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SUMMARY

We introduce Bayesian data sketching for spatial regression models to obviate computa- 15

tional challenges presented by large numbers of spatial locations. To address the challenges of
analysing very large spatial data, we compress spatially oriented data by a random linear trans-
formation to achieve dimension reduction and conduct inference on the compressed data. Our
approach distinguishes itself from several existing methods for analysing large spatial data in
that it requires neither the development of new models or algorithms nor any specialised com- 20

putational hardware while delivering fully model-based Bayesian inference. Well-established
methods and algorithms for spatial regression models can be applied to the compressed data. We
establish posterior contraction rates for estimating the spatially varying coefficients and predict-
ing the outcome at new locations under the randomly compressed data model. We use simulation
experiments and conduct a spatial analysis of remote sensed vegetation data to empirically illus- 25

trate the inferential and computational efficiency of our approach.

Some key words: Bayesian inference; B-splines; Data sketching; Predictive Process; Posterior contraction; Random
compression matrix; Varying coefficient models.

1. INTRODUCTION

We develop an inferential framework for spatial data analysis using Bayesian data sketching 30

to achieve scalable inference for massive spatial data sets. “Data sketching” (Vempala, 2005;
Halko et al., 2011; Mahoney, 2011; Woodruff, 2014; Guhaniyogi & Dunson, 2015, 2016) is a
method of compression that is being increasingly employed for analysing massive amounts of
data. The entire data set is compressed before being analysed for computational efficiency. Data
sketching proceeds by transforming the original data through a random linear transformation to 35

produce a much smaller number of data samples and we conduct the analysis on the compressed
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data thereby achieving dimension reduction. Furthermore, the original data is neither accessed
nor exactly recoverable from the compressed data, which preserves data confidentiality.

While such developments have primarily focused on ordinary linear regression and penalised
linear regression (Zhang et al., 2013; Chen et al., 2015; Dobriban & Liu, 2018; Drineas et al.,40

2011; Ahfock et al., 2017; Huang, 2018), our innovation lies in developing such methods for
spatial regression models. The primary challenge distinguishing the current manuscript from ex-
isting data sketching methods is our pursuit of inference for the underlying spatial effects in the
context of spatially-varying regression models. While bearing some similarities, our current con-
tribution differs from compressed sensing (Donoho, 2006; Ji et al., 2008; Candes & Tao, 2006;45

Eldar & Kutyniok, 2012; Yuan et al., 2014) in the inferential objectives. Specifically, compressed
sensing solves an inverse problem by “nearly” recovering a sparse vector of responses from a
smaller set of random linear transformations. In contrast, our spatially referenced response vec-
tor is not necessarily sparse. Also, we do not seek to (approximately) so our method is applicable
to situations where preserving confidentiality of the response (and predictors) is important.50

We consider a spatially-varying regression model with response y(s) ∈ Y ⊆ R and P predic-
tors x1(s), ..., xP (s) ∈ X ⊆ R, s ∈ D ⊆ R2 related according to the model

y(s) =
P∑
j=1

xj(s)βj +
P̃∑
j=1

x̃j(s)wj(s) + ε(s) = x(s)Tβ + x̃(s)Tw(s) + ε(s) , (1)

where β = (β1, β2, . . . , βP )T is a P × 1 vector of spatially static coefficients, x̃(s) =
(x̃1(s), x̃2(s), . . . , x̃P̃ (s))T is a P̃ × 1 vector comprising a subset of predictors from x(s) (so55

P̃ ≤ P ), w(s) = (w1(s), w2(s), . . . , wP̃ (s))T is the P̃ × 1 vector of spatially varying regression

slopes, and ε(s) iid∼ N(0, σ2) captures measurement error variation at location s. Such spatially-
varying regression coefficient models are effective tools for estimating the spatially varying im-
pact of predictors on the response over space (see, e.g., Gelfand et al., 2003; Wheeler & Calder,
2007; Finley et al., 2011; Guhaniyogi et al., 2013; Kim & Wang, 2021, and references therein).60

Customary geostatistical regression models with only a spatially-varying intercept emerge if the
first column of x(s) is the intercept and P̃ = 1 with x̃1(s) = 1. Spatially-varying coefficient
models also offer a process-based alternative to widely used geographically weighted regres-
sion (see, e.g., Brunsdon et al., 1996) for modelling nonstationary behaviour in the mean. Finley
(2011) offers a comparative analysis and highlights the richness of (1) in ecological applications.65

Bayesian inference for (1) is computationally expensive for large spatial data sets, as are com-
monplace today, due to the presence of the high-dimensional spatial covariance matrix intro-
duced by w(s) in (1). High-dimensional spatial modelling has been attracting significant interest
and the burgeoning literature on diverse aspects of scalable methods is too vast to be compre-
hensively reviewed here (see, e.g., Banerjee, 2017; Heaton et al., 2019, for reviews). Briefly,70

model-based dimension reduction in spatial models have proceeded from low-rank or fixed rank
representations (e.g., Cressie & Johannesson, 2008; Banerjee et al., 2008; Wikle, 2010), multi-
resolution approaches (e.g., Nychka et al., 2015; Katzfuss, 2017; Guhaniyogi & Sansó, 2018),
sparsity-inducing processes (e.g., Vecchia, 1988; Datta et al., 2016; Katzfuss & Guinness, 2021;
Peruzzi et al., 2020) and divide-and-conquer approaches such as meta-kriging (Guhaniyogi &75

Banerjee, 2018; Guhaniyogi et al., 2020b). While most of the aforementioned methods entail
new classes of models and approximations, or very specialised high-performance computing ar-
chitectures, Bayesian data sketching has the advantage that customary exploratory data analysis
tools, well-established methods and well-tested available algorithms for implementing (1) can be
applied to the sketched data set without recourse to new algorithmic or software development.80
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We pursue fully model-based Bayesian data sketching, where inference proceeds from a hi-
erarchical model (Cressie & Wikle, 2015; Banerjee et al., 2014). The hierarchical approach to
spatial data analysis is widely employed for inferring on model parameters that may be weakly
identified from the likelihood alone and, more relevantly for substantive inference, for estimat-
ing the latent spatial process over the domain of interest. For analytic tractability we model the 85

varying coefficients using basis expansions (Wikle, 2010; Wang et al., 2008; Wang & Xia, 2009;
Bai et al., 2019) rather than Gaussian processes. We exploit and adapt some recent developments
in theory of random matrices to relate the inference from the compressed data with the full scale
spatial model. We establish consistency of the posterior distributions of the spatially varying co-
efficients and analyse the predictive efficiency of our models based upon the compressed data. 90

Posterior contraction of varying coefficient (VC) models have been investigated by a few recent
articles. For example, Guhaniyogi et al. (2020a) derive minimax-optimal posterior contraction
rates for Bayesian VC models under GP priors when the number of predictors P is fixed. Desh-
pande et al. (2020) also derived near-optimal posterior contraction rates under BART priors, and
Bai et al. (2019) showed asymptotically optimal rate of estimation for varying coefficients with 95

a variable selection prior on varying coefficients. We address these questions in the context of
data compression, which has largely remained unexplored.

2. BAYESIAN COMPRESSED SPATIALLY VARYING COEFFICIENT MODELS

We model each spatially varying coefficient wj(s) in (1) as

wj(s) =

H∑
h=1

Bjh(s)γjh , j = 1, ..., P̃ , (2) 100

where each Bjh(s) is a basis function evaluated at location s for h = 1, ...,H , and γjh’s are
the corresponding basis coefficients. The distribution of these γjh’s yields a multivariate pro-
cess with cov(wi(s), wj(s

′)) = Bi(s)
Tcov(γi, γj)Bj(s), where Bi(s) and γi are H × 1 with

elements Bih(s) and γih, respectively, for h = 1, . . . ,H .
Appropriate choices for basis functions can produce appropriate classes of multivariate spa- 105

tial processes. A number of choices are available. For example, Biller & Fahrmeir (2001) and
Huang et al. (2015) use splines to model the Bjh(s)’s and place Gaussian priors on the basis
coefficients γjh. Li et al. (2015) propose a scale-mixture of multivariate normal distributions to
shrink groups of basis coefficients towards zero. More recently, Bai et al. (2019) proposed using
B-spline basis functions and multivariate spike-and-slab discrete mixture prior distributions on 110

basis coefficients to aid functional variable selection. Other popular choices for basis functions
include the wavelet basis (Vidakovic, 2009; Cressie & Wikle, 2015), radial basis (Bliznyuk et al.,
2008) and locally bi-square (Cressie & Johannesson, 2008) or elliptical basis functions (Lemos
& Sansó, 2009). Alternatively, a basis representation of wj(s) can be constructed by envisioning
wj(s) as the projection of a Gaussian process wj(s) onto a set of reference locations, or “knots”, 115

which yields predictive processes and other variants (Banerjee et al., 2008; Guhaniyogi et al.,
2013). More generally, each wj(s) can also be modelled using multi-resolution analogues to the
aforesaid models to carefully capture global variations at the lower resolution and local variations
at the higher resolutions (Katzfuss, 2017; Guhaniyogi & Sansó, 2018).

Let {y(si), x(si)} be observations at N spatial locations S = {s1, s2, . . . , sN}. Using (2) in 120

(1) yields the Gaussian linear mixed model

y = Xβ + X̃Bγ + ε , ε ∼ N(0, σ2IN ) . (3)
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where y = (y(s1), y(s2), . . . , y(sN ))T and ε = (ε(s1), ε(s2), . . . , ε(sN ))T are N × 1 vectors of
responses and errors, respectively, X is N × P with n-th row x(sn)T, X̃ is the N ×NP̃ block-
diagonal matrix with (n, n)-th block x̃(sn)T, B = (B(s1)T, . . . , B(sN )T)T is NP̃ ×HP̃ with125

B(sn) a block-diagonal P̃ ×HP̃ matrix whose j-th diagonal block is (Bj1(sn), . . . , BjH(sn)).
The coefficient γ = (γT

1 , ..., γ
T

P̃
)T is HP̃ × 1 with each γj = (γj1, . . . , γjH)T being H × 1.

Bayesian methods for estimating (3) typically employ a multivariate normal prior (Biller &
Fahrmeir, 2001; Huang et al., 2015) or its scale-mixture (discrete as well as continuous) vari-
ants (Li et al., 2015; Bai et al., 2019) on γ.130

Working with (3) will be expensive for large N . Instead, we consider data compression or
sketching using a random linear mapping to reduce the size of the dataset from N to M obser-
vations. For this, we use M one-dimensional linear mappings of the data encoded by an M ×N
compression matrix Φ with M << N . This compression matrix is applied to y, X and X̃ to
construct the M × 1 compressed response vector yΦ = Φy and the matrices XΦ = ΦX and135

X̃Φ = ΦX̃ . We will return to the specification of Φ, which, of course, will be crucial for relating
the inference from the compressed data with the full model. For now assuming that we have fixed
Φ, we construct a Bayesian hierarchical model for the compressed data

p(ψ, β, γ, σ2 | yΦ,Φ) ∝ p(ψ, σ2, β, γ)×N(yΦ |XΦβ + X̃ΦBγ, σ
2IM ) , (4)

where ψ denotes additional parameters specifying the prior distributions on either γ or β. For
example, a customary specification is140

p(ψ, σ2, β, γ) =
P̃∏
i=1

IG(τ2
i | aτ , bτ )× IG(σ2 | aσ, bσ)×N(β |µβ, Vβ)×N(γ | 0,∆ψ) , (5)

where ψ = {τ2
1 , ..., τ

2
P̃
} and ∆ is HP̃ ×HP̃ block-diagonal with j-th block given by τ2

j IH ,
for j = 1, ..., P̃ . While (5) is a convenient choice for empirical investigations due to conjugate
full conditional distributions, our method applies broadly to any basis function and any discrete
or continuous mixture of Gaussian priors on the basis coefficients. In applications where the
associations among the latent regression slopes is of importance, one could, for instance, adopt145

p(ψ, γ) = IW (ψ | r,Ω)×N(γ | 0, ψ) with ψ as the HP̃ ×HP̃ covariance matrix for γ. Our
current focus is not, however, on such multivariate models, so we do not discuss them further
except to note that (4) accommodates such extensions.

The likelihood in (4) is different from that by applying Φ to (3) because the error distribution in
(4) is retained as the usual noise distribution without any effect of Φ. Hence, the model in (4) is a150

model analogous to (3) but applied to the new compressed data set {yΦ, XΦ, X̃Φ}. Working with
a Φ-transformed model (3), where the distribution of the noise will be transformed according
Φε, will not deliver the computational benefits, and is somewhat detrimental to the cause of data
confidentiality (as in that case, the analyst need to know Φ) that are provided by (4).

For specifying Φ we pursue the idea of data oblivious Gaussian sketching (Sarlos, 2006),155

where we draw the elements of Φ = (Φij) independently from N(0, 1/N ) and fix them. The
dominant computational operations for obtaining the sketched data using Gaussian sketches
is O(MN2P̃ ). While alternative computationally efficient data oblivious options such as the
Hadamard sketch (Ailon & Chazelle, 2009) and the Clarkson-Woodruff sketch (Clarkson &
Woodruff, 2017) are available for Φ, it is less pertinent in Bayesian settings since computation160

time of (4) far exceeds that for the sketching matrix. The compressed data serves as a surro-
gate for the Bayesian regression analysis with spatially varying coefficients. Since the number
of compressed records is much smaller than the number of records in the uncompressed data
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matrix, spatial model fitting becomes computationally efficient and economical in terms of stor-
age as well as the number of floating point operations (flops). Importantly, original data are not 165

recoverable from the compressed data, and the compressed data effectively reveal no more in-
formation than would be revealed by a completely new sample (Zhou et al., 2008). In fact, the
original uncompressed data does not need to be stored or accessed at any stage in the course of
the analysis.

2.1. Efficient Posterior Computation & Approximate Predictive Inference 170

In what follows, we discuss efficient computation offered by the data sketching frame-
work. With prior distributions on parameters specified as in (5), posterior computation re-
quires drawing Markov chain Monte Carlo (MCMC) samples sequentially from the full con-
ditional posterior distributions of γ|−, β|−, σ2|− and τ2

j |−, j = 1, . . . , P̃ . To this end, σ2|− ∼
IG(aσ +M/2, bσ + ||yΦ −XΦβ − X̃ΦBγ||2/2), τ2

j |− ∼ IG(aτ +H/2, bτ + ||γj ||2/2) and 175

β|− ∼ N
((
XT

ΦXΦ/σ
2 + I

)−1
XT

Φ(yΦ − X̃ΦBγ)/σ2,
(
XT

ΦXΦ/σ
2 + I

)−1
)

do not present any
computational obstacles. The main computational bottleneck lies with γ|−,

N

(BTX̃T
ΦX̃ΦB

σ2
+ ∆−1

)−1

BTX̃T
Φ

(yΦ −XΦβ)

σ2
, (BTX̃T

ΦX̃ΦB/σ
2 + ∆−1)−1

 . (6)

Efficient sampling of γ relies upon the Cholesky decomposition of
(
BTX̃T

ΦX̃ΦB/σ
2 + ∆−1

)
and solves triangular linear systems to draw a sample from (6). While numerically robust for 180

small to moderately large H , computing and storing the Cholesky factor of this matrix involves
O((HP̃ )3) and O((HP̃ )2) floating point operations, respectively (Golub & Van Loan, 2012).
This results in computational and memory bottlenecks for a large number of basis functions,
which may be required to estimate the spatial surface with sufficient local variation.

To achieve computational efficiency, we adapt a recent algorithm proposed in Bhattacharya 185

et al. (2016) (in the context of ordinary linear regression with uncompressed data and small sam-
ple size) to our setting: (i) draw γ̃1 ∼ N(0,∆) and γ̃2 ∼ N(0, IM ); (ii) set γ̃3 = X̃ΦBγ̃1/σ +
γ̃2; (iii) solve (X̃ΦB∆BTX̃T

Φ/σ
2 + IM )γ̃4 = ((yΦ −XΦβ) /σ − γ̃3); and (iv) set γ̃5 = γ̃1 +

∆BTX̃T
Φγ̃4/σ. The resulting γ̃5 is a draw from the full conditional posterior distribution of γ.

The computation is dominated by step (iii), which comprises O(M3 +M2HP̃ ). Finally, note 190

that when basis functions involve parameters, they are updated using Metropolis-Hastings steps
since no closed form full conditionals are generally available for them.

Predictive inference on y(s0) will proceed from the posterior predictive distribution

E[p(y(s0) | yΦ, β, γ, σ
2)] =

∫
p(y(s0) | yΦ, β, γ, σ

2)p(β, γ, σ2 | yΦ,Φ)dβdγdσ2 , (7)

where E[·] is the expectation with respect to the posterior distribution in (4). This is easily
achieved by drawing y(s0)(l) ∼ N(

∑P
p=1 xp(s0)β

(l)
p +

∑P̃
j=1 x̃j(s0)wj(s0)(l), σ2(l)) for each 195

posterior sample {β(l), γ(l), σ2(l)} drawn from (4), where wj(s0)(l) is obtained from γ(l) us-
ing (2) and l = 1, 2, . . . , L indexes the L (post-convergence) posterior samples. The next section
offers theoretical results related to the large sample consistency of the posterior distribution from
the compressed varying coefficients model (4) and the posterior predictive distribution in (7) with
respect to the probability law for the uncompressed oracle model in (1). 200
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3. POSTERIOR CONTRACTION FROM DATA SKETCHING

3.1. Definitions and Notations
This section proves the posterior contraction properties of varying coefficients under the pro-

posed framework. In what follows, we add a subscript N to the compressed response vector
yΦ,N , compressed predictor matrix X̃Φ,N , dimension of the compression matrix MN and the205

number of basis functions HN to indicate that all of them increase with the sample size N . Nat-
urally, the dimension of the basis coefficient vector γ and the compression matrix Φ are also
functions of N , though we keep this dependence implicit. Since we do not assume a functional
variable selection framework, we keep P fixed throughout, and not a function of N . We assume
that s1, ..., sN follow i.i.d. distribution G on D with G having a Lebesgue density g, which is210

bounded away from zero and infinity uniformly overD. The true regression function is also given
by (1), with the true varying coefficients w∗1(s), ..., w∗

P̃
(s) belonging to the class of functions

Fξ(D) = {f : f ∈ L2(D) ∩ Cξ(D), ES [|f |] <∞}, (8)

where L2(D) is the set of all square integrable functions on D, Cξ(D) is the class of at least
ξ-times continuously differentiable functions in D and ES denotes the expectation under the215

density of g. The probability and expectation under the true data generating model are denoted by
P ∗ and E∗, respectively. For algebraic simplicity, we make a few simplifying assumptions in the
model. To be more specific, we assume that β = 0 and σ2 = σ∗2 is known and fixed at 1. The first
assumption is mild since P does not vary with N and we do not consider variable selection. The
second assumption is also customary in asymptotic studies (Vaart & Zanten, 2011). Furthermore,220

the theoretical results obtained by assuming σ2 as a fixed value is equivalent to those obtained
by assigning a prior with a bounded support on σ2 (Van der Vaart et al., 2009).

For a vector v = (v1, ..., vN )T, we let || · ||1, || · ||2 and || · ||∞ denote the L1, L2 and
L∞ norms, respectively, defined as ||v||2 = (

∑N
n=1 v

2
n)1/2, ||v||1 =

∑N
n=1 |vn| and ||v||∞ =

maxn=1,..,N |vn|, respectively. The number of nonzero elements in a vector is given by || · ||0.225

In the case of a square integrable function f(s) on D, we denote the integrated L2−norm of
f by ||f ||2 =

(∫
D f(s)2g(s)ds

)1/2 and the sup-norm of f by ||f ||∞ = sups∈D |f(s)|. Thus
|| · ||∞ and || · ||2 are used both for vectors and functions, and they should be interpreted based
on the context. Finally, emin(A) and emax(A), respectively, represent the minimum and max-
imum eigenvalues of the square matrix A. The Frobenius norm of the matrix A is given by230

||A||F =
√

tr(ATA). For two nonnegative sequences {aN} and {bN}, we write aN � bN to de-
note 0 < lim infN→∞ aN/bN ≤ lim supN→∞ aN/bN <∞. If limN→∞ aN/bN = 0, we write
aN = o(bN ) or aN ≺ bN . We use aN . bN or aN = O(bN ) to denote that for sufficiently large
N , there exists a constant C > 0 independent of N such that aN ≤ CbN .

3.2. Assumption, Framework and Main Results235

For simplicity, we assume ∆ = I and that the random covariates xp(s), p = 1, ..., P follow
distributions which are independent of the distribution of the idiosyncratic error ε. We now state
the following assumptions on the basis functions,HN ,MN , covariates and the sketching or com-
pression matrix.

(A) For any w∗j (s) ∈ Fξ(D), there exists γ∗j such that ||w∗j −BT
j γ
∗
j ||∞ = sup

s∈D
|w∗j (s)−240 ∑HN

h=1Bjh(s)γ∗jh| = O(H−ξN ), for j = 1, ..., P̃ , and ||γ∗||22 ≺M
1/(1+ξ)
N .

(B) N,MN , HN satisfy MN = o(N) and HN �M1/(2ξ+2)
N .

(C) ||ΦΦT − IMN
||F ≤ C ′

√
MN/N , for some constant C ′ > 0, for all large N .
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(D) The random covariate xp(s) are uniformly bounded for all s ∈ D, and w.l.g., |xp(s)| ≤ 1,
for all p = 1, ..., P and for all s ∈ D. 245

(E) There exists a sequence κN such that ||X̃Φ,Nα||2 � κN ||X̃Nα||2, such that 1 ≺ NκN ≺
MN for any vector α ∈ RNP̃ .

Assumption (A) holds for orthogonal Legendre polynomials, Fourier series, B-splines and
wavelets (Shen & Ghosal, 2015). Assumption (B) provides an upper bound on the growth of
MN and HN as a function of N . Assumption (C) is a mild assumption based on the theory of 250

random matrices and occurs with probability at least 1− e−C′′MN when Φ is constructed using
the Gaussian sketching for a constant C ′′ > 0 (see Lemma 5.36 and Remark 5.40 of Vershynin
(2010)). Assumption (D) is a technical condition customarily used in functional regression anal-
ysis (Bai et al., 2019). Finally, Assumption (E) characterises the class of feasible compression
matrices, roughly explaining how the linear structure of the columns of the original predictor 255

matrix is related to that of the compressed predictor matrix. Such an assumption is reasonable
for the set of random compression matrices for a sequence κN depending on N , MN and P̃
(Ahfock et al., 2017).

Let w(s) = (w1(s), ..., wP̃ (s))T and w∗(s) = (w∗1(s), ..., w∗
P̃

(s))T be the P̃ -dimensional fit-

ted and true varying coefficients. Let ‖w − w∗‖2 =
∑P̃

j=1 ‖wj − w∗j‖2 denote the sum of in- 260

tegrated L2 distances between the true and the fitted varying coefficients. Define the set CN ={
w : ||w − w∗||2 > C̃θN

}
, for some constant C̃ and some sequence θN → 0 andMNθ

2
N →∞.

Further suppose πN (·) and ΠN (·) are the prior and posterior densities of w with N observations,
respectively. From equation (2), the prior distribution on w is governed by the prior distribution
on γ, so that the posterior probability of CN can be expressed as, 265

ΠN (CN |yΦ,N , X̃Φ,N ) =

∫
CN f(yΦ,N |X̃Φ,N , γ)πN (γ)∫
f(yΦ,N |X̃Φ,N , γ)πN (γ)

,

where f(yΦ,N |X̃Φ,N , γ) is the joint density of yΦ,N under model (4). We begin with the following
important result from the random matrix theory.

LEMMA 1. Consider the MN ×N compression matrix Φ with each entry being drawn inde-
pendently from N(0, 1/N). Then, almost surely 270

(
√
N −

√
MN − o(

√
N))2/N ≤ emin(ΦΦT) ≤ emax(ΦΦT) ≤ (

√
N +

√
MN + o(

√
N))2/N,

(9)

when both MN , N →∞.
Proof. This is a consequence of Theorem 5.31 and Corollary 5.35 of Vershynin (2010). �

The inequalities in (9) is used to derive the following two results, which we present as
Lemma 2 and 3. 275

LEMMA 2. Let P ∗ denote the true probability distribution of yN and f∗(yΦ,N |γ∗) denotes the
density of yΦ,N (omitting explicit dependence on X̃Φ,N ) under the true data generating model.
Define

AN =

{
y :

∫
{f(yΦ,N |γ)/f∗(yΦ,N |γ∗)}πN (γ)dγ ≤ exp(−CMNθ

2
N )

}
. (10)

Then P ∗(AN )→ 0 as MN , N →∞ for any constant C > 0. 280

Proof. See Appendix. �
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LEMMA 3. Let γ∗ be any fixed vector in the support of γ and let BN = {γ : ||γ − γ∗||2 ≤
C2wθNH

1/2
N } for some constant C2w > 0. Then there exists a sequence ζN of random variables

depending on {yΦ,N , XΦ,N} and taking values in (0, 1) such that

E∗(ζN ) . exp(−MNθ
2
N ) and sup

γ∈BcN
Eγ(1− ζN ) . exp(−MNθ

2
N ), (11)285

where Eγ and E∗ denote the expectations under the distributions f(· | γ) and f∗(· | γ∗), respec-
tively.

Proof. See Appendix. �
We use the above results to establish the posterior contraction result for the proposed model.
THEOREM 1. Under Assumptions (A)-(E), our proposed model (4) satisfies290

maxj=1,...,P̃ supw∗j∈Fξ(D) E∗ΠN (CN | yΦ,N , X̃Φ,N )→ 0, as N,MN →∞ and with the

posterior contraction rate θN �M−ξ/(2ξ+2)
N .

Proof. See Appendix. �
Since θN → 0 asN →∞, the model consistently estimates the true varying coefficients under

the integrated L2-norm. Further, data compression decreases the effective sample size from N295

to MN , hence, the contraction rate θN obtained in Theorem 1 is optimal and adaptive to the
smoothness of the true varying coefficients. Our next theorem justifies the two-stage prediction
strategy described in Section 2.1.

THEOREM 2. For any location s0 drawn randomly with the density g and corresponding pre-
dictors x̃1(s0), . . . , x̃P̃ (s0), let fu be the predictive density p(y(s0) | x̃1(s0), . . . , x̃P̃ (s0), w(s0))300

derived from (1) without data compression. Let f∗ be the true data generating model (i.e., (1)
with w(s0) fixed at w∗(s0)). Given s0 and x̃1(s0), . . . , x̃P̃ (s0), define h(fu, f

∗) =
∫

(
√
fu −√

f∗)2 as the Hellinger distance between the densities fu and f∗. Then

E∗EES [h(fu, f
∗) | X̃Φ,N , yΦ,N ]→ 0, as N,MN →∞, (12)

where ES , E and E∗ stand for expectations with respect to the density g, the posterior density305

ΠN (·|X̃Φ,N , yΦ,N ) and the true data generating distribution, respectively.
Proof. See Appendix. �

The theorem states that the predictive density of the VCM model in (1) is arbitrarily close to the
true predictive density even when we plug-in inference on parameters from (4).

4. SIMULATION RESULTS310

4.1. Inferential performance
We empirically validate our proposed approach using (4), henceforth abbreviated as geoS,

by comparing its inferential performance and computational efficiency with the uncompressed
model (3) on some simulated data. We simulate data by using a fixed set of spatial locations
s1, . . . , sN that were drawn uniformly over the domain D = [0, 1]× [0, 1]. We set P̃ = P = 3315

and assume β = 0, i.e., all predictors have purely space-varying coefficients. We set x̃1(si) = 1,
for all i = 1, . . . , N , while the values of x̃j(s1), . . . , x̃j(sN ) for j = 2, 3 were set to indepen-
dently values from N(0, 1). For each n = 1, . . . , N , the response y(sn) is drawn indepen-
dently from N(w∗1(sn) + w∗2(sn)x̃2(sn) + w∗3(sn)x̃3(sn), σ∗2) following (3), where σ∗2 is set
to be 0.1. The true space-varying coefficients (w∗j (s)s) are simulated from a Gaussian pro-320

cess with mean 0 and covariance kernel C(·, ·; θj), i.e., (w∗j (s1), ..., w∗j (sN ))T is drawn from
N(0, C∗(θj)), for each j = 1, . . . , P̃ , where C∗(θj) is an N ×N matrix with the (n, n′)th el-
ement C(sn, sn′ ; θj). We set the covariance kernel C(·, ·; θj) to be the exponential covariance



Biometrika style 9

function given by

C(s, s′; θj) = δ2
j exp

{
−1

2

(
||s− s′||
φj

)}
, j = 1, 2, 3, (13) 325

with the true values of δ2
1 , δ

2
2 , δ

2
3 set to 1, 0.8, 1.1, respectively. We fix the true values of φ1, φ2, φ3

at 1, 1.25, 2, respectively.
While fitting geoS and its uncompressed analogue (3), the varying coefficients are modelled

through the linear combination of H basis functions as in (2), where these basis functions are
chosen as the tensor-product of B-spline bases of order q = 4 (Shen & Ghosal, 2015). More 330

specifically, for s = (s(1), s(2)), the j-th varying coefficient is modelled as

wj(s) =

H1∑
h1=1

H2∑
h2=1

B
(1)
jh1

(s(1))B
(2)
jh2

(s(2))γjh1h2 , (14)

where the marginal B-splines B(1)
jh1

, B(2)
jh2

are defined on sets of H1 and H2 knots, respectively.
The knots are chosen to be equally-spaced so the entire set of H = H1H2 knots is uniformly
spaced over the domain D. We complete the hierarchical specification by assigning independent 335

IG(2, 0.1) priors (mean 0.1 with infinite variance) for σ2 and τ2
j for each j = 1, . . . , P .

We implemented our models in the R statistical computing environment on a Dell XPS 13 PC
with Intel Core i7-8550U CPU @ 4.00GHz processors at 16 GB of RAM. For each of our sim-
ulation datasets we ran a single-threaded MCMC chain for 5000 iterations. Posterior inference
was based upon 2000 samples retained after adequate convergence was diagnosed using Monte 340

Carlo standard errors and effective sample sizes (ESS) using the mcmcse package in R. All
source codes for these experiments are available from https://github.com/LauraBaracaldo/

Spatial-Meta-Kriging-for-Distributed-Inference-for-Binary-Response.
Table 1 summarises the estimates of varying coefficients and the predictive performance for

geoS in comparison to the uncompressed model. We applied these models to data generated 345

with N = 5000 (case 1) and N = 10000 (case 2). For both cases the compressed dimension
is taken to be M ≈ 10

√
N which seems to be effective from empirical considerations in our

simulations. We provide further empirical justification for this choice in Section 4.2. Our geoS
approach compresses the sample sizes toM = 700 andM = 1000 in cases 1 and 2, respectively.
The number of fitted basis functions in cases 1 & 2 are H = 225, 256, respectively. 350

Figures 1 and 2 present the estimated varying coefficients by geoS and the uncompressed data
model for cases 1 and 2, respectively. These figures reveal practically indistinguishable point
estimates offered by geoS and the uncompressed model. The mean squared error of estimat-
ing varying coefficients, defined as

∑3
j=1

∑N
n=1(ŵj(sn)− w∗j (sn))2/(3N) (where ŵj(sn) is

the posterior median of wj(sn)), also confirms very similar point estimates offered by the com- 355

pressed and uncompressed models (see Table 1). Further, geoS offers close to nominal coverage
for 95% credible intervals for varying coefficients, with little wider credible intervals compared
to uncompressed data model. This can be explained by the smaller sample size for the geoS
model, though the difference turns out to be minimal. We also carry out predictive inference us-
ing geoS (Section 2.1). Table 1 presents mean squared predictive error (MSPE), average length 360

and coverage for the 95% predictive intervals, based on N∗ = 500 out of the sample observa-
tions. We find geoS delivers posterior predictive estimates and predictive coverage that are very
consistent with the uncompressed model, perhaps with marginally wider predictive intervals than
those without compression.
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Finally, the computational efficiency of both models are computed based on the metric365

log2(ESS/Computation Time), where ESS denotes the effective sample size averaged over
the MCMC samples of all parameters. We find geoS is almost 270% and 223% more efficient
than the uncompressed model for N = 5, 000 and N = 10, 000, respectively, while delivering
almost indistinguishable substantive inference on the spatial effects.

N = 5000, H = 225 N = 10000, H = 256

(geoS) M = 700 Uncompressed (geoS) M = 1000 Uncompressed
MSE (SVC) 0.0474 0.0168 0.0429 0.0178
95% CI length 0.8368 0.6182 0.7222 0.5531
95% CI Coverage 0.9448 0.9322 0.9153 0.9026
MSPE 0.2574 0.1833 0.2283 0.1605
95% PI length 1.9717 1.5168 1.8613 1.5148
95% PI coverage 0.936 0.925 0.954 0.930
Computation efficiency 2.2050 0.8079 0.9755 0.4356

Table 1: Results for simulation cases 1 & 2 for the compressed geoS and uncompressed models.
Mean Squared Error (MSE), length and coverage of 95% CI for the spatially varying coefficients.
We also present mean squared prediction error (MSPE), coverage and length of 95% predictive
intervals for the competing models. Computation efficiency for the geoS with the uncompressed
data model is also recorded.

Figure 1: Simulation case 1: (N,H) = (5000, 225). Two-dimensional true and predicted sur-
faces over the unit squareD = [0, 1]× [0, 1]. First row corresponds to the surfaces of true space-
varying coefficients β∗p(s), p = 1, 2, 3. Rows 2 and 3 correspond to the predicted 50% quantile
surfaces for the uncompressed and compressed geoS models respectively.
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Figure 2: Simulation case 2: (N,H) = (10000, 256). Two-dimensional true and predicted sur-
faces over the unit squareD = [0, 1]× [0, 1]. First row corresponds to the surfaces of true space-
varying coefficients β∗p(s), p = 1, 2, 3. Rows 2 and 3 correspond to the predicted 50% quantile
surfaces for the uncompressed and compressed geoS models respectively.

4.2. Choice of the dimension of the compression matrix M 370

We present investigations into the choice of the appropriate compression matrix size M .
For simulated data with sample size N = 10000, we ran our model for different values of
M = k

√
N , k = 1, . . . , 20. Figure (3) shows the variations in point-wise and interval prediction

reflected in the MSPE and 95% predicted interval coverage and length, respectively. Unsur-
prisingly, as M increases the MSPE drops with a diminished rate of decline until the k ∼ 10. 375

In terms of interval prediction, predictive coverage seems to oscillate within the narrow interval
(0.9, 0.97) for all values of M , but the length of the predictive interval improves as M increases
and starts to stabilise at around k ∼ 10. We observe that the choice ofM ∼ 10

√
N leads to good

performance across various simulations and real data analysis.

5. VEGETATION DATA ANALYSIS 380

We implement geoS to analyse vegetation data gathered through the Moderate Resolution
Imaging Spectroradiometer (MODIS), which resides aboard the Terra and Aqua platforms on
NASA spacecrafts. MODIS vegetation indices, produced on 16-day intervals and at multiple spa-
tial resolutions, provide consistent information on the spatial distribution of vegetation canopy
greenness, a composite property of leaf area, chlorophyll and canopy structure. The variable 385

of interest will be the Normalised Difference Vegetation Index (NDVI), which quantifies the
relative vegetation density for each pixel in a satellite image, by measuring the difference be-
tween the reflection in the near-infrared spectrum (NIR) and the red light reflection (RED):
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(a) (b)

Figure 3: (a) MSPE, (b) 95% predictive interval coverage and length for different choices of M

NDV I = NIR−RED
NIR+RED . High NDVI values, ranging between 0.6 and 0.9 indicate high density

of green leaves and healthy vegetation, whereas low values, 0.1 or below, correspond to low or390

absence of vegetation as in the case of urbanised areas. When analysed over different locations,
NDVI can reveal changes in vegetation due to human activities such as deforestation and natural
phenomena such as wild fires and floods.

Our analysis will be focused on geographical data that was mapped on a sinusoidal (SIN)
projected grid, located on the western coast of the United States, more precisely zone h08v05,395

between 30◦N to 40◦N latitude and 104◦W to 130◦W longitude (see Figure 4(a)). The data
set, which was downloaded using the R package MODIS, comprises 133, 000 observed locations
where the response was measured through the MODIS tool over a 16-day period in April, 2016.
We retained N = 113, 000 observations (randomly chosen) for model fitting and held out the
rest for prediction. In order to fit (1), we set y(sn) to be the transformed NDVI (log(NDV I) +400

1), P = P̃ = 2 and consider the P × 1 vector of predictors that includes an intercept and a
binary index of urban area, both with fixed effects and spatially varying coefficients, i.e., x(sn) =
x̃(sn) = (1, x2(sn))T, with x2(sn) = 1U (sn), where U denotes an urban area.

As in Section 4, we fit geoS with M ∼ 10
√
N = 2300 and its uncompressed counterpart

(3), by modelling the varying coefficients through a linear combination of basis functions con-405

structed using the tensor-product of B-splines of order q = 4 as in (14). We set the number of
knots H = H1H2 = 392 = 1521 to be uniformly distributed over the domain D, which results
in HP = 3042 basis coefficients γjh that are estimated. Specification of priors are identical to
the simulation studies for σ2, and τ2

j , j = 1, ..., P ; for βj , j = 1, ..., P we set a flat prior.
We ran an MCMC chain for 5000 iterations and retained 2000 samples for posterior infer-410

ence after adequate convergence was diagnosed. The posterior mean of β1 and β2, along with
their estimated 95% credible intervals corresponding to geoS and the uncompressed model are
presented in Table 2. Additionally, Table 2 offers predictive inference from both competitors
based on N∗ = 20, 000 test observations. According to both models there is a global pattern of
relatively low vegetation density for areas with positive urban index as the estimated slope coef-415

ficient β2 is negative in the compressed geoS and in the uncompressed models. In terms of point
prediction and quantification of predictive uncertainty, the two competitors offer practically in-
distinguishable results, as revealed by Table 2. Further, Figure 4 shows that the 2.5%, 50% and
97.5% quantiles for the posterior predictive distribution are almost identical for the two competi-
tors across the spatial domain, with the exception of neighbourhoods around locations having420



Biometrika style 13

lower NDVI values. Notably, geoS offers nominal coverage for 95% prediction intervals, even
with a significant reduction in the sample size from N = 113, 000 to M = 2300. Data sketching
to such a scale considerably reduces the computation time, leading to a much higher computation
efficiency of geoS in comparison with its uncompressed analogue.

(geoS) M = 2300 Uncompressed

β1 0.222 (0.212, 0.230) 0.229 (0.219, 0.237)
β2 -0.060 (-0.074, -0.047) -0.071 (-0.082, -0.059)

MSPE 0.00327 0.00276
95% PI length 0.23445 0.22136

95% PI coverage 0.95250 0.95411
Computation efficiency 3.5424 0.46901

Table 2: Median and 95% credible interval of β1, β2 for geoS and its uncompressed analogue are
presented for the Vegetation data analysis. We also present MSPE, coverage and length of 95%
predictive intervals for the competing models. Computational efficiency for the two competing
models are also provided.

6. SUMMARY 425

We have developed Bayesian sketching for spatially oriented data using spatial regression
models. The method achieves dimension reduction by compressing the data using a random
linear transformation. The approach is different to the prevalent methods for large spatial data in
that no new models or algorithms need to be developed since those available for existing spatially
varying regression models can be directly applied to the compressed data. We establish attractive 430

concentration properties of the posterior and posterior predictive distributions and empirically
demonstrate the effectiveness of this method for analysing large spatial data sets. Access to the
values of the response and predictors in the full data are not required at stage of inference, which
preserves data confidentiality should that be of concern in the application.
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APPENDIX

This section contains theoretical results building up to the proofs of Theorems 1 and 2.
Lemma 1 states an important result from random matrix theory that is easily obtained from 440

Theorem 5.31 and Corollary 5.35 of Vershynin (2010). We prove Lemmas 2 and 3. The results
in Lemma 1-3 are further used to prove Theorems 1 and 2.

Proof of Lemma 2
Proof. Define

A1N =
{
K(f∗, f) ≤MNθ

2
N , V (f∗, f) ≤MNθ

2
N

}
. (15) 445

By Lemma 10 in Ghosal et al. (2007), to show (10) it is enough to show that Π(A1N ) &
exp(−C2MNθ

2
N ),
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4: Coloured NDVI images of western United States (zone h08v05). (a) Satellite image:
MODIS/Terra Vegetation Indices 16-Day L3 Global 1 km SIN Grid - 2016.04.06 to 2016.04.21;
(b) True NDVI surface (raw data). Figures (c), (d) & (e) present NVDI predicted 50%, 2.5% and
97.5% quantiles for the geoS model. Figures (f), (g) & (h) present NVDI Predicted 50%, 2.5%
and 97.5% quantiles for the uncompressed model.

for some constant C2 > 0. Let ek, 1 ≤ k ≤MN be the ordered eigenvalues of (ΦΦT)−1. After
some calculations, we derive the following expressions,

K(f∗, f) =
1

2

{
MN∑
k=1

(ek − 1− log(ek)) + ESEX
[
||X̃Φ,NB(γ − γ∗)− X̃Φ,Nη

∗||22
]}

and450

V (f∗, f) =

MN∑
k=1

(1− ek)2

2
+ ESEX

[
||(ΦΦT)−1(X̃Φ,NB(γ − γ∗)− X̃Φ,Nη

∗)||22
]
, (16)
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where η∗ = (η∗(s1)T, ..., η∗(sN )T)T, η∗(s) = (η∗1(s), . . . , η∗
P̃

(s))T, η∗j (s) = w∗j (s)−∑HN
h=1Bjh(s)γ∗jh. Expanding log(ek) in the powers of (1− ek) and using Lemma 1 in

Jeong & Ghosal (2020) we find (ek − 1− log(ek)) ∼ (1− ek)2/2. Another use of Lemma 1
in Jeong & Ghosal (2020) yields

∑MN
k=1(1− ek)2 . ||I − ΦΦT||2F .MN/N ≤MNθ

2
N . Using 455

Lemma 1, ek � 1 for all k = 1, ...,MN . Hence, from (16)

Π(A1N ) & Π
({
γ : ESEX

[
||X̃Φ,NB(γ − γ∗)− X̃Φ,Nη

∗||22
]
.MNθ

2
N

})
≥ Π

({
γ : ESEX

[
||X̃Φ,NB(γ − γ∗)||22

]
+ ESEX

[
||X̃Φ,Nη

∗||22
]
.MNθ

2
N/2

})
,

(17)

where we use ||a− b||22 ≤ 2(||a||22 + ||b||22), for all a, b ∈ R. Let Bj(sn) =

(Bj1(sn), ..., BjHN (sn))T, for n = 1, ..., N and j = 1, ..., P̃ . By Assumption (E), 460

ESEX
[
||X̃Φ,NB(γ − γ∗)||22

]
� κNESEX

[
||X̃NB(γ − γ∗)||22

]
= κN (γ − γ∗)TESEX

[
BTX̃T

NX̃NB
]

(γ − γ∗).

Recalling that BTX̃T
NX̃NB is a HN P̃ ×HN P̃ matrix with the (j, j′)-th block given by∑N

n=1 x̃j(sn)Bj(sn)Bj′(sn)Tx̃j′(sn), we obtain

ESEX

[
N∑
n=1

x̃j(sn)Bj(sn)Bj′(sn)Tx̃j′(sn)

]
� ES

[
N∑
n=1

Bj(sn)Bj′(sn)T

]
465

= NES
[
Bj(s1)Bj′(s1)T

]
,

where the last equation follows since s1, ..., sN are i.i.d.. Hence,

ESEX
[
||X̃Φ,NB(γ − γ∗)||22

]
� NκNES

[
||B(s1)(γ − γ∗)||22

]
� NκN ||γ − γ∗||22/HN , (18)

where B(s) = [B1(s) : · · · : BP̃ (s)]T. The last expression follows from Lemma A.1 of Huang
et al. (2004). From Assumption (E) again, 470

ESEX
[
||X̃Φ,Nη

∗||22
]
� κNESEX

[
||X̃Nη

∗||22
]

= κNESEX

 N∑
n=1

P̃∑
j=1

x̃j(sn)2η∗j (sn)2


� κNES

 N∑
n=1

P̃∑
j=1

η∗j (sn)2

 . NκNH−2ξ
N , (19)

where the last inequality follows from Assumption (A). From (17),

Π(A1N ) & Π
(
γ : NκN ||γ − γ∗||22/HN +NκNH

−2ξ
N .MNθ

2
N/2

)
& Π

(
γ : NκN ||γ − γ∗||22 ≤MNHNθ

2
N

)
, 475
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where the last step follows from Assumptions (B) and (E). Using the fact that∫ b
a exp(−x2/2)dx ≥ exp(−(a2 + b2)/2)(b− a), we obtain

Π
(
γ : NκN ||γ − γ∗||22 ≤MNHNθ

2
N

)
≥

HN ,P̃∏
h,j=1

Π(|γjh − γ∗jh| ≤ θN/
√
P̃ )

≥ exp(−||γ∗||22 − θ2
NHN )(2θN/

√
P̃ )HN P̃ & exp(−MNθ

2
NC2),

for any C2 > 0, where the first inequality follows from Assumption (E) and the last in-480

equality follows from HNP log(
√
P̃ /2θN ) ≺MNθ

2
N (since MNθ

2
N �M

1/(1+ξ)
N while HN ≺

M
1/(1+ξ)
N ). �

Proof of Lemma 3
Proof. Denote X̃Φ,B,N = X̃Φ,NB, γ̂ = (X̃T

Φ,B,NX̃Φ,B,N )−1X̃T
Φ,B,NyΦ,N and a sequence of

random variables ζN = I(||X̃Φ,B,N γ̂ − X̃Φ,B,Nγ
∗||2 & θNM1/2

N ). Then,485

E∗(ζN ) = P ∗(||X̃Φ,B,N γ̂ − X̃Φ,B,Nγ
∗||2 & θNM1/2

N )

= P ∗(||PX̃Φ,B,N
X̃Φ,Nη

∗ + PX̃Φ,B,N
ε||22 & θ2

NMN )

≤ P ∗(||PX̃Φ,B,N
X̃Φ,Nη

∗||22 + ||PX̃Φ,B,N
ε||22 & θ2

NMN ),

where PX̃Φ,B,N
denotes the projection matrix corresponding to the matrix X̃Φ,B,N . Note that

||PX̃Φ,B,N
X̃Φ,Nη

∗||22 ≤ η∗TX̃T
Φ,NPX̃Φ,B,N

X̃Φ,Nη
∗ ≤ ||X̃Φ,Nη

∗||22.490

We then refer to equation (19) to see that ESEX ||X̃Φ,Nη
∗||22 . NκNM

−ξ/(ξ+1)
N ≺MNθ

2
N . The

above two facts together conclude that

ESEX [||PX̃Φ,B,N
X̃Φ,Nη

∗||22] . NκNM
−ξ/(ξ+1)
N ≺MNθ

2
N .

E∗(ζN ) . P ∗(||PX̃Φ,B,N
ε||22 & θ2

NMN ) = P ∗(εTPX̃Φ,B,N
ε & θ2

NMN ).
Note that under P ∗, ε ∼ N(0,ΦΦT), and, emax(ΦΦT) � 1 (by Lemma 1). Also note that495

Lemma 1 of Laurent & Massart (2000) can be simplified to write P ∗(χ2
p∗ > x) ≤ exp(−x/4),

for x ≥ 8p∗. Further, εTPX̃Φ,B,N
ε follows a χ2 distribution with degree of freedom less than

equal to HN P̃ ≺MNθ
2
N = M

1/(1+ξ)
N . Using all the above facts, we conclude that E∗(ζN ) .

exp(−MNθ
2
N ).

Next, for γ ∈ BcN , we show that ESEX ||X̃Φ,B,Nγ − X̃Φ,B,Nγ
∗||22 &MNθ

2
N . To see this, note500

that

ESEX ||X̃Φ,B,Nγ − X̃Φ,B,Nγ
∗||22 = ESEX

[
(γ − γ∗)TX̃T

Φ,B,NX̃Φ,B,N (γ − γ∗)
]

� κNESEX
[
(γ − γ∗)TBTX̃T

NX̃NB(γ − γ∗)
]
� NκN ||γ − γ∗||22/HN &MNθ

2
N ,

where the second line follows using similar calculations leading to equation (18).



Biometrika style 17

Now, using the fact that ||X̃Φ,B,N γ̂ − X̃Φ,B,Nγ||2 ≥ −||X̃Φ,B,N γ̂ − X̃Φ,B,Nγ
∗||2 + 505

||X̃Φ,B,Nγ − X̃Φ,B,Nγ
∗||2, we obtain

Eγ(1− ζN ) = Pγ(||X̃Φ,B,N γ̂ − X̃Φ,B,Nγ
∗||2 . θNM1/2

N )

= Pγ(||X̃Φ,B,N γ̂ − X̃Φ,B,Nγ||2 & θNM1/2
N )

≤ Pγ(||PX̃Φ,B,N
ε||22 & θ2

NMN ) . exp(−MNθ
2
N ),

where the last inequality follows from simplifying the conclusion for Lemma 1 of Laurent & 510

Massart (2000) (as is done before) and the fact that under Pγ , ε ∼ N(0, I). �

7.1. Proof of Lemma 1
Proof. Note that,

||w − w∗||2 ≤ ||w − w̃∗ + w̃∗ − w∗||2 ≤ ||w − w̃∗||2 + ||w̃∗ − w∗||2 = ||w − w̃∗||2 + ||η∗||2
. ||w − w̃∗||2 + P 1/2H−ξN � ||γ − γ∗||2H−1/2

N + P 1/2H−ξN 515

� ||γ − γ∗||2H−1/2
N + P 1/2M

−ξ/(2ξ+2)
N ,

where w̃∗(s) = (
∑HN

h=1B1h(s)γ∗1h, . . . ,
∑HN

h=1BP̃ h(s)γ∗
P̃ h

)T, and the first inequality in the
second line follows from the property of B-splines (Huang et al., 2004). The sec-
ond expression in the second line follows from Lemma A.1 of Huang et al. (2004).
Using the fact that P̃ 1/2M

−ξ/(2ξ+2)
N = O(θN ), we have

{
w : ||w − w∗||2 ≥ C̃θN

}
⊂ 520{

γ : ||γ − γ∗||2H−1/2
N ≥ C2wθN

}
, for some constant C2w > 0.

Denote BN =
{
γ : ||γ − γ∗||2H−1/2

N ≤ C2wθN

}
. To prove the theorem, it is enough to es-

tablish

E∗Π(||γ − γ∗||2H−1/2
N ≥ C2wθN |yΦ,N , X̃Φ,N )→ 0, as N →∞, (20)

Note that, 525

E∗[Π(BcN | yΦ,N , X̃Φ,N )] ≤ E∗ζN + E∗[Π(BcN | yΦ,N , X̃Φ,N )(1− ζN )1yN∈AcN ] + P ∗(AN )

= E∗[ζN ] + E∗
1yN∈AcN

{
(1− ζN )

∫
BcN
{f(yΦ,N |γ)/f∗(yΦ,N |γ∗)}πN (γ)dγ

}
{∫
{f(yΦ,N |γ)/f∗(yΦ,N |γ∗)}πN (γ)dγ

}
+ P ∗(AN ),

(21)

whereAN is a set defined in the statement of Lemma 2 and ζN can be regarded as a sequence of
random variables as defined in Lemma 3. By Lemma 2, P ∗(AN )→ 0, as N,MN →∞. Also,
by Lemma 3, E∗ζN → 0, as N,MN →∞. To show (20), it remains to prove that

E∗
[
1yN∈AcN

∫
BcN
{f(yΦ,N |γ)/f∗(yΦ,N |γ∗)}πN (γ)dγ

]
[∫
{f(yΦ,N |γ)/f∗(yΦ,N |γ∗)}πN (γ)dγ

] → 0 as N,MN →∞.

To this end, we have

E∗
[

1yN∈AcN

∫
BcN
{f(yΦ,N |γ)/f∗(yΦ,N |γ∗)}πN (γ)dγ

]
≤ sup

γ∈Bcn
Eγ(1− ζN )Π(BcN )

≤ exp(−C2wMNθ
2
N ), 530
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where Π(BcN ) is the prior probability of the set BCN . The denominator∫
{f(yΦ,N |γ)/f∗(yΦ,N |γ∗)}π(γ)dγ ≥ exp(−C1MNθ

2
N ) on AN , where C1 is chosen so

that C1 < C2w. Thus, E∗Π(BcN | yΦ,N , X̃Φ,N )1yN∈AcN ≤ exp(−(C2w − C1)MNθ
2
N )→ 0, as

N,MN →∞. �

7.2. Proof of Theorem 2535

Proof. For densities fu and f∗, we have

h(fu, f
∗) = 1− exp

−
 P̃∑
j=1

x̃j(s0)wj(s0)−
P̃∑
j=1

x̃j(s0)w∗j (s0)

2

/8


≤ 1− exp

−P̃
P̃∑
j=1

(
wj(s0)− w∗j (s0)

)2
/8


≤ 1− exp

{
−P̃ ||w(s0)− w∗(s0)||22/8

}
Then, ES [h(fu, f

∗)] ≤ 1− exp
(
−P̃ ||w − w∗||22/8

)
, by Jensen’s inequality. Further,540

E∗EES [h(fu, f
∗)|X̃Φ,N , yΦ,N ] =

{
1− exp

(
−P̃ C̃2θ2

N/8
)}

+ 2ΠN (||w − w∗||2 ≥ C̃θN ),

which implies

E∗EES [h(fu, f
∗)] ≤

{
1− exp

(
−P̃ C̃2θ2

N/8
)}

+ 2E∗ΠN (||w − w∗||2 ≥ C̃θN )→ 0

as N,MN →∞, where the last expression followed by the conclusion of Theorem 1 and the
fact that θN → 0 as N,MN →∞. �545
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