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Abstract

Longitudinal studies with binary or ordinal responses are widely encountered

in various disciplines, where the primary focus is on the temporal evolution of the

probability of each response category. Traditional approaches build from the generalized

mixed effects modeling framework. Even amplified with nonparametric priors placed on

the fixed or random effects, such models are restrictive due to the implied assumptions

on the marginal expectation and covariance structure of the responses. We tackle

the problem from a functional data analysis perspective, treating the observations for

each subject as realizations from subject-specific stochastic processes at the measured

times. We develop the methodology focusing initially on binary responses, for which

we assume the stochastic processes have Binomial marginal distributions. Leveraging

the logits representation, we model the discrete space processes through sequences

of continuous space processes. We utilize a hierarchical framework to model the

mean and covariance kernel of the continuous space processes nonparametrically and

simultaneously through a Gaussian process prior and an Inverse-Wishart process prior,

respectively. The prior structure results in flexible inference for the evolution and

correlation of binary responses, while allowing for borrowing of strength across all

subjects. The modeling approach can be naturally extended to ordinal responses. Here,

the continuation-ratio logits factorization of the multinomial distribution is key for

efficient modeling and inference, including a practical way of dealing with unbalanced

longitudinal data. The methodology is illustrated with synthetic data examples and

an analysis of college students’ mental health status data.
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1 Introduction

Recent years have witnessed a rapid growth of longitudinal studies with binary and ordinal

responses in several disciplines, including econometrics, and the health and social sciences. In

such studies, of primary importance are the probability response curves, i.e., the probabilities

of the response categories that evolve dynamically over time. This article aims at developing

a hierarchical framework, customized to longitudinal settings, that allows flexible inference

for the probability response curves. In addition, the defining characteristic of longitudinal

data is that repeated measurements on the same subject induce dependence. Hence, a

further objective is to flexibly model lead-lag correlations among repeated measurements.

The development of statistical methods for longitudinal binary and ordinal data stems

from models for longitudinal continuous responses, postulating the generalized linear model

framework. Analogous to the continuous case, a specific model is formulated under one of

three broad approaches pertaining to marginal models, conditional models, or subject-specific

models. Marginal models provide alternative modeling options when likelihood-based

approaches are difficult to implement. A conditional model describes the distribution of

responses conditional on the covariates and also on part of the other components of the

responses. In a subject-specific model, the effects of a subset of covariates are allowed to vary

randomly from one individual to another. In the absence of predictor variables, functions of

the observation time are usually used as covariates. We refer to Molenberghs and Verbeke

(2006) for a comprehensive review. In Section 2.5, we elaborate on the connection of our

proposed modeling approach with existing methods.

In this article, we introduce a novel viewpoint for longitudinal binary and ordinal

data analysis. We begin with the model construction for longitudinal binary responses.

The critical insight that distinguishes our methodology from the majority of the existing

literature is functional data analysis. We treat the subjects’ measurements as stochastic

process realizations at the corresponding time points. The benefits are twofold. First, the

models can incorporate unbalanced data from longitudinal studies in a unified scheme;

directly inferring the stochastic process provides a well-defined probabilistic model for the

missing values. Secondly, we can exploit the power of Bayesian hierarchical modeling for
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continuous functional data (e.g., Yang et al., 2016). To that end, we adopt the Binomial

distribution with the logit link that connects binary responses to continuous signals, which,

subject to additive measurement error, are then modeled as (conditionally) independent and

identically distributed (i.i.d.) realizations from a Gaussian process (GP) with random mean

and covariance function. We place an Inverse-Wishart process (IWP) prior on the covariance

function, and conditional on it, use a GP prior for the mean function. Therefore, the two

essential ingredients in longitudinal modeling, the trend and the covariance structure, are

modeled simultaneously and nonparametrically.

The hierarchical structure allows borrowing of strength across the subjects’ trajectories.

We apply a specific setting of hyperpriors for the GP and IWP priors, such that marginalizing

over them, the latent continuous functions have a Student-t process (TP) prior. The TP

enhances the flexibility of the GP (e.g., Shah et al., 2014). It retains attractive GP properties,

such as analytic marginal and predictive distributions, and it yields predictive covariance

that, unlike the GP, explicitly depends on the observed values. For inferential purposes,

we represent the joint posterior distribution in multivariate form through evaluating the

functions on the pooled grid, resulting in the common normal-inverse-Wishart conditional

conjugacy. In conjunction with the Pólya-Gamma data augmentation technique (Polson

et al., 2013), we develop a relatively simple and effective posterior simulation algorithm,

circumventing the need for specialized techniques or tuning of Metropolis-Hastings steps.

To extend the model for ordinal responses, we utilize the continuation-ratio logits

representation of the multinomial distribution. Such representation features an encoding of

an ordinal response with C categories as a sequence of C � 1 binary indicators, in which the

j-th indicator signifies whether the ordinal response belongs to the j-th category or to one

of the higher categories. We show that fitting a multinomial model for the ordinal responses

is equivalent to fitting separately the aforementioned model on the binary indicators. Hence,

we can conduct posterior simulation for each response category in a parallel fashion, leading

to significant computational efficiency gains in model implementation.

In modern longitudinal studies, it is common that the complete vector of repeated

measurements is not collected on all subjects. As a specific example, in ecological momentary
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assessment (EMA) studies, emotions and behaviors are repeatedly measured for a cohort

of participants, through wearable electronic devices (Ruwaard et al., 2018). For instance,

in the StudentLife study (Wang et al., 2014), researchers monitored the students’ mental

status through pop-up questionnaires on their smartphones that prompted multiple times

at pseudorandom intervals during the study period. Since the data collection process is

based on the participants’ conscious responding to prompted questions several times a

day, non-response is inevitable. Missing values are typically considered to be a nuisance

rather than a characteristic of EMA time series. Parametric and nonparametric Bayesian

methods have been developed to handle longitudinal data with missingness; see Daniels

and Xu (2020) for a review. The common issue is that one has to bear the drawbacks

of making either structured or unstructured assumptions to manage missingness. The

unstructured approach leads to flexibility, yet it may result in difficulties due to a large

number of parameters relative to the sample size. Besides, the majority of the existing

literature on longitudinal studies with missingness focuses on the scenario with continuous

responses, and the extension to discrete responses is not trivial.

Accordingly, our contributions can be summarized as follows: (i) we model the mean and

covariance jointly and nonparametrically, avoiding potential biases caused by a pre-specified

model structure; (ii) we unify the toolbox for balanced and unbalanced longitudinal studies;

(iii) the model encourages borrowing of strength, preserving systematic patterns that are

common across all subject responses; (iv) we develop a computationally efficient posterior

simulation method by taking advantage of conditional conjugacy; (v) the model facilitates

applications for ordinal responses with a moderate to large number of categories.

The rest of the paper is organized as follows. Section 2 develops the methodology

for binary responses, including model formulation, study of model properties, and the

computational approach to inference and prediction. Section 3 illustrates the modeling

approach through an EMA study that focuses on analyzing students’ mental health through

binary outcomes. The modeling extension for longitudinal ordinal responses is presented in

Section 4, including an illustration involving an ordinal outcome from the same EMA study.

Finally, Section 5 concludes with a summary.
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2 The modeling approach for binary responses

Here, we develop the methodology for longitudinal binary responses. The data consist of

repeated binary responses on n subjects, with the observation on subject i at time ⌧it denoted

by Yit. The set of repeated outcomes for the i-th subject is collected into a Ti-dimensional

vector Yi = (Yi1, · · · , YiTi)
>. The hierarchical model construction is presented in Section

2.1. In Section 2.2, we discuss model properties related to our inference objectives. Bayesian

inference and prediction is developed in Section 2.3. In Section 2.4, we outline the findings

from simulation studies, the details of which are included in the Supplementary Material.

Finally, to place our contribution within the literature, we discuss in Section 2.5 the proposed

model in the context of relevant Bayesian nonparametric approaches.

2.1 Model specification

We examine the data from a functional data analysis perspective, treating each observed

data vector Yi as the evaluation of trajectory Yi(⌧) on grid ⌧i = (⌧i1, · · · , ⌧iTi)
>, for

i = 1, · · · , n. The n trajectories are assumed to be (conditionally) independent realizations

from a continuous-time stochastic process. The prior probability model is built on the

stochastic process. This approach avoids strong pre-determined assumptions on the

transition mechanism within the sequence of subject-specific responses in Yi, while it

is suitable to accommodate repeated measurements regardless of their observational pattern.

The functional data analysis view of longitudinal data dates back at least to Zhao et al.

(2004), where it is suggested that functional data analysis tools, such as principal component

analysis, can be used to capture periodic structure in longitudinal data. Indeed, Yao

et al. (2005) study functional principal component analysis (FPCA) for sparse longitudinal

data, a method that can provide effective recovery of the entire individual trajectories

from fragmental data. FPCA has been applied in finance (Ingrassia and Costanzo, 2005),

biomechanics (Donà et al., 2009), and demographic studies (Shamshoian et al., 2020). Its

extension to examine sequences of discrete data is studied in Hall et al. (2008).

Our methodology builds from a GP-based hierarchical model for continuous functional

data (Yang et al., 2016). Regarding mean-covariance estimation, the model in Yang et al.
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(2016) can be considered as a Bayesian counterpart of Yao et al. (2005). The hierarchical

scheme enables a natural extension to studies with binary responses. We assume that,

subject to measurement error, the i-th subject’s responses, Yit ⌘ Yi(⌧it), depend on the i-th

trajectory of the underlying process, evaluated at times ⌧it, through the following model

Yi(⌧it) | Zi(⌧it), ✏it
ind.⇠ Bin(1,'(Zi(⌧it) + ✏it)), t = 1, · · · , Ti, i = 1, · · · , n,

where '(x) = exp(x)/{1 + exp(x)} denotes the expit function. The error terms are i.i.d.

from a white noise process, that is, ✏it | �2
✏

i.i.d.⇠ N(0, �2
✏ ), and independent of the process

realizations Zi(·). The main building block for the model construction is a hierarchical

GP prior for the Zi(·). In particular, given random mean function µ(·) and covariance

kernel ⌃(·, ·), the Zi(·) are i.i.d. GP realizations, denoted by Zi | µ,⌃
i.i.d.⇠ GP (µ,⌃), for

i = 1, · · · , n. The hierarchical GP prior model is completed with nonparametric priors for

the mean function and covariance kernel:

µ | ⌃ ⇠ GP (µ0,⌃/), ⌃ ⇠ IWP (⌫, �), (1)

where GP (·, ·) and IWP (·, ·) denote the GP and IWP prior, respectively. The nonparametric

prior reflects the intuition that parametric forms will generally not be sufficiently flexible

for the mean and covariance functions.

We adopt an IWP prior for the covariance kernel, defined such that, on any finite

grid ⌧ = (⌧1, · · · , ⌧T ) with |⌧ | points, the projection ⌃(⌧ , ⌧ ) follows an inverse-Wishart

distribution with mean  �(⌧ , ⌧ )/(⌫ � 2), denoted by IW (⌫, �(⌧ , ⌧ )). Here,  �(·, ·) is a

non-negative definite function with parameters �. Note that we use the parameterization

from Dawid (1981) for the inverse-Wishart distribution, in particular, ⌫ is the shape

parameter and ⌫ + |⌧ | � 1 is the degrees of freedom parameter in the more common

parameterization. Yang et al. (2016) validate that this parameterization defines an infinite

dimensional probability measure whose finite dimensional projection on grid ⌧ coincides

with the inverse-Wishart distribution IW (⌫, �(⌧ , ⌧ )).

The model formulation is completed with prior specification for the hyperparameters.

The error variance is assigned an inverse Gamma prior, �2
✏ ⇠ IG(a✏, b✏). We focus primarily

on stationary specifications under the prior structure in (1). In particular, we work with

6



mean function, µ0(⌧) ⌘ µ0, and isotropic covariance function,  �, within the Matérn class,

a widely used class of covariance functions (Rasmussen and Williams, 2006). In general, the

Matérn covariance function is specified by a scale parameter �2, a range parameter ⇢, and a

smoothness parameter ◆. To encourage smoothness in the probability response curves, we

set ◆ = 5/2, such that the covariance kernel is given by

 �(⌧, ⌧
0) = �2

Ç
1 +

p
5|⌧ � ⌧ 0|

⇢
+

5|⌧ � ⌧ 0|2

3⇢2

å
exp

Ç
�
p
5|⌧ � ⌧ 0|

⇢

å
,

where � = {�2, ⇢}. For hyperparameters µ0, �2, ⇢, we take the commonly used choice,

µ0 ⇠ N(aµ, bµ), �2 ⇠ Gamma(a�, b�), ⇢ ⇠ Unif(a⇢, b⇢).

Finally, we set  = (⌫ � 3)�1, such that the continuous-time process for the Zi(·) is a

TP when µ and ⌃ are marginalized out (see Section 2.2 for details). As a consequence,

parameter ⌫ controls the tail heaviness of the marginal process, with smaller values of ⌫

corresponding to heavier tails. We place a uniform prior on ⌫, ⌫ ⇠ Unif(a⌫ , b⌫), with a⌫ > 3

to ensure positive definiteness of ⌃/.

As discussed in Diggle (1988), the correlation of repeated measurements on the same

subject commonly has the following patterns. First, it should decrease with respect to the

measurements’ separation in time, while remaining positive to indicate the measurements

are from the same subject. This feature is encapsulated by the form of the covariance kernel

 �. The IWP prior elicits realizations for which this property holds a priori, while enabling

a flexible estimate of the covariance structure with information from the data a posteriori.

Second, measurements that are made arbitrarily close in time are subject to imperfect

correlation, possibly caused by subsampling of each subject. This feature is represented

by the error term in our model. Moreover, the motivation for adding the error term arises

from the fact that measurement error is introduced in the estimation of a continuous-time

function based on data collected at discrete time points.

Although the probability model is formulated through stochastic process realizations,

posterior simulation is based on the corresponding finite dimensional distributions (f.d.d.s.).

Consequently, to write the model for the data, we need to represent the likelihood and prior

in multivariate forms through evaluating the functions on finite grids. Denoting Yi(⌧i) by
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Yi, Zi(⌧i) by Zi, and ✏i = (✏i1, · · · , ✏iTi)
>, the model for the data can be written as

Yi | Zi, ✏i
ind.⇠

TiY

t=1

Bin(1,'(Zit + ✏it)), i = 1, · · · , n,

Zi | µ(⌧i),⌃(⌧i, ⌧i)
ind.⇠ N(µ(⌧i),⌃(⌧i, ⌧i)), ✏i | �2

✏
ind.⇠ N(0, �2

✏ I).

(2)

Notice that the grids {⌧i : i = 1, · · · , n} are not necessarily the same for all subjects.

Therefore, the shared GP and IWP prior in (1) need to be evaluated on the pooled grid

⌧ = [n
i=1⌧i. If µ, ⌃, and  � denote µ(⌧ ), ⌃(⌧ , ⌧ ), and  �(⌧ , ⌧ ), respectively, then

µ | ⌃, µ0, ⌫ ⇠ N(µ01, (⌫ � 3)⌃), ⌃ | ⌫,� ⇠ IW (⌫, �). (3)

The hierarchical model formulation for the data in (2) and (3) forms the basis for the

posterior simulation algorithm, which is discussed in detail in Section 2.3.

2.2 Model properties

To fix ideas for the following discussion, we refer to Zi(⌧) as the signal process of the

binary process Yi(⌧), and to Zi(⌧) = Zi(⌧) + ✏i(⌧) as the latent process of Yi(⌧). Since the

stochastic process is characterized by its f.d.d.s., we shall investigate the random vectors

Y⌧ = Yi(⌧ ), Z⌧ = Zi(⌧ ), and Z⌧ = Zi(⌧ ), for a generic grid vector ⌧ = (⌧1, · · · , ⌧T )>. We

surpass the subject index i because the subject trajectories are identically distributed. The

Supplementary Material includes proofs for the propositions included in this section.

Among the various inference goals in a study that involves longitudinal binary data,

estimating the probability response curve and the covariance structure of the repeated

measurements are the most important ones. In Proposition 1, we derive the probability

response curves and covariance matrix of the binary vector Y⌧ , conditional on the signal

vector Z⌧ and error variance �2
✏ . The probability response curve can be defined generically

as Py⌧ = (Pr(Y⌧1 = y⌧1 | Z⌧ , �2
✏ ), · · · ,Pr(Y⌧T = y⌧T | Z⌧ , �2

✏ ))
>, where y⌧t is either 0 or 1.

Without loss of generality, we focus on P1⌧ .

Proposition 1. The probability response curve is given by P1⌧ = E(⇡(Z⌧ ) | Z⌧ , �2
✏ ), where

⇡(x) denotes the vector operator that applies the expit function to every entry of x. Regarding

the covariance matrix, for ⌧ 2 ⌧ , V ar(Y⌧ | Z⌧ , �2
✏ ) = E('(Z⌧ ) | Z⌧ , �2

✏ )�E2('(Z⌧ ) | Z⌧ , �2
✏ ),
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and for ⌧, ⌧ 0 2 ⌧ , with ⌧ 0 6= ⌧ , Cov(Y⌧ , Y⌧ 0 | Z⌧ , �2
✏ ) = Cov('(Z⌧ ),'(Z⌧ 0) | Z⌧ , �2

✏ ). The

conditional expectations in all of the above expressions are with respect to distribution,

Z⌧ | Z⌧ , �2
✏ ⇠ N(Z⌧ , �2

✏ I).

The practical utility of Proposition 1 lies on performing posterior inference for the

probability response curve and the covariance structure of the binary process, conditioning

on the signal process and the noise. With posterior samples of Z⌧ and �2
✏ , we can simulate

Z⌧ from N(Z⌧ , �2
✏ I) and numerically compute the corresponding moments in Proposition 1.

The entries of Z⌧ are independent, given Z⌧ , and thus simulating Z⌧ is not computationally

demanding, even when |⌧ | is large.

We next establish a closer connection between the binary process and the signal

process. Proposition 2 reveals that the evolution of the binary process over time can

be (approximately) expressed as a function of the expectation of the signal process and

the total variance. Moreover, the covariance of the binary process is approximately the

covariance of the signal process scaled by a factor related to the expectation of the signal.

Proposition 2. Consider the proposed model as described in (2) and denote µ(⌧ ) = µ, and

⌃(⌧ , ⌧ ) = ⌃. Then,

Pr(Y⌧ = 1 | µ,⌃, �2
✏ ) ⇡ '(E(Z⌧ | µ,⌃)) + Var(Z⌧ | µ,⌃) + �2

✏

2
'00(E(Z⌧ | µ,⌃)), 8⌧ 2 ⌧ ,

Cov(Y⌧ , Y⌧ 0 | µ,⌃, �2
✏ ) ⇡ '0(E(Z⌧ | µ,⌃))'0(E(Z⌧ 0 | µ,⌃))Cov(Z⌧ , Z⌧ 0 | µ,⌃)

� 1

4
[Var(Z⌧ | µ,⌃) + �2

✏ ][Var(Z⌧ 0 | µ,⌃) + �2
✏ ]'

00(E(Z⌧ | µ,⌃))'00(E(Z⌧ 0 | µ,⌃)), 8⌧, ⌧ 0 2 ⌧ .

Here, '0(x) = d'(x)
dx = '(x)[1� '(x)] and '00(x) = d2'(x)

dx2 = '(x)[1� '(x)][1� 2'(x)].

Our inference results are based on exact expressions, such as the ones in Proposition 1.

Nonetheless, the approximate expressions derived in Proposition 2 are practically useful

to gain more insight on properties of the binary process, as well as for prior specification.

Note that exploring properties of the binary process is not trivial due to the lack of general

analytical forms for moments of logit-normal distributions. Hence, a connection with

properties of the signal process is useful. For instance, if we specify the covariance for the

signal process to decrease as a function of separation in time, an analogous structure will

hold (approximately) for the binary process.
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The previous discussion focuses on studying the f.d.d.s of the binary process given the

signal process. Therefore, it is important to investigate the marginal f.d.d.s of the signal

process. We show that, under the specification  = (⌫ � 3)�1, the f.d.d.s. of the signal

process correspond to a multivariate Student-t (MVT) distribution, and thus the signal

process is a TP. We first state the definition of the MVT distribution and the TP (see, e.g.,

Shah et al., 2014). Notice that we use the covariance matrix as a parameter for the MVT

distribution, instead of the more common parameterization based on a scale matrix.

Definition 1. The random vector Z 2 Rn
is MVT distributed, denoted Z ⇠ MV T (⌫,µ, ),

if it has density

�(⌫+n
2 )

[(⌫ � 2)⇡]n/2�(⌫2 )
| |�1/2

Å
1 +

(Z� µ)T �1(Z� µ)

⌫ � 2

ã� ⌫+n
2

where ⌫ > 2 is the degrees of freedom parameter, µ 2 Rn
, and  is an n⇥ n symmetric,

positive definite matrix. Under this parameterization, E(Z) = µ and Cov(Z) =  .

Consider a process Z(⌧) formulated through mean function µ(⌧), a non-negative kernel

function  (⌧, ⌧), and parameter ⌫ > 2, such that its f.d.d.s correspond to the MVT

distribution with mean vector and covariance matrix induced by µ(⌧ ) and  (⌧, ⌧), respectively.

Then, Z(⌧) follows a TP, denoted by Z(⌧) ⇠ TP (⌫, µ(⌧), (⌧, ⌧)).

Marginalizing over µ and ⌃ in (2) and (3), the implied distribution for Z⌧ is MVT,

with degrees of freedom parameter ⌫ (with ⌫ > 3 in our context), mean vector µ01, and

covariance matrix  � =  �(⌧ , ⌧ ). We thus obtain the following result for the signal process.

Proposition 3. Under the model formulation in (2) and (3), the signal process follows

marginally a TP, that is, Z ⇠ TP (⌫, µ0, �).

Proposition 3 is beneficial in terms of both computation and interpretation. Without

a constraint on , as in Yang et al. (2016), the marginal distribution of Z⌧ does not have

analytical form. Hence, for prediction at new time points, one has to sample from an IWP

and a GP, which is computationally intensive, especially for a dense grid. In contrast, we

can utilize the analytical form of the TP predictive distribution to develop a predictive

inference scheme that resembles that of GP-based models (see Section 2.3). Moreover, the
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result highlights the model property that the degrees of freedom parameter ⌫ controls how

heavy tailed the process is. Smaller values of ⌫ correspond to heavier tails. As ⌫ gets larger,

the tails resemble Gaussian tails. Moreover, ⌫ controls the dependence between Z⌧ and Z⌧ 0 ,

which are jointly MVT distributed, with smaller values indicating higher dependence. Such

interpretation of parameter ⌫ facilitates the choice of its hyperprior.

The local behavior of stochastic process realizations is crucial for interpolation. Under

the longitudinal setting, continuous, or perhaps differentiable, signal process trajectories are

typically anticipated. Evidently, the observed data can not visually inform the smoothness

of signal process realizations. Rather, such smoothness should be captured in the prior

specification that incorporates information about the data generating mechanism. For weakly

stationary processes, mean square continuity is equivalent to the covariance function being

continuous at the origin (Stein, 1999). And, the process is ◆-times mean square differentiable

if and only if the 2◆-times derivative of the covariance function at the origin exists and is

finite. Under our model, the signal process follows a TP marginally. Its covariance structure

is specified by the Matérn covariance function with smoothness parameter ◆. Referring

to the behavior of the Matérn class of covariance functions at the origin, we obtain the

following result for the mean square continuity and differentiability of the signal process.

Proposition 4. Consider the proposed model with marginal signal process Z ⇠ TP (⌫, µ0, �),

where  � belongs to the Matérn family of covariance functions with smoothness parameter ◆.

Then, the signal process is mean square continuous and b◆c-times mean square differentiable.

The results in this section study several properties that are useful in model implementation.

Indeed, the practical utility of such model properties with respect to prior specification and

posterior inference is discussed in the next section.

2.3 Prior specification and posterior inference

The model described in Section 2.1 contains parameters {�2
✏ , µ0, �2, ⇢, ⌫} whose prior

hyperparameters need to be specified. We develop a default specification strategy that relies

on the model properties explored in Section 2.2.
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First, we set the prior for µ0 such that the prior expected probability response curve does

not favor any category, and the corresponding prior uncertainty bands span a significant

portion of the unit interval. For instance, this can be achieved with prior µ0 ⇠ N(0, 100)

which yields prior expected probability of positive response of about 1/2 across ⌧ . In

general, we would not expect to have available prior information about the variance and

correlation structure of the unobserved signal process, which are controlled by parameters

�2 and ⇢. However, Proposition 2 suggests an approximate relationship between the

covariance structure of the binary process and the signal process, and we can thus specify

the corresponding priors similarly to GP-based models. In particular, we select the uniform

prior for the range parameter ⇢ such that the correlation between Z⌧ and Z⌧ 0 decreases to

0.05 when the difference between ⌧ and ⌧ 0 is within a pre-specified subset of the observation

time window. For instance, for the data analysis in Section 3 where the total observation

window comprises 72 days, we used a Unif(3, 12) prior for ⇢, which implies that the

aforementioned correlation decreases to 0.05 when the time difference ranges from 7 to 31

days. The hyperprior for ⌫ is Unif(a⌫ , b⌫). We specify a⌫ > 3 to reflect the constraint

for ⌃/(⌫ � 3) to be a well-defined covariance matrix, and b⌫ large enough such that the

tail behavior of the marginal TP is hard to distinguish from that of a GP. For instance, a

default choice is a⌫ = 4 and b⌫ = 30.

We follow Fong et al. (2010) to specify the prior for �2
✏ ⇠ IG(a✏, b✏). Integrating out �2

✏ ,

the measurement error ✏ is marginally distributed as a univariate Student-t distribution

with location parameter 0, scale parameter b✏/a✏, and degrees of freedom parameter 2a✏. For

a predetermined measurement error range (�R,R) with degree of freedom �, we can use

the relationship ±t�1�(1�q)/2

p
b✏/a✏ = ±R to obtain a✏ = �/2 and b✏ = R2�/[2(t�1�(1�q)/2)

2],

where t�q is the q-th percentile of a Student-t distribution with � degrees of freedom.

Proceeding to posterior inference, we develop an MCMC algorithm based on (2) and (3).

We introduce layers of latent variables, beginning with ⇠it ⇠ PG(1, 0) for every observation

Yit, where PG(a, b) denotes the Pólya-Gamma distribution with shape parameter a and

tilting parameter b (Polson et al., 2013). Denote the collection of Pólya-Gamma variables

for each subject by ⇠i = (⇠i1, · · · , ⇠iTi)
>. Also, introduce Zit = Zit + ✏it, and let Z i =
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(Zi1, · · · ,ZiTi)
>. Recall that ⌧ = [n

i=1⌧i is the pooled grid. Denote the evaluations on the

pooled grid by Z̃i = Zi(⌧ ) and let Z⇤
i = Z̃i \ Zi. That is, Z⇤

i = Zi(⌧ ⇤
i ), where ⌧ ⇤

i = ⌧ \ ⌧i is

the set of grid points at which the i-th trajectory misses observations. Then, the hierarchical

model for the data {Yit : t = 1, · · · , Ti, i = 1, · · · , n} can be expressed as

Yit | Zit
ind.⇠ Bin(1,'(Zit)), ⇠it

i.i.d.⇠ PG(1, 0), t = 1, · · · , Ti,

Z i | Zi, �
2
✏

ind.⇠ N(Zi, �
2
✏ ITi), Z̃i = (Zi,Z

⇤
i )

> | µ,⌃ i.i.d.⇠ N(µ,⌃), i = 1, · · · , n,

�2
✏ ⇠ IG(a✏, b✏), µ | µ0,⌃, ⌫ ⇠ N(µ01, (⌫ � 3)⌃), µ0 ⇠ N(aµ, bµ),

⌃ | ⌫, � ⇠ IW (⌫, �),  � =  �(⌧ , ⌧ ), � = {�2, ⇢},

�2 ⇠ Gamma(a�, b�), ⇢ ⇠ Unif(a⇢, b⇢), ⌫ ⇠ Unif(a⌫ , b⌫).

Hence, the joint posterior density of all model parameters can be written as

p({Z i}ni=1,{⇠i}ni=1, {Z̃i}ni=1,µ,⌃, �
2
✏ , µ0, �

2, ⇢, ⌫ | {Yi}ni=1)

/
nY

i=1

{p(Yi | Z i, ⇠i)p(⇠i)p(Z i | Zi, �
2
✏ )p(Z

⇤
i | Zi,µ,⌃)p(Zi | µ,⌃)}

⇥ p(µ | µ0,⌃, ⌫)p(⌃ | �2, ⇢, ⌫)p(�2
✏ )p(µ0)p(�

2)p(⇢)p(⌫).

(4)

The introduction of the latent variables enables a Gibbs sampling scheme with conditionally

conjugate updates. Denote generically by p(✓ | �) the posterior full conditional for parameter

✓. Notice that p(Z i, ⇠i | �) / p(Yi | Z i, ⇠i)p(⇠i)p(Z i | Zi, �2
✏ ), which matches the Bayesian

logistic regression structure in Polson et al. (2013). Therefore, p(Z i | �) and p(⇠i | �) can

be sampled directly. Factorizing the prior of Z̃i as p(Z̃i|µ,⌃) = p(Z⇤
i | Zi,µ,⌃)p(Zi | µ,⌃),

results in p(Z⇤
i ,Zi|�) / p(Z⇤

i | Zi,µ,⌃)p(Zi | µ,⌃)p(Z i | Zi, �2
✏ ). This forms yields ready

updates for Z⇤
i and Zi using GP-based predictive sampling. All other model parameters

can be sampled using standard updates. The details of the MCMC algorithm are given in

the Supplementary Material.

We have linked the probability response curve and covariance structure of the binary

process Yi(⌧) to the corresponding signal process Zi(⌧). To estimate the signal process, we

obtain posterior samples for Z+
i = Zi(⌧+), where ⌧+ � ⌧ is a finer grid than the pooled

grid. Denote ⌧̌ = ⌧+ \ ⌧ as the time points where none of the subjects have observations,
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and let Ži = Zi(⌧̌ ). Using the marginal TP result from Proposition 3,
Ñ

Z̃i

Ži

é
⇠ MV T

Ñ
⌫,

Ñ
µ0⌧

µ0⌧̌

é
,

Ñ
 ⌧ ,⌧  ⌧ ,⌧̌

 ⌧̌ ,⌧  ⌧̌ ,⌧̌

éé
,

where µ0· = µ01|·|, and  ·,· denotes the covariance function evaluation  �(·, ·). Next, based

on the conditionals of the MVT distribution (Shah et al., 2014),

Ži | Z̃i ⇠ MV T

Å
⌫ + |⌧ |, µ̌i⌧̌ ,

⌫ + Si⌧ � 2

⌫ + |⌧ |� 2
 ̌⌧̌ ,⌧̌

ã
, (5)

with µ̌i⌧̌ =  ⌧̌ ,⌧ �1
⌧ ,⌧ (Z̃i � µ0⌧ ) + µ0⌧̌ , Si⌧ = (Z̃i � µ0⌧ )> �1

⌧ ,⌧ (Z̃i � µ0⌧ ) and  ̌⌧̌ ,⌧̌ =

 ⌧̌ ,⌧̌ � ⌧̌ ,⌧ �1
⌧ ,⌧ ⌧ ,⌧̌ . Using (5), given each posterior sample for Z̃i, µ0, � and ⌫, we can

complete the posterior realization for the signal process over the finer grid. As discussed in

Section 2.2, we can then obtain full posterior inference for functionals of the binary process.

The predictive distribution of the signal process also illustrates the information borrowed

across subjects. For the i-th subject, the grid, ⌧+, where predictions are made can be

partitioned as ⌧i [ ⌧ ⇤
i [ ⌧̌ , where ⌧ ⇤

i = ⌧ \ ⌧i represents the grid points where subject

i does not have observations, while at least one of the other subjects have observations.

Then, we first predict Zi(⌧ ⇤
i ) conditioning on Zi(⌧i) by the GP predictive distribution, and

next predict Zi(⌧̌ ) conditioning on Zi(⌧i) and Zi(⌧ ⇤
i ) by the TP predictive distribution.

Comparing with the GP, (5) suggests the TP is scaling the predictive covariance by the factor
⌫+Si⌧�2
⌫+|⌧ |�2 . Note that Si⌧ is distributed as the sum of squares of |⌧ | independent MV T1(⌫, 0, 1)

random variables and hence E(Si⌧ ) = |⌧ |. Accordingly, if we have made good interpolation

prediction, the predictive covariance for extrapolation of Zi(⌧̌ ) is expected to scale down

and vice versa. Comparing with predicting both Zi(⌧ ⇤
i ) and Zi(⌧̌ ) conditioning on Zi(⌧i)

through the GP predictive distribution, our model allows using information across subjects

to adjust the individual trajectory’s credible interval.

2.4 Synthetic data examples

We assess the model by applying it to carefully designed simulation scenarios that reflect

our main contributions. The full details are provided in the Supplementary Material. Here,

we briefly discuss the simulation study setting and summarize the main findings.

14



For the two sets of simulation studies we considered, the longitudinal binary responses

are generated from the following generic process:

Yi(⌧i) | Zi(⌧i)
ind.⇠ Bin(1, ⌘(Zi(⌧i))), ⌧i = (⌧i1, · · · , ⌧iTi), i = 1, · · · , n,

Zi(⌧i) = f(⌧i) + !i + ✏i ✏i
i.i.d.⇠ N(0, �2

✏ I),
(6)

where ⌘(·) is a generic link function mapping R to (0, 1), f(⌧) is a signal function, and !i

is a realization from a mean zero continuous stochastic process that depicts the temporal

covariance within the i-th subject.

The first set of simulation studies focuses on evaluating the effectiveness of the proposed

model in capturing the fluctuation of the temporal trend. We consider different link

function, signal function, and temporal covariance structure combinations, and we simulate

unbalanced data with different sparsity levels. The results demonstrate that, despite the

data generating process and the sparsity level, the model can recover not only the subject’s

probability response curve, but also the underlying continuous signal function.

The objective of the second set of simulation studies is to explore the performance

of the proposed model in estimating the within subject covariance structure. To this

end, we examine a number of possible choices for generating the !i in (6), which imply

covariance structures that are not of the same form as the covariance kernel of the model.

The results reveal that the model can recover the true covariance between the signal

variables, (Zi(⌧it), Zi(⌧it0)), and the binary responses, (Yi(⌧it), Yi(⌧it0)), thus providing

empirical evidence for the robustness of the covariance kernel choice.

In both cases, we examine simplified versions of the model for comparison. The simplified

models are constructed by modeling either the mean structure or the covariance structure

parametrically in the two sets of simulation studies, respectively. Demonstrating that the

proposed model outperforms its parametric backbones, we highlight the practical utility of

the nonparametric modeling for the mean and covariance structure.

2.5 Connections with existing literature

Our methodology is broadly related with certain Bayesian nonparametric methods. The

proposed model is related to a particular class of conditional models, known as transition
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models, which induce the aging effect by allowing past values to explicitly affect the present

observation, usually through autoregressive dynamics. Di Lucca et al. (2013) studied a class

of non-Gaussian autoregression models for continuous responses, which can be extended

to handle binary longitudinal outcomes by treating them as a discretized version of the

continuous outcomes. DeYoreo and Kottas (2018) developed a nonparametric density

regression model for ordinal regression relationships that evolve in discrete time. Compared

with the proposed methodology, these models are more flexible in terms of the binary

response distribution. However, it is demanding to handle higher than first-order dynamics,

and there is no natural way to treat missing data under a discrete time autoregressive

framework, hindering applications for unbalanced longitudinal studies.

The proposed model is more closely related to subject-specific models, where the responses

are assumed to be independent conditioning on subject-specific effects. The main approach

has been to construct models for longitudinal binary responses building from the various

Bayesian nonparametric models for longitudinal continuous data, developed under the mixed

effects framework (e.g., Li et al., 2010; Ghosh and Hanson, 2010; Quintana et al., 2016).

For instance, embedding a Dirichlet process mixture of normals prior as the probability

model for the latent variables, Jara et al. (2007) and Tang and Duan (2012) consider binary

responses, and Kunihama et al. (2019) handle mixed-scale data comprising continuous and

binary responses. The proposed model differs in the way of treating subject-specific effects,

and it arguably offers benefits in terms of computational efficiency.

There is a growing trend of adopting functional data analysis tools in longitudinal data

modeling. These methods specify observations as linear combinations of functional principal

components (FPCs), with the FPCs represented as expansions of a pre-specified basis.

Bayesian methods include Jiang et al. (2020) for continuous responses, and Van Der Linde

(2009) for binary and count responses. Challenges include inference which is sensitive to the

basis choice, and a complex orthogonality constraint on the FPCs. Recently, Matuk et al.

(2022) proposed an approach that can serve as foundation for generalized FPC analysis of

sparse and irregular binary responses. Nonetheless, our model involves a more parsimonious

formulation, including the structure with the GP and TP predictive distributions.
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3 Application with binary responses: Studentlife data

3.1 Data for analysis

Studentlife (Wang et al., 2014) is a study that integrates automatic sensing data and an

EMA component to probe students’ mental health status and to study its relationship

with students’ academic performance and behavior trends. The data were collected by a

smartphone app carried by 48 students over a 10-week term at Dartmouth College. The

dataset is available from the R package “studentlife” (Fryer et al., 2022).

We focus on a subset of the data that corresponds to assessing the students’ emotional

status. In the Studentlife study, the assessment of emotion is conducted by the Photographic

Affect Meter (PAM), a tool for measuring affect in which users select from a wide variety

of photos the one which best suits their current mood (Pollak et al., 2011). The PAM

survey is deployed to the mobile app and prompts everyday during the study period. The

participants either respond to the survey, or ignore it, introducing missingness. The outcome

of the survey contains two attributes, the PAM valence and the PAM arousal. They are

scores of -2 to 2 (excluding 0) that measure the subject’s extent of displeasure to pleasure

or state of activation ranging from low to high, respectively. We dichotomize the valence

and arousal scores by their sign, representing the positive values by 1. In this section, we

focus on analyzing the change of binary valence and arousal responses to evaluate students’

affects as the term progresses.

The data were collected during the spring 2013 term at Dartmouth college. We set the

study period according to the official academic calendar, from the first day of classes (March

25, 2013) to the end of the final exam period (June 4, 2013), resulting in a total of 72 days.

We exclude subjects with less than 12 responses, resulting in 45 students. The longitudinal

recordings of valence or arousal of the i-th student are denoted by Yi(⌧i), for i = 1, · · · , 45,

where the student-specific grid points are a subset of ⌧ = (0, 1, · · · , 71)>, representing the

days on which the measurements are recorded. Several special events occurred during the

study period, and we are particularly interested in investigating the change of students’

affects on the time intervals around these events. Specifically, the events and corresponding
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(a) Valence. (b) Arousal.

Figure 1: Studentlife data. Empirical estimate of the correlation coefficients between binary

responses within a week. In each panel, the upper triangle and the lower triangle are for

the Pearson and the tetrachoric correlation coefficient, respectively.

periods are: (i) Days following the Boston marathon bombing (April 15, 2013 to April 17,

2013); (ii) The Green Key (a spring festival at Dartmouth) period (May 17, 2013 to May

18, 2013); (iii) The Memorial Day long weekend (May 25, 2013 to May 27, 2013); (iv) The

final examination period (May 31, 2013 to June 3, 2013).

We retrieve the data for the specific responses and study period from the R package

“studentlife” that contains the database for the entire study. Over all observations, the

percentage of missing values is 31.1%. There are slightly more missing responses at the

beginning and toward the end of the study, while the missing pattern for each subject can

be viewed as random. We further explore the correlations between the binary responses

within a week. We split the whole observation sequence into batches representing a week,

and empirically calculate the Pearson and the tetrachoric correlation coefficient for each

pair of time and distance combinations. Figure 1 presents the results. It suggests that the

correlation of the students’ response to valence and arousal decreases slowly in time.

3.2 Analysis and results

We fit the proposed model for the binary valence and arousal responses separately. We specify

the prior for the model parameters by the procedure mentioned in Section 2.3. (Results
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Figure 2: Studentlife data. Posterior mean (dashed line) and 95% interval estimate (shaded

region) of the probability response curve for an out-of-sample subject. The posterior mean

estimates of probability response curves for in-sample subjects are given by the solid lines.

The vertical shaded regions correspond to the four special time periods (see Section 3.1).

from prior sensitivity analysis are presented in the Supplementary Material.) Posterior

inference results are based on 5000 MCMC samples obtained every 4 iterations from a chain

of 50000 iterations with a 30000 burn-in period (which is conservative).

We first examine in Figure 2 the probability response curves, defined as the probability

of obtaining positive valence or arousal as a function of time. For the valence, the happiness

level drops as the term begins and increases when the term ends. The Boston marathon

bombing may have had a minor effect on the valence. We observe local peaks around the

Green Key festival and the Memorial Day holiday. As the students finish their exams, there

is a trend toward happiness. As for arousal, it is relatively stable at the beginning of the

term, and fluctuates as the term progresses. There is a drop in activation level after the

Boston marathon bombing and during the final exam period, while the activation level

reaches a local maximum at around the Green Key festival and the Memorial Day holiday.

Moreover, we assess the student’s emotional status on specific days. According to Russell

(1980), various states of emotional status can be represented by points located at the two

dimensional mood coordinate space spanned by valence for the horizontal dimension and

arousal for the vertical dimension. Moods such as excitement, distress, depression, and

contentment, are represented by points in the quadrants of the space. For each observation,

we can map the corresponding pairs of probabilities for positive valence and arousal onto
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(a) Green Key (b) Memorial Day (c) Final exams begin (d) Final exams end

Figure 3: Studentlife data. Posterior density estimate of an out-of-sample subject’s valence

and arousal probability over the mood coordinate space on four specific days. In each panel,

the crosses represent the posterior means of the in-sample subjects’ valence and arousal

probability mapped to the mood coordinate space.

the unit square in the mood space. In Figure 3, the density heatmap is obtained by the

posterior samples of positive probabilities for a new student of the same cohort, while the

posterior means of the in-sample positive probabilities are marked by crosses. Panels (a)

and (b) suggest the students are mostly excited at the festival and holiday. Moving from

panel (c) to panel (d), we observe that the happiness level increases and the activation level

decreases towards the end of the exam period.

We also obtain the posterior point and 95% interval estimate for the covariance kernel

of the signal process, which is displayed in Figure 4. It is noteworthy that there is a similar

decreasing trend for the two distinct binary responses of valence and arousal. The practical

range, defined as the distance at which the correlation is 0.05, has an estimated mean of

20.99 for valence and 22.97 for arousal.

3.3 Performance comparisons

For comparison with a traditional approach, we consider an analysis of the data under the

GLMM setting. In particular, we assume the model

Yit | Zit
ind.⇠ Bin(1,'(Zit)), Zit = ⌧̃>

it � +
KX

k=1

Sitkbk + µi + ✏it, t = 1, · · · , Ti, i = 1, · · · , n,

20



Figure 4: Studentlife data. Posterior mean (solid line) and 95% interval estimate of the

signal process covariance kernel.

Table 1: Studentlife data. Summary of comparison between the proposed model and the

generalized linear mixed effects model using two different criteria. The values in bold

correspond to the model favored by the particular criterion.

Response Model

Posterior predictive loss

CRPS

G(M) P (M) G(M) + P (M)

Valence

Proposed 428.09 475.31 903.40 0.19

GLMM 456.09 475.83 931.92 0.20

Arousal

Proposed 457.62 496.63 954.25 0.20

GLMM 476.17 492.28 968.45 0.21

where ⌧̃it = (1, ⌧it)>, � is the vector of fixed effects, and ✏it
i.i.d.⇠ N(0, �2

✏ ) is the measurement

error. To allow flexibility in modeling the time effect, we consider cubic B-spline basis

functions with K = 9 knots that separate naturally the observed interval by week; Sitk is the

k-th basis associated with time, with parameter bk
i.i.d.⇠ N(0, �2

b ). Finally, µi
i.i.d.⇠ N(0, �2

µ)

are subject-specific random effects. The model is implemented using the integrated nested

Laplace approximation (INLA) approach (Rue et al., 2009) with the “INLA” package in R

(Rue et al., 2017). We used the default choices provided by the R package for the prior on

� (a flat prior), and for the values of the variance terms, �2
✏ , �2

b , and �2
µ.

We perform model comparison using two different metrics: the posterior predictive

loss criterion which combines a goodness-of-fit term, G(M), and a penalty term, P (M),

for model complexity (Gelfand and Ghosh, 1998); and, the continuous ranked probability
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score (CRPS), defined in terms of predictive cumulative distribution functions (Gneiting

and Raftery, 2007). Both criteria can be calculated from the posterior samples for model

parameters, and both favor the model with a smaller value. Table 1 summarizes the results.

For the valence response, both criteria favor the proposed model. As for the arousal response,

the proposed model provides a more accurate fit to the data, while being penalized more

than the GLMM with respect to model complexity. Nonetheless, our model is favored in

terms of total posterior predictive loss, as well as by the CRPS criterion.

4 Model for ordinal responses

4.1 The extended model

We extend the model developed in Section 2.1 to handle ordinal responses. Suppose the

observation on subject i at time ⌧it, denoted by Yit, takes C possible categories. We can

equivalently encode the response as a vector with binary entries Yit = (Yi1t · · · , YiCt), such

that Yit = j is equivalent to Yijt = 1 and Yikt = 0 for any k 6= j. We assume a multinomial

response distribution for Yit, factorized in terms of binomial distributions,

Mult(Yit | mit,!i1t, · · · ,!iCt) =
C�1Y

j=1

Bin(Yijt | mijt,'(Zijt + ✏ijt)) (7)

where mit =
PC

j=1 Yijt ⌘ 1, mi1t = mit, and mijt = mit �
Pj�1

k=1 Yikt. This factorization

bridges the gap between binary and ordinal responses. Similar to the model for binary

responses, we adopt a functional data analysis perspective on {Zijt}, modeling them

separately through the hierarchical framework developed in Section 2.1. That is, Zij(⌧) |

µj,⌃j
i.i.d.⇠ GP (µj,⌃j), for i = 1, · · · , n, and µj|⌃j

ind.⇠ GP (µ0j, (⌫j � 3)⌃j), ⌃j
ind.⇠

IWP (⌫j, �j), where �j = {�2
j , ⇢j}, for j = 1, · · · , C � 1. The error terms are modeled as

✏ijt | �2
✏j

ind.⇠ N(0, �2
✏j). Hence, the hierarchical model for the data can be expressed as

Yi|{Zij}, {✏ij}
ind.⇠

TiY

t=1

C�1Y

j=1

Bin(Yijt | mijt,'(Zijt + ✏ijt)), i = 1, · · · , n,

Zij | µj(⌧i),⌃j(⌧i, ⌧i)
ind.⇠ N(µj(⌧i),⌃j(⌧i, ⌧i)), ✏ij | �2

✏j
ind.⇠ N(0, �2

✏j I),

µj | µ0j,⌃j, ⌫j
ind.⇠ N(µ0j1, (⌫j � 3)⌃j); ⌃j | ⌫j, j

ind.⇠ IW (⌫j, j), j = 1, · · · , C � 1

(8)
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where Yi = (Yi1, · · · ,YiTi)
>, Zij = (Zij1, · · · , ZijTi)

>, ✏ij = (✏ij1, · · · , ✏ijTi)
>, and the

collection of the functional evaluations on the pooled grid ⌧ are denoted by the corresponding

bold letter.

The structure in (7) is referred to as the continuation-ratio logits representation of the

multinomial distribution (Tutz, 1991). In the context of Bayesian nonparametric modeling,

it has been used as the kernel of nonparametric mixture models for cross-sectional ordinal

regression (Kang and Kottas, 2022).

Examining model properties reveals the practical utility of the continuation-ratio logits

structure. The factorization in (7) allows us to examine the probability response curves

and the within subject covariance structure in the same fashion as for binary responses.

Specifically, the continuation-ratio logit for response category j is the logit of the conditional

probability of response j, given that the response is j or higher. As a consequence, for any

finite grid ⌧ = (⌧1, · · · , ⌧T )>, the probability response curves are given by

Pj⌧ = (Pr(Y⌧1 = j | Z⌧ , �
2
✏ ), · · · ,Pr(Y⌧T = j | Z⌧ , �

2
✏ ))

>

= E
�
⇡j⌧ | Zj⌧ , �

2
✏j

� j�1Y

k=1

E
�
(1� ⇡k⌧ ) | Zk⌧ , �

2
✏k

�
,

(9)

where ⇡j⌧ = ('(Zj1), · · · ,'(ZjT ))> and Zj⌧ | Zj⌧ , �2
✏j ⇠ N(Zj⌧ , �2

✏jIT ), for j = 1, · · · , C.

To avoid redundant expressions, we include the term ⇡C⌧ and set it always equal to 1. As

for the covariance structure, we study the joint probability of the repeated measurements

on the same subject at time ⌧ and ⌧ 0 taking category j and j0. Exploiting the conditional

independence structure across the categories,

Pr(Y⌧ = j, Y⌧ 0 = j0 | {Zj⌧}, {�2
✏j})

=

8
>>>>>>><

>>>>>>>:

E(⇡j⌧⇡j⌧ 0 | Zj⌧ , �
2
✏j)

Y

k 6=j

E[(1� ⇡k⌧ )(1� ⇡k⌧ 0) | Zk⌧ , �
2
✏k] j = j0

E[⇡j⌧ (1� ⇡j⌧ 0) | Zj⌧ , �
2
✏j]E[(1� ⇡j0⌧ )⇡j0⌧ 0 | Zj0⌧ , �

2
✏j0 ]

⇥
Y

k 6=j,j0

E[(1� ⇡k⌧ )(1� ⇡k⌧ 0) | Zk⌧ , �
2
✏k] j 6= j0

.
(10)

Hence, we can explore the covariance of the two ordinal responses Y⌧ ,Y⌧ 0 by studying the

pairwise covariance for each entry.
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The continuation-ratio logits structure is also key to efficient model implementation.

It implies a sequential mechanism, such that the ordinal response is determined through

a sequence of binary outcomes. Starting from the lowest category, each binary outcome

indicates whether the ordinal response belongs to that category or to one of the higher

categories. This mechanism inspires a novel perspective on the model implementation. That

is, we can re-organize the original data set containing longitudinal ordinal responses to

create C � 1 data sets with longitudinal binary outcomes. Then, fitting model (8) to the

original data set is equivalent to fitting the model of Section 2.1 separately on the C � 1

re-organized data sets. The procedure is elaborated below.

Denote the set of all possible subject and time indices by I1, that is, I1 = {(i, t) : i =

1, · · · , n, t = 1, . . . , Ti}. To build the first re-organized data set with binary outcomes, we

create binary indicators Y (1)
it , such that Y (1)

it = 1 if Yi1t = 1 and Y (1)
it = 0 if Yi1t = 0. The

first data set is then D1 = {Y (1)
it : (i, t) 2 I1}. Moving to the second data set, we first filter

out the observations that are already categorized into the smallest scale, and denote the

remaining indices set by I2 = I1 \ {(i, t) : Yi1t = 1}. This is the set of indices with original

ordinal responses belonging to categories higher than or equal to the second smallest scale.

Then, we create new binary indicators Y (2)
it , such that Y (2)

it = 1 if Yi2t = 1, and Y (2)
it = 0

if Yi2t = 0. The second data set is obtained as D2 = {Y (2)
it : (i, t) 2 I2}. The process is

continued until we obtain the (C � 1)-th data set, DC�1 = {Y (C�1)
it : (i, t) 2 IC�1}, where

IC�1 is the indices set such that the original ordinal responses belong to either category

C � 1 or C. Notice that every re-organized data set Dj, for j = 1, · · · , C � 1, contains

longitudinal binary outcomes for which the model of Section 2.1 is directly applicable.

Provided the priors placed on each ordinal response category’s parameters are independent,

it is straightforward to verify that fitting separately the model for binary responses to the

re-organized data sets {Dj : j = 1, · · · , C � 1} is equivalent to fitting model (8) to the

original data set. We formalize the conclusion in the following proposition.

Proposition 5. Fitting the ordinal responses model in (8) is equivalent to fitting the model

for binary responses separately, C � 1 times to the data sets {Dj : j = 1, · · · , C � 1}.

Based on Proposition 5, the posterior simulation algorithm for the ordinal responses
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model can be parallelized and implemented on separate cores. In applications where the

number of response categories is moderate to large, such a parallel computing scheme is

especially beneficial. Also, since the binary responses model serves as the backbone for

modeling ordinal responses, the prior specification strategy and the posterior simulation

method described in Section 2.3 can be readily extended to model (8). Finally, from (9)

and (10), it is clear that the posterior samples obtained from the C � 1 separate models

suffice to obtain full posterior inference for the ordinal response process.

4.2 Data illustration

As an illustration example, we consider the PAM arousal score on the original scale, which

is obtained from the same EMA study discussed in Section 3. PAM arousal is a -2 to 2

(excluding 0) score. We examine the same cohort of students on the same study period as

described in Section 3.1. Over all observations, the distribution of arousal scores involves

16.6% for level -2, 27.7% for level -1, 12.6% for level 1, and 12% for level 2, while 31.1% of

the observations are missing.

To implement model (8), we follow the procedure outlined above Proposition 5. We

re-organize the original data into separate data sets {Dj : j = 1, · · · , 3}, each of them

containing the binary responses indicating whether the arousal scores are at level j or a

higher level. Then, the proposed model is fitted to the three data sets in parallel.

The primary inference focus is on the change of arousal scores as the term progresses,

which is depicted by the probability response curve of each response level. We display

posterior point and interval estimates of Pj⌧ (defined in (9)) in Figure 5. The probability

of the highest arousal level drops dramatically as the term begins, indicating that the

excitement of a new quarter may vanish within a week. The Boston marathon bombing

slightly triggers higher probability for moderately low to low arousal level. There is a drop

of the probability for moderately high to high arousal level after the Green Key festival

and the Memorial Day holiday. The exams may have a significant impact on the arousal

level. We observe peaks of arousal at the beginning of the final exam period, and also the

middle of the term, which corresponding to the midterm exam period. Since the students
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Figure 5: Four levels arousal score data. Posterior mean (dashed line) and 95% interval

estimate (shaded region) of probability response curve for an out-of-sample subject. The

posterior mean estimates for the probability response curves of in-sample subjects are given

by the solid lines. The vertical shaded regions correspond to the four special time periods

(see Section 3.1).

are taking different courses, the midterm exam times vary, resulting in some curves with

lead or lag peaks compared to the majority. This pattern is not clear in the analysis of

binary arousal scores. Hence, examining the finer ordinal scale enables us to discover subtle

changes of the students activation states. We have also investigated the temporal covariance

structure of the ordinal responses, with details presented in the Supplementary Material.

5 Summary

We have developed a novel Bayesian hierarchical model for analyzing longitudinal binary

data. We approach the problem from a functional data analysis perspective, resulting
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in a method that is suitable for either regularly or irregularly spaced longitudinal data.

The modeling approach achieves flexibility and computational efficiency in full posterior

inference. With regard to the former, the key model feature is the joint and nonparametric

modeling of the mean and covariance structure. As illustrated by the data application,

our approach enables interpretable inference with coherent uncertainty quantification,

and provides improvement over the GLMM approach. The model formulation enables a

natural extension to incorporate ordinal responses, which is accomplished by leveraging the

continuation-ratio logits representation of the multinomial distribution. This representation

leads to a factorization of the multinomial model into separate binomial models, on which

the modeling approach for binary responses can be applied. The computational benefit is

retained, since we can utilize parallel computing across response categories.

Supplementary material

The Supplementary Material includes details for the MCMC algorithm, proofs of the

propositions, and additional results for the data examples.
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Supplementary Material: Flexible Bayesian Modeling for

Longitudinal Binary and Ordinal Responses

S1 MCMC posterior simulation details

Based on the joint posterior distributions derived from (4), we design the MCMC sampling

algorithm for the proposed model with binary responses. This process can be achieved

entirely with Gibbs updates, by iterating the following steps. For notation simplicity, we let

(� | �) denote the posterior full conditional distribution for parameter �.

Step 1: For i = 1, · · · , n update Z i from N(mi,V i), where V i = (⌦i + (1/�2
✏ )I)

�1, and

mi = V i(�i + (1/�2
✏ )Zi). Here ⌦i denote the diagonal matrix of ⇠i, and �i =

(Yi1 � 1/2, · · · , YiTi � 1/2)>.

Step 2: Update the Pólya-Gamma random variables ⇠it by sample from PG(1,Zit), for

i = 1, · · · , n and t = 1, · · · , Ti.

Step 3: Update �2
✏ by sample from IG(a✏ +

Pn
i=1 Ti/2, b✏ +

Pn
i=1(Z i � Zi)>(Z i � Zi)/2).

Step 4: Update Z̃i for i = 1, · · · , n,

• In the case that all the subjects having observations on a common grid, Z⇤
i

vanishes and Z̃i = Zi. It has full conditional distribution Zi | � ⇠ N(µ̃i, Ṽi),

where Ṽi = ((1/�2
✏ )I+⌃

�1)�1, and µ̃i = Ṽi((1/�2
✏ )Zi +⌃�1µ).

• In the case that the repeated measurements for the subjects are collected on

uncommon grids, we first update Z⇤
i from N(µ⇤

i ,V
⇤
i ), where

µ⇤
i = µ(⌧ ⇤

i ) + ⌃(⌧
⇤
i , ⌧i)⌃(⌧i, ⌧i)

�1(Zi � µ(⌧i)) = BiZi � ui,

V ⇤
i = ⌃(⌧ ⇤

i , ⌧
⇤
i )� ⌃(⌧ ⇤

i , ⌧i)⌃(⌧i, ⌧i)
�1⌃(⌧i, ⌧

⇤
i ),

with Bi = ⌃(⌧ ⇤
i , ⌧i)⌃(⌧i, ⌧i)

�1 and ui = Biµ(⌧i)� µ(⌧ ⇤
i ).

Then, to update Zi, we sample from N(µ̃i, Ṽi), where

Ṽi = [(1/�2
✏ )I+ ⌃(⌧i, ⌧i)

�1 +BT
i (V

⇤
i )

�1Bi]
�1,

µ̃i = Ṽi[(1/�
2
✏ )Z i + ⌃(⌧i, ⌧i)

�1µ(⌧i) +BT
i (V

⇤
i )

�1(ui + Z⇤
i )].
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Step 5: Update µ and ⌃ jointly by sample from N(µ⇤,⌃/⇤) and IW (⌫⇤, ⇤), respectively,

with

µ⇤ =


+ n
µ0 +

n

+ n
Z̃m, ⇤ = n+ , ⌫⇤ = n+ ⌫

 ⇤ =  + S +
n

n+ 
(Z̃m � µ0)(Z̃

m � µ0)
T , S =

nX

i=1

(Z̃i � Z̃m)(Z̃i � Z̃m)top,

where Z̃m denote the mean of {Z̃i}ni=1.

Step 6: Update µ0 from N(a⇤µ, b
⇤
µ), where b⇤µ = [1>[(⌫ � 3)⌃]�11 + 1

bµ
]�1, and a⇤µ =

b⇤µ[1
>[(⌫ � 3)⌃]�1µ+ aµ

bµ
].

Step 7: Update �2 from Gamma(a� + (⌫+|⌧ |�1)|⌧ |
2 , b� +

1
2tr( ⇢⌃�1)). Here  ⇢ denotes the

correlation matrix  �/�2.

Step 8: Using the Griddy-Gibbs sampler by Ritter and Tanner (1992), update ⇢ from

P (⇢ = cl | �) =
| cl |(⌫+|⌧ |�1)/2 exp(�1

2tr( cl⌃
�1))

PG
l=1 | cl |(⌫+|⌧ |�1)/2 exp(�1

2tr( cl⌃
�1))

,

where c1, · · · , cG are grid points on a plausible region of ⇢ and  cl denotes the

correlation matrix when ⇢ taking the value cl.

Step 9: Using the Griddy-Gibbs sampler, update ⌫ from

P (⌫ = cl | �) =
N(µ | µ0, (cl � 3)⌃)IW (⌃ | cl + |⌧ |� 1, �)PG
l=1 N(µ | µ0, (cl � 3)⌃)IW (⌃ | cl + |⌧ |� 1, �)

.

where c1, · · · , cG are grid points on a plausible region of ⌫.

S2 Proofs

Proof of Proposition 1

Proof. For the probability response curve P1⌧ , we have

P1⌧ =

Z
(Pr(Y⌧1 = 1 | Z⌧ ,Z⌧ , �

2
✏ ), · · · ,Pr(Y⌧T = 1 | Z⌧ ,Z⌧ , �

2
✏ ))

>p(Z⌧ | Z⌧ , �
2
✏ ) dZ⌧

=

Z
⇡(Z⌧ )N(Z⌧ | Z⌧ , �

2
✏ I) dZ⌧ = E(⇡(Z⌧ ) | Z⌧ , �

2
✏ ).
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Then, to find the diagonal and off-diagonal elements for the covariance matrix of Y⌧ ,

we use the law of total variance/covariance. For the diagonal elements, we can write

Var(Y⌧ | Z⌧ , �
2
✏ ) = Var[E(Y⌧ | Z⌧ ) | Z⌧ , �

2
✏ ] + E[Var(Y⌧ | Z⌧ ) | Z⌧ , �

2
✏ ]

= Var['(Z⌧ ) | Z⌧ , �
2
✏ ] + E['(Z⌧ )(1� '(Z⌧ )) | Z⌧ , �

2
✏ ]

= E['(Z⌧ ) | Z⌧ , �
2
✏ ]� E2['(Z⌧ ) | Z⌧ , �

2
✏ ].

Similarly, for the off-diagonal entries, we obtain

Cov(Y⌧ , Y⌧ 0 | Z⌧ , �
2
✏ ) = Cov[E(Y⌧ | Z⌧ ),E(Y⌧ 0 | Z⌧ ) | Z⌧ , �

2
✏ ] + E[Cov(Y⌧ , Y⌧ 0 | Z⌧ ) | Z⌧ , �

2
✏ ]

= Cov['(Z⌧ ),'(Z⌧ 0) | Z⌧ , �
2
✏ ].

Proof of Proposition 2

Proof. To establish the result, we first prove the following lemma.

Lemma 1. Consider the bivariate vector Z = (Z1, Z2)> that follows N(µ,⌃), where

µ = (µ1, µ2)> and ⌃ =

Ñ
�2
1 ��1�2

��1�2 �2
2

é
. Then we have,

E('(Zi)) ⇡ '(µi) +
�2
i

2
'00(µi), i = 1, 2,

E('(Z1)'(Z2)) ⇡ '(µ1)'(µ2) +
1

2
[�2

1'
00(µ1)'(µ2) + 2��1�2'

0(µ1)'
0(µ2) + �2

2'(µ1)'
00(µ2)].

Proof. To show the result, we write Z = µ+ ⇣, where ⇣ ⇠ N(0,⌃). By Taylor expansion

around the mean,

'(Zi) ⇡ '(µi) + ⇣i'
0(µi) +

⇣2i
2
'00(µi).

Then taking expectation yields E('(Zi)) ⇡ '(µi) +
�2
i
2 '

00(µi), i = 1, 2.

As for E('(Z1)'(Z2)), consider the function f(Z) = '(Z1)'(Z2), using the bivariate

version of Taylor expansion,

f(Z) ⇡ f(µ) +5f(µ)>⇣ +
1

2
⇣> 52 f(µ)⇣.

Similarly, taking expectation with respect to ⇣ we can obtain the result.
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Turning to the proof of Proposition 2, we notice that Z⌧ | µ,⌃ ⇠ N(µ,⌃). Marginalizing

out Z⌧ , we have Z⌧ | µ,⌃, �2
✏ ⇠ N(µ,⌃+ �2

✏ I). Therefore, for any ⌧, ⌧ 0 2 ⌧ , we have
Ñ

Z⌧

Z⌧ 0

é
| µ,⌃, �2

✏ ⇠ N(

Ñ
µ⌧

µ⌧ 0

é
,

Ñ
⌃⌧,⌧ + �2

✏ ⌃⌧,⌧ 0

⌃⌧ 0,⌧ ⌃⌧ 0,⌧ 0 + �2
✏

é
)

To establish the connection with the mean and covariance of the signal process, we write
Ñ

µ⌧

µ⌧ 0

é
=

Ñ
E(Z⌧ | µ,⌃)

E(Z⌧ 0 | µ,⌃)

é

Ñ
⌃⌧,⌧ + �2

✏ ⌃⌧,⌧ 0

⌃⌧ 0,⌧ ⌃⌧ 0,⌧ 0 + �2
✏

é
=

Ñ
Var(Z⌧ | µ,⌃) + �2

✏ Cov(Z⌧ , Z⌧ 0 | µ,⌃)

Cov(Z⌧ , Z⌧ 0 | µ,⌃) Var(Z⌧ 0 | µ,⌃) + �2
✏

é

Similar to the proof of Proposition 1, we can show

Pr(Yt = 1 | µ,⌃, �2
✏ ) = E('(Z⌧ ) | µ,⌃, �2

✏ )

Cov(Y⌧ ,Y⌧ 0 | µ,⌃, �2
✏ ) = Cov['(Z⌧ ),'(Z⌧ 0) | µ,⌃, �2

✏ ]

Applying Lemma 1, the desired outcome emerges as a direct consequence of algebraic

simplification.

Proof of Proposition 3

Proof. The result is proved by considering the corresponding f.d.d.s. on any finite grids

⌧ . Let the bold letter denote the corresponding process evaluated at ⌧ . From the model

assumption mentioned in (2) and (3), we have

Z | µ,⌃ ⇠ N(µ,⌃), µ|⌃ ⇠ N(µ01, (⌫ � 3)⌃), ⌃ ⇠ IW (⌫, ).

To obtain the marginal distribution of Z, we have

p(Z) =

Z Z
p(Z | µ,⌃)p(µ | ⌃)p(⌃) dµ d⌃.

Marginalizing over the mean vector µ, we obtain Z | ⌃ ⇠ N(µ01, (⌫ � 2)⌃). Based on that,

p(Z) =

Z
p(Z | ⌃)p(⌃) d⌃

/
Z

exp{�1
2Tr[( � + (Z�µ01)(Z�µ01)>

⌫�2 )⌃�1]}
|⌃|(⌫+|⌧ |+1)/2

d⌃

/ [1 +
(Z� µ01)> 

�1
� (Z� µ01)

⌫ � 2
]�(⌫+|⌧ |)/2,
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which can be recognized as the kernel of a MVT distribution. Therefore, the result holds.

S3 Synthetic data examples

The principal goal of analyzing longitudinal data is to estimate the mean and covariance

structure of the subject’s repeated measurements. We conduct simulation studies to evaluate

the proposed method on fulfilling this goal. In the following, Section S3.1 evaluates the

reliability of the proposed model in capturing the fluctuation of the mean structure, and

Section S3.2 explores the performance of the proposed model in estimating within subject

covariance structure. Unless otherwise specified, the posterior analyses in this section are

based on 5000 posterior samples collected every 4 iterations from a Markov chain of 30000

iterations, with the first 10000 samples being discarded.

S3.1 Estimating mean structure

Consider a generic process of generating longitudinal binary responses,

Yi = Yi(⌧i) | Zi(⌧i)
ind.⇠ Bin(1, ⌘(Zi(⌧i))), ⌧i = (⌧i1, · · · , ⌧iTi), i = 1, · · · , n,

Zi(⌧i) = Z i = f(⌧i) + !i + ✏i ✏i
i.i.d.⇠ N(0, �2

✏ I),
(S1)

where ⌘(·) is a generic link function mapping R to (0, 1), f(⌧) is a signal function, and !i

is a realization from a mean zero continuous stochastic process that depicts the temporal

covariance within subject. The objective is twofold. First, to estimate the subject’s

probability response curve, which is defined as the probability of obtaining positive response,

as a function of time. Second, to estimate the true underlying signal function.

We consider three data generating processes. The specific choice of ⌘(·), f(⌧ ) and !i for

each generating process is summarized as follows:

• Case 1: ⌘1(·) = '(·), where '(·) is the expit function, f1(⌧) = 0.3 + 3 sin(0.5⌧) +

cos(⌧/3), and !i
i.i.d.⇠ N(0, K1(⌧ , ⌧ )), with covariance kernel K1(⌧t, ⌧t0) = exp(�|⌧t �

⌧t0 |2).
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• Case 2: ⌘2(·) = �(·), where �(·) denotes the CDF of standard normal distribution,

f2(⌧) = 0.1 + 2 sin(0.25⌧) + cos(0.25⌧), and !i
i.i.d.⇠ MV T (5,0, K2(⌧ , ⌧ )), with

covariance kernel K2(⌧t, ⌧t0) =
1
3 exp(�|⌧t � ⌧t0 |2).

• Case 3: a mixture of Case 1 and Case 2, with equal probability of generating data

from each model.

For n = 30 subjects, we simulate T = 31 binary observations at time ⌧ = 0, · · · , 30,

following the aforementioned data generating processes. To enforce an unbalanced study

design, we randomly drop out a proportion of the simulated data. We term the drop out

proportion sparsity level, for which we consider 10%, 25% and 50%.

The proposed hierarchical model is applied to the data, with a weakly informative prior

placed on the mean structure. We obtain posterior inference of the probability response

curve and the signal process on a finer grid ⌧+ = (0, 13 ,
2
3 , · · · , 30). Figure S1 plots posterior

point and interval estimates of the subject’s probability response curve for a randomly

selected one in each case. Despite the data generating process and the sparsity level, the

model can recover the evolution of the underlying probability used in generating binary

responses. We observe a shrink in the interval estimate at the set of grid points where at

least one subject has observation, that is, ⌧ . The expanding of the credible interval width

at ⌧̌ reflect the lack of information at those time grids.

We further investigate the model’s ability in out-of-sample prediction, by estimating the

probability response curve for a new subject from the same cohort. Figure S2 shows the

posterior point and interval estimates of Pr(Y⇤(⌧⇤t) = 1), including, as a reference point,

the posterior mean estimates of each subject’s probability response curve Pr(Yi(⌧it) = 1),

i = 1, · · · , n. The true probability function that triggered the binary response, given as

the signal transformed by the link function, is also shown in the figure. It is obtained with

the simulated data with 10% sparsity, while there is no major difference for the other two

sparsity levels. The behavior of the probability response curve for the new subject is to be

expected. It follows the overall trend depicted by the true underlying probability function,

while suffers from a comparable level of measurement error with the observed subjects.

It is also of interest to assess the model’s ability in recovering the underlying continuous
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(a) Sparsity level at 10%.

(b) Sparsity level at 25%.

(c) Sparsity level at 50%.

Figure S1: Simulation study regarding the mean structure. Inference results for the

probability response curve. In each panel, the dashed line and shaded region correspond

to the posterior mean and 95% credible interval estimates, the (orange) dot is the original

binary data, whereas the (green) cross denotes the true probability of generating that

responses.

signal process, since the signal process describes the intrinsic behavior and is crucial to

answer related scientific questions. In our proposed model, the signal process is modeled

nonparametricly through a GP. To further emphasize the benefits of this model formulation,

we compare the proposed model with its simplified backbone. The simpler model differs

from the original one in modeling the mean function. Instead of modeling the mean function

µ through a GP, we consider modeling it parametricly by µ(⌧) ⌘ µ0, and µ0 ⇠ N(aµ, bµ).

The model’s ability in capturing the signal process is summarized by the rooted mean square

7



Figure S2: Simulation study regarding the mean structure. Prediction of the probability

response curve for a new subject. In each panel, the dashed lines and shaded region shows

the posterior mean and 95% interval estimates of probability response curve for a new

subject. The solid lines are the posterior mean estimates of probability response curves

for the in-sample subjects. The dotted line is the true probability function for generating

binary responses.

error (RMSE), which is defined by RMSEM =
q

1
n

Pn
i=1

1
|⌧+|

P
⌧2⌧+(ẐM

i (⌧)� f(⌧))2. Here

ẐM
i (⌧) denote the model M estimated signal for subject i evaluated at time ⌧ , which can

be obtained at every MCMC iteration. Figure S3 explores the posterior distribution of the

RMSE under the proposed model and its simplified version, for different data generating

process and sparsity level combinations. Despite the scenario, the proposed model shows

a notably smaller RMSE. Contrasting the performance with the simpler model highlights

the practical utility of including the layer of GP for the mean function in terms of effective

estimation of the underlying continuous signal process.

S3.2 Estimating covariance structure

Since we emphasize the importance of modeling dependence in longitudinal data, we now

explore how well our model works for estimating different covariance structure. Consider the

data generating process in (S1), with expit link function and signal f(⌧ ) = 0.1+2 sin(0.5⌧ )+

cos(0.5⌧ ). We examine a number of possible choices for generating !i, that imply covariance

structures which would not be in the same form as the covariance kernel used in the proposed

model. The primary interest is to exhibit the robustness of covariance kernel choice to
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Figure S3: Simulation study regarding the mean structure. Box and violin plots of

the posterior samples of RMSE for different data generating process and sparsity level

combinations. The red box corresponds to the proposed model while the blue box is for the

simplified model.

different true covariance structures. We let Ti = T and ⌧it = ⌧t, namely that all subjects are

observed over the same time grids. For n = 100 subjects, we generate sequences of length

T = 11 at time ⌧ = 0, · · · , 10. We study the following options of generating !i:

• Case 1: !i
i.i.d.⇠ N(0, K1(⌧ , ⌧ )), with squared exponential kernel K1(⌧t, ⌧t0) = exp(�|⌧t�

⌧t0 |2/(2 · 32)). Each realized trajectory is infinitely differentiable.

• Case 2: !i
i.i.d.⇠ N(0, K2(⌧ , ⌧ )), with exponential kernel K2(⌧t, ⌧t0) = exp(�|⌧t� ⌧t0 |/5).

Each realization is effectively from a continuous-time AR(1) GP.

• Case 3: !i
i.i.d.⇠ MV T (5,0, K3(⌧ , ⌧ )), with compound symmetry kernel K3(⌧t, ⌧t0) =

I{⌧t=⌧t0} + 0.4I{⌧t 6=⌧t0}. The covariance between two observations remains a constant,

despite their distance.

• Case 4: !i
i.i.d.⇠ MV T (5, 0, K4(⌧ , ⌧ )), with kernel K4(⌧t, ⌧t0) = 0.7K2(⌧t, ⌧t0)+0.3K3(⌧t, ⌧t0),

a mixture of AR(1) and compound symmetry covariance structure.

In terms of longitudinal binary responses, the covariance structure can be elucidated

in two senses, namely the covariance between the pair of binary data (Yi(⌧t), Yi(⌧t0)) and

between the pair of signal (Zi(⌧t), Zi(⌧t0)). We consider the covariance structure of the

signal process first. From Proposition 3, Cov(Zi(⌧t), Zi(⌧t0)) =  �(⌧t, ⌧t0), 8i, where the

covariance function  � is defined in (2.1). Hence, the signal covariance structure estimated
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Figure S4: Simulation study regarding the covariance structure. Inference results for the

signal covariance kernels. In each panel, the dashed line and shaded region correspond to

the posterior mean and 95% credible interval estimates, whereas the solid line denotes the

true covariance kernel.

from the model is also isotropic, facilitating a graphic comparison between the posterior

estimate of  �(⌧d) versus the true covariance kernel K(⌧d), where ⌧d = |⌧t � ⌧t0 |. The

results are presented in Figure S4. As expected, the proposed model recovers the truth,

despite the mis-specification of the covariance kernel. Comparing with the other three

cases, the posterior point estimate of covariance kernel is less accurate in Case 3. This

can be explained by noticing that the constant covariance in that case violates the model

assumption. Nonetheless, the posterior interval still covers the truth.

As for the covariance between the pair of binary data, we consider two measurements,

the Pearson correlation coefficient and the tetrachoric correlation coefficient. For a review

of the definitions and properties of these two correlation coefficients, we refer to Ekström

(2011). At each MCMC iteration, we predict a new sequence of binary responses of length

T , denoted as {Y (s)
i⇤ (⌧ ) : s = 1, · · · , S}. Correspondingly, we also obtain samples of binary

sequences from the true data generating process, denoted by {Ŷ (s)
i⇤ (⌧ ) : s = 1, · · · , S}. Both

sets of binary sequences form S/n datasets that mimic the original samples. From the

datasets comprised by posterior predictive samples Y (s)
i⇤ (⌧ ), we obtain interval estimates of

the two correlation coefficients. In addition, for Ŷ (s)
i⇤ (⌧ ) that are generated from the truth,

we obtain point estimates, which can be viewed as the correlation coefficients from the data,

accounting for the variation in the data generating process. Notice that marginally the

binary process is not guaranteed to be isotropic. Hence, the correlation coefficients should be
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(a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

Figure S5: Simulation study regarding the covariance structure. Posterior interval estimate of

correlation coefficients (“box”) versus point estimate obtained from the true data generating

process (“?”). In each panel, the upper triangle and the lower triangle are for the Pearson

and the rachoric correlation coefficient, respectively.

calculated for every possible pair of (⌧t, ⌧t0) 2 ⌧ . The resulting point and interval estimates

of both types of correlation coefficients are displayed in Figure S5. All the posterior interval

estimates cover the truth, indicating that the proposed model effectively captures the binary

covariance structure.

The simulation studies have illustrated the benefits of our approach, that is, avoiding

possible bias in covariance structure estimation caused by mis-specification of the covariance

kernel for the signal process. Such benefits are led by the IWP prior placed on the covariance

function. To emphasize this point, we consider an alternative, simplified modeling approach,

with Zi
i.i.d.⇠ GP (µ, �), µ ⇠ GP (µ0, �/). That is, instead of modeling the covariance

function nonparametricly, we assume a covariance kernel of certain parametric form, specified

by  �. We consider the centralized signal process !i = Zi � µ evaluated at a finite grid ⌧ ,

denoted as !i. Under the proposed model, !i
i.i.d.⇠ MV T (⌫,0, �(⌧ , ⌧ )), while under the

simplified model, !i
i.i.d.⇠ N(0, (1 + 1

) �(⌧ , ⌧ )). We know the true distribution of !i from

the data generating process. Therefore, we can compute the 2-Wasserstein distance between

the model estimated distribution of !i to the truth. The usage of 2-Wasserstein distance is

motivated by its straightforward interpretation: a 2-Wasserstein distance of d means that

coordinatewise standard deviations differ by at most d (Huggins et al., 2020, Thm. 3.4).

Iterating over the posterior samples of model parameters, we obtain the distributions of
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Figure S6: Simulation study regarding the covariance structure. Histogram for the posterior

samples of the 2-Wasserstein distance between the f.d.d.s. of the centralized signal process

obtained from the proposed model (upper panel) and the simplified model (lower panel) to

the truth.

2-Wasserstein distance between the model estimated distribution of !i and the truth, which

is shown in Figure S6. Clearly, for the proposed model, the 2-Wasserstein distances are

substantially small. Contrasting the performance testifies our motivation of modeling the

covariance structure nonparametricly.

S4 Additional results for data examples

S4.1 Binary responses from Studentlife study

The hyperprior for �2
✏ depends on the belief about the extent of the measurement error.

Hence, it is useful to perform a prior sensitivity analysis with respect to this hyperprior,

especially on the real data.

In general, the measurement error reflects the remaining variability of the underlying

continuous process, whose major change has been captured by the signal process. Consequently,

it should have small probability of taking large values. For the analysis conducted in Section

3.2, we believe the measurement error range should be small, and we pick a moderate value

for the error degree of freedom. Specifically, we take R = 0.1 and � = 10, and using the
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method described in Section 2.3, obtain the hyperprior for �2
✏ as IG(5, 0.001). We term it

the original hyperprior.

To perform a prior sensitivity analysis, we assume an alternative hyperprior on �2
✏ . In the

case of valence score, we assume a larger measurement error range R = 0.5, resulting in the

hyperprior �2
✏ ⇠ IG(5, 0.02). As for the arousal score, we assume the error distribution has

a heavier tail, achieved by setting � = 6. The hyperprior in this case is �2
✏ ⇠ IG(3, 0.0007).

We check the posterior samples for µ0, �2, ⇢, and ⌫, because these four parameters determine

the signal process, which is the inference target of primary interest. Results are shown in

Figure S7. The posterior distributions of the four model parameters are similar, suggesting

that the conclusion are robust with respect to the hyperprior choice for the error variance.

S4.2 Four levels arousal score data

Particular to the ordinal responses, we assess the time dependence through the joint

probability Pr(Y⌧ = j,Y⌧ 0 = j0 | {Zj⌧}, {�2
✏j}), whose posterior inference can be obtained

by evaluating (10) with the posterior samples of model parameters. Figure S8 displays

the posterior point and interval estimate for all possible pairs of the joint probabilities. It

suggests that the proposed model enables flexible estimate of the time dependence among

the ordinal responses.
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(a) Prior sensitivity analysis on the valence data.

(b) Prior sensitivity analysis on the arousal data.

Figure S7: Studentlife data. Histogram of the posterior samples for model parameters µ0, �2,

⇢, and ⌫. The solid line depict the kernel density estimation. The dashed line corresponds

to the mean and the dotted lines represent the 2.5% and 97.5% percentile, respectively.
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Figure S8: Four levels arousal score data. Posterior mean (dashed line) and 95% interval

estimate (shaded region) of the joint probability of the observations on the same subject

made at time ⌧ and ⌧ 0.
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