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Abstract

Clinical researchers often collect multiple images from separate modalities (sources)

to investigate fundamental questions of human health that are inadequately explained

by considering one image source at a time. Viewing the collection of images as multiple

objects, the successful integration of multi-object data produces a sum of information

greater than the individual parts, but this integration can be challenging due to the

complexity induced through different topological structure of the objects. This article

focuses on a multi-modal imaging application where structural/anatomical informa-

tion from grey matter (GM) and brain connectivity information in the form of a brain

connectome network from functional magnetic resonance imaging (fMRI) are available

for a limited number of subjects with different degrees of primary progressive apha-

sia (PPA), a neurodegenerative disorder (NDs) measured through a score on language

loss. The clinical/scientific goal in this application becomes the identification of brain

regions significantly related to the language score to gain insight into ND pathways.

This article develops a flexible Bayesian regression framework exploiting network infor-

mation of the brain connectome, while leveraging linkages among connectome network
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and anatomical information from GM to draw inference on brain regions significantly

related to the language score. The principled Bayesian framework allows precise char-

acterization of the uncertainty in ascertaining a region being actively related to the

language score. Our framework is implemented using an efficient Markov Chain Monte

Carlo algorithm. Empirical results with simulated data illustrate substantial inferen-

tial gains of the proposed framework over its popular competitors. Our framework

yields new insights into the relationship of brain regions with PPA, also providing the

uncertainty associated with the scientific findings.

Key Words: Bayesian inference; brain connectome; functional magnetic resonance imaging;

grey matter; multi-modal imaging; primary progressive aphasia; spike and slab prior.

1 Introduction

Aided by technological advances in both biomedical hardware and software, neuroscientists

routinely collect high-dimensional imaging data from multiple sources (modalities) to inter-

rogate the human brain (Sui et al., 2012). Inspection of multiple brain images produces

complementary cross information that can be leveraged to combat Alzheimer’s disease (AD)

and other neurodegenerative disorders (NDs) by advancing foundational cognitive theory,

models of disease progression, and biomarker development (Ossenkoppele et al., 2016). For

example, ND progression is best tracked via disruptions of brain structure and networks, and

are detected by stitching together information across these images (Mandelli et al., 2016;

Gorno-Tempini et al., 2008; Brown et al., 2019). This article is motivated by a clinical appli-

cation on a limited number of patients suffering from brain loss due to Primary Progressive

Aphasia (PPA), an ND with similar pathology to Alzheimer’s disease and fronto-temporal

dementia. Multi-modal imaging data are available for each of these PPA patients which

include: (a) brain network information and (b) brain structural information. Brain network

envisions each region of interest (ROI) as a network node and quantifies connectivity be-

tween the pairs of network nodes using functional magnetic resonance imaging (fMRI). Brain

structural information is obtained using structural magnetic resonance imaging (sMRI), e.g.,

grey matter (GM) images obtained over brain volumetric pixels (voxels). Both images are

collected on a common brain atlas which segments a human brain into different regions of
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interest (ROI), with each ROI containing a number of voxels. Along with these images, a

scalar-valued cognitive score is available for all these patients to measure the degree of their

language loss due to PPA.

There are two major inferential objectives of the clinical study. First, neuroscientists

are often interested in identifying regions of the brain significantly related to the cognitive

score (influential regions), to gain more insight into neuro-degeneration pathway due to PPA.

Uncertainty quantification regarding the inference on influential regions becomes crucial since

the analysis only involves a limited number of PPA patients. Second, it is of practical interest

to examine the inferential advantage of exploiting cross-information from multiple modalities

over a single modality.

When inference on influential brain regions is of interest, one may fit a regression model

with cognitive score as the response and brain network and structural images as predictors,

extending the popular literature of scalar-on-object regressions (Guhaniyogi et al., 2017; Fan

et al., 2019; Guha and Rodriguez, 2020; Goldsmith et al., 2014; Li et al., 2015; Feng et al.,

2019) to scalar-on-multi-object regressions. However, limited sample size in our application

precludes drawing satisfactory inference from these models. As an alternative, we address

both inferential objectives by formulating a multi-modal regression framework with the brain

network (defined over brain ROIs) and structural images (defined over brain voxels) as two

sets of responses and the language score as the predictor. We adopt a hierarchical Bayesian

modeling approach in fitting the multi-modal regression method since it can naturally share

information between different objects through careful construction of a joint prior struc-

ture on regression coefficients and quantifies uncertainty in the inference. In particular, we

develop a joint prior structure on coefficients of the cognitive score corresponding to the

structural and network objects (hereon referred to as the structural and network coefficients,

respectively) to account for both sets of topology in multi-object data and to allow the in-

formation in separate image objects to complement and reinforce each other in their relation

to the scalar predictor to support our inferential objectives. To elaborate on it, we begin

with a common brain atlas for both image objects to ensure that it provides an organizing

principle that links together structural and network information via a shared set of ROIs and

a group of voxels within each ROI. The joint prior on network and structural coefficients are
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constructed respecting the hierarchical constraint in multi-object topology which ensures all

voxels within an ROI is uninfluential if the ROI is un-influential (see Section 3.2). While

this article does not explicitly make use of the structural information in the GM images by

careful spatial modeling of GM image coefficient, it partially exploits the structural informa-

tion by imposing the hierarchical constraint in the prior construction step. The problem of

identifying influential ROIs is cast under a nonlinear variable selection framework, wherein

binary latent indicator corresponding to all ROIs are shared among both sets of coefficients

to enforce that all voxels from a particular ROI and all network edges connected to that

particular ROI have no relationship with the predictor when the binary latent indicator cor-

responding to the ROI is zero. As a byproduct of our construction, symmetry and transitivity

property of the un-directed network object is preserved, as discussed in Section 3.2. The

prior construction achieves efficient computation, identifies influential ROIs which are key to

study neuronal atrophy, and produces well-calibrated interval estimates for the multi-modal

regression coefficients. Moreover, our framework attaches uncertainty in identifying these

ROIs and offers improved inference over regression methods with a single imaging modality.

There is a dearth of principled Bayesian literature addressing the inferential objectives

of the motivating application, and our proposal is arguably the first Bayesian multi-object

regression approach to answer the inferential questions stated before. We now provide a

brief overview of the available literature to contrast them with our proposal. In the course

to determine the association between network or structural objects and the cognitive score,

the most popular approach estimates the association between each network edge or GM voxel

and the cognitive score independently, providing a p-value “map” (Friston, 2003; Lazar, 2008,

2016). The p-values can be adjusted for multiple comparisons to identify “significant” ROIs

and voxels. These approaches have been mainly used for regressions with a single-object

response, but can be suitably extended to ascertain the hierarchical constraint between

brain ROIs and voxels, as we discuss and implement in Section 5. Although appealing due

to their simplicity, such independent screening approaches have key disadvantages relative

to methods that take into account the joint impact of all network edges and voxels of the

GM images simultaneously, as demonstrated in Section 5.

To identify joint association of brain network matrix and GM images with the cognitive
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score, one can possibly proceed to vectorize both objects and regress them jointly on the

cognitive score, leading to a high dimensional vector regression problem. This approach can

take advantage of the recent developments in high dimensional multivariate reduced rank

sparse regression literature, consisting of both penalized optimization (Yuan et al., 2007;

Rothman et al., 2010; Chen and Huang, 2012) and Bayesian shrinkage (Goh et al., 2017).

However, they treat the edges of the network coefficients as if they were fully exchangeable,

ignoring the fact that coefficients that involve common network nodes can be expected to be

correlated a priori. Additionally, vectorization of both sets of object responses during analysis

ignores their individual topology (e.g., the symmetry and transitivity in the network) and

linkage between the topology, e.g., the hierarchical constraint. Both these issues may lead

to inadequate inference on predictor coefficients. Moreover, this architecture does not allow

identification of influential ROIs with uncertainty.

Although the literature on multi-object response regression is extremely sparse, there have

been some recent efforts to build regression models with a single-object response, mainly for

the functional and structural neuro-imaging data. For example, Guhaniyogi and Spencer

(2021); Spencer et al. (2020) formulate a Bayesian approach with a tensor response and

scalar predictors to jointly identify activated brain regions due to a task, and connectivity

between different brain regions from the fMRI data. In the same vein, Roy et al. (2019); Zeng

et al. (2022) develop regression with a structural image object and scalar predictors allowing

identification of brain voxels significantly associated with a predictor. A recent Bayesian

approach presents a network on scalar regression for the diffusion tensor imaging (DTI) data

with a tool to identify network nodes (brain ROIs) significantly associated with creativity

(Guha and Guhaniyogi, 2021). While these regression approaches establish the importance

of preserving the structure and/or network topology in image objects for better inference, the

referenced works mainly regard object topology for a single image object but principled link-

ages among image objects are not made (e.g., through the hierarchical constraint) and thus

inference on scalar outcomes is made without regard to valuable information that are shared

across these objects. For instance, in our clinical case study of language dysfunction in PPA

patients, existing methods (Mandelli et al., 2014, 2016; Gorno-Tempini et al., 2011, 2008)

do not directly combine structural information relating to neuronal atrophy with network
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information on brain connectivity to jointly model deficits in language comprehension scores.

Failure to consider the structure and cross information from multiple images have generally

a negative impact on ND research in terms of lower detection power (Li et al., 2018), bias in

estimated effects (Dai and Li, 2021), statistical inefficiency (Dai and Li, 2021), and sensitivity

of results to noise (Calhoun and Sui, 2016). Additionally, the existing approaches involving

network objects consider low-dimensional structure for the network coefficient, while the

approach we propose does not rely on such restrictive assumptions.

Our proposed approach is considerably different from the existing statistical literature

on multi-modal data integration. In particular, there have been a class of unsupervised

multi-modal analysis built on matrix or tensor factorization (Lock et al., 2013), or methods

exploiting structural connectivity information from diffusion tensor imaging (DTI) in the

prior construction for the functional connectivity analysis from functional MRI (fMRI) data

(Xue et al., 2015). In contrast, we focus on the supervised analysis with multi-modal image

and a scalar predictor. To this end, Xue et al. (2018) proposes regression on disease status on

low-frequency fluctuation (fALFF) from resting-state fMRI scans, voxel based morphometry

(VBM) from T1-weighted MRI scans, and fractional anisotropy (FA) from DTI scans. In the

same vein Li and Li (2021) develops a factor analysis-based linear regression model, and Dai

and Li (2021) extends this framework to account for non-linear association between a scalar

response and multi-modal predictors. While these supervised approaches do form linkages

among image modalities, they do not properly model within image correlations and thus are

not able to address our inferential goals of jointly modeling information across images while

maintaining within image topology. Moreover, all these approaches do not naturally offer

identification of influential ROIs with uncertainty.

The rest of the manuscript proceeds as follows. Section 2 provides a description of the

multi-modal data we analyze in this article. Section 3 describes the model development

and prior framework to draw inference from multi-modal images and Section 4 discusses

posterior computation of the proposed model. Empirical investigations with data generated

under various simulation settings are reported in Section 5. Section 6 analyzes the multi-

modal dataset, offering scientific findings on influential ROIs. Finally, Section 7 summarizes

the idea laid out in this article and highlights some of the extensions of our model to be
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(a) Structural image (b) Atlas (c) Network image

Figure 1: Schematic of the multi-object brain imaging data structure for a PPA patient. (a) Structural
image encoding voxel-level gray matter (GM) probability, (b) Brainnetome atlas parcellation of the brain into
anatomical ROIs, (c) Network image obtained by calculating the pairwise Pearson correlation Z-score for the
average fMRI signal in each ROI. Red circles and lines connect (a) structural and (c) network information
from images via the (b) parcellated atlas. Thus, the atlas provides an organizing hierarchy that links together
structural information (GM) at the voxel level with network information indexed by pairs of ROIs (fMRI).

explored in the near future.

2 Clinical Case Study on Nonfluent Primary Progres-

sive Aphasia (nfvPPA) Neurodegenerative Disorder

We focus on a clinical application derived from multi-modal image studies conducted on

patients with PPA, a form of ND characterized by damage to the frontal and/or temporal

lobes leading to loss of language ability. Our interest lies in the nonfluent/aggramatic variant

of PPA (nfvPPA) characterized by motor speech and grammar loss and left inferior frontal

atrophy (Gorno-Tempini et al., 2008). To investigate the neural underpinnings of disruption

to motor speech/fluency in nfvPPA patients, clinical images from multiple modalities was

collected as detailed below.

Clinical images: Imaging data is acquired on 26 nfvPPA patients during the course of clin-

ical research activity. Data is collected from the following imaging modalities: sMRI derived

gray matter (GM) (Figure 1a) which measures the likelihood a voxel containing neuronal

cell bodies; and task-free resting state functional magnetic resonance imaging (fMRI) to

measure brain activation via neuronal oxygen consumption in subjects at rest. All images
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are registered to the Montreal Neurological Institute (MNI) template space with voxels par-

cellated into 246 ROIs using the Brainnetome atlas such that images across modalities and

subjects can be directly compared and each voxel is nested in an anatomically defined ROI

(Figure 1b) (Fan et al., 2016). For each subject, a ‘brain network’ represented by a sym-

metric adjacency matrix is obtained from the fMRI image by considering rows and columns

of this matrix corresponding to different ROIs and entries corresponding to the Z-scores

obtained by transforming the Pearson correlation between average fMRI data of two ROIs

(Figure 1c).

Language loss in nfvPPA patients is driven by neurodegeneration in the left inferior frontal

region but the dual role of structural damage and brain connectivity in language loss is

not well characterized (Mandelli et al., 2016). To better understand the neural under-

pinnings of language dysfunction in 26 nfvPPA patients, measures of language deficiency

must be associated with sophisticated multi-modal images, specifically GM maps which

capture focal neurodegeneration, and, fMRI brain connectivity networks which capture dis-

ruptions of brain connectivity. We focus our analysis on pause in speech time (PTIS),

a time measure of the silent interval between phonations which captures the fluidity of

speech. This measure is automatically extracted from recorded speech via SALT software

(https://www.saltsoftware.com/), a software platform used to automatically extract lan-

guage features from recorded speech. Our modeling objective includes identifying ROIs

influential in related to the language loss by associating the PTIS with multi-modal imaging

data. Findings from the prior clinical studies have identified 38 regions of interest (ROIs)

which are related to motor speech/fluency, known as the motor speech/fluency speech pro-

duction network (SPN) (Mandelli et al., 2016). One of our primary goals to extend the

multi-modal study of motor speech/fluency beyond this established SPN to the whole brain.

The next section describes a novel regression framework to achieve these scientific goals.
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3 Bayesian Regression with Multiple Imaging Responses

and Cognitive Score as a Predictor

This section presents model development and prior formulation, including the hyper-parameter

specification.

3.1 Model Framework

For the ith subject, let yi ∈ R denote the language score and Ai represent the weighted brain

network object. We assume that the network of all subjects are defined on a common set of

nodes, with elements of Ai encoding the strength of network connections between different

nodes for the i-th subject. In particular, the network object Ai is expressed in the form of a

P ×P matrix with the (p, p′)-th entry of the matrix ai,(p,p′) signifying the strength of associ-

ation between the pth and p′th node, where p, p′ = 1, ..., P and P is the number of network

nodes. This paper specifically focuses on networks that contain no self relationship, i.e.,

ai,(p,p) ≡ 0, and are un-directed (ai,(p,p′) = ai,(p′,p)). Such assumptions hold for the data ap-

plication pertaining to Section 2, where Ai represents the brain connectome network matrix

obtained from the fMRI scan, with each node representing a specific brain region of interest

(ROI) and edges signify correlations between fMRI signals in two regions. Let gi,1,...,gi,P

denote the V1, ..., VP dimensional structural objects in regions R1,...,RP , respectively. In

the context of our data application, they represent volumetric elements (voxels) of the GM

image from the P ROIs. This multi-object characterization of fMRI and GM data allows

structural information across these images to share a common set of ROIs, where each voxel

is nested within an ROI. The nested structure of voxels within ROIs provides biologically

plausible organization and is instrumental for variable selection and computation as detailed

in the upcoming methodological development.

For i = 1, . . . , n, we assume that the relationship between the cognitive score yi varies

with every network edge and every GM voxel and propose a set of conditionally independent

generalized linear models for every network edge and GM voxel, given by

E[ai,(p,p′)] = H−1
1 (θp,p′ yi), E[gi,v,p] = H−1

2 (βv,p yi), v = 1, . . . , Vp; p = 1, . . . , P, (1)
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where H1 and H2 are the link functions, θp,p′ is the (p, p
′)th element of the P × P matrix Θ

and βv,p is the vth element of the Vp dimensional vector of coefficients βp. Considering the

symmetry and zero diagonal constraint in the network object Ai, we set θp,p′ = θp′, p and

θp,p = 0, for all 1 ≤ p < p′ ≤ P . When both sets of responses follow a normal linear model

with an identity link function, (1) becomes

ai,(p,p′) = θp,p′ yi + e
(p,p′)
i , gi,v,p = βv,p yi + w

(v,p)
i , v = 1, . . . , Vp; p = 1, . . . , P, (2)

where e
(p,p′)
i , w

(v,p)
i represent the idiosyncratic error in both regression models. While carefully

constructed spatial covariance structure can be imposed on e
(p,p′)
i and w

(j,p)
i , we relegate it

as a future work and offer discussion in Section ??. Instead, this article focuses on joint

learning of the mean structure for two sets of models and assumes e
(p,p′)
i , w

(v,p)
i

ind.∼ N(0, τ 2)

(for 1 ≤ p < p′ ≤ P and v = 1, . . . , Vp) for simplicity, following literature on multivariate

linear response regression model (Goh et al., 2017). Consistent with the symmetry and zero

diagonal entry in Ai, we assume e
(p,p′)
i = e

(p′,p)
i and e

(p,p)
i = 0. Therefore, stacking over

elements of the network matrix and elements of the GM voxels over each region, (2) can be

written as

Ai = Θ yi +Ei

gi,p = βp yi +w
(p)
i , p = 1, . . . , P, (3)

where Ei ∈ RP×P is the symmetric error matrix with zero diagonal entries corresponding to

the network object andw
(p)
i is the P -dimensional error vector corresponding to the GM image

at the pth ROI. The key to joint learning of the multi-modal data lies in the development

of a joint prior structure on Θ and βp’s, as described in the next section.

3.2 Prior Distribution on Multi-Modal Coefficients

Our joint prior construction on coefficients βp’s and {θp,p′ : p < p′} for multi-modal

predictors is fundamental to exploiting topology of the image objects and cross-information

among them by forming principled linkages among images at the ROI level. The prior con-

struction is aimed at: (a) identification of influential ROIs with uncertainty; (b) shrinkage

10



of unimportant voxel coefficients to zero within an influential ROI; and (c) guaranteeing

efficient computation of the posterior for the proposed prior. We cast the problem of identi-

fying influential ROIs from the multi-modal images as a high-dimensional variable selection

problem and formulate prior distributions on multi-modal object coefficients building upon

the existing literature on prior constructions for high-dimensional regression coefficients.

To this end, two classes of prior distributions on coefficients are typically employed in

an ordinary high dimensional regression literature. The traditional approach is to develop

a discrete mixture of prior distributions (George and McCulloch, 1993, 1997; Scott and

Berger, 2010). These methods enjoy the advantage of inducing exact sparsity for a subset

of parameters, but may face computational challenges when the number of coefficients is

large. As an alternative to this approach, continuous approximation to the discrete mixture

priors (Carvalho et al., 2010; Armagan et al., 2013) have emerged which induce approximate

sparsity in high-dimensional parameters. Such prior distributions can mostly be expressed

as global-local scale mixtures of Gaussians (Polson and Scott, 2010), are computationally

efficient and offer an approximation to the operating characteristics of discrete mixture priors.

The direct application of variable selection prior on multi-modal coefficients are unap-

pealing for multiple reasons. First, an ordinary variable selection prior on coefficients Θ and

βp’s identifies cells in Ai and gi,p (which in our application refers to the network edges and

GM voxels) significantly related to the predictor, rather than identifying influential ROIs.

Second, we seek to impose an additional restriction on the prior construction of Θ motivated

by the neuro-scientific application, that is, if any of the pth and p′th ROIs are un-influential

in predicting the response, the edge coefficient θp,p′ corresponding to the edge between pth

and p′th nodes is unimportant. This restriction is relevant due to the hierarchical arrange-

ment of voxels and ROIs and is referred to as the hierarchical constraint. Finally, we expect

the matrix of coefficients Θ (which itself can be regarded as describing a weighted network)

to exhibit transitivity effects, that is, we expect that if the interactions between regions p

and p′ and between regions p′ and p′′ are both related to the cognitive score, the interaction

between regions p and p′′ will likely associated with the cognitive score (see, e.g., Li et al.

(2013)). An ordinary variable selection prior on multi-modal coefficients does not necessarily

conform to all these requirements.
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We offer a prior construction exploiting the literature on both discrete and continuous

mixture variable selection priors to fulfill our inferential goals. To elaborate on it, let ξ1, ..., ξP

denote the binary inclusion indicators corresponding to the P ROIs taking values in {0, 1},

with ξp = 0 determining no effect of the pth ROI on the response from all covariates. The

network edge coefficient θp,p′ is then endowed with a variable selection prior given by

θp,p′|λp,p′ , τ
2, σθ, ξp, ξp′

ind.∼ ξpξp′N(0, τ 2σ2
θλ

2
p,p′) + (1− ξpξp′)δ0, p < p′, (4)

where δ0 corresponds to the Dirac-delta function, λp,p′ is a local shrinking parameter cor-

responding to the (p, p′)th edge and σθ is the global shrinking parameter for the network

coefficient. The prior closely mimics the spike-and-slab variable selection structure with an

important difference. While an ordinary spike-and-slab prior introduces a binary inclusion

indicator corresponding to each variable, (4) enforces θp,p′ = 0 when either ξp = 0 or ξp′ = 0.

Such a formulation is sensible from a network perspective as it implies that the edge con-

necting two network nodes is insignificant in predicting the response when at least one of

the network nodes is not influential. Additionally, the formulation naturally incorporates

transitivity effects in the network coefficient Θ. We further assign half-Cauchy distributions

on σθ ∼ C+(0, 1) and λp,p′
ind.∼ C+(0, 1) to complete prior specification on network coefficient.

Integrating out σθ and λp,p′ in (4), θp,p′|τ 2, ξp = 1, ξp′ = 1 follows the popular horseshoe prior

(Carvalho et al., 2010) which offers a flexible prior structure for precise estimation of nonzero

network edge coefficients a posteriori.

The GM coefficient βv,p in the pth ROI is modeled using βv,p = ξpγv,p, to ensure all voxel

coefficients in the pth ROI become unrelated to the predictor if the pth ROI is uninfluential

(i.e., ξp = 0). To estimate voxel level effects in the pth ROI on the predictor, each γv,p is

assigned a horseshoe shrinkage prior which takes the following scale-mixture representation,

γv,p|ϕv,p, η
2
p, τ

2 ∼ N(0, τ 2η2pϕ
2
v,p), ϕv,p

i.i.d.∼ C+(0, 1), ηp
i.i.d.∼ C+(0, 1), (5)

for v = 1, ..., Vp; p = 1, ..., P . The prior structure (5) induces approximate sparsity in voxel-

level GM coefficients γv,p by shrinking the components which are less influential toward

zero while retaining the true signals (Polson and Scott, 2010). Finally, the binary inclusion
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indicators are assigned Bernoulli prior distribution ξp
i.i.d.∼ Ber(ν) with ν ∼ Beta(aν , bν) to

account for multiplicity correction (Scott and Berger, 2010). Notably, an estimate of the

posterior probability of the event {ξp = 1} shows the uncertainty in identifying the pth ROI

to be influential. Thus, P (ξp = 1|Data) close to 1 or 0 signifies strong evidence in favor

of identifying the pth ROI to be active or inactive, repectively. The prior specification is

completed by assigning an inverse Gamma IG(aτ , bτ ) prior on the error variance τ 2 and an

IG(aθ, bθ) prior on the error variance σθ.

4 Posterior Computation

Although summaries of the posterior distribution cannot be computed in closed form,

full conditional distributions for all the parameters are available and mostly correspond to

standard families (available in the supplementary materials). Thus, posterior computation

can proceed through a Markov chain Monte Carlo algorithm.

The MCMC sampler is run for 5000 iterations, with the first 1000 discarded as burn-in.

All posterior inference is based on post-convergence samples suitably thinned. The average

effective sample size as a fraction of the total post-convergence iterations averaged over all

Θ and βp’s is 3500. All simulation scenarios show an average effective sample size over 3143,

indicating fairly uncorrelated post burn-in MCMC samples.

We have implemented our code in R (without using any C++, Fortran, or Python in-

terface) on a cluster computing environment with three interactive analysis servers, 56 cores

each with the Dell PE R820: 4x Intel Xeon Sandy Bridge E5-4640 processor, 16GB RAM

and 1TB SATA hard drive. Different replications of the model are implemented under a

parallel architecture by making use of the packages doparallel and foreach within R. The

computation times of running 5000 MCMC iterations with P = 100 and V1 = ... = VP = 50

is given by 142 min on average across all simulations.

L (suitably thinned) post-convergence MCMC samples ξ
(1)
p , ..., ξ

(L)
P of the binary indicator

ξp are used to empirically assess if the pth ROI is significantly associated with the response.

In particular, the pth ROI Rp is related to the response if
∑L

l=1 ξ
(l)
p /L > t, for 0 < t < 1.

The ensuing simulation section computes the true positive rates (TPR) and true negative

rates (TNR) for t = 0.5 to decide which ROIs are influential in predicting the response.
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5 Simulation Studies

In this section we compare our proposed approach, referred to as Bayesian multi-object

response regression (BMRR), to that of a few representative frequentist and Bayesian com-

petitors in terms of identifying influential regions, and in terms of drawing inference on

regression coefficients.

5.1 Data Generation

In all our simulations, we first simulate y1, . . . , yn from N(0,1) and then generate responses

Ai and gi,p from model (3) with the true network coefficientΘt and true structural coefficient

βp,t for the pth ROI. The subscript t indicates the true data generating parameters. In all

simulations we set the sample size to n = 16 to assess performance of our approach in a

limited sample setting which matches the scenario in our application. We also assume equal

number of voxels per ROI, i.e., V1 = · · · = VP = V .

Simulating true coefficients Θt and βp,t. To simulate the true coefficients Θt and βp,t,

we first generate binary variables ξ1,t, ..., ξP,t
i.i.d.∼ Ber(νt) with ξp,t = 1 sets the p-th region

influentially related to the scalar predictor. Since (1 − νt) is the probability of a region

not being “influential,” it is referred to as the node sparsity parameter. For our simulation

studies we consider two sparsity levels, (1− νt) = 0.85 and (1− νt) = 0.70. For each sparsity

level, the coefficient corresponding to the edge connecting the p-th and p′-th region is drawn

from the following mixture distribution,

θ(p,p′),t|ξp,t, ξp′,t ∼ ξp,tξp′,tN(µθ,(p,p′), σ
2
θ) + (1− ξp,tξp′,t)δ0, θ(p,p′),t = θ(p′,p),t; p < p′. (6)

(6) ensures that any edge connecting to the p-th region in the network response is unrelated

to the predictor if the p-th region is un-influential, i.e., ξp,t = 0 ⇒ θ(p,p′),t = 0 for all p′ ∈

{1, .., P}. Similarly, corresponding to each un-influential region Rp, the V × 1 dimensional

GM coefficient βp,t is set at 0. When ξp,t = 1, i.e., the p-th region is influential, we randomly

choose υt = 0.4 proportion of cell coefficients in the p-th region to be nonzero and rest are

set at zero. These nonzero coefficients within βp,t are simulated from N(µβ,(p,p′), σ
2
β), where

the values of µθ,(p,p′) and µβ,(p,p′) are drawn from Unif(0.25, 1). All simulations fix σ2
θ = 1,
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σ2
β = 1 and the error variance τ 2t = 1.

Finally, for each of the two node sparsity levels, different number of ROIs and different

number of voxels within an ROI are considered. Specifically, we consider two cases, (a)

P = 20 and V = 10, and (b) P = 100 and V = 50. Cases (a) and (b) are referred to

as the “small dimensional example” and “high dimensional example.” In both these cases

we have approximately similar number of parameters to estimate from the network and the

structural coefficients.

5.2 Competitors and Metrics of Comparison

The simulated data will be used to assess the performance of: (A) identifying influential

regions; (B) estimating the true network coefficientΘt and structural coefficients β1,t, ...,βP,t;

and (C) quantifying uncertainty in the point estimation of network and structural coefficients.

We construct a series of competitors of BMRR to assess (A)-(C) as described below.

5.2.1 Frequentist competitors

As frequentist competitors, we implement popularly used approaches wherein each net-

work edge and each cell of the structural image is independently regressed on the predictor

to obtain p-values corresponding to the point estimates of θp,p′ and βv,p, denoted by p-

value(θ̂p,p′) and p-value(β̂v,p), respectively, for v = 1, ..., Vp and p = 1, ..., P . These p-values

will be compared to a threshold to declare if a region is influential, after accounting for the

multiple comparison issue through Bonferroni correction. Given the structured nature of

our problem, we will consider several implementations of this correction, either separately

or jointly on the structural and network objects as described below. We set α0 = 0.05

throughout this discussion.

Global and Regional Bonferroni’s correction on structural images. The first com-

petitor, referred to as the Global Bonferroni on Grey Matter, focuses on {β̂1, ..., β̂P}

together and declares a region p to be influential if at least one voxel coefficient in region

p turns out to be significant after adjusting for multiplicity, i.e., p-value(β̂v,p) ≤ α0∑P
p=1 Vp

for

at least one v ∈ {1, ..., Vp}. As discussed in Genovese et al. (2002), applying Bonferroni’s

correction at a regional level may improve performance. Thus we consider a second com-

petitor called Regional Bonferroni on Grey Matter, which selects a region p as influential
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if p-value(β̂v,p) ≤ α0

Vp
for at least one v ∈ {1, ..., Vp}.

Global and Regional Bonferroni’s correction on the network object. Similar to the

structural images, we construct a global approach or a regional approach using the net-

work coefficients. Specifically, the Global Bonferroni on the network object focuses on

{θ̂p,p′ : p ̸= p′} and identifies region p as influential if at least one edge connecting to this

region is influential after the Bonferroni correction on all the network edge coeffcients, i.e., if

p-value(θp,p′) ≤ α0

P (P−1)/2
for at least one p′ ̸= p. In contrast, the Regional Bonferroni on

the pth region implements the correction only on the edges connecting to the pth network

node and identifies region p to be influential if p-value(θ̂p,p′) ≤ α0

P−1
for at least one p′ ̸= p.

Global and Regional Bonferroni’s correction on all objects jointly.We also consider

global and regional Bonferroni’s correction focusing on both sets of coefficients jointly. Fol-

lowing the similar logic as above, Global Bonferroni on structural and network objects

jointly determines region p to be influential if at least one edge connecting to the region or at

least one voxel coefficient in region p is significant, i.e., p-value(θ̂p,p′) ≤ α0

P (P−1)/2+
∑P

p=1 Vp
for

at least one p′ ̸= p or p-value(β̂p,v) ≤ α0

P (P−1)/2+
∑P

p=1 Vp
for at least one v ∈ {1, .., Vp}. The Re-

gional Bonferroni for objects jointly identifies pth region as influential if p-value(θ̂p,p′) ≤
α0

(P−1)+Vp
for at least one p′ ∈ {1, ..., P} or p-value(β̂p,v) ≤ α0

(P−1)+Vp
for at least one v ∈

{1, .., Vp}.

The second group of frequentist competitors are based on the mass univariate analysis

(MUA) approach and tries to control the False Discovery Rate (FDR) (Genovese et al., 2002).

MUA relies on multiplicity correction for p-values of the coefficients but sets the thresholds in

a different way than the above mentioned approaches. Similar to the Bonferroni’s correction,

we implement this method on the structural objects, the network object, or jointly on both

objects.

Global and Regional MUA on the network and structural objects separately. The

global implementation of MUA on the Network Matrix proceeds by ordering p-values corre-

sponding to the P (P − 1)/2 edge coefficients, denoted by p-value(1), ..., p-value(P (P−1)
2 ). We

consider p-value(i∗) to be the threshold where i∗ ∈ {1, .., P (P−1)
2

} is the largest index such

that p-value(i) ≤ i
P (P−1)

2

α0. A region p is considered influential if p-value(θ̂p,p′) ≤ p-value(i∗)

for at least one p′ ̸= p. This approach is referred to as the Global MUA approach for
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the network object only. The Regional MUA for only the network object focuses on p-

values for coefficients of edges attached to a node/region. Let p-valuep,(1), ..., p-valuep,(P−1)

be the ordering of such p-values for region p and i∗p be the largest index in region p such

that p-valuep,(i∗p) ≤ i∗p
P−1

α0. Regional MUA of the network object selects a region p if

p-value(θ̂p,p′) ≤ max(p-value(i∗p), p-value(i∗p′)) for at least one p′ ̸= p. Global MUA and

Regional MUA for structural objects are similarly defined.

Global and Regional MUA on the network and structural objects jointly. TheGlobal

MUA on structural and network objects jointly proceeds by ordering p-value(β̂v,p) and p-

value(θ̂p,p′) for all v = 1, ..., Vp, 1 ≤ p < p′ ≤ P in ascending order. Let p-value(1), ..., p-value(P (P−1)
2

+
∑P

p=1 Vp)

be the ordered p-values and let i∗ be the largest index such that p-value(i∗) ≤ i∗α0
P (P−1)

2
+
∑P

p=1 Vp
.

A region p is identified as influential if p-value(θ̂p,p′) ≤ p-value(i∗) for at least one p′ ̸= p, or

p-value(β̂v,p) ≤ p-value(i∗) for at least one v ∈ {1, ..., Vp}. To implement Regional MUA

jointly for both objects, the p-values corresponding to all cell coefficients for the pth region

and edge coefficients connecting to the pth node/region are ordered in an ascending manner,

p-valuep,(1) ≤ . . . ≤ p-valuep,(P−1+Vp). Let i∗p be the largest index such that p-valuep,(i∗p) ≤
i∗pα0

P−1+Vp
. The region p is considered influential if p-value(θ̂p,p′) ≤ max(p-value(i∗p), p-value(i∗p′))

for at least one p′ ̸= p, or p-value(β̂v,p) ≤ max(p-value(i∗p), p-value(i∗p′)) for at least one cell

v ∈ {1, ..., Vp} in the pth region.

5.2.2 Bayesian competitors

While the frequentist competitors implemented here rely on univariate analysis and ad-

justment of p-values, we implement two Bayesian competitors, both capturing joint effects

of all network edges and cells of the structural images on the predictor, but do not acknowl-

edge the network topology or the connection between the topology of two sets of objects

through the hierarchical constraint. The first Bayesian competitor, referred to as the Spike

& Slab, applies an ordinary spike & slab prior (George and McCulloch, 1993) on each θp,p′

and βv,p. A voxel or an edge will be identified as influential if the posterior probability of

corresponding coefficient equals to zero exceeds 0.5 (Barbieri and Berger, 2004). To assess

joint modeling of objects vs. modeling them individually, we fit only the network on scalar

regression (i.e., the first equation in (3)), or the structural images on scalar regression (i.e.,
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the second equation in (3), or both of them jointly. For the network on scalar regression

Spike & Slab competitor identifies a region to be influential if at least an edge connecting to

that region is influential. Spike & Slab competitor for structural images on scalar regression

identifies a region as influential if it has at least one influential voxel in that region. When

both objects are used jointly, Spike & Slab identifies an influential region by observing if any

voxel in that region or any edge connected to that region is influential.

Our second Bayesian competitor is based on the shrinkage literature in high dimensional

regression. More specifically, it applies a Horseshoe shrinkage prior (Carvalho et al., 2010)

on each θp,p′ and βv,p. Since the Horseshoe prior does not result in exact zeros for the post

burn-in iterates of coefficients, we perform a post-processing approach following Li and Pati

(2017) to determine which voxel coefficients and network edges are related to the predictor.

We identify influential regions using these estimates either on both sets of objects separately,

or jointly, following the similar strategy outlined in the Spike & Slab competitor.

Similar to frequentist competitors, none of the Bayesian competitors of BMRR is able to

provide uncertainty in identifying a region to be influential which may be crucial for small

sample, as we encounter here. Comparison with the two Bayesian competitors will highlight

the advantage of exploiting the object topology in BMRR.

5.2.3 Metrics of comparison

To assess performance of the competitors in terms of correctly identifying important

regions, we will present True Positive Rate (TPR) and True Negative Rate (TNR), corre-

sponding to all simulation cases. Since there is a natural trade-off between TPR and TNR,

we will present a single measure F1 score that combines the Precision and TPR, to balance

the performance between true positives and true negatives for all competitors.

The point estimation of every competitor is assessed using mean squared errors (MSE) of

estimating the network coefficient Θt and the structural coefficients β1,t, ...,βP,t. Since both

the fittedΘ andΘt are symmetric with zero diagonals, the MSE for the network coefficient is

given by 2
∑

p<p′(θp,p′,t− θ̂p,p′)
2/P (P − 1), where θ̂p,p′ is the point estimate of θp,p′ . Similarly,

we compute and present MSE for the structural coefficients given by
∑P

p=1 ||βp,t− β̂p||2/V P ,

with β̂p representing the point estimate of βp. MSE for both sets of coefficients jointly is
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given by [
∑

p<p′(θp,p′,t− θ̂p,p′)
2+

∑P
p=1 ||βp,t− β̂p||2]/(P (P −1)/2+V P ). The point estimates

are taken to be the posterior median for the Bayesian competitors.

While all three Bayesian competitors BMRR, Spike & Slab and Horseshoe provide au-

tomatic characterization of uncertainty, the resulting confidence intervals may not have the

correct frequentist coverage in high dimensional regressions (Szabó et al., 2015). Thus, in

order to assess uncertainty in estimating Θt from Bayesian competitors, we evaluate the

length and coverage of 95% credible intervals averaged across coefficients in Θ and present

them for all cases. Similar quantities for βp,t’s are also presented. All results presented in

each simulation scenario are averaged over 500 simulated data.

5.3 Results

The Table 1 shows the results for different competitors in terms of influential region

identification. All frequentist competitors identify influential nodes using a two-stage ap-

proach. Hence, their performances are evaluated applying the second stage on the structural

and network objects jointly or separately, as described in Section 5.2. Bayesian competitors

Horseshoe and Spike & Slab are fitted on structural and network objects separately as well

as jointly. Hence TPR and TNR for these methods are recorded when they are applied on

individual objects or they are applied jointly. In contrast, identification of influential regions

is obtained as part of the inference from BMRR. Hence, we just show the TPR and TNR

results for BMRR under the “joint object” column in Table 1. A few interesting patterns

emerge from the table. First, both Regional MUA and Regional Bonferroni perform con-

siderably better than Global MUA and Global bonferroni, respectively, in terms of TPR.

In contrast, the global implementations of these methods perform marginally better than

regional implementation in terms of TNR. This is due to the fact that the global implemen-

tations of both MUA and Bonferroni are more conservative than the corresponding regional

implementations. Second, all frequentist and Bayesian competitors show significantly better

TPR when the a method considers both objects jointly as opposed to using them separately.

No significant differences are found for TNR in this aspect. Third, the simulation cases

under the smaller dimensional example show significantly better performance for all com-

petitors than the higher dimensional examples. Indeed, the higher dimensional examples
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Table 1: True Positive Rate (TPR) and True Negative Rate (TNR) for competing meth-
ods under smaller dimensional and high dimensional examples. Both smaller and higher
dimensional examples include two different node sparsity levels. We compute TPR and
TNR separately for grey matter and network matrix, as well as for them together, as ex-
plained in Section 5.2. The best performing method under every metric of comparison in
each simulation case is boldfaced.

Sparsity 85% Sparsity 70%

TPR TNR TPR TNR

Method Grey Network Joint Grey Network Joint Grey Network Joint Grey Network Joint
Matter Matrix Objects Matter Matrix Objects Matter Matrix Objects Matter Matrix Objects

High dimensional example
Global Bonferroni 0.0947 0.1580 0.1633 0.9985 0.9920 0.9951 0.2443 0.3757 0.3920 0.9950 0.9940 0.9960
Regional Bonferroni 0.3667 0.4167 0.5180 0.9359 0.9528 0.9411 0.6743 0.7523 0.8430 0.9389 0.9610 0.9533
Global MUA 0.1313 0.1973 0.2213 0.9693 0.9547 0.9564 0.4030 0.5420 0.6777 0.9557 0.9493 0.9419
Regional MUA 0.3700 0.4447 0.5413 0.9355 0.9355 0.9274 0.6913 0.7810 0.8737 0.9373 0.9440 0.9400
Horseshoe 0.5320 0.7400 0.6960 0.7701 0.6956 0.7981 0.7170 0.8613 0.8593 0.8177 0.7249 0.9153
BMRR – – 0.6967 – – 0.8666 – – 0.9703 – – 0.9460
Spike and Slab 0.3040 0.4007 0.5120 0.8866 0.8576 0.8524 0.7267 0.8323 0.9527 0.7727 0.7041 0.6161

Small dimensional example
Global Bonferroni 0.1339 0.1853 0.1965 0.9990 0.9988 0.9991 0.2517 0.3484 0.3468 0.9991 0.9989 0.9994
Regional Bonferroni 0.8637 0.8393 0.9352 0.9244 0.9452 0.9345 0.9788 0.9759 0.9949 0.9258 0.9362 0.9261
Global MUA 0.4496 0.4285 0.6400 0.9667 0.9814 0.9648 0.9847 0.9787 0.9997 0.8875 0.9082 0.8186
Regional MUA 0.8997 0.8781 0.9663 0.9216 0.9276 0.9244 0.9935 0.9917 0.9995 0.9238 0.9241 0.9184
Horseshoe 0.9947 0.9875 0.9852 0.3739 0.5598 0.9187 1.0000 1.0000 1.0000 0.2855 0.3577 0.7693
BMRR – – 0.9997 – – 0.9454 – – 1.0000 – – 0.9996
Spike and Slab 0.9996 0.9960 0.9997 0.0769 0.3616 0.0020 1.0000 1.0000 1.0000 0.0285 0.0960 0.0020

present much more challenging scenarios for the fitted methods, given that the sample size

is limited. Fourth, Horseshoe prior applied on joint modeling of objects yield significantly

better results than applying Horseshoe prior in the scenario where the two sets of objects

are fitted separately. This also serves as a highlighting point of modeling objects jointly to

draw better inference. Finally, our proposed approach BMRR demonstrates better TPR and

TNR than Horseshoe. Spike & Slab approach performs similar to BMRR in terms of TPR,

but massively underperforms in terms of TNR. In contrast, BMRR significantly outper-

forms frequentist competitors in terms of TPR and shows marginally inferior performance to

them. Notably, BMRR is the only approach that identifies influential regions in a principled

Bayesian way.

Since there are trade-offs between the TPR and the TNR performances, Figure 2 presents

a single performance measure, F1-score for influential region identification. Given that the

two most competing methods in terms of the F1-score are Horseshoe and Regional MUA,

we show the plots for F1-score corresponding to BMRR, Horseshoe and Regional MUA. All

other competitors show worse performance than these three. As expected, the performance of
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BMRR along with all other competitors deteriorate for higher dimensional simulation cases.

We also observe notable improvement in the performance of Horseshoe, especially in smaller

dimensional cases, when it is used for joint model fitting as opposed to using Horseshoe

for fitting structural and network object models separately. In contrast, Regional MUA

improves only moderately when both set of objects are considered for multiplicity correction,

as opposed to employing them separately. BMRR outperforms both its competitors in all

simulation cases. The performance gap between BMRR and Horseshoe is more in low sparsity

cases than in high sparsity cases.

Figure 2: F1 Score for the Horseshoe, the selected MUA approach and BMRR for different
simulation scenarios. Here “Big” and “Small” refer to high-dimensional and smaller dimen-
sional examples.
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One notable advantage of BMRR over its competitors is that it is able to provide char-

acterization of uncertainty for each region being influential by offering posterior probability

of {ξp = 1}. Figure 3 shows the posterior probability of the pth region being influential for

small dimensional simulation example under two different node sparsities, with dark cells

corresponding to the regions which are truly influential. The results suggest that the poste-

rior probability of a region being influential is close to 1 or 0 if the region is truly influential

and un-influential, respectively, suggesting minimal uncertainty in the region selection by
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BMRR.

Figure 3: The figure presents posterior probability of each region being influential under the
two simulation cases in smaller dimensional example. Each row corresponds to a simulation
case. Dark cells corresponds to the truely influential regions in each row.
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In terms of estimating the regression coefficients, Figure 4 shows significantly better

performance offered by BMRR over its competitors. The significant improvement of point

estimation by BMRR demonstrates the importance of exploiting multi-object topology and

linkage between multiple objects to offer better point estimation when sample size is limited.

The results also demonstrate more accurate point estimation for all competitors for high

sparsity cases.

While BMRR enjoys advantage in terms of point estimation, we also set out to investigate

how well calibrated the point estimates are. To this end, we observe 95% confidence/credible

intervals from BMRR attend close to the nominal level in all simulations, see Figure 5.

Regional MUA also enjoys close to nominal coverage. While Horseshoe fitted with both

objects jointly yields coverage similar to its competitors, severe under-coverage is observed

when Horseshoe is applied on structural and network objects separately. Importantly, BMRR

shows the similar coverage with much narrower credible intervals than its competitors, as

demonstrated in Figure 6. The 95% credible intervals from Horseshoe fitted on objects

jointly are ∼ 2 − 3 times wider than BMRR in every simulations. The 95% confidence

intervals estimated from Regional MUA are much wider than both its competitors, which

is explained by the fact that it estimates every cell of the structural and network coefficient

independently of each other.
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Figure 4: MSE for the Horseshoe, the selected MUA approach and BMRR for different simu-
lation scenarios. Here “Big” and “Small” refer to high-dimensional and smaller dimensional
examples.
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6 Application to the nfvPPAMulti-modal Imaging Data

We present the results from our application of the proposed BMRR to the multi-modal

imaging data. Recall, the goal of the analysis was to regress the multi-modal imaging data

composed of sMRI GM maps and resting state fMRI connectivity networks on the automated

measures of pause time in speech (PTIS). In total, 32 ROIs had a posterior probability

P (ξp = 1|Data) > 0.5, indicating that a subset of the 245 total ROIs have a high posterior

probability of association with PTIS in the multi-modal imaging data. Of these 32 ROIs,

several were involved in the SPN network described in Section 2 which is previously known to

be involved in motor speech and fluency. This included ROIs in the left medial, left and right

dorsal, and left inferior frontal sulcus regions of the brain which are also generally associated

with motor control and fluid speech. Thus, the BMRR model identifies regions not only

consistent with existing hypotheses of brain regions associated with motor speech/fluency

but also identifies new regions for further investigation.

Figure 7 provides a graphical representation of the application of the BMRR model to
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Figure 5: Coverage of 95% confidence/credible intervals for the selected MUA approach and
BMRR for different simulation scenarios. Here “Big” and “Small” refer to high-dimensional
and smaller dimensional examples.

Big Small

0.15
0.3

Grey Matter Joint Network Matrix Grey Matter Joint Network Matrix

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Object

C
ov

er
ag

e

Name Horseshoe iBoom Regional MUA 1

the multi-modal imaging data. Figure 7 (a) and (b) display the selection probability for

each ROI (P (ξp|Data)) from a 2D slice of the brain and network edge (P (ξpξp′ = 1|Data))

from the whole brain, respectively. The selection probabilities for both the ROI and network

edges show little variance, i.e. they tend to include or exclude ROIs and network edges with

high certainty. While the BMRR model does not explicitly model spatial information, it is

clear from the selection probability maps that there is some spatial continuity in the selected

regions (Figure 7 (a)). Figure 7 (d) and (e) show the estimated gray matter voxel coefficients

by ROI (βp) and network edge coefficients by ROI pair (Θ), respectively. Recall, the BMRR

model estimates not only the selection probability for an ROI but also the estimated effect of

that ROI, either in the form of voxel level coefficients for structural object or network edge

coefficients for the network object. Therefore, even though certain ROIs were included with

low probability (Figure 7 (a, b)), BMRR still provides estimates of the associated structural

and network coefficients which we can visualize and inspect in conjunction with the selection

probability maps - one example of the rich output provided by the BMRR approach to

multi-modal image analysis. Specifically, in panels Figure 7 (d, e), the color of the estimated
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Figure 6: Length of 95% confidence/credible intervals for the selected MUA approach and
BMRR for different simulation scenarios. Here “Big” and “Small” refer to high-dimensional
and smaller dimensional examples.
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coefficients denotes whether an ROI or network edge have an selection probability greater

than 0.5 but the shading denotes the magnitude of the coefficient as a measure of effect size

in relation to the PTIS predictor. Thus, we can simultaneously inspect the certainty with

which the model selects an ROI or network edge as well as the magnitude of the voxel or edge

coefficients included with that ROI or network edge, respectively. Focusing our attention to

the blue ROIs and network edges, it is clear there is variability in the effect of PTSI on the

multi-modal imaging data both at the voxel level and edge level.

7 Conclusion and Future Work

Motivated by the structural and functional imaging data on patients with PPA, this

article develops a regression approach with structural and network-valued objects and a

scalar predictor. A novel prior structure is developed jointly on coefficients corresponding

to different object responses which can simultaneously exploit topology of these objects and

the linked information between the objects to draw inference on network nodes significantly

related to the scalar predictor with uncertainty. The proposed approach is arguably the first
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Bayesian multi-modal response regression approach equipped with identifying brain regions

significantly related to a cognitive score measuring neuro-degeneration due to PPA. The

analysis of PPA data leads to important understanding of neuro-degeneration pathway for

PPA.

While we exploit the linkage between topology of structural and network objects through

the hierarchical constraint, this article does not exploit the spatial correlation between GM

image voxels. As an immediate future work, we will extend our approach to incorporate

the spatial information in the GM image. We also plan to capture more complex non-linear

dependence between network and structural objects and cognitive scores in our upcoming

articles.
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Ossenkoppele, R., Schonhaut, D. R., Schöll, M., Lockhart, S. N., Ayakta, N., Baker, S. L.,

O’Neil, J. P., Janabi, M., Lazaris, A., Cantwell, A., Vogel, J., Santos, M., Miller, Z. A.,

29



Bettcher, B. M., Vossel, K. A., Kramer, J. H., Gorno-Tempini, M. L., Miller, B. L.,

Jagust, W. J., and Rabinovici, G. D. (2016). Tau PET patterns mirror clinical and

neuroanatomical variability in Alzheimer’s disease. Brain, 139(Pt 5), 1551–1567.

Polson, N. G. and Scott, J. G. (2010). Shrink globally, act locally: Sparse bayesian regular-

ization and prediction. Bayesian Statistics , 9, 501–538.

Rothman, A. J., Levina, E., and Zhu, J. (2010). Sparse multivariate regression with covari-

ance estimation. Journal of Computational and Graphical Statistics , 19(4), 947–962.

Roy, A., Ghosal, S., Prescott, J., and Choudhury, K. R. (2019). Bayesian modeling of the

structural connectome for studying alzheimer’s disease. The Annals of Applied Statistics ,

13(3), 1791–1816.

Scott, J. G. and Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in

the variable-selection problem. The Annals of Statistics , 38(5), 2587–2619.

Spencer, D., Guhaniyogi, R., and Prado, R. (2020). Joint Bayesian estimation of voxel

activation and interregional connectivity in fMRI experiments. UCSC Technical Report .

Sui, J., Adali, T., Yu, Q., Chen, J., and Calhoun, V. D. (2012). A review of multivariate

methods for multimodal fusion of brain imaging data. Journal of neuroscience methods ,

204(1), 68–81.
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Figure 7: Visual presentation of the estimated coefficients from the application of the BMRR
to the multi-modal imaging data. Bluer tones indicate a higher selection probability for a
region or network edge where applicable (i.e. panels a and b). (a) Selection probability by
ROI (P (ξp = 1|Data)) from a 2D slice of the brain. (b) Selection probability by network
edge (P (ξpξp′ = 1|Data)). (c) Selection probability color coding. (d) Gray matter voxel
coefficients by ROI (βp) where shading corresponds to the magnitude of the coefficient. (e)
Network edge coefficients by ROI (Θ) where shading corresponds to the magnitude of the
coefficient.
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