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We consider the variable selection problem for linear models using a
mixture of g-priors. While a commonly studied aspect of these models is
their posterior consistency properties in the case where the true model is
a subset of the possible set of covariates (M-closed), we examine the M-
open case, where the data generating process is not an element of the model
space. Two unique problems present themselves in this setting when ex-
amining large data sets (on the order of 106 observations): Shrinkage de-
ficient estimation SDE, and model superinduction (MS). SDE refers to the
phenomenon where the posterior shrinkage decays at a linear rate with the
sample size. MS refers to the tendency of model selection procedures to se-
lect larger models as the sample size grows. We prove that when comparing
nested models using Bayes factors, for a sufficiently large sample size the
larger model will be selected. We consider many cases where this behavior
results in overparametrized models which induce severe computational dif-
ficulties. We show that this phenomena is inescapable (affecting even oracle
estimators), so we instead seek to minimize the severity of its effects on large
sample sizes while preserving posterior consistency. To that end, we propose
a beta-prime hyper-prior on g, with hyper-parameters chosen to result in a
sub-linear decay of the posterior shrinkage. We also propose a model space
prior which biases the posterior odds ratio towards smaller models asymptot-
ically. These two priors introduce two new hyper-parameters, for which we
propose default values. We demonstrate the aforementioned phenomena, and
the efficacy of our proposed solutions, via several synthetic data examples, as
well as a case study using albedo data from GOES satellites.

1. Introduction. Consider a class of candidate models Mγ : Y =Xα+Kγβγ + ϵ. Here
X denotes a set of parameters common to all models and Kγ denotes the matrix of covariates
specific to Mγ , such that the columns of Kγ are orthogonal to those of X (KT

γ X = 0). The
model that contains only the covariates in X is referred to as the null model and denoted as
M∅. There are two tasks of interest here. The first, is to estimate the values of βγ , given a
model Mγ . There are numerous methods, in both the Bayesian and frequentist literature, to
address this problem. The second problem, is to choose a model that is “optimal" in some
sense from a larger space of models M = {M∅,M1, . . .}. There are two common settings
for this task. In the first, the M-closed view (Bernardo and Smith, 2009), we assume that the
data generating process (denoted M∗) is in the space of models considered: M∗ ∈M. In the
second, the M-open view, we assume that M∗ ̸∈M.

In both of these settings, we adopt the optimal prediction view of Vehtari and Ojanen
(2012). According to this view, our task is to choose a model which minimizes the expected
loss taken with respect to the predictive distribution of the data conditioned on the data gener-
ating model. Common choices of loss functions are the log-utility function or the squared er-
ror loss (in the M-closed case, 0-1 losses can also be considered). However, in practice, since
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we do not have knowledge of the underlying data generating process, and model spaces can
be quite large, we can never know if a given model is optimal. Instead, we use a model selec-
tion procedure, common examples of which include step-wise searches, stochastic searches
(Hans, Dobra and West, 2007), cross-validation, etc.

We consider a Bayesian approach to the variable selection problem. A popular choice of
non-informative prior for the linear coefficients, in Bayesian regression settings, is the g-
prior. Although g-priors will be the focus of this paper, our results are likely extensible to
other choices of priors for variable selection, as well as classical approaches to the variable
selection problem. First introduced by Zellner (1986), g-priors assume that

π(α)∝ 1 π(σ2)∝ 1

σ2
β ∼N

(
0, gσ2(KT

γ Kγ)
−1
)
.

These priors have two desirable properties. First, they produce a posterior mean that provides
shrinkage with respect to the ordinary least squares estimator β̂OLS . In fact, E(β|y) = g/(g+

1)β̂OLS . Second, they result in easily computable marginal distributions, which allows for
fast step-wise model selection procedures. Values of g that are independent from the sample
size, have been shown to be undesirable, as for any model Mγ , BFγ:∅ → 0 as g→∞, where
BFγ:γ′ denotes the Bayes factor to compare Mγ to Mγ′ . This phenomenon is referred to
as the Barlett-Jeffrey Paradox (Liang et al., 2008). Early literature thus considered values
for g dependent on the sample or model size, such as the Unit Information Prior (g = n)
(Kass and Wasserman, 1995), the Risk Inflation Criteria (g = p2) (Foster and George, 1994),
and the Benchmark prior (g =max{n,p2}) (Fernández, Ley and Steel, 2001). Unfortunately
these choices result in the Lindley Information Paradox, a phenomenon where sequences
of samples that indicate progressively stronger support for a model (R2 → 1), result in the
Bayes factor converging to a constant (BFγ,∅ → (g + 1)(n−p−q)/2), preserving a non-zero
posterior probability of the null model (Liang et al., 2008). To resolve this paradox, hyper-
prior distributions need to be placed on g (or equivalently a function of g, such as g/(g+1)).
Cui and George (2008) consider placing a Be(1, a/2−1) prior on g/(g+1), while Carvalho,
Polson and Scott (2010) considers a Be(1/2,1/2) prior. These priors, where the distribution
does not incorporate information on the sample size, result in inconsistency in the case when
the null model is the true model. To resolve this problem, Liang et al. (2008) consider placing
a Be(1, a/2 − 1) prior on g/(g + n), and recasts early work by Zellner and Siow (1980)
(which examined Cauchy priors on β) as a g-prior, with g ∼ IG(1/2, n/2). Maruyama and
George (2011) proposes letting g ∼ BetaPrime((n− p− q)/2− a,a), which has the added
benefit of closed form marginal distributions, while Bayarri et al. (2012), considers a prior
of the form π(g) = ar[pr(br + n)]ar(g + br)

−(ar+1)1{g≥pr(br+n)−br}, the so-called “robust"
prior. Recent attention has turned to casting Power Expected Posterior Priors as g-priors,
where π(g)∝ g−(n−p−q)(g− n)(n−p−q)/2−11{g≥n} (Consonni et al., 2018).

While the properties of these priors have been thoroughly explored in the M-closed
case, little attention has been paid to the M-open setting. Mukhopadhyay, Samanta and
Chakrabarti (2015) considered this setting when the model space grows sub-linearly. They let
g = knc, where c > 0, and show that the model selected by maximizing the marginal prob-
ability is asymptotically loss efficient: limn→∞Ln(M̂γ)/minMγ

Ln(Mγ)
p→ 1. Their later

work (Mukhopadhyay and Samanta, 2017), extends this result to a specific case of inverse
gamma hyper-prior on g, and further shows that many of the popular choices of g-priors are
not asymptotically loss efficient in the case where the model space grows (sub-linearly) with
n. However, these results do not extend to more general state spaces, such as when the model
space grows linearly, or super-linearly. Moreover, we will show that the proposed solutions
still present numerous practical difficulties

In this paper we demonstrate three important results. First, we examine what we call
shrinkage deficient estimation, where the posterior shrinkage factor E(1/(g + 1)|y) ∈
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O(1/n). In practice, for any large data set, this results in posteriors that essentially repro-
duce OLS regression estimates. Second, we show that when comparing any two nested finite
models, as the sample size gets large, the Bayes factor will always favor the larger model
(what we call model superinduction). This presents obvious issues for any step-wise model
selection procedure. Lastly, we show that a Bayes factor based step-wise procedure is pair-
wise consistent, even in the M-open setting. Thus, far from being an issue that only plagues
g-priors, model superinduction is a problem that manifests itself for any model selection pro-
cedure in the M-open setting. Despite the inevitable nature of this problem, we propose a
class of hyper-priors for g that minimize the effects of these problems for a given sample
size, while retaining many of the desirable properties of g-priors. We show the efficacy of
this method with both simulated and real data examples.

The rest of the paper will proceed as follows. In Section 2, we will introduce, in more
detail, the theory of model-selection. In Section 3, we will review the literature of g-priors,
the common choices in the literature, and their properties. In Section 4, we will rigorously
introduce the problem of model superinduction and shrinkage deficient estimation. In Sec-
tion 4, we will introduce our solution to these problems, and, in Section 6, demonstrate its
effectiveness on simulated and real data-sets.

2. Model selection and set-up. We consider models of the form:

Mγ : Y =Xα+Kγβγ + ϵ where ϵi ∼N (0, σ2).

We let α be a set of q parameters common to all models, and let X denote the corresponding
matrix of covariates {X1, . . . ,Xq}. Similarly, we let βγ be the set of p parameters specific to
model Mγ , and Kγ be the corresponding matrix of covariates {K1, . . . ,Kp}. In the simplest
case, X is just a vector of ones, but we allow for more general sets of common covariates.
We further assume that X and Kγ are orthogonal. More generally, we can consider a set
of m (possibly infinite) covariates Km = {K1,K2, . . . ,Km}. We then consider some set of
models {Mi}, such that each model represents some subset of the covariates. In the M-
closed setting (Bernardo and Smith, 2009), we assume that our data is generated from model
Mγ . In the M-open setting, our data is generated according to Y ∼N

(
Xα+ µ,σ2I

)
, where

µ ̸∈ Span{Km}.
Following the set-up in Bernardo and Smith (2009) and Vehtari and Ojanen (2012), we

adopt the optimal prediction view. In this setting, the observations are generated by some
model M∗, which may, or may not, be included in the space of considered models M. The
goal is to maximize the expected utility, with respect to the posterior predictive distribution

Ū(a) =

∫
ỹ
U(a, ỹ)p(ỹ|y,M∗).

Common choices of utility functions are the log-utility U(a, ỹ) = log (ỹ) and the squared er-
ror utility U(a, ỹ) = (a− ỹ)2. In the former case, the goal is to choose an optimal distribution
ak(ỹ), while the latter is to choose the optimal point estimator.

If we consider an oracle model selection procedure, where the true model is known, then
the maximizers for the above utility functions are log (p(ỹ|y,M∗)) and E(ỹ|M∗, y) respec-
tively. In the M-closed setting, M∗ ∈M, so these maxima are obtainable. In the M-open
setting, they are not, so instead we choose the models that minimize respectively∫

ỹ
log

(
p(ỹ|Mk, y)

p(ỹ|M∗, y)

)
p(ỹ|M∗, y) or [E(ỹ|y,MK)−E(ỹ|, y,M∗)]

2 .

The former is equivalent to minimizing the KL-divergence between the predictive distribu-
tions of the data generating process and the best candidate model. The latter minimizes the
squared error loss.
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The above formulation of the selection problem addressed oracle selection, where the
true data generating process is known. This is not the case in any actual modeling sce-
nario, so other approaches will have to suffice. In practice, we use a model selection
procedure which searches the space of possible models, and we evaluate the respective
loss functions over a validation set (cross-validation) or use information criterion to score
each model. A procedure is said to be consistent with respect to a loss function L, if
limn→∞ P

(
M̂n = argminMγ

Ln(Mγ)
)
= 1 (Shao, 1997). Consistency is well defined when

the true model is nested in the space of models considered, or, more generally, when the set
of possible models is finite. When the set of possible models is infinite, or grows with n,
there will not always be a unique limiting minimum for the loss function.

A slightly weaker condition, but one that may be more practical in many settings is pair-
wise consistency. In this setting, we consider two finite models, M1 and M2. A model se-
lection procedure is pairwise consistent if limn→∞ P

(
Ln(M̂M1,M2

) =minM1,M2
Ln(Mγ)

)
.

In other words, when comparing two models, asymptotically, our model selection procedure
will select the same model as an oracle method.

3. g-priors. As previously discussed, one choice of prior on β, proposed in Zellner
(1986), is to let π(β|α,σ2) = π(β|σ2) = N

(
β0, gσ

2(KTK)−1
)
. As commented in the in-

troduction, these priors result in a posterior mean of E(β|y) = g/(g + 1)β̂OLS , where
g/(1 + g) is the “shrinkage factor". Furthermore, if we let RSS∅ = (Y −Xα̂)T (Y −Xα̂),
and RSSγ = (Y −Xα̂ −Kγ β̂)

T (Y −Xα̂ −Kγ β̂) (with α̂ and β̂ being the least squares
estimates of α and β respectively), we can then define S =RSS∅/RSSγ . This allows us to
generalize the coefficient of determination,R2, to cases where the null model may not simply
be the intercept (in the case that it is, then S = (1−R2)−1).

If we consider a model where there are q common parameters and p model specific pa-
rameters, such that p+ q < n, then we have that

BFγ:∅ = (1+ g)
n−p−q

2

( g
S
+ 1
)−n−q

2

.

3.1. Hyper-priors on g. As commented in the introduction, all fixed choices of g (ex-
empting some empirical Bayes methods discussed in Liang et al. (2008)), fail to resolve the
Lindley information paradox. Alternatively, g can be considered random. Several of these
hyper-priors on g are discussed below.

Beta priors. A common choice of prior is to let g/(g + 1)∼ Be(a, b). The most popular
choice in this class is the hyper-g prior proposed by Cui and George (2008), and discussed
extensively by Liang et al. (2008). With this choice, we let a = 1 and b = ag/2− 1, where
2 < ag < 4, with choices near 2 beginning to exhibit information paradox type behavior.
This prior leads to a quasi-closed form marginal likelihood in the form of a Gaussian hyper-
geometric distribution, and satisfies nearly all desirable criteria, except for null model con-
sistency. Another popular choice is the horseshoe prior (Carvalho, Polson and Scott, 2010),
which sets a= b= 1/2. Other choices are discussed in Ley and Steel (2012).

Several authors have proposed ideas to address the null model consistency problems. But
there has been little discussion of an underlying theory explaining under what conditions
these consistency issues arise. Liang et al. (2008) notes that priors that don’t depend on n
tend to result in inconsistency, while priors that do, tend to resolve them. We formalize this
as follows

THEOREM 1. Let M∅ be the data-generating model. Then, BFγ,∅
P→ 0 if, and only if,

limn→∞Eπ(g) (1/(g+ 1))→ 0.
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PROOF. Let S =RSS∅/RSSγ , then the Bayes factor BFγ:∅ comparing Mγ to M0 is:

BFγ:∅ = S
n−q

2

∫ ∞

0
(1 + g)−

p

2

(
g+ 1

g+ S

)n−q

2

π(g)dg,

then E(1/(g + 1))p/2 ≤ BFγ:∅ ≤ S(n−q)/2E(1/(g + 1))p/2. Assume that E(g + 1)−1 → 0,
then, from Lemma 2 in the appendix, E(g + 1)−p/2 → 0. That, in turn, implies that (g +

1)−p/2 p→ 0. Then, since S(n−q)/2 d→ exp{χ2
p/2)} (See Fernández, Ley and Steel (2001)), we

have that S(n−q)/2E(g + 1)−p/2 p→ 0. Thus, BFγ:∅
p→ 0. For the reverse direction, we have

that BFγ:∅
p→ 0. Then, since 0 ≤ E(g + 1)−p/2 ≤ BFγ:∅, we have that E(g + 1)−p/2 → 0.

Then, from Lemma 2, we have that E(g+ 1)−1 → 0.

In Bayarri et al. (2012), a weaker version of this result is given. Namely that: BFγ,∅
P→ 0

if limn→∞E(g+1)−p/2 → 0. While this result establishes a class of null-consistent priors, it
does not fully enumerate the class, whereas our result shows that the class only contains priors
such that E(g + 1)−1 → 0. Notable priors that are not in this class include the hyper-g prior
and horse-shoe g priors, that have non-zero expectation of 1/(g + 1). Later development of
hyper-priors on g have been focused on ways to introduce sample size dependencies into the
hyper-parameters of the prior distribution, most of these resulting in E(1/(g+1)) ∈O(1/n).

Hyper g/n prior. This prior, proposed by Liang et al. (2008), places a Be(1, a/2 − 1)
prior on g/(g + n), which gives a prior mean on 1/(g + 1) that is decreasing in n. There
exists a similar extension to the Horseshoe prior (Ley and Steel, 2012), where g/(g + n)∼
Be(1/2,1/2).

Maruyama and George prior. Maruyama and George (2011) propose a hyper-prior
such that g ∼ BetaPrime((n − p − q)/2 − a,a), where 0 < a < (n − p − q)/2, with a
recommended value of 1/4. This prior has an added benefit of having truly closed form
marginal distributions, and a conjugate posterior (in the scaled beta-prime family) for g|y ∼
BetaPrime((n− p− q)/2− a,a+ p/2, S).

Other adaptive beta priors. Some general families are obtained by letting the hyperpa-
rameters of the hyper-g prior depend on n, e.g. letting ag = 2(1 + 1/n). More generally,
Zeugner and Feldkircher (2009) propose letting ag = 2(1 + 1/max{n,p2}). Ley and Steel
(2012) similarly propose letting g/(1 + g)∼ Be(cmax{n,p2}, c) for some c > 0.

Zellner-Siow prior. This prior, based on the early work by Zellner and Siow (1980), and
formalized by Liang et al. (2008), places a Cauchy prior on π(β|σ2). Since the Cauchy admits
representation as a mixture of Normals, this prior is equivalent to letting g ∼ IG(1/2, n/2)).
This prior does not admit closed form marginal distributions, and is often computed via a
Laplace approximation, which degrades as p gets large.

Truncated priors. Ideas include truncating g in such a way that E(g) will tend to infinity.
Bottolo and Richardson (2008) propose truncating the prior space such that g <max{n,p2}
and then imposing a uniform prior on log (g+ 1). One important class of truncated pri-
ors are truncated gamma priors (Li and Clyde, 2018) on 1/(g + 1): u ∼ TG(0,v)(a, b) =

ba/γ(a, bv)ua−1 exp{−bu}1{u<v}. These priors are conjugate with an approximation of
the likelihood, but are intractable with the proper likelihood function. The Robust prior
(under default parameters) proposed by Bayarri et al. (2012) falls into this family (v =
(p+1)/(n+1), a= 1/2, b= 0). Furthermore, the ZS-adaptive prior proposed by Held, Bové
and Gravestock (2015) (which mimics the behavior of the Zellner-Siow prior by matching the
mode) is a member of this family, with parameters (v = 1, a= 1/2, b= (n+ 3)/2).

Robust prior. This prior was developed in Bayarri et al. (2012) to satisfy their model
selection criteria. They let π(g) = ar[pr(br + n)]ar(g + br)

−(ar+1)1{g≥pr(br+n)−br}, where



6

Prior L b a ϕ Null Consistent

Hyper-g 0 1 ag
2 − 1 1 No

Horseshoe 0 1
2

1
2 1 No

F-Z 0 1 1/max{p2, n} 1 Yes
Benchmark 0 cmax{n,p2} c 1 Yes
M and G 0 n−p−q

2 − a a 1 Yes
hyper-g/n 0 1 a

2 − 1 n Yes
Horseshoe g/n 0 1

2
1
2 n Yes

Robust pr(br + n)− br 1 ar pr(br + n) Yes
PEP n n−p−q

2
n−p−q

2 n Yes

TABLE 1
Hyper-priors on g as Pearson Type-VI distributions. F-Z denotes the prior in Zeugner and Feldkircher (2009). M

and G denotes the hyper-prior in Maruyama and George (2011).

pr ≥ b/(b+ n) and a, b > 0. They recommend taking pr = 1/(p+ q) and br = 1. This prior
both truncates the prior support of g from below, and also applies a scaling to g that grows in
n.

Power expected posterior prior. The PEP prior was developed in a different context. The
Expected Posterior Prior lets the prior on β be set to the expected posterior distribution with
respect to an imaginary training sample. The PEP prior modifies this approach such that the
likelihood of the marginal imaginary data is taken to the power of 1/n. However, as noted by
Consonni et al. (2018), the PEP is equivalent to a g-prior, with a hyper-prior on g of the form
π(g)∝ g−(n−p−q)(g− n)(n−p−q)/2−1, where g ≥ n.

Many of the above mentioned priors can be represented as a Pearson Type-VI prior:

π(g) =

(
(g−L)

ϕ

)b−1 (
1 + (g−L)

ϕ

)−(a+b)

ϕB(a, b)
1{g≥L} ϕ=

L+ 1

θ
≥ 0.

Table 1 describes each of the above priors in terms of the Pearson Type VI distribution.
We notice that not every prior proposed in the literature falls under this categorization. Most
notably, the inverse Gamma prior proposed by Zellner and Siow (1980) is not a member of the
Pearson Type-VI distribution. Nor is the prior proposed by Bottolo and Richardson (2008),
or the truncated gamma priors proposed by Li and Clyde (2018). In fact, Li and Clyde (2018)
proposed a broader class of priors, the compound confluent hyper-geometric distributions, of
which the Pearson is just a special case.

3.2. An approximation for posterior means and Bayes factors. For further analysis, we
are interested in the properties of the posterior means and Bayes factors for large, but finite,
n. However, all prior choices for g, with the exception of the one proposed by Maruyama and
George (2011), do not result in closed form expressions and are often represented as a ratio
of Hyper-geometric functions (see for example Liang et al. (2008) or Bayarri et al. (2012)).
Numerical libraries, such as the Cephes routine, are available for the 2F1 function, but their
accuracy tends to deteriorate rapidly as the number of parameters grow large. Alternatively,
Laplace approximations perform well in cases where the shape parameters in the Pearson
Type-VI distribution are fixed in n. However, while these are often easily computable, they
have complicated analytic forms, obscuring the underlying behavior of the quantities of in-
terest.

We develop asymptotic approximations for special cases of the Pearson-Type VI prior.
In particular, we consider approximations for the Beta priors of 1/(1 + g), where a and



MODEL SELECTION FOR LARGE DATA 7

Prior E
(

1
g+1 |y

)
BFγ1:γ2

Hyper-g p+2ag−2
n−p−q−ag+2

[
1

Sγ−1

]
(1−∆)

n−p−q−ag
2

+1

[
Γ(

p+ag
2

−1)Γ(
n−p−q−ag+2

2
)

Γ(
p+ag+1

2
−1)Γ(

n−p−q−ag+1

2
)

]
U

p+ag
2

−1(Sγ2 − 1)
1
2

Horseshoe p+1
n−p−q−1

[
1

Sγ−1

]
(1−∆)

n−p−q−1
2

[
Γ( p+1

2
)Γ(n−p−q−1

2
)

Γ( p+2
2

)Γ(n−p−q−2
2

)

]
U

p+1
2 (Sγ2 − 1)

1
2

F-Z p+2/n
n−p−q−2/n

[
1

Sγ−1

]
(1−∆)

n−p−q−1/n
2

[
Γ(np+1

2n
)Γ(

n−p−q−1/n
2

)

Γ(
n(p+1)+1

2n
)Γ(

n−p−q−1−1/n
2

)

]
U

np+1
2n (Sγ2 − 1)

1
2

TABLE 2
Approximations of posterior means and Bayes Factors under different beta priors.

U = (RSS∅ −RSSγ2)/(RSS∅ −RSSγ1)

b do not grow in n, which are equivalent to letting L = 0 and ϕ = 1 in the Pearson-Type
VI distribution. These hyper-priors include the Hyper-g, Horseshoe-g, F-Z, Benchmark, and
Maruyama and George priors.

PROPOSITION 1. Let 1
g+1 ∼ Be(a, b), with a, b > 0 and bounded in n, and let the data

generating process M∗ ̸=M∅, then

1. BFγ:∅ ≈ S
n−q

2
γ (Sγ − 1)−( p

2
+a)B(n−p−q

2
−a, p

2
+a)

B(a,b) where Sγ = RSS∅
RSSγ

and RSS de-
notes the residual sums of squares.

2. E( 1
1+g |y)≈

p+2a
n−p−q−2a

[
1

Sγ−1

]
The proof of this proposition can be found in the appendix. Importantly, if we consider

a model Mγ1
and augment it with one additional parameter to obtain model Mγ2

, then the
Bayes Factor comparing the two is approximately:

BFγ1:γ2
≈ (1−∆)

n−p−q

2
−a1

[
Γ(a1 +

p
2)Γ(a1 + b1)Γ(a2)Γ(b2)Γ(

n−p−q
2 − a1)

Γ(a2 +
p+1
2 )Γ(a2 + b2)Γ(a1)Γ(b1)Γ(

n−p−q−1
2 − a2)

]
[
RSS∅ −RSSγ2

RSS∅ −RSSγ1

] p

2
+a1

(Sγ2
− 1)

1

2
+a2−a1 ,

where 1 − ∆ = RSSγ2
/RSSγ1

. Thus, ∆ can be thought of as the relative improvement
in the RSS from adding a new parameter. Table 3.2 displays the approximate means and
Bayes factors for the hyper-g, horseshoe-g, and F-Z priors. In all the cases considered, we
see that E(1/(g + 1)|y) is O(1/n) and the Bayes factor of the smaller model to the larger
is O((1−∆)(n−p−q)/2−an1/2). Thus, it is important to note that, despite the wide variety of
prior choices for g, all of then produce posterior means and Bayes factors that have essentially
identical behavior when n is sufficiently large.

4. Two New Problems. Two problematic behaviors of posterior distributions based on
g-priors for large sample sizes, that have not received much attention in the literature are:
Shrinkage deficient estimation and model superinduction. The former refers to the phe-
nomenon where E(1/(g + 1)|y) ∈ O(1/n), implying that the posterior expectation of the
shrinkage factor decays at least linearly in n. This implies that for large sample sizes, the
posterior expectation of β, will have no shrinkage and be essentially equal to β̂LS . The latter
refers to the phenomenon, where, in the M-open setting, the Bayes factor comparing any
two nested models, Mγ ⊂Mγ′ , is such that limn→∞BFMγ ,Mγ′ = 0, implying that, for large
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sample sizes, the more complex model will be preferred. This creates both theoretical parsi-
mony problems, as well as practical computation issues, for any step-wise model selection
procedure.

4.1. SDE. In order for g-priors to be consistent,E(g/(1 + g)|y,Mγ) → 1 as n→ ∞.
Thus, as n→∞, all g-priors produce no-shrinkage, and result in OLS estimates: E(β|y)→
β̂LS . The rate at which this convergence occurs is linear in n, or faster. To demonstrate this
result, we first consider the following assumptions:

ASSUMPTIONS 1. Let y ∼N (Xα+ µn, σ
2In), such that XTµn = 0.

A1. Let µTnµn/n→Cµ, where Cµ ∈ (0,∞).
A2. Consider a class of priors such that E

(
(g+ 1)−1|Mγ

)
≤ Bγn

−1 for all Mγ , where
Bγ ∈ (0,∞).

A3. Furthermore, let E (n/(g+ 1)|Mγ)
L1→Rγ for all Mγ , where Rγ ∈ (0,∞).

THEOREM 2 (Shrinkage Deficient Estimation). Under the Hyper-g, Horseshoe-g,
Maruyama and George g-priors, and all priors satisfying A.2 and A.3, we have that
E(1/(g+ 1)|y) ∈O( 1n).

PROOF. For the Beta priors, the approximations developed in Proposition 1 suffice to
show the result. For the general case where the prior mean of 1/(g + 1) decays linearly, we
have that

E
(

1

g+ 1
|y
)
=

∫
g(1 + g)−

p+2

2

(
g+1

g+Sγ,n

)n−q

2

πn(g|Mγ)dg∫
g(1 + g)−

p

2

(
g+1

g+Sγ,n

)n−q

2

πn(g|Mγ)dg

.

Suppose towards a contradiction that limn→∞ nE
(
(g+ 1)−1|y

)
≥ Bγ , for all Bγ . Then we

have that

lim
n→∞

∫
g

(
(1 + g)−1 − Bγ

n

)
(1 + g)−

p

2

(
g+ 1

g+ Sγ,n

)n−q

2

πn(g|Mγ)dg ≥ 0.

The left hand side is

≤ lim
n→∞

∫
g

((
n

g+ 1

)
−Bγ

)
πn(g|Mγ)dg = E

((
n

g+ 1

)
|Mγ

)
−Bγ =Kγ −Bγ

There exists a Bγ >Kγ , so that the quantity is less than zero, creating a contradiction. There-
fore, under the assumptions in A.1 and A.2, E

(
(g+ 1)−1|y

)
∈O (1/n).

While the consistency properties are desirable, in practice, SDE means that for any large
data set, a g-prior is essentially reproducing OLS estimates. We seek to slow the rate at which
this convergence occurs, such that we retain some level of posterior shrinkage for large, but
finite, n.
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4.2. Model Superinduction. Model superinduction refers to a phenomenon where a
model selection procedure will overwhelmingly favor larger models as n increases. We first
establish the following result, which illustrates the phenomenon. Consider a class of priors
G, on g, which includes

• The Maruyama and George Prior
• Any prior such that 1

g+1 ∼ Be(a, b) (for fixed a and b)

• Any prior such that E
(

nk

g+1

)
→ C , and E

(
g+1
nk

)
→ C∗ such that k ≥ 1, C ∈ (0,∞), and

C∗ ∈ (0,∞).

THEOREM 3 (Model Superinduction). For the class of priors G, consider data generated
as y ∼ N (Xα + µ,σ2). Consider linear models Mγ and Mγ′ with p and m parameters,
respectively, and such that Mγ ⊂Mγ′ . Then limn→∞BFγ,γ′ → 0, unless

1. Mγ is the true model
2. There is perfect collinearity between the terms in Mγ′ \Mγ and Mγ in the limit
3. µ ̸∈ ker({Mγ′ \Mγ})

PROOF. To establish the result for the fixed beta priors, we then note that under the ap-
proximations in the previous section, we have that

BFMγ :Mγ′ ≈

[(
Sγ
Sγ′

)n−q

2

][
Γ(n−p−q

2 − a)

Γ(n−m−q
2 − a)

][(
Sγ′ − 1

Sγ − 1

) p

2
+a

(Sγ′ − 1)
m−p

2

Γ(p2 + a)

Γ(m2 + a)

]
.

From Lemma 8, we see that the first term goes to zero in probability at an exponential rate.
The second term goes to infinity, but at a polynomial rate (in m − p), and the third term
converges to a constant (from Lemma 4). Thus limn→∞BFMγ ,Mγ′ → 0.

To establish the result in the case where E
(
nk/(gn + 1)

)
→C , we note that

BFMγ :Mγ′ =

(
Sγ,n
Sγ′,n

)n

2

∫
g(1 + g)

−p

2 ( g+1
g+Sγ,n

)
n−q

2 πn(g|Mγ)dg∫
g(1 + g)

−m

2 ( g+1
g+Sγ′,n

)
n−q

2 πn(g|Mγ′)dg
.

From Corollary 3, we know that the ratio of integrals goes to infinity at a polynomial rate.
Since the first term diverges at an exponential rate, we know that BFMγ :Mγ′ → 0 as n→∞,
for all Mγ .

It should be noted that the second exception here is rather trivial, as perfect collinearity is
rarely an issue (especially in the limit). The third condition is similarly trivial, as if it implies
perfect prediction of µ (in the limit), with Xα̂LS +Kβ̂LS +(I −PMγ′\Mγ

)y. An immediate
corollary (from Mukhopadhyay, Samanta and Chakrabarti (2015)) is

COROLLARY 1. Let 0≤ s < 1. If max{Mγ1
,Mγ2

}
p(Mγ1

)
p(Mγ2

) ≤ exp{n(1−s)}, then
p(Mγ |y)→ 0 as n→∞.

As we discuss below, these results have strong implications for model comparison in M-
open settings.
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4.2.1. M-Closed Case. In the M-closed case, the true data generating model is con-
tained within the set of linear models we are considering. In this case, the problem of model
superinduction is fairly mild, as the posterior probability of the true model will always tend to
one. Theorem 3 indicates, though, that for any two nested models that aren’t the true model,
the larger one will always be preferred. This can create issues for model search algorithms
based on iteratively adding and dropping parameters until convergence. While such a pro-
cedure will always converge to the true model, it may tend to explore regions of heavily
parameterized models before selecting the true model.The resulting computational issues are
especially salient when dealing with large model spaces.

4.2.2. M-Open Case. In the M-open case the problem of model superinduction can be
quite severe, as for any large data set, a step-wise model selection procedure will continue
to add parameters indefinitely. Moreover, in the case where we have a finite set of possible
covariates, we have the following corollary to Theorem 3:

COROLLARY 2. Consider a model selection problem with a finite set of m possible co-
variates and let MF denote the model that contains all of them. In the M-open case, under
the conditions established in Theorem 3 and Corollary 1, limn→∞ P (MF |y)→ 1.

This result follows immediately from Corollary 1 and Theorem 3 by considering the Bayes
factor of any model to the full model. This creates two major issues. First, as a general
philosophical problem, we prefer parsimonious models. Very minor improvements in model
fit should not result in extremely strong evidence in favor of the more heavily parameterized
model. Second, and more practically, this behavior forces step-wise selection algorithms to
explore areas of the model space consisting of very large models. This adds considerable
computational burdens, making it impractical to actually evaluate these models.

One question one may ask, is to what extent Bayes factor based model selection even
makes sense in the M-open case. Indeed, since the true model is outside the space of consid-
ered model, and thus is allocated 0 prior probability, this procedure seems to start out with a
prior mis-specification issue. Unfortunately, the Model superinduction problems is a deeper
issue than that, as seen with the following two results. First, we establish a useful Lemma:

LEMMA 1. Consider a model selection problem between two nested models, Mγ1
with

p covariates and Mγ2
with 1 additional covariate. Then, in the M-open case, under the

conditions in Theorem 3, argminMγ
(µn − PMγ

µn)
T (µn − PMγ

µn) =Mγ2
.

PROOF. Consider the partition of the projection matrix PMγ2
into PMγ1

+ PMγ2\Mγ1
. We

note that PMγ2
\Mγ1

is the projection matrix of the components of Mγ2
orthogonalized to the

components of Mγ1
(ie. P{(I − PMγ1

)KMγ2\Mγ1
)}. We can then write:

lim
n→∞

(µn − PMγ2
µn)

T (µn − PMγ2
µn) = lim

n→∞
(µTnµn − µTnPMγ1

µn − µTnPMγ2
\Mγ1

µn).

The last term will always be non-zero under the final two conditions established in Theorem
3.

We develop two final results. The first one extends the problem of model superinduction to
oracle estimators in the M-open setting. The second one, establishes the pairwise consistency
properties of Bayes factor based model selection in the M-open case.



MODEL SELECTION FOR LARGE DATA 11

THEOREM 4. Consider data generated from a model M∗, and an “oracle" model selec-
tion procedure, using either the predictive squared error loss function

Mk = argmin
Mγ∈M

lim
n→∞

∫
ỹ
(E(ỹ|yn,Mγ)− ỹ)2p(ỹ|yn,M∗)

or the predictive log loss

Mk = argmin
Mγ∈M

lim
n→∞

∫
ỹ

log (p(ỹ|M∗, yn))

log (p(ỹ|Mγ , yn))
p(ỹ|yn,M∗).

In choosing between models Mγ1
with p covariates, and Mγ2

with one additional covariate,
the oracle will always favor the larger model, Mγ2

.

PROOF. The proofs follow from a simple rearrangement of the loss functions, that shows
that minimization, in both cases, is equivalent to the minimization done in Lemma 1.

THEOREM 5. When considering two models, Mγ and Mγ′ , in the limit as n→∞, the
oracle model selection procedure (under both the predictive squared error loss and pre-
dictive log loss functions) will select Mγ if, and only if, for any priors in the class G,
limn→∞BFγ,γ′ →∞.

PROOF. Under both the squared error loss function, and the log loss function, the Oracle
estimator will only choose Mγ if limn→∞ µTnPγµn > µTnPγ′µn. Equivalently, if we define
αγ = µTnPγµn/µ

T
nµn, and αγ′ = µTnPγ′µn/µ

T
nµn, then αγ > αγ′ . Following the same proof

method from Lemma 4 (see Supplement (Fontana and Sansó, 2023)), we have that

Sγ,n
Sγ′,n

p→
1 +

(1−αγ′ )Cµ

σ2

1 + (1−αγ)Cµ

σ2

=
σ2 + (1− αγ′)Cµ

σ2 + (1− αγ)Cµ
.

If αγ > αγ′ , then the numerator is larger than the denominator. We recall that the Bayes
Factor has the form

BFMγ :Mγ′ =

(
Sγ,n
Sγ′,n

)n

2

∫
g(1 + g)

−p

2 ( g+1
g+Sγ,n

)
n−q

2 πn(g|Mγ)dg∫
g(1 + g)

−m

2 ( g+1
g+Sγ′,n

)
n−q

2 πn(g|Mγ′)dg
.

From Corollary 3, we know that the ratio of integrals is bounded polynomially. Then,
since Sγ,n/Sγ′,n > 1, BFMγ ,Mγ′

p→∞. Conversely, if BFMγ ,Mγ′
p→∞, and assuming that

that Sγ,n/Sγ′,n ̸→ 1, then we know that αγ > αγ′ , which implies that limn→∞ µTnPγµn >
µTnPγ′µn. Thus, the Oracle estimator will also select model Mγ .

From the previous results we conclude that, in the M-open case, as any additional param-
eter will produce a slightly better fit in the limit, any consistent model selection procedure
will ultimately suffer from model superinduction. Indeed, to the extent that we would like to
minimize the square error loss, or the log loss, these results are not altogether problematic,
as the selected models are marginally better fitting in an asymptotic sense. However, the ra-
pidity at which this problem manifest in the finite n case is problematic. As we show in the
proofs in the appendix, the growth of the Bayes factors is exponential in n. Not only do we
have strong philosophical arguments to be skeptical of additional complexity in exchange for
insignificant improvements in model fit, but when utilizing the Bayes factor for stochastic
search algorithms, this behavior creates additional computational burdens.

Unfortunately, the behavior described here can not be entirely resolved, as the problem
manifests even with oracle estimators. Indeed, any true solution, either in the prior on g or
the model space prior, will result in posterior inconsistency issues in the M-open case, as well
as the finite model case. Thus, we must content ourselves with an approach that minimizes
the severity of the behavior for large sample sizes used in practice (ie. n= 106).
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5. A new hyper-prior. As we have discussed above, the problem of model superin-
duction is ultimately unavoidable, as it is even exhibited by oracle estimators. To mini-
mize the impacts of this phenomenon for a given sample size we propose a modification
of the Maruyama and George Hyper-prior, for which a closed form Bayes factor is available.
Under such prior, we have that g|y,Mγ ∼ BetaPrime ((n− p− q)/2− a,a+ p/2, Sγ) and
BFγ:∅ = S

(n−p−q)/2−a
γ Γ(a+ p/2)Γ((n− p− q)/2)/(Γ(a)Γ((n− q)/2)).

Thus, the severity of the model superinduction effect is determined by the leading term
Sn−p−q/2−a, that depends on the hyper-parameter a. Choosing a large value for a minimizes
the severity of the superinduction problem, yet a is subject to some constraints. First, (n−p−
q)/2− a≥ 0, so a≤ (n− p− q)/2. If a grows linearly with n, then in the typical M-closed
setting, we will lose posterior model consistency. With this in mind, we let a= (nr−p−q)/2,
where r ∈ (0,1). Then

g|y,Mγ ∼ BetaPrime
(
n− nr

2
,
nr − q

2
, Sγ

)
and BFγ:∅ = S

n−nr

2
γ

Γ(n
r−q
2 )Γ(n−p−q

2 )

Γ(n
r−p−q

2 )Γ(n−q
2 )

,

and for any pair-wise comparison, the Bayes factor will decay (or explode) at the rate of
(Sγ/Sγ′)(n−nr)/2. Thus, large values of r will slow the effects of super-induction. Yet, con-
vergence is still achieved as the n term in the exponential dominates in the limit. The posterior
mean of the shrinkage factor is not available in closed form. We can instead obtain the bounds

E
(

1

g+ Sγ

)
≤ E

(
1

g+ 1

)
≤ E

(
1

g

)
=⇒ 1

Sγ

nr − q

n− q
≤ E

(
1

g+ 1

)
≤ 1

Sγ

nr − q

n− nr − 2
.

Thus, the posterior shrinkage factor decays at a rate of O
(
nr−1

)
, which is slower than the

linear decay rates with typical hyper-prior choices minimizing the problem of shrinkage de-
ficient estimation discussed above. In addition this model tackles the conditional Lindley
paradox, by removing the dependence on the model size p, in the Bayes factor.

One important feature of objective priors is student tails, which enables robustness to the
mis-specification of the prior mean (Bayarri et al., 2012). Our prior produces student tails for
P
(
β|σ2

)
, with (nr−p− q)/2 degrees of freedom. Notably, this results in less heavy tailed t-

distributions than those resulting from most default parameter choices. The proposed choice
of a will also result in an effective truncation of the model space as p ≤ nr − q. Finally,
we notice that the modified hyper-g prior, although fairly good at correcting for shrinkage
deficient estimation, can only apply an additive penalty to the rate of the exponential growth
or decay of the Bayes factor. As n grows large, even extreme choices of r, very near 1, may
not be enough to compensate for the effect of model super-induction.

5.1. Model Space Priors. In order to effectively control model super-induction we con-
sider the prior on the space of models {Mγ}. One common approach in the literature is to
place an inclusion probability π, on each covariate. Thus, Pr[Mγ |π] = πp(1− π)m−p. Here,
m is used to denote the total number of possible covariates. As noted by Scott and Berger
(2010), a fixed choice of π results in multiplicity issues. Instead, they propose the use of a
Be(aπ, bπ) prior on π. This results in

Pr[Mγ ] =
B(aπ + k, bπ +m− k)

B(aπ, bπ)
and

Pr[Mγ ]

Pr[Mγ+ ]
=
b+m− k− 1

a+ k
.

Here Mγ+ denotes the model with one additional covariate. In order to choose the values of
aπ and bπ we seek a strategy that is adaptive in n. Kirsner and Sansó (2020), let aπ = 1 and
bπ = 10

3n

104 . This choice addressed the immediate computational concerns in their applica-
tion, but resulted in a penalty that is too extreme, leading to overly smoothed spatial fields.
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FIG 1. Probability of adding a spurious parameter for different values of r and n (assuming a flat prior on the
model space)

Moreover, as the above theoretical results indicate, sub-exponential priors odds are necessary
for consistency. In view of this, we let aπ = 1 and bπ = Cnlog (n) which is sub-exponential.
Indeed, bπ = nn

ϵ

, for ϵ < 1 is another natural choice. We found that polynomials such as nc,
are ill-suited, as small values of c do little to counter the exponential growth of the Bayes
Factor, and large values of c lead to overly extreme penalties when n is moderate (≈ 104).
The value Cnlog (n) reflects the need for a prior odds ratio that is super-polynomial, but sub-
exponential. The hyper-parameter C needs to be chosen such that the behavior for moderate
n is reasonable.

5.2. Choosing r and C . Our proposed hyper-g prior and model space prior, require the
specification of r and C . A choice needs to be made for a default value of these parameters.
There are a few key points to consider that provide guidance. First, as r decreases, so does the
size of the model space. Second, as r increases, so does the amount of posterior shrinkage.
Third, as r increases, the Bayes factor’s growth is slowed, but the Bayes factor is not sensitive
to the choice of r with large n. Fourth, the larger C is, the more prior weight will be placed
on smaller models, for all values of n. This can lead to undesirable behavior, where we over-
penalize model space exploration for moderate values of n.

A possible strategy to fix the values of r is to consider the case where the null model is
the true model, and examine the behavior of the Bayes factor under different values of n and
r. The Bayes factor comparing the null model to a model with one parameter is a random
variable distributed as a transformation of an F distribution. We can examine the false pos-
itive rate (FPR), defined as the Pr[BFγ:∅ ≥ 1]. Figure 5.2 shows the FPR as a function of r,
with a dotted line representing a 0.05 FPR for reference. We notice that the FPR is increas-
ing in r and decreasing in n. Thus, we set a threshold for sufficiently small n and find the
largest r that meets that threshold. As an example, for 0.05 and n= 104 we have r = 0.593.
A lower bound for r can be obtained by selecting a minimum model space size, for example,
pmax ≥

√
n. To set value of C we notice that the RFP is also a function of C . So we can

obtain an RFP surface varying r and C jointly, and obtain its minimum. This is illustrated in
Figure 5.2

Another criteria worth considering is the probability of correctly rejecting the null in favor
of some other model. This, in a sense, is an analog to the true negative rate, or power of
the test. Unfortunately, we are operating in settings where there isn’t a true model, so these
probabilities cannot be calculated in general. However, since our goal is ultimately to ensure
that our penalties are not so extreme as to prevent the addition of important predictors, we
can simply assume that some model in our space is the data generating process (in particular,
we consider a model with 1 parameter). Since the Bayes Factor itself is a transformation of a
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FIG 2. False Positive Rate and Quantile of Power Function for various values of r and C . Here n= 10,000, and
the black line represents the decision boundary of maximizing power such that the FPR< 0.05

doubly non-central F-distribution, we have that

P
(
BFγ:∅ ≥ 1

)
= P

F1,n−2(λ1, λ2)≥ (n− 2)

(
Γ(n

r−p−q
2 )Γ(n−q

2 )

Γ(n
r−q
2 )Γ(n−p−q

2 )

) 2

n−nr

P (Mγ)
−1

 .

To maximize the power, we need only find the values of r and C that maximize the right side
of the above expression (since the CDF is increasing and the F random variable does not
depend on r or C).

For model selection procedures that operate in a series of add-drop moves, optimizing the
FPR and TNR provides the calibration. In addition to setting the upper bound for the FPR,
both the FPR and power expressions depend on n, for which we will need to select a reference
value. If we see values of n larger than our reference value, our procedure will be much more
conservative about accepting new parameters. As an example, for the values n0 = 104, with
α= 0.05 we have r = 0.924 and C = 10−36.4.

6. Data Examples. To illustrate the behavior of our proposed hyper-prior we consider
two examples with 106 data simulated from the function:

yi =


sin (2πxi) + 5 0≤ xi < 2

−| sin (xi − 3)|3 + 5 2≤ xi < 4

5| sin (xi − 5)|+ 5 4≤ xi < 6

− sin (2πxi)xi + 5 6≤ xi ≤ 10

.

The inputs xi were generated uniformly between (0,10), and N (0,1) error was added to
each response. For both examples we consider two approaches: One with the standard hyper-
g prior on β and the model space prior of Scott and Berger (2010) with a uniform covariate
inclusion probability; and another with our modified hyper prior on g, and model space prior.
We then examine the performance of our priors for different sample sizes, using MSE and
continuous rank probability score (CRPS) as metrics.

6.1. Kernel-Regression. We fit a kernel regression using the hockey stick basis functions
popularized by multivariate adaptive regression splines (MARS). We randomly select 100
points from the simulated input, denote them as tj , and compute

Bij =max{0, sj(xi − tj)}, with sj =

{
−1 with prob 1

2

1 with prob 1
2

.
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n − log (E(g|y) + 1) Avg Model Size Run-time (s)
M&G g-prior New g-prior M&G g-prior New g-prior M&G g-prior New g-prior

103 -2.680 -0.780 17.20 14.35 56.03 46.34
5× 103 -3.108 -0.912 32.58 28.69 176.17 186.75
104 -3.369 -0.960 35.64 34.81 272.93 233.92

5× 104 -4.049 -1.050 38.03 34.39 1216.81 1048.68
105 -4.308 -1.092 42.00 42.03 2736.81 2279.47

5× 105 -4.887 -1.178 55.00 38.00 15266.16 10874.73
106 -5.095 -1.212 67.86 41.00 40941.06 25396.30

TABLE 3
Model comparison of step-wise kernel regression using the Maruyama and George g-prior and our novel g-prior

n MSE CRPS
M&G g-prior New g-prior M&G g-prior New g-prior

103 1.4208 1.7355 0.6389 0.8004
5× 103 0.9452 1.1798 0.4323 0.6147
104 0.9190 1.0802 0.4262 0.5520

5× 104 0.8990 1.0481 0.4068 0.5384
105 0.8967 1.0135 0.4081 0.5297

5× 105 0.8926 0.9568 0.4005 0.4828
106 0.8913 0.9465 0.4007 0.4750

TABLE 4
Predictive performance comparison of step-wise kernel regression using the Maruyama and George g-prior and

our novel g-prior

We then use a randomized add-drop procedure to explore the model space (which is of size
2100), with the randomized acceptance probability being the marginal probability under both
the Maruyama and George prior and our new prior. We repeat this procedure for samples sizes
of 1000, 5000, 10000, 50000, 100000, 500000, and 1000000. After 100 iterations, we take
the models with the the ten highest posterior probabilities, and examine the average model
size (averaged over the normalized probabilities of the top ten models), as well as the average
shrinkage factor. The results are presented in Table 6.1. Note that we computed (E(g)+1)−1

instead of E(1/(g+1)). This is because the Maruyama and George prior does not lend itself
to closed form expectations on the latter, but does under the former, as it is the estimator that
minimizes the posterior scaled-square error loss.

Performance metrics can be found in tables 6.1 and 6.1. We observe that under the hyper-g
prior, the expectation is decreasing approximately linearly in n, whereas the expectation un-
der our prior is decaying at a much slower rate. We also see that our proposed priors induces
the selection of significantly smaller models, appreciably shortening computing times. Our
prior choices do tend to result in slightly larger mean squared errors and CRPS scores, taken
with respect to the true mean function over a test set.

Figure 3 shows plots for the predicted mean functions under both priors, and the corre-
sponding 95% probability intervals for the mean function. The fit under the new prior tend to
be slightly smoother, at the cost of accuracy in some local regions where the mean function
fluctuates rapidly. These inaccuracies decrease as the sample size gets large, and the fit from
both approaches begins to look very similar. Notably, for large sample sizes, there are some
regions where the default g-prior tends to produce over-fitting, whereas the proposed prior
produces a smoother and more accurate fit. This suggests that overall MSE as a benchmark is



16

FIG 3. Predictive fits using Kernel Regression with the standard g-prior and our new prior

obscuring important information, as the differences in performance are best assessed locally.
Thus, in Figure 4, we look at the partial MSE for the locations to the left of a given point
(
∑

xi≤x(xi − µ)2/
∑

xi<x 1{xi≤x}). The plots reveal a complicated picture of performance.
For all models, the total MSE favors the hyper-g prior, but there are many regions where the
new prior performs better. These plots indicate very similar performance profiles, with the
new prior requiring far less complex models and significant time savings.

6.2. MSSS. Multi-resolutional stochastic shotgun search is a method of fitting non-
stationary multi-resolutional spatial data sets developed by Kirsner and Sansó (2020). Data is
assumed to be generated as y(s) =X(s)α+w(s)+ϵ(s) ϵ(s)i ∼N (0, σ2). The spatial pro-
cess is represented by a discrete process convolution: w(s) =

∑∞
r=1

∑J(r)
j=1 K(s, srj |ϕr, ν)βrj .

Here, s represents a given spatial point, srj represents the center of the kernel, ϕr and ν
are kernel parameters. Kernels are typically chosen to be compact, with the support varying
based on ϕr . For example, a common choice is a Bezier Kernel:

K(s, srj |ϕr, v) =


(
1−

(
||s−srj ||

ϕr

)2)v

||s− srj || ≤ ϕr

0 Otherwise
.

To determine the centers of the kernel, a branching process is defined under the spatial do-
main. The region is first divided into J(1) square sub-regions, each one of which can be
iteratively split into 2d additional sub-regions. The prior probability of a given tree-structure
is given by a branching process, with a probability of splitting chosen to ensure termination
of the tree with probability 1. This can be represented as

P
(
γ1j = 1

)
= 1 P

(
γrj = 1|γr−1

⌊ j−1

2d
⌋−1

= 1

)
= π× γr−1

⌊ j−1

2d
⌋−1

P
(
γrj = 1|γr−1

⌊ j−1

2d
⌋−1

= 0

)
= 0 p(π) = Beta(aπ, bπ).
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FIG 4. Comparison of cumulative MSE over the spatial domain using kernel regression with the standard g-prior
and our new prior

We then have that βrj = 0, if γrj = 0, ensuring sparsity. A g prior is then placed on any
non-zero βrj , with flat priors on α and σ2. This gives a quasi-closed form expression for the
posterior probability of a given tree structure, which allows for posterior odds based step-wise
model selection. The major advantage of this approach, is that for a given tree structure, the
posterior probabilities of adjacent tree structures (those with one additional or one less split),
can be computed via a rank-1 update, and thus can be parallelized. A major drawback of this
procedure, is that for large spatial data sets, the tree structures are often too complex. This
results in excessively long computation times and can result in overfitting. This problem was
addressed in Kirsner (2020) by letting the beta prior that controls the probability of splitting
have hyper-parameters aπ = 1, bπ = 10

3n

104 . This creates theoretical consistency issues, as
the prior odds-ratio is exponential in n. Practically, this approach resulted in overly smooth
model fits that didn’t accurately capture the multi-resolutional structure of the data.

We fit the simulated data used in the previous example with a MSSS model. In one case
we use the standard hyper-g prior on β, and the Scott and Berger model space prior with
aπ = 1, and bπ = 5, and in the other we use our modified hyper prior on g, and model space
prior. See the supplement (Fontana and Sansó, 2023) for plots of the predictive fits for the
different models, and the corresponding 95% predictive intervals. The results indicate that our
method preforms as well as the approach proposed in Kirsner and Sansó (2020), although,
visually, there are a few regions of sharp discontinues that our approach fails to capture. Yet,
the benefits of our approach can clearly be seen in Table 6.2. We see that for large values
of n, our method is nearly 5 times faster and results in models roughly half the size of the
standard approach. The trees generated by our models are also less deep, and we see only
slight decreases in MSE and CRPS performance. For the results in the table, in-sample MSE
was calculated using 10000 points common to all the different sample sizes. Out-of-sample
MSE was calculated with respect to the true mean function on a regular grid of 10,000 points
from [0,10]. Our proposed prior performs slightly worse on MSE and CRPS metrics, this is
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n Run-time Avg Size Avg Depth
New hyper-g New hyper-g New hyper-g

104 21.4 31.3 58.2 64.9 8.92 9.11
5× 104 75.6 449.8 44.0 89.0 5.00 11.00
105 94.6 951.0 40.5 103.8 4.00 12.38

5× 105 2555.8 14704.1 72.8 133.7 10.00 14.01
106 5041.1 24641.7 77.0 150.8 10.00 14.00
n CRPS MSE (in-sample) MSE (out-sample)

New hyper-g New hyper-g New hyper-g

104 0.2696 0.2479 1.0437844 0.9924766 0.0927 0.0400
5× 104 0.2892 0.2375 1.1005105 0.9856406 0.1303 0.0105
105 0.3077 0.2340 1.1422150 0.9836267 0.1742 0.0077

5× 105 0.2480 0.2349 1.0158044 0.9833313 0.0323 0.0040
106 0.2592 0.2505 1.0404386 1.0184548 0.0587 0.0405

TABLE 5
MSSS performance under our new prior (New) and the standard g-prior (hyper-g). MSE (in-sample) refers to

the in sample MSE taken over a shared set of 104 observations. MSE (out-sample) refers to the the MSE from a
predicted observation to the true mean function taken over a regular grid over the space

to be expected, as the models under the hyper-g prior are much more complex. The deficits,
especially for large sample sizes, are not significant.

6.3. Albedo Data. To demonstrate the efficacy of our method with real data we consider
use white-sky albedo data collected by two Geostationary Operational Environmental Satel-
lites (GOES): GOES East, located at 75°W, and GOES West, located at 135°W. The data
correspond to July 1st, 2000, and consist of 664,911 observations. White-sky Albedo, refers
to BHRiso, or Bi-Hemispherical Reflectance (the ratio between upward and downward radi-
ation fluxes), under isotropic diffuse sky irradiance (Pinty et al., 2005). BHRiso takes values
between (0,1) at a given location s. In the July 1st data, only 3% observations were above
0.5. These values are likely attributable to aerosols or cloud coverage, and thus were removed.
Although data is collected across the Western Hemisphere, we limit our analysis to the data
collected within the Continental US (CONUS).

The measurements from the two satellites are aggregated to create a single dataset. Pre-
vious analyses have suggested that in some areas of the spatial field, there is a bias in the
measurements between GOES East and GOES West. To account for this, we include the
view zenith angle as a covariate. If we let (ψs, λs) and (ψe, λe) be the satellite latitude and
longitude, and earth latitude and longitude, respectively, of a measurement, then we have that
the view zenith angle, θ, is:

sin (θ) =
42164 sin (β)√

1.8084× 109 − 5.3725× 108 cos (β)
, cos (β) = cos (ψe −ψs) cos (λe − λs).

The dataset was split, withholding 10% of the data at randomly sampled locations as test
data, with the remainder being used as training data. MSSS was then used to fit the training
data, with the two approaches described in the previous section. The maximum-iteration
stopping condition was set to 1000 iterations, which the standard g-prior eventually reached
(notably, as shown in the tables below, this took nearly a week of computing time). Plots of
dense predictive surfaces over the CONUS for July 1st can be found in Figure 6.3, and a table
of relevant metrics of model performance can be found in Table 6.3.

We see that our model results in a much smoother surface than the hyper-g prior, while
still managing to capture the core features of the spatial surface. Although the hyper-g prior
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FIG 5. Dense Predictive Surfaces generated by MSSS under our novel g-prior and the standard hyper-g prior

FIG 6. Length of 95% predictive intervals generated by MSSS under our novel g-prior and the standard hyper-g
prior

Prior Run-Time (hours) Average Model Size Average Max Depth MSE CRPS
New Prior 28.09 264.872 4 0.01239538 0.07185805

hyper-g 193.31 1156 8 0.005553336 0.03743759

TABLE 6
MSSS performance on GOES Albedo Data under our new prior (New) and the standard g-prior (hyper-g)

produces a more detailed predictive surfaces, and better captures some small features of the
surface, it comes at a steep cost. Our model is nearly 1/5 the complexity of the model under
the hyper-g prior, and is fitted in 1/7 the time. Moreover, is is important to note that MSSS
applies a cap of 1000 iterations, at which point the model search is terminated. Under the
hyper-g prior, the model search reached this hard cap, and did not terminate under the normal
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stopping rules. In addition to a much smaller number of total knots, our model also produces
significantly shallower trees. On the test-set, performance was assessed using the MSE and
CRPS, and, as expected, we performed slightly worse than the hyper-g prior (results can be
found in table 6.3). The length of the predictive CI for each point on the dense surface can
be found in Figure 6.3. We see that our model does result in slightly larger intervals over the
regions where the surface has the most volatility, and elsewhere performs comparable.

7. Discussion. We have explored two problems afflicting g-prior based model selection
in M-open settings. While much attention has been dedicated in the literature to the develop-
ment of novel hyper-priors, the asymptotic behavior of the resulting posteriors, both on β and
the model space, remain very similar for the different choices. For all choices, the posterior
mean of β converges to the MLE at a linear rate, and the Bayes factor comparing two nested
models, converges exponentially to zero in favor of the larger model. In this paper we have
presented an approach to tackle those issues.

The model superinduction result fits firmly in line with the existing literature on M-open
model selection. Berk (1966) showed that in the M-open setting, the posterior will eventually
concentrate on the set of the parameter space that minimizes the KL-divergence. Theorem 5
can be read as a special case of this result for nested linear models. Similarly, results con-
cerning the exponential rate of convergence of the Bayes Factor are also well known (Tadesse
and Vannucci, 2021). While these theoretical properties have been well studied, the practi-
cal consequence that arises from them have received less attention. We have shown that in
large data settings, model complexity grows in a way that ultimately makes any search of
the model space impractical. As our data examples have demonstrated, a standard approach
may take days to analyze a data-set of a few hundred thousand observations. Moreover, the
additional complexity offers little of value for either inference or prediction.

In this paper we have focused on g-priors, but our results are much more general. Informa-
tion criteria, such as the BIC, will clearly suffer from the same problem. Assuming normally
distributed data, we have that BICγ1

−BICγ2
= n log (RSSγ1

/RSSγ2
)+(p1−p2) log (n). If

Mγ1
⊂Mγ2

, then the first term will tend towards infinity exponentially faster than the second
term will tend towards −∞. Thus, since we choose the model with the smallest BIC score,
we will always choose the larger model. In contrast, the log-posterior odds ratio, under our
priors, will look like

log

(
π(Mγ1

|y)
π(Mγ1

|y)

)
≈
(
n− nr

2

)
log

(
RSSγ2

RSSγ1

)
+

(
pγ2

− pγ1

2

)
log
(
n1−r

)
+ (pγ2

− pγ1
) [log (n)]2 + (pγ2

− pγ1
) log (C) +K

where K denotes a constant. It should be noted that the choice of b= Cnlog (n) was merely
a choice, not the only one. Indeed, as noted in Section 5.1, there is a class of functions H,
such that h(n) ∈H is super-polynomial, but sub-exponential. Thus, more generally, we can
consider a Superinduction-Resistant-Information Criterion (SRIC):

SRIC =

(
n− nr

2

)
log

(
RSSγ2

RSSγ1

)
+ (pγ2

− pγ1
) log (h(n)) +K where K is a constant.

One can choose functions in the class H, and tune the constant K to obtain certain desirable
properties such as bounded false positive rates. One can then preform step-wise or stochastic
searches, optimizing the SRIC, instead of a fully Bayesian approach. While model selection
using the SRIC will not be free of superinduction, the effects for moderate to large n will be
significantly minimized. Indeed, Theorem 4 indicates that this problem afflicts even oracle
estimators, so different choices of priors will only have an effect on the rate of convergence
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of the Bayes factor, not on the convergence itself. Future work will examine the rates of
convergence of the spike and slab, the non-local priors, and other popular objective prior
choices.

We note that, ultimately, as long as a model has posterior consistency, it will converge to
the model optimal under the KL-divergence, which inevitably leads to the super-induction
problem. Thus, one area for future investigation would be to consider different loss func-
tions that are not asymptotically equivalent to the KL-divergence. Certain predictive scoring
methods may show promise here. One example of this idea is presented in Tallman and West
(2022), where the posterior model weights are replaced with

∼
π(Mj) =C∗π(Mj)αj(y

∗, µ̂j |y),

where C∗ is a normalizing constant and αj(y
∗, µ̂j |y) is a constrained utility or scoring func-

tion. While Tallman and West (2022) discuss this approach in the context of Bayesian model
averaging, it should be noted that the problem of superinduction is essentially a problem
with the growth rate of the posterior odds ratio. This method would rescale that growth rate,
potentially alleviating the aforementioned issues.

APPENDIX

LEMMA 2. E
(
(1 + g)−1

)
→ 0 if, and only if, E

(
(1 + g)−p/2

)
→ 0.

PROOF. This lemma is a consequence of Jensen’s inequality (both the Concave and Con-
vex version) and Monotonicity.

LEMMA 3. For a∗, b, z > 0, and b < 1:

ez
∫ 1

u=0
(1−u)b−1ua

∗−1e−zudu≤ ez
∫ 1

u=0
ua

∗−1e−zudu+
B(b, a∗ + 1)

B(1, a∗ + 1)
ez
∫ 1

u=0
ua

∗
e−zudu.

PROOF. See the supplementary material (Fontana and Sansó, 2023).

PROOF OF PROPOSITION 1.1. We let π(σ2)∝ 1/σ2 and u= 1/(g + 1) ∼ Be(a, b). For
convenience, we also let zσ2 = (RSS∅ − RSSγ)/2σ

2, CX = [det (XTX)(2π)(n−q)]−1/2,
and QY =RSSγ/(RSS∅ −RSSγ). We have that

f(y) =

∫
σ2

CX

B(a, b)
(
1

σ2
)

n−q

2
−1 exp

{
−RSSγ

2σ2

}∫
u
(1− u)b−1(u)

p

2
+a−1 exp{−zσ2u}dudσ2

f̃(y) =CX
Γ(a+ p

2)Γ(
n−p−q

2 − a)

B(a, b)
(QY )

p

2
+a

[
2

RSSγ

]n−q

2

.

Here f(y) is the true marginal density, and f̃(y) is an approximating function. We consider
two cases. First, let b≥ 1. Then, since (1− u)b−1 ≤ 1, we have that

f(y)≤
∫
σ2

CX

B(a, b)
(
1

σ2
)

n−q

2
−1 exp

{
−RSSγ

2σ2

}
Γ(a+

p

2
)

[
1

zσ2

] p

2
+a

=CX
Γ(a+ p

2)Γ(
n−p−q

2 − a)

B(a, b)
(QY )

p

2
+a

[
2

RSSγ

]n−q

2

= f̃(y).
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For a lower bound on f(y), we note that Bernoulli’s inequality gives us (1 − u)b−1 ≥
(1− u)b ≥ 1− bu. We further note that for the upper incomplete gamma function, Theorem
2.4 from Borwein and Chan (2009) gives us :

Γ(α, z)≤

{
2zα−1e−z , α≤ 1

2zα−1e−z
∑K−1

k=0

(
α−1
z

)k where K = ⌈α⌉ , α> 1
.

Then (here we will abbreviate zσ2 as z) we have that:

ez
∫ 1

u=0
(1− bu)ua+

p

2
−1e−zudu≥ ezz−( p

2
+a)

[
Γ(a+

p

2
)− b

z
Γ(a+

p

2
+ 1)− Γ(a+

p

2
, z)

]

≥

e
zz−( p

2
+a)Γ(a+ p

2)
[
1 + b

z

(p
2 + a

)]
+ 2

z a+ p
2 ≤ 1

ezz−( p

2
+a)Γ(a+ p

2)
[
1 + b

z

(p
2 + a

)]
+ 1

2a+p−2

∑⌈a+ p

2
⌉−1

k=0

(
a+ p

2
−1

z

)k+1
a+ p

2 ≥ 1

Then, after integrating out σ2, we have that:

f(y)≥ f̃(y)

[
1− 2b(2a+ p)

n− p− q− 2a− 2
QY − 2

(
Q

−(a+ p

2
−1)

Y Γ(n−q
2 − 1)

Γ(n−p−q
2 − a)Γ(a+ p

2)

)(
RSSγ
RSS∅

)n−q

2

×

1 a+ p
2 < 1∑⌈a+ p

2
⌉−1

k=0 (a+ p
2 − 1)kQk

Y

[
Γ(n−q

2
−k−1)

Γ(n−q

2
−1)

]
a+ p

2 ≥ 1

]
.

We note that 1/QY is bounded as n grows and tends towards a constant with probabil-
ity 1. Thus, assuming a and b are bounded in n, the second term is O(1/n). For the third
term, we note that the ratios of gamma functions are bounded polynomially in n, while
(RSSγ/RSS∅)

(n−q)/2 tends to zero exponentially fast with probability 1. Thus, we have
that f(y)≥ f̃(y)[1−O(1/n)].

For the case where b≤ 1, we obtain a similar lower bound by noting that (1− u)b−1 ≥ 1.
The second O(1/n) term is dropped, but the exponentially fast third term is still present.
Thus, f(y)≥ f̃(y)[1−O(c

n/2
y )] with probability 1, where cy ≤ 1. For the upper bound, we

apply Lemma 3, and integrate out σ2. This gives us:

f(y)≤ f̃(y)

[
1 + α

B(b,α+ 1)

B(1, α+ 1)

(
1

QY

)[
Γ(n−p−q

2 − a− 1)

Γ(n−p−q
2 − a)

]]
= f̃(y)

[
1 +O

(
1

n

)]
.

Thus, with probability 1, f̃(y)/f(y) = 1+O(1/n). Using the fact that f∅(y) =CXΓ((n−
q)/2)(RSS∅/2)

−(n−q)/2 det (XTX)
−1/2 we obtained the desired approximation.

PROOF OF PROPOSITION 1.2. The result is obtained by noting that:
E((g+ 1)−1|y) =BFγ:∅,p+2/BFγ:∅,p.

LEMMA 4. Sγ,n
P→ S∗

γ ∈ [1,∞) for all models Mγ , where S∗
γ is a constant

PROOF. See the supplementary material (Fontana and Sansó, 2023).

LEMMA 5. n
gn+1

P→W , where W is a random variable with E(W ) ∈ (0,∞).

PROOF. See the supplementary material (Fontana and Sansó, 2023).
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LEMMA 6. n
gn+Sγ,n

P→W

PROOF. See the supplementary material (Fontana and Sansó, 2023).

LEMMA 7. (
gn + S1,n
gn + S2,n

)n

2 P→ exp

{
−(S∗

2 − S∗
1)

2
W

}
PROOF. See the supplementary material (Fontana and Sansó, 2023).

LEMMA 8. If S∗
1 < S∗

2 , then (S1,n/S2,n)
n/2 P→ 0. Equivalently, if S∗

1 > S∗
2 , then

(S1,n/S2,n)
n/2 P→∞.

PROOF. See the supplementary material (Fontana and Sansó, 2023).

LEMMA 9. We have that the following sequences of random variables are uniformly
integrable.

1.
(

n
gn+1

) 1

2

2.
(
gn+S1,n

gn+S2,n

)n

2 , for S∗
1 ≤ S∗

2

3.
(

n
gn+1

) 1

2
(
gn+S1,n

gn+S2,n

)n

2 , for S∗
1 ≤ S∗

2

PROOF. See the supplementary material (Fontana and Sansó, 2023).

LEMMA 10. We have that the following sequences of random variables converge in
mean, and that the means are non-zero and finite.

1. (n/(gn + 1))1/2
L1→W 1/2 and E(W 1/2) ∈ (0,∞)

2. ((gn + S1,n)/ (gn + S2,n))
n/2 L1→ exp{−(S∗

2 − S∗
1)W/2}

and E (exp{−(S∗
2 − S∗

1)W/2}) ∈ (0,∞)

3. (n/(gn + 1))1/2 ((gn + S1,n)/ (gn + S2,n))
n/2 L1→W 1/2 exp{−(S∗

2 − S∗
1)W/2}

and E
(
W 1/2 exp{−(S∗

2 − S∗
1)W/2}

)
∈ (0,∞)

PROOF. See the supplementary material (Fontana and Sansó, 2023).

LEMMA 11. Under the assumptions above, and with p1 ∈ {p2 − 1, p2, p2 + 1}, we have
that: ∫

g(1 + g)
−p1
2

(
g+1

g+S1,n

)n−q

2

πn(g|Mγ)dg∫
g(1 + g)

−p2
2

(
g+1

g+S2,n

)n−q

2

πn(g|Mγ′)dg

∈ [BLn
− 1

2 ,BUn
1

2 ] as n→∞.

PROOF. See the supplementary material (Fontana and Sansó, 2023).



24

COROLLARY 3. Under the assumptions above, and with arbitrary positive p1 and p2,
we have that:∫

g(1 + g)
−p1
2 ( g+1

g+S1,n
)

n−q

2 πn(g|Mγ)dg∫
g(1 + g)

−p2
2 ( g+1

g+S2,n
)

n−q

2 πn(g|Mγ′)dg
∈ [BLn

− |p1−p2|
2 ,BUn

|p1−p2|
2 ] as n→∞.

PROOF. See the supplementary material (Fontana and Sansó, 2023).

Acknowledgments. The research was supported in part by the National Science Founda-
tion under awards MMS 2050012, DMS 2153277. The analysis of the albedo data presented
in this paper is part of a collaborative effort with Dr Jessica Matthews of NOAA’s National
Centers for Environmental Information.

SUPPLEMENTARY MATERIAL

Predictive Plots and Proofs of Lemmas
This supplement contains the predictive plots for the MSSS data example in section 6.2, and
the proofs of Lemmas 3, 4, 5, 6, 7, 8, 9, 10, 11, and Corollary 3
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