ |uϕ, vϕ)×Dir(w |α0a1, . . . , α0aL)

×

{
n∏

i=L+1

µ(ti)
−1P

(
µ(ti)

−1xi |αϕ+ µ(ti−ℓi)
−1xi−ℓi , α

) L∑
l=1

wlδl(ℓi)

}

×

{
S
(
µ(tn+1)

−1xn+1 |αϕ+ µ(tn+1−ℓn+1)
−1xn+1−ℓn+1 , α

) L∑
l=1

wlδl(ℓn+1)

}
,

where, by abuse of notation, we take tn+1 = T .

The posterior full conditional distributions for the weightsw and configuration variables

{ℓi}n+1
i=L+1 are similar to those for the Burr MTDPP. We focus on the updates for (β, α, ϕ).

Let t = (t1, . . . , tn+1)
⊤, x = (x1, . . . , xn+1)

⊤, and θ = {β, α, ϕ, {ℓi}n+1
i=L+1}. We take

p(t,x,θ) =

{
n∏

i=L+1

P
(
µ(ti)

−1xi |αϕ+ µ(ti−ℓi)
−1xi−ℓi , α

)}

× S
(
µ(tn+1)

−1xn+1 |αϕ+ µ(tn+1−ℓn+1)
−1xn+1−ℓn+1 , α

)
.

We use random walk Metropolis steps to update α and ϕ with target densities, respectively,

Ga(α |uα, vα)1(α > 1) p(t,x,θ) and Ga(ϕ |uϕ, vϕ) p(t,x,θ). Similarly, we update β̃k using

a random walk Metropolis step with target densityN(β̃k |µβ̃k , σ
2
β̃k
) p(t,x,θ)

∏n+1
i=L+1 µ(ti)

−1,

for k = 1, . . . , 2J .

Lomax MTDCPP The Lomax MTDCPP conditional duration density, for i > L, can be

written as f∗C(xi) =
∑L

l=0 πlf
c
l (xi |µ, ϕ, α), where f c0 ≡ µ exp(−µxi), f cl ≡ P (xi |ϕ+xi−l, α),
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and πl = (1− π0)wl, l = 1, . . . , L. Let Sc0 and Scl be the survival functions associated with

f c0 and f cl , respectively. With customary priors for (µ, ϕ, α), the joint distribution is

Ga(µ |uµ, vµ)×Ga(ϕ |uϕ, vϕ)×Ga(α |uα, vα)1(α > 1)×Dir(w |α0a1, . . . , α0aL)

× Beta(π0 |u0, v0)×

{
n∏

i=L+1

f cℓi(xi |µ, ϕ, α)
L∑
l=0

πlδl(ℓi)

}{
Scℓn+1

(xn+1 |µ, ϕ, α)
L∑
l=0

πlδl(ℓn+1)

}
.

The posterior full conditional distributions for w, π0, and {ℓi}n+1
i=L+1 can be found in the

main paper. We focus on the posterior updates for (µ, ϕ, α). Let Ml = |{i : ℓi = l}|,

for l = 0, . . . , L. A gamma prior for µ yields conjugate full conditional distribution

Ga(µ |uµ +M0 − δ0(ℓn+1), vµ +
∑

i:ℓi=0 xi). The full conditional distribution of α is trun-

cated gamma distribution Ga(α |uα+
∑L

l=1Ml − 1+ δ0(ℓn+1), vα+
∑

i:ℓi ̸=0 log(1+ xi/(ϕ+

xi−ℓi))1(α > 1). Let Bn
0 = {i : (1 ≤ i ≤ n) ∧ (ℓi ̸= 0)}, and p({xi}n+1

i=1 , µ, ϕ, α, {ℓi}
n+1
i=L+1) ={∏

i∈Bn
0
f cℓi(xi |µ, ϕ, α)

}{
Scℓn+1

(xn+1 |µ, ϕ, α)
}1−δ0(ℓn+1)

. We update ϕ using a random

walk Metropolis step with target density Ga(ϕ |uϕ, vϕ) p({xi}n+1
i=1 , µ, ϕ, α, {ℓi}

n+1
i=L+1).

D Additional simulation experiment

The goal of this experiment is to examine the ability of the MTDCPP to recover various

clustering behaviors attributed to two different factors. To this end, we generate data from

a Lomax MTDCPP, that is, with fI corresponding to an exponential distribution with rate

parameter µ and f∗(t− tN(t)) a stationary Lomax MTDPP.

In the experiment, we consider four scenarios, with π0 taking one of the following

values, (0.2, 0.5, 0.8, 1). The first three values indicate the proportion of the duration

process affected by a factor through fI . When π0 = 1, the data are equivalently generated

by a Poisson process with rate µ. For all scenarios, we take µ = 0.2, α = 5, ϕ = 0.1 and

decaying weights w = (0.35, 0.25, 0.2, 0.1, 0.1)⊤.

We applied the Lomax MTDCPP model with L = 5 to the synthetic data. We specified

a beta prior Beta(π0 | 1, 1) for the probability π0 and a gamma prior Ga(µ | 1, 1) for the

rate parameter µ of the exponential distribution fI . For the stationary Lomax MTDPP,

the shape and scale parameters received priors Ga(α | 6, 1)1(α > 1) and Ga(ϕ | 1, 1). In

particular, we chose prior for α with the expectation that the first four moments exist with

respect to the component and marginal Lomax distributions. The vector w was assigned

CDP(w | 5, 1, 3), which elicits a decreasing pattern in the weights.
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Table 1: Additional simulation experiment. Posterior means and 95% credible interval
estimates of the MTDCPP model parameters under different scenarios.

π0 = 0.2 π0 = 0.5 π0 = 0.8 π0 = 1

π0 0.22 (0.20, 0.25) 0.52 (0.48, 0.56) 0.81 (0.76, 0.86) 0.99 (0.96, 1.00)

µ 0.22 (0.19, 0.24) 0.19 (0.17, 0.20) 0.20 (0.19, 0.21) 0.19 (0.18, 0.20)

ϕ 0.12 (0.09, 0.15) 0.13 (0.09, 0.19) 0.12 (0.02, 0.33) 1.33 (0.04, 4.70)

α 5.46 (4.63, 6.43) 6.37 (4.91, 8.15) 4.78 (2.99, 8.21) 5.39 (2.19, 10.82)

We focus on the inference on the two-component mixture probability π0 and the compo-

nent density parameters (µ, ϕ, α). The posterior means and 95% credible interval estimates

of the parameters are presented in Table 1. The posterior estimates of the parameter π0

suggest that the model was able to recover the proportion of the point process driven by fI ,

even in the extreme case when π0 = 1. For other parameters, the model produced estimates

close to the true values for all scenarios.

E Model checking results

We provide model checking results for the data examples. Define U∗
i = 1− exp{−(Λ∗(ti)−

Λ∗(ti−1))} = F ∗(ti− ti−1) as residuals of the point process model. If the model is correctly

specified, the residuals will be independently and identically distributed as a standard

uniform distribution. Figure 1 consists of quantile-quantile plots of the estimated U∗
i for

the simulation experiment and the first real data example of the paper, and the additional

experiment in Section D. Figures 2-5 contain quantile-quantile plots of the estimated U∗
i for

the second real data example of the paper. The graphical model assessment results indicate

good model fit for all data examples.
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Figure 1: Model checking results. The first row corresponds to the simulation experiment in the main paper.
The second row and the first panel of the third row correspond to the additional simulation experiment.
The second panel of the third row corresponds to the IVT data example. Black solid lines are posterior
means and red dotted lines are 95% credible interval estimates.
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Figure 2: Model checking results. Forex data example point patterns 1 - 35. Black solid lines are posterior
means and red dotted lines are 95% credible interval estimates.
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Figure 3: Model checking results. Forex data example point patterns 36 - 70. Black solid lines are posterior
means and red dotted lines are 95% credible interval estimates.
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Figure 4: Model checking results. Forex data example point patterns 71 - 105. Black solid lines are posterior
means and red dotted lines are 95% credible interval estimates.

13



Figure 5: Model checking results. Forex data example point patterns 106 - 121. Black solid lines are
posterior means and red dotted lines are 95% credible interval estimates.
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