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Abstract. Gaussian process (GP) regression is computationally expensive
in spatial applications involving massive data. Various methods address
this limitation, including a small number of Bayesian methods based on
distributed computations (or the divide-and-conquer strategy). Focusing
on the latter literature, we achieve three main goals. First, we develop an
extensible Bayesian framework for distributed spatial GP regression that
embeds many popular methods. The proposed framework has three steps
that partition the entire data into many subsets, apply a readily available
Bayesian spatial process model in parallel on all the subsets, and combine
the posterior distributions estimated on all the subsets into a pseudo pos-
terior distribution that conditions on the entire data. The combined pseudo
posterior distribution replaces the full data posterior distribution in predic-
tion and inference problems. Demonstrating our framework’s generality, we
extend posterior computations for (non-distributed) spatial process models
with a stationary full-rank and a nonstationary low-rank GP priors to the
distributed setting. Second, we contrast the empirical performance of pop-
ular distributed approaches with some widely used non-distributed alterna-
tives and highlight their relative advantages and shortcomings. Third, we
provide theoretical support for our numerical observations and show that
the Bayes L2-risks of the combined posterior distributions obtained from
a subclass of the divide-and-conquer methods achieves the near-optimal
convergence rate in estimating the true spatial surface with various types of
covariance functions. Additionally, we provide upper bounds on the num-
ber of subsets to achieve these near-optimal rates.
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1. INTRODUCTION

A fundamental challenge in geostatistics is the analysis of massive spatially-
referenced data. Such data sets provide scientists with an unprecedented opportu-
nity to hypothesize and test complex theories, see for example Cressie and Wikle
(2011), Banerjee et al. (2014). This has led to the development of complex and
flexible GP-based models that are computationally intractable for a large num-
ber of spatial locations, denoted as n, due to the O(n3) computational cost and
the O(n2) storage cost. An overwhelming number of methods exists to address
this issue that develop either efficient alternatives to the GP model or efficient
approximations of the likelihood. We broadly refer to these approaches as the
non-distributed methods. An emerging class of Bayesian methods addresses this
problem using distributed computations, where the scalability of an existing, pos-
sibly non-distributed, spatial GP regression model is enhanced multiple folds by
suitably distributing the computations and storage of data subsets across many
machines. This article proposes a novel class of distributed Bayesian framework
for process-based geostatistical models that contains many popular approaches,
presents a comparative study of important approaches within this class, and con-
trasts their performance with representative non-distributed methods.

1.1 Non-distributed Methods for GP Modeling of Massive Spatial Data

Efficient GP-based models for massive spatial data have received extensive at-
tention due to their great practical importance (Heaton et al., 2019). A common
idea in GP-based modeling is to seek dimension-reduction by endowing the spatial
covariance matrix either with a low-rank or a sparse structure. Low-rank struc-
tures on the spatial covariance matrix are the most widely used tool for efficient
spatial computation. They represent the spatial surface using r apriori chosen
basis functions with associated computational complexity of O(nr2+r3) (Cressie
and Johannesson, 2008, Banerjee et al., 2008, Finley et al., 2009, Guhaniyogi
et al., 2011, Wikle, 2010); however, a major shortcoming of the above methods
is that a small (r/n)-ratio yields inaccurate GP approximations, resulting in the
propensity to oversmooth the spatial data (Stein, 2014, Simpson et al., 2012).

A specific form of sparse structure, called covariance tapering, uses compactly
supported covariance functions to create sparse spatial covariance matrices that
approximate the full covariance matrix (Kaufman et al., 2008, Furrer et al., 2006,
Daley et al., 2015, Bevilacqua et al., 2020). Covariance tapering still requires ex-
pensive determinant evaluation of the massive covariance matrix, and the choice
of the taper range can be difficult for spatial data over irregularly spaced loca-
tions (Anderes et al., 2013). An alternative approach is to introduce sparsity in
the inverse covariance (precision) matrix of the GP likelihoods using products of
lower dimensional conditional distributions (Vecchia, 1988, Rue et al., 2009, Stein
et al., 2004), or via composite likelihoods (Eidsvik et al., 2014, Bai et al., 2012,
Bevilacqua and Gaetan, 2015). Extending these ideas, recent approaches intro-
duce sparsity in the inverse covariance (precision) matrix of process realizations
and hence enable “kriging” at arbitrary locations (Datta et al., 2016, Guinness,
2018, Finley et al., 2019a). In related literature on computer experiments, local-
ized approximations of GP models are proposed; see, for example, Gramacy and
Apley (2015), Gramacy and Haaland (2016). These methods scale well with the
sample size and are able to capture local spatial variations.
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The remaining variants of dimension-reduction methods combine the benefits
of low-rank and sparse covariance functions. Examples include non-stationary
models (Banerjee et al., 2014) and multi-resolution models (Nychka et al., 2015,
Katzfuss, 2017, Guinness, 2019, Katzfuss and Guinness, 2021, Guhaniyogi and
Sanso, 2017). Multi-resolution models are difficult to implement and lack large
sample theoretical guarantees, but they successfully capture spatial variation at
multiple scales and are computationally efficient. The GP with Matérn covari-
ance can be viewed as the solution of a stochastic partial differential equation.
This observation has motivated GP approximations (Lindgren et al., 2011, Bolin
and Lindgren, 2013), including a recent extension to multivariate non-Gaussian
models with marginal Matérn covariance functions (Bolin and Wallin, 2020). This
class of methods work well for Matérn covariance functions but are inapplicable
in scaling GP with low-rank or non-stationary covariance functions.

1.2 Distributed Bayes

Rooted in the divide-and-conquer technique, the distributed Bayesian methods
do not belong to any of the classes of methods in Section 1.1. They instead fit
an existing model on different data subsets exploiting the distributed computing
architecture. The results from the subsets are combined using an aggregation
algorithm. These methods were first proposed in machine learning, including
Consensus Monte Carlo (Scott et al., 2016), the Weierstrass sampler (Wang and
Dunson, 2013), the semiparametric density product (Neiswanger et al., 2014), the
median posterior (Minsker et al., 2014) and the Wasserstein posterior (Srivastava
et al., 2015). Most of these methods are developed only for independent data. Re-
cently, distributed Bayes has been applied to a variety of statistical problems in
both modeling and computation, such as density estimation (Su, 2020), modeling
of multivariate binary data (Mehrotra et al., 2021), sequential Monte Carlo (Lind-
sten et al., 2017), random partition trees (Wang et al., 2015), etc. For GP models,
Zhang and Williamson (2019) proposes to combine GP fitted on different data
subsets via an importance-sampled mixture-of-experts model. Theoretical results
on distributed GP inference have been developed recently (Cheng and Shang,
2017, Szabo and van Zanten, 2019, Shang et al., 2019). Nevertheless, these the-
oretical works and applications have mainly focused on univariate domains for
nonparametric regression and have not considered the GP-based models used in
spatial applications such as GP with Matérn covariance on a spatial domain.

On the spatial front, Barbian and Assunção (2017) propose combining point
estimates of spatial parameters obtained from different subsets, but they do not
provide combined inference on the spatial processes or predictions. Similarly,
Heaton et al. (2017) partition the spatial domain and assume independence be-
tween the data in different partitions. Guhaniyogi and Banerjee (2018, 2019) pro-
pose the idea of “meta-posterior,” a computationally efficient approximation to
the full data posterior. This approach does not assume independence across data
blocks and enables accurate prediction with uncertainty (Heaton et al., 2019);
however, Guhaniyogi and Banerjee (2018) does not offer any theoretical guidance
on choosing the number of subsets for optimal inference on the spatial surface.

Instead of developing a new spatial GP regression model, we describe a gen-
eral class of three-step distributed Bayesian approaches for extending an existing
process-based geostatistical model, which includes a number of important special
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cases. To implement the general approach, the n spatial locations are divided into
k subsets such that each subset has representative data samples from all regions
of the spatial domain with the jth subset containing mj data samples. Second,
posterior computations are implemented in parallel on the k subsets using any
chosen spatial process model after raising the model likelihood to a power of n/mj

in the jth subset. The pseudo posterior distribution obtained using the modified
likelihood is called the “subset pseudo posterior distribution”. Since jth subset
pseudo posterior distribution conditions on (mj/n)-fraction of the full data, the
modification of the likelihood by raising it to the power of n/mj ensures that
variance of each subset pseudo posterior is of the same order (as a function of
n) as that of the full data posterior distribution. Third, the k subset pseudo
posterior distributions are combined into a single pseudo probability distribu-
tion, called the combined pseudo posterior, that conditions on the full data and
replaces the computationally expensive full data posterior distribution for pre-
diction and inference. Our distributed framework leverages existing spatial GP
regression models and enhances their scalability by embedding them within the
three-step framework. For example, Section 3.1 embeds full-rank and low-rank
spatial GP regression models within the distributed framework and Section 3.3
discusses various methods for combining the k subset pseudo posteriors.

The proposed framework builds on the recent works that combine the subset
pseudo posterior distributions through their geometric centers (e.g., mean, me-
dian) and guarantee wide applicability under general assumptions (Minsker et al.,
2014, Srivastava et al., 2015, Li et al., 2017, Minsker et al., 2017, Savitsky and
Srivastava, 2018, Srivastava et al., 2018, Minsker, 2019). The theory and practice
of such distributed approaches are limited to parametric models. In contrast, the
framework proposed here is tuned for accurate and computationally efficient pos-
terior inference in nonparametric Bayesian models based on GP priors. In partic-
ular, we develop a new approach to modify the likelihood for computing the sub-
set pseudo posterior distribution of an unknown function, an infinite-dimensional
parameter, that subsumes the parametric distributed methods. We offer novel
theoretical results on the convergence rate of the combined pseudo posterior to
the true function. Finally, we also provide guidance on choosing k depending on
the covariance function and n such that the combined pseudo posterior main-
tains near minimax optimal performance as n → ∞. The proposed distributed
framework delivers principled Bayesian inference and predictions without any re-
strictive data- or model-specific assumptions, such as the independence between
data subsets or independence between blocks of parameters.

A related focus of this article is to present a comparative study of the pro-
posed class of distributed approaches with important non-distributed approaches
for modeling massive spatial data. We illustrate the application of the distributed
framework for enhancing the scalability of spatial models with a low-rank non-
stationary GP prior called the modified predictive process (MPP) prior (Finley
et al., 2009). This prior is commonly used for estimating spatial surfaces in ap-
plications with massive sample size, but it struggles to provide accurate inference
in a manageable time beyond (approximately) 104 observations. We embed MPP
within our distributed framework and scale it to spatial applications of much big-
ger sizes and assess its performance relative to other distributed and state-of-the-
art non-distributed alternatives for efficient spatial GP modeling. Unfortunately,
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there is no theoretical guarantee for convergence of the Markov chain to its sta-
tionary distribution, where MCMC samples are drawn from the subset pseudo
posteriors with an MPP prior on spatial effects; however, we find strong empirical
evidence for it and propose to develop the theoretical support elsewhere.

2. BAYESIAN INFERENCE IN GP-BASED SPATIAL MODELS

Consider the model for the data observed at location s in a compact domain D,

y(s) = x(s)T β+w(s) + ϵ(s),(1)

where y(s) and x(s) are the response and a p × 1 predictor vector respectively
at s, β is a p × 1 predictor coefficient, w(s) is the value of an unknown spatial
function w(·) at s, and ϵ(s) is the value of a white-noise process ϵ(·) at s, which is
independent of w(·). The Bayesian implementation of the model in (1) custom-
arily assumes that (a) β apriori follows N(µβ, Σβ) and (b) w(·) and ϵ(·) apri-
ori follow mean 0 GPs with covariance functions Cα(s1, s2) and Dα(s1, s2) that
model cov{w(s1), w(s2)} and cov{ϵ(s1), ϵ(s2)}, respectively, where α are the pro-
cess parameters indexing the two families of covariance functions and s1, s2 ∈ D;
therefore, the parameters are ΩΩΩ = {α,β}. The training data consists of predictors
and responses observed at n spatial locations, denoted as S = {s1, . . . , sn}.

Standard Markov chain Monte Carlo (MCMC) algorithms exist for performing
posterior inference on ΩΩΩ and w(·) at a set of locations S∗ = {s∗1, . . . , s∗l }, where
S∗ ∩S = ∅, and for predicting y(s∗) for any s∗ ∈ S∗ (Banerjee et al., 2014). Given
S, the prior assumptions on w(·) and ϵ(·) imply thatwT = {w(s1), . . . , w(sn)} and
ϵT = {ϵ(s1), . . . , ϵ(sn)} are independent and followN {0,C(α)} andN {0,D(α)},
respectively, with the (i, j)th entries ofC(α) andD(α) are Cα(si, sj) andDα(si, sj),
respectively. The hierarchy in (1) is completed by assuming that α apriori fol-
lows a distribution with density π(α). The MCMC algorithm for sampling ΩΩΩ,
w∗T = {w(s∗1), . . . , w(s∗l )}, and y∗T = {y(s∗1), . . . , y(s∗l )} cycle through the fol-
lowing three steps until sufficient MCMC samples are drawn post convergence:

1. Integrate over w in (1) and

(a) sample β given y,X,α from N(mβ,Vβ), where

Vβ=
{
XT V(α)−1X+Σ−1

β

}−1
, mβ=Vβ

{
XT V(α)−1 y+Σ−1

β µβ

}
,(2)

X = [x(s1) : · · · : x(sn)]T is the n × p matrix of predictors, with p < n,
V(α) = C(α) +D(α); and

(b) sample α given y,X,β using the Metropolis-Hastings algorithm with a
normal random walk proposal.

2. Sample w∗ given y,X,α,β from N(m∗,V∗), where

V∗=C∗,∗(α)−C∗(α)V(α)−1C∗(α)T , m∗=C∗(α)V(α)−1(y−Xβ),(3)

C∗(α) and C∗,∗(α) are l × n and l × l matrices, respectively, and the (i, j)th
entries of C∗,∗(α) and C∗(α) are Cα(s

∗
i , s

∗
j ) and Cα(s

∗
i , sj), respectively.

3. Sample y∗ given α,β,w∗ from N {X∗ β+w∗,D(α)}, where X∗T = [x(s∗1) :
· · · : x(s∗l )].
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Many spatial models can be formulated in terms of (1) by assuming different
forms of Cα(s1, s2) and Dα(s1, s2); see Banerjee et al. (2014) and supplementary
material for details on the MCMC algorithm. Irrespective of the form of D(α),
if no additional assumptions are made on the structure of C(α), then the three
steps require O(n3) flops in computation and O(n2) memory units in storage in
every MCMC iteration. Spatial models with this form of posterior computations
are based on a full-rank GP prior, which are infeasible to compute for big data.

There are methods which either impose a low-rank structure or a sparse struc-
ture onC(α) to address this computational issue (Banerjee et al., 2014). Methods
with a low-rank structure on C(α) expresses C(α) in terms of r ≪ n basis func-
tions, in turn inducing a low-rank GP prior. Again, a class of sparse structure
uses compactly supported covariance functions to createC(α) with overwhelming
zero entries (Kaufman et al., 2008, Furrer et al., 2006), where as another variety
of sparse structure imposes a Markov random field model on the joint distribution
of y (Vecchia, 1988, Rue et al., 2009, Stein et al., 2004) or w (Datta et al., 2016,
Guinness, 2018). We use the MPP prior as a representative example of this broad

class of computationally efficient methods. Let S(0) = {s(0)1 , ..., s
(0)
r } be a set of

r locations, known as the “knots,” which may or may not intersect with S. Let
c(s,S(0)) = {Cα(s, s

(0)
1 ), . . . , Cα(s, s

(0)
r )}T be an r × 1 vector and C(S(0)) be an

r×r matrix whose (i, j)th entry is Cα(s
(0)
i , s

(0)
j ). Using c(s1,S(0)), . . . , c(sn,S(0))

and C(S(0)), define the diagonal matrix δ = diag{δ(s1), . . . , δ(sn)} with δ(si) =
Cα(si, si) − cT (si,S(0))C(S(0))−1 c(si,S(0)), i = 1, . . . , n. Let 1(a = b) = 1 if
a = b and 0 otherwise. Then, MPP is a GP with covariance function

C̃α(s1, s2) = cT (s1,S(0))C(S(0))−1 c(s2,S(0)) + δ(s1)1(s1 = s2),(4)

where s1, s2 ∈ D, C̃α(s1, s2) depends on the covariance function of the parent
GP and the selected r knots, which define C(S(0)), cT (s1,S(0)), and cT (s2,S(0)).
We have used a ˜ in (4) to distinguish the covariance function of a low-rank GP
prior from that of its parent full-rank GP. If C̃(α) is a matrix with (i, j)th entry
C̃α(si, sj), then the posterior computations using MPP, a low-rank GP prior,
replace C(α) by C̃(α) in the steps 1(a), 1(b), and 2. The (low) rank r structure
imposed by C(S(0)) implies that C̃(α)−1 computation requires O(nr2) flops using
the Woodbury formula (Harville, 1997); however, massive spatial data require
that r = O(

√
n), leading to the computational inefficiency of low-rank methods.

The next section discusses a general three-step distributed framework to scale
the posterior computations in spatial GP regression models with full-rank and
low-rank GP priors. Briefly, the first and second steps divide the full data and
fit a low-rank or full-rank spatial GP regression model on each data subset after
modifying the subset likelihood, respectively, and the third step combines draws
from the all the subset pseudo posteriors. We discuss a few popular alternatives for
combining draws from the subset pseudo posteriors and offer novel convergence
rate results for an important subclass of combination approaches.
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3. DISTRIBUTED FRAMEWORK FOR BAYESIAN INFERENCE IN
SPATIAL REGRESSION MODELS

3.1 First Step: Partitioning of Spatial Locations

We partition the n spatial locations into k non-overlapping subsets. The default
partitioning scheme is to randomly allocate the locations into k possibly non-
overlapping subsets (referred to as the random partitioning scheme hereon) to
ensure that each subset has representative data samples from all subregions of
the domain. We provide discussion on the choice of k later.

Let Sj = {sj1, . . . , sjmj} denote the set of mj spatial locations in subset j
(j = 1, . . . , k). Conceptually, a spatial location can belong to multiple subsets,
though for this work we have assumed disjoint subsets, so that

∑k
j=1mj = n and

∪k
j=1Sj = S, where sji = si′ for some si′ ∈ S and for every i = 1, . . . ,mj and

j = 1, . . . , k. Denote the data in the jth partition as {yj ,Xj} (j = 1, . . . , k), where

yj = {y(sj1), . . . , y(sjmj )}T is a mj × 1 vector and Xj = [x(sj1) : · · · : x(sjmj )]
T

is a mj × p matrix of predictors corresponding to the spatial locations in Sj with
p < mj . In modern grid or cluster computing environments, all the machines in
the network have similar computational power, so the performances of distributed
Bayesian methods are optimized by choosing similar values of m1, . . . ,mk.

One can choose more sophisticated partitioning schemes than random parti-
tioning. For example, it is possible to cluster the data based on centroid clustering
(Knorr-Held and Raßer, 2000) or hierarchical clustering based on spatial gradi-
ents (Anderson et al., 2014, Heaton et al., 2017), and then construct subsets such
that each subsets contains representative data samples from each cluster. Detailed
exploration later shows that even random partitioning leads to desirable inference
in the various simulation settings and in the sea surface data example. Perhaps
more sophisticated blocking methods may provide further improvement in the
cases where spatial locations are drawn based on specific designs; for example,
sophisticated partitioning schemes have inferential benefits when a sub-domain
shows substantial local behavior compared to the others (Guhaniyogi and Sanso,
2017), or sampled locations are chosen based on a specific survey design. Since
they are atypical examples in the spatial context, we will pursue them elsewhere.

The univariate spatial GP regression model for any location sji ∈ Sj ⊂ D is

y(sji) = x(sji)
T β+w(sji) + ϵ(sji), i = 1, . . . ,mj .(5)

Let wT
j = {w(sj1), . . . , w(sjmj )} and ϵTj = {ϵ(sj1), . . . , ϵ(sjmj )} be the realiza-

tions of GP w(·) and white-noise process ϵ(·), respectively, in the jth subset.
After marginalizing over wj in the GP-based model for the jth subset, the
likelihood of ΩΩΩ = {α,β} is given by ℓj(ΩΩΩ) = N{yj | Xj β,Vj(α)}, where

Vj(α) = Cj(α)+Dj(α) and Vj(α) = C̃j(α)+Dj(α) for full-rank and low-rank
GP priors, respectively, and Cj(α), C̃j(α),Dj(α) are obtained by extending the
definitions of C(α), C̃(α),D(α) to the jth subset. The likelihood of wj given yj ,
Xj , and ΩΩΩ is ℓj(wj) = N{yj −Xj β | wj ,Dj(α)}. The likelihoods in ℓj(ΩΩΩ) and
ℓj(wj) yield the posterior distributions for β,α,w∗, y∗ (w∗ and y∗ have already
been defined in the second paragraph of Section 2) based on full-rank or low-rank
GP priors and are called jth subset pseudo posterior distributions.
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3.2 Second Step: Sampling From Subset Pseudo Posterior Distributions

We define subset pseudo posterior distributions by modifying the likelihoods in
ℓj(ΩΩΩ) and ℓj(wj). More precisely, the density of the jth subset pseudo posterior
distribution of ΩΩΩ is given by

πmj (ΩΩΩ | yj) =
{ℓj(ΩΩΩ)}n/mjπ(ΩΩΩ)∫
{ℓj(ΩΩΩ)}n/mjπ(ΩΩΩ)dΩΩΩ

,(6)

where we assume that
∫
{ℓj(ΩΩΩ)}n/mjπ(ΩΩΩ)dΩΩΩ < ∞, and the subscript ‘mj ’ denotes

that the density conditions on mj data samples in the jth subset. The modifi-
cation of likelihood to yield the subset pseudo posterior density in (6) is called
stochastic approximation (Minsker et al., 2014). Raising the likelihood to the
power of n/mj is equivalent to replicating every y(sji) n/mj times (i = 1, . . . ,mj),
so stochastic approximation accounts for the fact that the jth subset pseudo pos-
terior distribution conditions on a (mj/n)-fraction of the full data and ensures
that its variance is of the same order (as a function of n) as that of the full
data posterior distribution. Unlike parametric models, stochastic approximation
in spatial regression models has not been studied previously in the literature.

We address this gap using the proposed stochastic approximation in (6). The
full conditional densities of jth subset pseudo posterior distributions for predic-
tion and inference follow from their full data counterparts. The jth full conditional
densities of β and α in the GP-based models are

πmj (β |yj ,α)=
{ℓj(ΩΩΩ)}n/mjπ(β)∫
{ℓj(ΩΩΩ)}n/mjπ(β)dβ

, πmj (α |yj ,β)=
{ℓj(ΩΩΩ)}n/mjπ(α)∫
{ℓj(ΩΩΩ)}n/mjπ(α)dα

,

where π(β) = N(µβ,Σβ), π(α) is the prior density of α, and we assume that∫
{ℓj(ΩΩΩ)}n/mjπ(β)dβ and

∫
{ℓj(ΩΩΩ)}n/mjπ(α)dα respectively are finite. The jth

full conditional densities of y∗ and w∗ are calculated after modifying the likeli-
hood of wj using stochastic approximation. Given yj , Xj , and ΩΩΩ, straightforward
calculation yields that the jth subset pseudo posterior predictive density of w∗

is πmj (w
∗ | yj ,ΩΩΩ) = N(w∗ | mj∗,Vj∗), with

Vj∗=C∗,∗(α)−C∗j(α)Vj(α)−1C∗j(α)T , mj∗=C∗j(α)Vj(α)−1(yj−Xj β),

where Vj(α) = Cj(α)+(n/mj)
−1Dj(α) and Vj(α) = C̃j(α)+(n/mj)

−1Dj(α)
for full-rank and low-rank GP priors, respectively, and C∗,∗(α),C∗j(α) are l× l,
l×mj matrices obtained by extending the definition in (3) to subset j for full-rank
and low-rank GP priors with covariance functions Cα(·, ·) and C̃α(·, ·), respec-
tively. We note that the stochastic approximation exponent, n/mj , scales Dj(α)
in Vj(α) so that the uncertainty in subset and full data posterior distributions
are of the same order (as a function of n). The jth subset pseudo posterior pre-
dictive density of y∗ given the MCMC samples of w∗ and ΩΩΩ in the jth subset is
N{y∗ | X∗ β+w∗,Dj(α)}.

We specialize the sampling algorithm (Steps 1–3) introduced in Section 2 to
subset j (j = 1, . . . , k), sampling {β,α,y∗,w∗} in each subset across multiple
MCMC iterations; see supplementary material for subset pseudo posterior sam-
pling algorithms in the full-rank and low-rank GP priors. The computational
complexity of jth subset pseudo posterior computations follows from their full
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data counterparts if we replace n by mj . Specifically, the computational com-
plexities for sampling a subset pseudo posterior are O(m3) and O(mr2) flops per
iteration if the model in (5) uses a full-rank or a low-rank GP prior, respectively,
where m = maxj mj . Performing subset pseudo posterior computations in paral-
lel across k servers also alleviates the need to store large covariance matrices. We
hereon refer to subset pseudo posterior as subset posterior.

Our second step in the distributed framework resembles some existing meth-
ods based on the composite likelihood (Varin et al., 2011); for example, Chandler
and Bate (2007) and Ribatet et al. (2012) construct pseudo likelihood to re-
place the full data likelihood, where the pseudo likelihood attempts to capture
important features of the full data likelihood while offering computational ef-
ficiency. In the context of geostatistical modeling with GP or its variants, for
computational efficiency, the pseudo likelihood will naturally be based on inde-
pendence of data blocks at some level. To make up for the incorrect asymptotic
distribution of the posterior distribution due to the incorrect independence as-
sumption, they propose a number of adjustments in the composite log likelihood
(e.g., the margin adjustment and the curvature adjustment). Similar to these
approaches, the likelihood adjustment in each subset for the second step of our
general distributed approach is also born out of consideration to scale the asymp-
totic variance of subset posteriors to the same order as the asymptotic variance
of the full posterior; however, unlike these composite likelihood approaches, the
distributed approaches we focus on do not assume any restrictive structure (e.g.,
block independence) in the data likelihood. In fact, there is no guarantee that
the induced data likelihood that leads to the combined pseudo posterior for any
distributed method assumes any block independence form. Moreover, Savitsky
and Srivastava (2018) represents an example of embedding a composite likeli-
hood in a distributed setup that computes the Wasserstein barycenter. Likewise,
we believe that most of these “flexible” composite likelihoods can be used in ex-
tensions of the distributed framework for subset sampling in models where the
true likelihood is unavailable or expensive to compute.

3.3 Third Step: Combination of Subset Posterior Distributions

We now discuss strategies for combining subset posteriors to construct a “com-
bined pseudo posterior”, which is used as an computationally efficient alternative
to the full data posterior. The combination strategies discussed here include rep-
resentative approaches used for the distributed Bayesian inference in independent
data, but they have not been studied empirically or theoretically for correlated
spatial data setting. Specifically, we compare the following combination schemes
with our approach: (i) Consensus Monte Carlo (CMC); (ii) Double Parallel Monte
Carlo (DPMC); and (iii) combination through the Wasserstein barycenter.
Consensus Monte Carlo (CMC)
For a scalar or vector parameter of interest θ, Consensus Monte Carlo (CMC)
(Scott et al., 2016) draws samples from an approximation of the full posterior.
In our setting, θ can be taken as β, α, w∗, y∗, their individual components, or

any functional of these parameters. Let
{
θ
(j)
1 , . . . , θ

(j)
T

}
denote the T posterior

samples of θ generated from subset j post convergence. Based on the Bernstein-
von Mises (BvM) theorem, Scott et al. (2016) proposed to use the weighted

average
∑k

j=1wjθ
(j)
i , i = 1, . . . , T to approximate T samples from the full data
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posterior, where the BvM theorem says that the full data posterior tends to a
normal distribution centered around the true parameter value as n grows and wj

is the inverse of the empirical covariance matrix of
{
θ
(j)
1 , . . . , θ

(j)
T

}
. This algorithm

is exact when the samples are independent and each subset posterior is Gaussian,
but this assumption is rarely satisfied in spatial applications.
Double Parallel Monte Carlo (DPMC)
Following the notation for CMC, let θ be the parameter of interest. Denote the

average of θ draws on the subset j as θ
(j)

= (θ
(j)
1 + . . .+θ

(j)
T )/T (j = 1, . . . , k) and

θ = (θ
(1)

+ . . .+θ
(k)

)/k be their average. DPMC (Xue and Liang, 2019) re-centers
each of the subset posteriors to θ and then uses the mixture of re-centered subset

posteriors, given by 1
k

∑k
j=1 πmj (θ − θ + θ

(j)|yj), to approximate the full data
posterior. Following the implementation of DPMC in the context of independent

data, we simply transform θ
(j)
t to θ+(θ

(j)
t − θ

(j)
) (t = 1, . . . , T ; j = 1, . . . , k) and

treat them as draws from the combined posterior distribution.
Combining subset posteriors using Wasserstein barycenter
This combination algorithm relies on the notion of Wasserstein barycenter (Sri-
vastava et al., 2015). If ν1, . . . , νk are the k subset posterior distributions of θ, then
the combined pseudo posterior ν is the Wasserstein barycenter that is defined as

ν = argmin
ν∈P2(Θ)

1

k

k∑
j=1

W 2
2 (ν, νj), W 2

2 (µ, ν) = inf
π∈Π(µ,ν)

∫
Θ×Θ

∥x− y∥2 dπ(x, y),(7)

where ∥ · ∥ is a metric on the parameter space Θ, P(Θ) be the space of all
probability measures on Θ, P2(Θ) = {µ ∈ P(Θ) :

∫
Θ ∥θ − θ0∥2µ(dθ) < ∞},

W2(µ, ν) is the Wasserstein distance between µ, ν ∈ P2(Θ), and Π(µ, ν) is the
space of all joint distributions of Θ×Θ with µ, ν as marginals. It is known that
ν exists and is unique (Agueh and Carlier, 2011).

In practice, νj is replaced by its empirical approximation obtained using the
θ draws from subset j. A variety of efficient algorithms are available to provide
an empirical approximation of ν (j = 1, . . . , k) (Cuturi and Doucet, 2014). This
approach for combining subset posteriors leads to the combined pseudo posterior
referred to as the Wasserstein posterior (WASP), which is preferred over several
other combination methods for independent data (Srivastava et al., 2018); for
example, directly averaging over many subset posterior densities with different
means can usually result in an undesirable multimodal pseudo posterior distri-
bution, but the WASP does not have this problem; see Figure 1 in Srivastava
et al. (2018). Besides, the WASP does not rely on the asymptotic normality of
the subset posterior distributions as in other approaches, such as the CMC.
Computing the WASP with constraints
Computing the WASP is inefficient if k is large, so ν is computed with additional
constraints (Srivastava and Xu, 2021). One such approach constrains θ to be
a one-dimensional functional of β, α, w∗, or y∗. For a scalar parameter, the
Wasserstein barycenter of θ can be easily obtained by averaging empirical subset
posterior quantiles (Li et al., 2017). We refer to this approach as distributed
kriging (DISK) and the combined pseudo posterior is called as the DISK posterior.
Let ν and νj be the full posterior and jth subset posterior distribution of θ, and
ν be the Wasserstein barycenter of ν1, . . . , νk as in (7). For any q ∈ (0, 1), let ν̂qj
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be the qth empirical quantile of νj based on the MCMC samples from νj , and ν̂
q

be the qth quantile of the empirical version of ν. Then, ν̂
q
can be computed as

ν̂
q
=

1

k

k∑
j=1

ν̂qj , q = ξ, 2ξ, . . . , 1− ξ,(8)

where ξ is the grid-size of the quantiles. If the ξ-grid is fine enough, then the θ
draws from the marginal DISK distribution are obtained by inverting the empir-
ical distribution function supported on the quantile estimates (Li et al., 2017).
In practice, the primary interest often lies in the posterior distribution of some
one-dimensional functional of θ; therefore, the univariate WASP obtained by av-
eraging quantiles in (8) accomplishes this with great generality and convenient
implementation. Our simulation studies in Section 4 investigate if the multi-
variate combination approaches in CMC, DPMC, or WASP lead to any notable
improvement over the univariate quantile combination in (8).

The choice of the grid size is mainly determined by the Monte Carlo approxi-
mation error of each subset posterior. In general, the Monte Carlo approximation
error to subset posteriors can be measured in terms of the size of MCMC sam-
ples (say T ). This error is evaluated by taking T to infinity and differs from the
statistical error, where n tends to infinity. In the context of distributed Bayesian
inference for independent data, Theorem 3 in the supplementary material of Li
et al. (2017) has shown that the Monte Carlo error is usually in some polynomial
order of T such as O(T−1/2) and O(T−1/4) depending on the distance measure
and is independent of the statistical error defined in terms of n. Following this
intuition, in application, we usually draw at least 104 MCMC samples for each
subset posterior and use all of them to construct the quantiles.

A key feature of the combination scheme for the four distributed approaches is
that given the subset posterior MCMC samples, the combination step is agnostic
to the choice of a model. Specifically, given MCMC samples from the k subset
posterior distributions, (8) remains the same for models based on a full-rank
GP prior, a low-rank GP prior, such as MPP, or any other model described in
Section 1.1. Since the combination step over k subsets takes O(k) flops for all
four combination schemes and k < n, the total time for computing the empirical
quantile estimates of the combined pseudo posterior in inference or prediction
requires O(k)+O(m3) and O(k)+O(rm2) flops in models based on full-rank and
low-rank GP priors, respectively. Assuming that we have abundant computational
resources, k is chosen large enough so that O(m3) computations are feasible. This
would enable applications of the proposed distributed framework in models based
on both full-rank and low-rank GP priors in massive n settings.

3.4 Bayes L2-Risk: Bias-Variance Decomposition and Convergence Rates

In the distributed Bayesian setup, it is already known that when the data are
independent and identically distributed (i.i.d.), the combined posterior distribu-
tion using the Wasserstein barycenter of subset posteriors approximates the full
data posterior distribution at a near optimal parametric rate, under certain con-
ditions as n, k,m1, . . . ,mk → ∞ (Li et al., 2017, Srivastava et al., 2018); however,
in models based on spatial process, data are not i.i.d. and inference on the infinite
dimensional true spatial surface is of primary importance. Few formal theoretical
results are available in this nonparametric distributed Bayes setup. The recent
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work (Szabo and van Zanten, 2019) has shown that combination using Wasser-
stein barycenter has optimal Bayes risk and adapts to the smoothness of w0(·),
the true but unknown w(·), in the Gaussian white noise model, which is a special
case of (1) with additional smoothness assumptions on w0(·).

We mainly focus on the theoretical properties of the DISK posterior of the mean
surface x(·)T β+w(·), and our theoretical framework can be possibly extended
to the other three combination schemes described in Section 3.3. For ease of
presentation, we assume that m1 = · · · = mk = m and k = n/m. Determining
the appropriate order for k in terms of n is one of the key issues for all distributed
statistical methods. Our theory below reveals that the number of subsets k cannot
increase too fast with n, or equivalently, the subset size m cannot be too small,
mainly because a small subset size m will result in larger random errors in the
estimation from subset posterior distributions.

We formally explain the model setup for our theory development. Suppose
that the data generation process follows the model (1) with the true parameter
value ΩΩΩ0 = (α0,β0) and the true spatial surface w0(·). We focus on the Bayes
L2-risk of the DISK predictive posterior for the mean function in (1); that is,
x(s∗)T β+w(s∗) for any testing location s∗ ∈ S. To ease the complexity of our
theory, we first present two theorems below for the simplified model

y(si) = w(si) + ϵ(si), ϵ(si) ∼ N
(
0, τ2

)
, w(·) ∼ GP{0, λ−1

n Cα(·, ·)},(9)

for i = 1, . . . , n. Compared to the spatial model (1), the model (9) does not
contain the regression term x(s)T β; however, our theory includes this regression
term later by modifying the covariance function; see Corollary 3.3 below. The
tuning parameter λn is a user-chosen deterministic sequence that depends on n.
In real applications, one can simply set λn = 1, but one can also choose λn such
that the posterior convergence rate is minimax optimal; see Theorem 3.2 below
and the discussions therein.

We introduce some theoretical definitions used in stating our results. Let
α0 be the true kernel parameter. Let Ps be a design distribution of s over D,
L2(Ps) be the L2 space under Ps, the inner product in L2(Ps) is defined as
⟨f, g⟩L2(Ps) = EPs(fg) for any f, g ∈ L2(Ps) where EPs(·) represents an expec-
tation taken with with respect to the distribution, Ps. For any f ∈ L2(Ps) and
s ∈ D, define the linear operator (Tα0f)(s) =

∫
D Cα0(s, s

′)f(s′)dPs(s
′). Accord-

ing to the Mercer’s theorem, there exists an orthonormal basis {φi(s)}∞i=1 in
L2(Ps), such that Cα0(s, s

′) =
∑∞

i=1 µiφi(s)φi(s
′), where µ1 ≥ µ2 ≥ . . . ≥ 0

are the eigenvalues and {φi(s)}∞i=1 are the eigenfunctions of Tα0 . The trace of
the kernel Cα0 is defined as tr(Cα0) =

∑∞
i=1 µi. Any f ∈ L2(Ps) has the series

expansion f(s) =
∑∞

i=1 θiφi(s), where θi = ⟨f, φi⟩L2(Ps). The reproducing kernel
Hilbert space (RKHS) H attached to Cα0 is the space of all functions f ∈ L2(Ps)
such that the H-norm ∥f∥2H =

∑∞
i=1 θ

2
i /µi < ∞. The RKHS H is the completion

of the linear space of functions defined as
∑I

i=1 aiCα0(si, ·), where I is a positive
integer, si ∈ D, and ai ∈ R (i = 1, . . . , I); see van der Vaart and van Zanten
(2008) for more details on RKHS.

We impose the following assumptions.

A.1 (Sampling) The locations S = {s1, . . . , sn} and s∗ are independently drawn
from the same sampling distribution Ps. S1, . . . ,Sk is a random disjoint
partition of S, each with size m = n/k.
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A.2 (True model) The true function w0 is an element of the RKHS H attached
to the kernel Cα0 . At a location s, the observation is y(s) = w0(s) + ϵ(s),
where ϵ(s) is a white noise process with the true variance τ20 < ∞.

A.3 (Trace class kernel) tr(Cα0) < ∞.
A.4 (Moment condition) There are positive constants ρ and q > 4 such that

EPs{φ
2q
i (s)} ≤ ρ2q for every i ∈ N.

The random partition in A.1 guarantees that each individual subset Sj (j =
1, . . . , k) is a random sample from Ps. In general, the RKHS H in A.2 can be a
smaller space relative to the support of the GP prior. While we use w0 ∈ H in A.2
mainly for technical simplicity, this assumption can be possibly relaxed by con-
sidering sieves with increasing H-norms, similar to Assumption B′ and Theorem
2 in Zhang et al. (2015). Furthermore, A.2 only requires that the true unknown
error distribution to have a finite variance. Although we fit the data using the
normal error in model (9), our theory below allows this error distribution to be
misspecified and not normal; therefore, our posterior convergence rate results also
hold for heavy-tailed error distributions such as t4, which are more general than
van der Vaart and van Zanten (2011) whose techniques fully depend on the nor-
mal error assumption. In A.3, tr(Cα) measures the size of the covariance function
and imposes conditions on the regularity of functions that DISK can learn. A.4
on the eigenfunctions controls the error in approximating Cα0(s, s

′) by a finite
sum, similar to Assumption A in Zhang et al. (2015).

We first consider the case where both the error variance τ2 and the kernel
parameter α are fixed and known, similar to van der Vaart and van Zanten
(2011). We extend our results to a special case where τ2 is assigned a prior with
bounded support in Corollary 1.1 of the supplementary material.

A.5 (Fixed parameters) α and τ2 are fixed at their true values α = α0, τ
2 = τ20 .

We begin by examining the Bayes L2-risk of the DISK posterior for estimating
w0 in (9). Let w(s∗) be a random variable that follows the DISK posterior for
estimating w0(s

∗). Let Es∗ , ES , and Ey,w(s∗)|S,s∗ respectively be the expectations
with respect to the distributions of s∗, S, and {y, w(s∗)} given S, s∗. Given the
random partition assumption in A.1, each individual subset Sj (j = 1, . . . , k) is
a random sample from Ps. By A.5, we can drop the subscript “0” in α0 and τ20 .
Then, w(s∗) given y,S, s∗ has the density N(m, v), where

m =
1

k

k∑
j=1

cTj,∗(Cj,j +
τ2λn
k I)−1 yj ,

v1/2 =
1

k

k∑
j=1

v
1/2
j , vj = λ−1

n

{
c∗,∗ − cTj,∗(Cj,j +

τ2λn
k I)−1 cj,∗

}
,(10)

c∗,∗ = cov{w(s∗), w(s∗)}, and cTj,∗ = [cov{w(sj1), w(s∗)}, . . . , cov{w(sjm), w(s∗)}].
The Bayes L2-risk of DISK in estimating w0 is Es∗ ES Ey,w(s∗)| S,s∗{w(s∗)−w0(s

∗)}2.
This risk can be used to quantify how quickly the DISK posterior concentrates
around the unknown true surface w0(·) as the total sample size n increases to
infinity. The convergence rate of this Bayes L2-risk towards zero also gives the
posterior contraction rate of the DISK posterior defined in the same way as in
Bayesian nonparametrics, such as van der Vaart and van Zanten (2011, Theorem
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2). When the parameters τ2 and α are fixed and known, it is straightforward
to show (see the proof of Theorem 3.1 in the supplementary material) that this
Bayes L2-risk can be decomposed into the squared bias, the variance of subset
posterior means, and the variance of DISK posterior terms as

bias2 = Es∗ ES{cT∗ (kL+τ2λn I)
−1w0−w0(s

∗)}2,
varmean = τ2 Es∗ ES

{
cT∗ (kL+τ2λn I)

−2 c∗
}
,

varDISK = Es∗ ES{v(s∗)},(11)

where v(s∗) = Ey|S [var{w(s∗) | y}], cT∗ = (cT1,∗, . . . , c
T
k,∗),w0j = {w0(sj1), . . . , w0(sjk)}

for j = 1, . . . , k, wT
0 = (w01, . . . ,w0k), and L is a block-diagonal matrix with

C1,1, . . . ,Ck,k along the diagonal. The next theorem provides theoretical upper
bounds for each of the three terms in (11).

Theorem 3.1 If Assumptions A.1–A.5 hold, then

Bayes L2 risk = Es∗ ES Ey,w(s∗)| S,s∗{w(s∗)− w0(s∗)}2

= bias2 + varmean + varDISK,

bias2 ≤ 8τ2λn

n
∥w0∥2H

+ ∥w0∥2H inf
d∈N

[
8n

τ2λn
ρ4 tr(Cα) tr(C

d
α) + µ1R(m,n, d, q)

]
,

varmean ≤
(

2n

kλn
+

4∥w0∥2H
k

)
inf
d∈N

[
µd+1 +

12n

τ2λn
ρ4 tr(Cα) tr(C

d
α)

+R(m,n, d, q)

]
+

12τ2λn

kn
∥w0∥2H + 12

τ2

n
γ

(
τ2λn

n

)
,

varDISK ≤ 3
τ2

n
γ

(
τ2λn

n

)
+ inf

d∈N

[{
4n

τ2λ2
n

tr(Cα) +
1

λn

}
tr(Cd

α)

+ λ−1
n tr(Cα)R(m,n, d, q)

]
,(12)

where N is the set of all positive integers, A is a global positive constant that does
not depend on any of the quantities here, and

b(m, d, q) = max

(√
max(q, log d),

max(q, log d)

m1/2−1/q

)
,

R(m,n, d, q) =

{
Aρ2b(m, d, q)γ(τ2λn/n)√

m

}q

,

γ(a) =

∞∑
i=1

µi

µi + a
for any a > 0, tr(Cd

α) =

∞∑
i=d+1

µi.

These upper bounds are similar to the bounds obtained in Theorem 1 of Zhang
et al. (2015) for the frequentist distributed estimator in kernel ridge regression.
Although the upper bounds in (12) appear very complicated and involve many

terms, the dominant term among them is τ2

n γ
(
τ2λn
n

)
, where the function γ(·) is
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related to the “effective dimensionality” of the covariance function Cα (Zhang,
2005). This term determines how fast the Bayes L2-risk converges to zero, as
long as k is chosen to be some proper order of n such that all the other terms

in the upper bounds of (12) can be made negligible compared to τ2

n γ
(
τ2λn
n

)
. In

particular, the term R(m,n, d, q) that quantifies the random error and appears
in the infimums in all three upper bounds of (12) generally decreases with m

and increases with k; therefore, to ensure the dominance of τ2

n γ
(
τ2λn
n

)
, k cannot

increase too fast with n; see Theorem 3.2 below.
In contrast to the frequentist literature such as Zhang et al. (2015), a signifi-

cant difference in our Theorem 3.1 is that our risk bounds involve two different
variance terms. Our analysis naturally introduces the variance term varDISK that
corresponds to the variance of the DISK posterior distribution, while frequentist
kernel ridge regression only finds a point estimate of w0 and thus does not in-
clude this variance term. Each of the three upper bounds in Theorem 3.1 can
be made close to zero as n increases to ∞ and k is chosen to grow at an ap-
propriate rate depending on n. The next theorem finds the appropriate order
for k in terms of n, such that the DISK posterior achieves nearly minimax opti-
mal rates in its Bayes L2-risk (12), for three types of commonly used covariance
functions/kernels, (i) degenerate kernels, (ii) kernels with exponentially decaying
eigenvalues, and (iii) kernels with polynomially decaying eigenvalues. The kernel
Cα is a degenerate kernel of rank d∗ if there is some constant positive integer d∗

such that µ1 ≥ µ2 ≥ . . . ≥ µd∗ > 0 and µd∗+1 = µd∗+2 = . . . = µ∞ = 0.

Theorem 3.2 If Assumptions A.1–A.5 hold, then as n → ∞,

(i) if Cα is a degenerate kernel of rank d∗, λn = 1, and k ≤ cn
q−4
q−2 /(log n)

2q
q−2

for some constant c > 0, then the Bayes L2-risk of DISK posterior satisfies
Es∗ ES Ey,w(s∗)| S,s∗{w(s∗)− w0(s

∗)}2 = O
(
n−1

)
;

(ii) if µi ≤ c1µ exp (−c2µi
κ) for some constants c1µ > 0, c2µ > 0, κ > 0 and all

i ∈ N, λn = 1, and for some constant c > 0, k ≤ cn
q−4
q−2 /(log n)

2(qκ+q−1)
κ(q−2) , then

the Bayes L2-risk of DISK posterior satisfies Es∗ ES Ey,w(s∗)| S,s∗{w(s∗) −
w0(s

∗)}2 = O
{
(log n)1/κ/n

}
;

(iii) if µi ≤ cµi
−2η for some constants cµ > 0, η > q−1

q−4 and all i ∈ N, λn = 1,

and for some constant c > 0, k ≤ cn
(q−4)η−(q−1)

(q−2)η /(log n)
2q
q−2 , then the Bayes

L2-risk of DISK posterior satisfies Es∗ ES Ey,w(s∗)| S,s∗{w(s∗)− w0(s
∗)}2 =

O
(
n
− 2η−1

2η

)
; and

(iv) if µi ≤ cµi
−2η for some constants cµ > 0, η > q−1

q−4 and all i ∈ N, λn =

c1n
1/(2η+1), and k ≤ c2n

(2η−1)q−8η
(q−2)(2η+1) /(log n)

2q
q−2 for some positive constants

c1, c2, then the Bayes L2-risk of DISK posterior satisfies

Es∗ ES Ey,w(s∗)| S,s∗{w(s∗)− w0(s
∗)}2 = O

(
n
− 2η

2η+1

)
.

In Theorem 3.2, the space of w0 is the RKHS H attached to Cα by Assumption
A.2. In Case (i), the RKHS of Cα is a d∗-dimensional space of functions. For ex-
ample, the covariance functions in subset of regressors approximation (Quiñonero-
Candela and Rasmussen, 2005) and predictive process (Banerjee et al., 2008) are
both degenerate with their ranks equaling the number of inducing variables and
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knots, respectively. One example of Case (ii) is the squared exponential kernel,
which is popular in machine learning. The squared exponential kernel defined on
R with Ps being a Gaussian measure has exponentially decaying eigenvalues (Zhu
et al., 1998), and it RKHS only contains functions with infinite smoothness. The
rate of decay of the L2-risks in Case (i) and Case (ii) with κ = 2 are known to
be minimax optimal (Raskutti et al., 2012, Yang et al., 2017).

Cases (iii) and (iv) apply to the class of kernels with polynomially decaying
eigenvalues. For example, consider the Matérn covariance function Cσ2,ϕ,ν(s, s

′) =

σ2 21−ν

Γ(ν) (ϕ∥ s− s′ ∥)ν Kν (ϕ∥ s− s′ ∥), where s, s′ ∈ D ⊂ Rd, σ2 > 0, ϕ > 0,

α = (σ2, ϕ), ν ≥ d/2 is known, Γ(·) is the gamma function, and Kν(·) is the
modified Bessel function of the second kind. Then the RKHS of Cσ2,ϕ,ν(s, s

′)
defined on a compact domain D with Lipschitz boundary is norm equivalent to
the Sobolev space with order ν + d/2 (Wendland 2005, Corollary 10.48). Fur-
thermore, when Ps is the uniform distribution on D, the eigenvalues of Matérn
kernels decay as µi ≤ cµi

−2ν/d for all i ∈ N, such that η = ν/d in Cases (iii)
and (iv) (Santin and Schaback 2016, Theorem 6). In the special case of ν = 1/2
and d = 1, Cσ2,ϕ,1/2(s, s

′) = σ2 exp (−ϕ∥ s− s′ ∥) is the exponential kernel, whose
eigenfunctions are bounded sine and cosine functions, so (A.4) is also satisfied
with q = +∞ (Van Trees 2001, Section 3.4.1). It is unknown whether the eigen-
functions of Matérn kernels can be uniformly bounded for general ν and d.

When η = ν/d in Cases (iii) and (iv), the rate O
(
n− 2ν−d

2ν

)
for the Bayes L2-

risk in Case (iii) is not minimax optimal for estimating functions in the Sobolev

space of order ν+d/2, whereas the faster rate O
(
n− 2ν

2ν+d
)
in Case (iv) is minimax

optimal. This is because (iv) has used the additional optimal tuning parameter
λn = c1n

ν/(2ν+d), while setting λn = 1 is sub-optimal in this case. The use
of a tuning parameter to achieve optimal convergence is common in Gaussian
process regression and kernel ridge regression (Zhang et al., 2015, Yang et al.,
2017). Although van der Vaart and van Zanten (2011) have shown the minimax
optimal posterior convergence rates for the Matérn kernel without using tuning
parameters, their proof only works when the true error distribution of ϵ(s) is sub-
Gaussian. In comparison, our Assumption A.1 only requires that ϵ(s) has a finite
variance without the normality assumption, which is more general and allows the
model (9) to be misspecified in the error distribution.

For the conditions on k, in the case when q = +∞, the upper bounds on
k in (i), (ii), (iii), and (iv) reduce to k = O{n/(log n)2}, k = O{n/(log n)2/κ},
k = O{n

η−1
η /(log n)2}, and k = O{n

2η−1
2η+1 /(log n)2}, respectively. The convergence

rate results in Theorem 3.2 hold as long as k does not grow too fast with n.
We can generalize the results in Theorems 3.1 and 3.2 to the model (1). Besides

A.1–A.4, we further make the following assumption on x(·) and the prior on β:

B.1 All p components of x(·) are non-random functions in S. The prior on β is
N(µβ,Σβ) and it is independent of the prior on w(·), which is GP{0, Cα(·, ·)}.

By the normality and joint independence in Assumption B.1, it is straightforward
to show that the mean function x(s)T β+w(s) has a GP prior GP

{
x(·)T µβ, Čα(·, ·)

}
,

where the modified covariance function Čα is given by

Čα(s1, s2) = cov
{
x(s1)

T β+w(s1), x(s2)
T β+w(s2)

}
= x(s1)

T Σβ x(s2) + Cα(s1, s2), for any s1, s2 ∈ S .(13)
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With this modified covariance function, we have the following corollary:

Corollary 3.3 If Assumption B.1 holds, Assumptions A.1–A.5 hold with all Cα

replaced by Čα in (13), and µβ = 0, the conclusions of Theorems 3.1 and 3.2
hold for the Bayes L2-risk of the mean surface x(·)T β+w(·) in the model (1).

4. EXPERIMENTS

4.1 Simulation Setup

This section presents a comparative study of important non-distributed and
distributed approaches on large spatial data based on the performance in learn-
ing the process parameters, interpolating the unobserved spatial surface, and
predicting the response at new locations. Two simulation studies and a real data
analysis are presented. The first simulation (Simulation 1 ) generates the data
from a spatial linear model, where the spatial process is simulated from a GP
with an exponential covariance function, leading to a fairly rough (nowhere differ-
entiable) spatial surface. Following Gramacy and Apley (2015), we use an analytic
function with local features to simulate the data in the second simulation (Sim-
ulation 2 ). The number of locations in the two simulations is moderately large
with n = 10, 000. Our real data analysis is based on a large data subset of sea
surface temperature data with n = 1, 000, 000 locations. For the two simulations
and in the real data analysis, the response at (n+ l) locations is modeled as

y(si) = β0 + x(si)β1 + w(si) + ϵi, ϵi ∼ N(0, τ2), si ∈ D ⊂ R2,(14)

for i = 1, . . . , n + l, where D is the spatial domain, y(si), x(si), w(si), and ϵi
are the response, covariate, spatial process, and idiosyncratic error values at the
location si, β0 is the intercept, β1 models the covariate effect, and l is the number
of new locations where surface interpolation and prediction are sought.

A number of popular and state-of-the-art non-distributed Bayesian and non-
Bayesian spatial models are compared with a few important distributed Bayesian
approaches in the two simulations and in the real data analysis. Among non-
distributed Bayesian and non-Bayesian methods, we fit: (i) Integrated nested
Laplace approximation (INLA) using the INLA package in R (Illian et al., 2012);
(ii) LatticeKrig (Nychka et al., 2015) using the LatticeKrig package in R with
3 resolutions (Nychka et al., 2016); (iii) modified predictive process (MPP) using
the spBayes package in R with the full data; (iv) nearest neighbor Gaussian
process (NNGP) using the spNNGP package in R with the number of nearest
neighbors m set to be 10, 20, and 30 (Datta et al., 2016); (v) locally approximated
Gaussian process (laGP) using the laGP package in R (Gramacy and Apley, 2015);
(vi) Vecchia’s approximation using the GPvecchia package in R with the number
of nearest neighbors m set to be 10, 20, and 30 (Katzfuss and Guinness, 2021);
(vii) Fisher Scoring of Vecchia’s Approximation using the GpGp (Guinness, 2019).

In fitting (i), (ii), (iv), (v), (vi), (vii), we assume an exponential correlation in
the random field given by cov{w(s), w(s′)} = σ2e−ϕ∥ s− s′ ∥, s, s′ ∈ D. To fit MPP
for (iii), the MPP prior on w(·) is fitted with rank r = 200, 400 in Simulations
1, 2 and with r = 400, 600 in the real data analysis, where r knots are selected
randomly from D. For Bayesian model fitting, we apply a flat prior on (β0, β1),
a IG(2, 0.1) prior on τ2, an IG(2, 2) prior on σ2 and a uniform prior on ϕ, where
IG(a, b) is the Inverse-Gamma distribution with mean b/(a− 1).
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The non-distributed approaches are compared with distributed Bayesian meth-
ods for model-free subset posterior aggregation discussed in Section 3 of this
article. They are (viii) CMC (Scott et al. (2016)); (ix) DPMC (Xue and Liang
(2019)); (x) WASP (Srivastava et al. (2015)); (xi) DISK (with ξ = 10−4), for our
exposition. Identical priors, covariance functions, ranks, and knots are used for
the non-distributed process models and their distributed counterparts for a fair
comparison. We emphasize that the distributed methods do not compete with
the non-distributed methods in (i)-(vii). Instead, each of them can be potentially
embedded in the second step of any of the distributed methods for improved
performance because the distributed approaches are not model-specific. More
importantly, MPP is not considered to be the state-of-the-art, so it is instructive
to investigate the competitiveness of (viii)-(xi) with MPP fitted on each subset.

In the interest of space, we present the performance comparison between dis-
tributed and non-distributed approaches only, and similar comparisons between
CMC, DISK, DPMC and WASP are presented in the supplementary material.
Because DISK shows better or similar performance as its distributed competitors
in all simulations, we only present results from DISK with the non-distributed
methods in the main text. Notably, DISK combines one-dimensional marginals of
subset posteriors, but DPMC and WASP aggregate subset posteriors of multivari-
ate parameters; therefore, similar performances of DISK, DPMC, and WASP in
the supplementary material shows that combining subset posteriors of univariate
parameters does not lead to any significant loss in inference or predictions.

Any distributed method has two important choices: (A) the value of k and
(B) the construction of subsets. We choose k in our experiments based on two
broad guidelines: (a) available computational resources and (b) the subset size to
draw reliable inference on the spatial surface with data subsets. To assess (b), we
plot the histograms or density estimates of subset posterior draws of represen-
tative parameters and see if they are very far from each other. If so, the subset
posteriors fail to provide a noisy approximation of the full data posterior, result-
ing in inaccuracy of the combined pseudo posterior for a distributed approach.
Empirically, we also propose computing the pairwise Wasserstein or total varia-
tion distance between the subset posteriors of representative parameters. If the
average of these distances is much larger than the average distance between the
combined and subset posterior distributions, then the combined pseudo posterior
provides a poor approximation of the full data posterior. Assuming that the fit-
ted model can reasonably capture variation of the data, these checks would imply
that one has to fit a distributed approach with a smaller value of k.

Regarding (B), we present performance of the distributed approaches when
data subsets are constructed (a) under a random partitioning scheme and (b) un-
der a grid partitioning scheme. Random partitioning scheme randomly partitions
the data into subsets. In contrast, grid partitioning scheme partitions the domain
into a number of sub-domains and creates each subset with representative sam-
ples from each sub-domain. All tables in the main article and in supplementary
material show results from both partitioning schemes.

We run all the experiments on an Oracle Grid Engine cluster with 2.6GHz
16 core compute nodes. The non-distributed methods (INLA, LatticeKrig, MPP,
NNGP, laGP, GPvecchia, and GpGp) and the distributed methods (DISK, DPMC,
CMC, and WASP) are allotted memory resources of 64GB and 16GB, respec-
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tively. Every MCMC algorithm runs for 10,000 iterations, out of which the first
5,000 MCMC samples are discarded as burn-ins and the rest of the chain is
thinned by collecting every fifth MCMC sample. We also refer to Section 5 of
the supplementary material that presents comparison between effective sample
size of model parameters averaged over all subsets to the effective sample size
of model parameters from the full data posterior in simulations. We compare
the quality of prediction and estimation of spatial surface at predictive locations
S∗ = {s∗1, . . . , s∗l }. If w(s∗i′) and y(s∗i′) are the value of the spatial surface and
response at s∗i′ ∈ S∗, then the estimation and prediction errors are defined as

Est Err2 =
1

l

l∑
i′=1

{ŵ(s∗i′)− w(s∗i′)}2, Pred Err2 =
1

l

l∑
i′=1

{ŷ(s∗i′)− y(s∗i′)}2,(15)

where ŵ(s∗i′) and ŷ(s∗i′) denote the point estimates of w(s∗i′) and y(s∗i′) obtained
using any distributed or non-distributed methods. For sampling-based methods,
we set ŵ(s∗i′) and ŷ(s∗i′) to be the medians of posterior MCMC samples for w(s∗i′)
and y(s∗i′), respectively, for i′ = 1, . . . , l. We also estimate the point-wise 95%
credible or confidence intervals (CIs) of w(s∗i′) and predictive intervals (PIs) of
y(s∗i′) for every si′ ∈ S∗ and compare the CI and PI coverages and lengths for every
method. Finally, we compare the performance of all the methods for parameter
estimation using the posterior medians and the 95% CIs. Posterior medians are
reported instead of posterior means as point estimators since they are easily
estimated for the DISK combined posterior following equation (8).

4.2 Simulation 1: Spatial Linear Model Based On GP

Table 1
The errors in estimating the parameters β = (β0, β1), σ

2, ϕ, τ2 in Simulation 1. The parameter
estimates for the Bayesian methods β̂ = (β̂0, β̂1), σ̂

2, ϕ̂, τ̂2 are defined as the posterior medians
of their respective MCMC samples and their true values are β0 = (1, 2), σ2

0 = 1, ϕ0 = 4 and
τ2
0 = 0.1. The entries in the table are averaged across 10 simulation replications.

∥β̂ − β0 ∥ |σ̂2 − σ2
0 | |ϕ̂− ϕ0| |τ̂2 − τ20 |

INLA 0.21 - - -
LaGP 0.08 - - -

NNGP (m = 10) 0.11 0.07 0.37 0.00
NNGP (m = 20) 0.12 0.09 0.51 0.00
NNGP (m = 30) 0.11 0.11 0.58 0.00

LatticeKrig 0.11 0.09 1.59 0.06
GpGp 0.08 0.11 0.64 0.01

Vecchia (m = 10) 0.10 0.11 0.51 0.01
Vecchia (m = 20) 0.10 0.10 0.55 0.01
Vecchia (m = 30) 0.10 0.38 1.13 0.01
MPP (r = 200) 0.35 0.23 1.98 0.17
MPP (r = 400) 0.19 0.09 1.88 0.07

Random Partitioning
DISK (r = 200, k = 10) 0.09 0.11 0.64 0.01
DISK (r = 400, k = 10) 0.09 0.11 0.64 0.01
DISK (r = 200, k = 20) 0.10 0.12 0.66 0.02
DISK (r = 400, k = 20) 0.10 0.12 0.66 0.02

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.09 0.12 0.62 0.01
DISK (r = 400, k = 10) 0.09 0.12 0.62 0.01
DISK (r = 200, k = 20) 0.10 0.12 0.63 0.01
DISK (r = 400, k = 20) 0.10 0.12 0.64 0.01

Our first simulation generates data using the spatial linear model in (14).
We set D = [−2, 2] × [−2, 2] ⊂ R2, n = 10, 000, l = 500 and uniformly draw
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Table 2
The estimates of parameters β = (β0, β1), σ

2, ϕ, τ2 and their 95% marginal credible intervals
(CIs) in Simulation 1. The parameter estimates for the Bayesian methods β̂ = (β̂0, β̂1), σ̂

2, ϕ̂,
τ̂2 are defined as the posterior medians of their respective MCMC samples. The parameter

estimates and upper and lower quantiles of 95% CIs are averaged over 10 simulation
replications; ‘-’ indicates that the uncertainty estimates are not provided by the software or the

competitor.

β0 β1 σ2 ϕ τ2

Truth 1.00 2.00 1.00 4.00 0.10
Parameter Estimates

INLA 1.00 2.00 - - -
laGP 1.01 2.00 - - -

NNGP (m = 10) 1.02 2.00 0.99 4.00 0.10
NNGP (m = 20) 0.98 2.00 0.94 4.30 0.10
NNGP (m = 30) 0.99 2.00 0.94 4.34 0.10

LatticeKrig 1.01 2.00 0.93 2.42 0.16
GpGp 0.99 2.00 0.92 4.43 0.11

Vecchia (m = 10) 0.99 2.00 0.94 3.93 0.09
Vecchia (m = 20) 0.99 2.00 0.95 3.93 0.09
Vecchia (m = 30) 1.00 2.00 1.10 3.68 0.09
MPP (r = 200) 1.26 2.00 0.77 2.02 0.27
MPP (r = 400) 1.08 2.00 0.99 2.14 0.17

DISK (r = 200, k = 10) 1.00 2.00 0.92 4.35 0.11
DISK (r = 400, k = 10) 1.00 2.00 0.92 4.35 0.11
DISK (r = 200, k = 20) 1.00 2.00 0.91 4.38 0.11
DISK (r = 400, k = 20) 1.00 2.00 0.91 4.38 0.11

95% Credible Intervals
INLA (0.26, 1.73) (1.98, 2.02) - - -
laGP (0.99, 1.03) (1.98, 2.02) - - -

NNGP (m = 10) (0.87, 1.15) (1.99, 2.01) (0.86, 1.24) (3.15, 4.70) (0.09, 0.11)
NNGP (m = 20) (0.85, 1.13) (1.99, 2.01) (0.82, 1.14) (3.46, 4.95) (0.09, 0.11)
NNGP (m = 30) (0.86, 1.12) (1.99, 2.01) (0.81, 1.11) (3.62, 5.03) (0.09, 0.11)

LatticeKrig - - - - -
GpGp (0.75, 1.23) (1.99, 2.01) - - -

Vecchia (m = 10) - - - - -
Vecchia (m = 20) - - - - -
Vecchia (m = 30) - - - - -
MPP (r = 200) (1.06, 1.26) (1.98, 2.00) (0.70, 0.85) (2.01, 2.07) (0.24, 0.30)
MPP (r = 400) (0.76, 1.08) (1.99, 2.00) (0.91, 1.08) (2.07, 2.26) (0.15, 0.19)

DISK (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.69) (0.09, 0.12)
DISK (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.69) (0.09, 0.12)
DISK (r = 200, k = 20) (0.94, 1.06) (1.98, 2.01) (0.86, 0.96) (4.07, 4.67) (0.09, 0.13)
DISK (r = 400, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.07, 4.68) (0.09, 0.13)

(n + l) spatial locations si = (si1, si2) in D (i = 1, . . . , n + l). The spatial
surface w(·) at the (n + l) locations, {w(s1), . . . , w(sn+l)}, is simulated from
GP(0,σ2 exp{−ϕ∥ s− s′ ∥)}, where s, s′ ∈ D, ϕ = 4, and σ2 = 1. The covari-
ance function ensures the generated spatial surface is continuous everywhere but
differentiable nowhere, which is a more familiar simulation scenario in the spatial
context. Setting β0 = 1, β1 = 2, and τ2 = 0.1, we simulate the responses at (n+l)
locations using (14). The three-step distributed frameworks are applied using the
low-rank MPP priors with k = 10 and k = 20, having average subset sizes 1000
and 500, respectively. We replicate this simulation ten times.

DISK with MPP prior, NNGP, and GPvecchia have similar performance in
parameter estimation (Tables 1 and 2). The parameter estimates obtained using
DISK are very close to their true values and the estimation errors are very similar
to those of NNGP and non-Bayesian methods based on the Vecchia approxima-
tion, including GpGp and GPvecchia. The 95% credible intervals of β0, β1, τ

2 in
DISK cover the true values and their lower and upper quantiles are very similar
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Fig 1: Estimated covariance function using three types of GP priors on the spatial
surface. The true covariance function is cov{w(si), w(sj)} = exp(−4∥ si− sj ∥2).

Table 3
Inference on the values of spatial surface and response at the locations in S∗ in Simulation 1.
The estimation and prediction errors are defined in (15) and coverage and credible intervals
are calculated pointwise for the locations in S∗. The entries in the table are averaged over 10
simulation replications; ‘-’ indicates that the estimates are not provided by the software or the

competitor.

Est Err Pred Err 95% CI Coverage 95% CI Length
GP Y GP Y GP Y

INLA - 0.90 - 0.80 - 0.17
laGP 0.20 0.28 0.98 0.95 2.06 1.04

NNGP (m = 10) 0.38 0.47 0.93 0.95 1.39 1.84
NNGP (m = 20) 0.38 0.47 0.93 0.95 1.38 1.81
NNGP (m = 30) 0.38 0.47 0.92 0.95 1.37 1.82

LatticeKrig 0.38 0.47 - 0.73 - 1.08
GpGp - 0.47 - - - -

Vecchia (m = 10) - 0.47 - 0.87 - 1.43
Vecchia (m = 20) - 0.47 - 0.86 - 1.41
Vecchia (m = 30) - 0.47 - 0.86 - 1.41
MPP (r = 200) 0.73 0.59 0.93 0.95 3.05 3.02
MPP (r = 400) 0.43 0.47 0.96 0.95 2.76 2.67

Random Partitioning
DISK (r = 200, k = 10) 0.55 0.64 0.97 0.97 3.20 3.45
DISK (r = 400, k = 10) 0.42 0.51 0.97 0.97 2.88 3.15
DISK (r = 200, k = 20) 0.58 0.67 0.97 0.97 3.25 3.51
DISK (r = 400, k = 20) 0.46 0.55 0.97 0.97 2.98 3.25

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.75 0.80 0.97 0.97 3.45 3.45
DISK (r = 400, k = 10) 0.65 0.72 0.97 0.97 3.15 3.15
DISK (r = 200, k = 20) 0.76 0.82 0.97 0.97 3.51 3.51
DISK (r = 400, k = 20) 0.68 0.74 0.97 0.97 3.26 3.26

to those of NNGP. DISK underestimates σ2 and overestimates ϕ slightly. Both
results are the impacts of parent MPP prior, which also shows less accurate esti-
mation of the posterior distribution of σ2 and ϕ for the two choices of the number
of knots r. More importantly, the impacts the choice of r on parameter estimation
are less severe in the distributed methods compared to that in its parent MPP
prior. The CIs are not available from GPvecchia, LatticeKrig and laGP, so that
the cells corresponding these methods are kept blank in Table 2.

Despite the discrepancy in parameter estimates, the correlation function es-
timates obtained using the combined posteriors from distributed competitors
(DISK pseudo posterior being a representative) are very close to those obtained
using NNGP and GPvecchia (Figure 1). Similar to the observations of Sang and
Huang (2012), there is considerable discrepancy between the estimated and true
correlation functions when the MPP prior is used. In contrast, for the same
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choices of r as its parent MPP prior, DISK’s estimate of the correlation function
is much closer to the truth and is insensitive to the choice of k = 10, 20. DISK
estimates are similar to those obtained using Vecchia-type approximation, except
when the number of nearest neighbor is 30 and the GPvecchia-based estimate of
the correlation function has a significant positive bias.

The predictive performance of the representative distributed competitor DISK
is little inferior to that of NNGP. NNGP, MPP, and DISK have close to nominal
predictive coverage, but the PIs of NNGP have smaller lengths for every choice
of nearest neighbor. The PI coverage values and lengths of MPP and DISK are
similar and stable for the different choices of r and k. PIs in GPvecchia have the
smallest length and their coverage values are smaller than the nominal value for
all the three choices of nearest neighbor. Focusing on spatial surface interpolation,
the estimation error of DISK is smaller than that of MPP for both choices of r
when k = 10 and is slightly larger when k = 20 and r = 400. Similarly, MPP’s
coverage of the spatial surface is smaller than the nominal value when r = 200,
but DISK shows better coverage than its parent MPP prior for both choices of
k. Consequently, the lengths of DISK’s credible intervals are slightly larger than
those obtained using its parent MPP prior.

In summary, the distributed methods are competitive with state-of-the-art non-
distributed methods NNGP and GPvecchhia in inference on the spatial surface
and predictions, respectively. laGP is the only non-distributed competing method
that yields comprehensively better inferential and predictive performance than
all distributed methods, but it is not designed to provide estimates for the σ2,
ϕ, and τ2. LatticeKrig has a very similar point estimation, but inferior uncer-
tainty quantification compared to GpGp and GPvecchia. INLA underperforms
in surface interpolation and prediction. Supplementary material shows compar-
ative performance of distributed competitors and also ensures that stochastic
approximation does not impact the mixing of the Markov chains on the subsets.
The model free nature of the distributed methods also allows us to fit a nearest
neighbor approach, including NNGP, on each subset to improve inference and ex-
pedite computations by multiple folds. Finally, the results show that the random
partitioning scheme yields little better point estimation with similar uncertainty
quantification compared to a more sophisticated grid partitioning scheme.

4.3 Simulation 2: Spatial Linear Model Based On Analytic Spatial Surface

Our second simulation generates data by setting w(·) in (14) to be an analytic
function. For any s ∈ [−2, 2], define the function f0(s) = e−(s−1)2 + e−0.8(s+1)2 −
0.05 sin{8(s + 0.1)} and set w(si) = −f0(si1)f0(si2). Although the function w(·)
simulated in this way is theoretically infinitely smooth, the response surface sim-
ulated from (14) exhibits complex local behavior, which is challenging to capture
using spatial process-based models as we demonstrate later. We set β0 = 1,
β1 = 0, and τ2 = 0.01, use the same values of the spatial domain, k, and r as
used in the previous simulation, and replicate this simulation 10 times.

The parameter estimation results in this simulation are similar to those in
Simulation 1 with one important exception in inference on β0 (Tables 4 and
5). All the methods except GpGp show excellent performance in estimating τ2;
however, NNGP, GPvecchia, and MPP estimate β0 with a significant bias. 95%
credible intervals of β0 computed from DISK has better coverage properties than
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Table 4
The errors in estimating the parameters β, τ2 in Simulation 2. The parameter estimates for the

Bayesian methods β̂, τ̂2 are defined as the posterior medians of their respective MCMC
samples and β0 = 1 and τ2

0 = 0.01. The entries in the table are averaged across 10 simulation
replications.

∥β̂ − β0∥ |τ̂2 − τ20 |
INLA 0.18 -
LaGP - -

NNGP (m = 10) 0.84 0.03
NNGP (m = 20) 0.84 0.03
NNGP (m = 30) 0.84 0.03

LatticeKrig - 0.01
GpGp 0.31 0.39

Vecchia (m = 10) 0.85 0.01
Vecchia (m = 20) 0.85 0.01
Vecchia (m = 30) 0.85 0.01
MPP (r = 200) 0.75 0.05
MPP (r = 400) 0.48 0.04

Random Partitioning
DISK (r = 200, k = 10) 0.18 0.04
DISK (r = 400, k = 10) 0.13 0.04
DISK (r = 200, k = 20) 0.18 0.04
DISK (r = 400, k = 20) 0.13 0.04

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.03 0.09
DISK (r = 400, k = 10) 0.03 0.09
DISK (r = 200, k = 20) 0.02 0.09
DISK (r = 400, k = 20) 0.02 0.09

those of NNGP. Unlike our observation in the previous section, all the methods
underestimate τ2 slightly, and the 95% credible intervals of NNGP, MPP prior,
and DISK fail to cover the true value. Similar to the previous simulation results,
DISK performs better than its parent MPP prior for both choices of r.

The predictive and inferential performance of distributed methods in this sim-
ulation are also very similar to those in Simulation 1. The prediction error, PI
coverage, and PI length of all the methods except GPvecchia are fairly similar
and are close to the nominal value. The PI length of GPvecchia is the smallest,
but its coverage values are critically low for all choices of nearest neighbor; that
is, GPvecchia has a relatively inferior performance for estimating spatial surfaces
that are not simulated from a GP. The PI coverage values of distributed method
DISK is a little higher than those of NNGP and MPP priors while the PI lengths
of DISK are very close to those of MPP and NNGP priors. A noticeable feature
of our comparison is that the distributed methods improve the performance of
their parent MPP prior when r = 200. In this case, the CI coverage values of dis-
tributed methods for both choices of k are greater the nominal value, whereas the
parent MPP prior has fails to cover the spatial surface. Intuitively, for most com-
petitors in this simulation the estimation of fixed and random effects are mixed
up, whereas the overall mean effect is estimated correctly by all competitors.

As in Simulation 1, INLA still underperforms in surface interpolation and pre-
diction, and laGP maintains its superior predictive and inferential performance,
especially because it is tuned for inference in such analytic surfaces with many
local features (Gramacy and Apley, 2015). LatticeKrig also offers excellent perfor-
mance and it outperforms the distributed methods in terms of surface estimation
and prediction. Simulation 2 shows that grid based partitioning yields better
point estimation for β0, but inferior point estimation for τ20 (Table 4). This leads
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Table 5
The estimates of parameters β, σ2, ϕ, τ2 and their 95% marginal credible intervals (CIs) in
Simulation 2. The parameter estimates for the Bayesian methods β̂, σ̂2, ϕ̂, τ̂2 are defined as
the posterior medians of their respective MCMC samples. The parameter estimates and upper
and lower quantiles of 95% CIs are averaged over 10 simulation replications; ‘-’ indicates that

the uncertainty estimates are not provided by the software or the competitor.

β σ2 ϕ τ2

Truth 1.00 - - 0.01
Parameter Estimates

INLA 0.8161 - - -
laGP - - - -

NNGP (m = 10) 0.2897 0.1933 0.1075 0.0091
NNGP (m = 20) 0.3002 0.1660 0.1059 0.0092
NNGP (m = 30) 0.2892 0.1557 0.1058 0.0093

LatticeKrig - - 0.0842 0.0099
GpGp 1.0346 0.0669 0.2643 0.1620

Vecchia (m = 10) 0.2792 0.4063 0.7796 0.0099
Vecchia (m = 20) 0.2792 0.2904 0.9479 0.0099
Vecchia (m = 30) 0.2792 0.2746 0.9587 0.0099
MPP (r = 200) 1.5634 0.1535 0.1185 0.0077
MPP (r = 400) 1.2333 0.1586 0.1200 0.0080

DISK (r = 200, k = 10) 1.0322 0.2133 0.1196 0.0087
DISK (r = 400, k = 10) 0.9830 0.2185 0.1402 0.0082
DISK (r = 200, k = 20) 1.0328 0.2133 0.1194 0.0087
DISK (r = 400, k = 20) 0.9822 0.2185 0.1402 0.0082

95% Credible Intervals
INLA (0.5320, 1.2108) - - -
laGP - - - -

NNGP (m = 10) (0.2678, 0.3143) (0.1568, 0.2223) (0.1010, 0.1339) (0.0088, 0.0094)
NNGP (m = 20) (0.2801, 0.3226) (0.1361, 0.1906) (0.1009, 0.1279) (0.0089, 0.0095)
NNGP (m = 30) (0.2660, 0.3103) (0.1293, 0.1794) (0.1009, 0.1284) (0.0090, 0.0095)

LatticeKrig - - - -
GpGp (0.7090, 1.3601) - - -

Vecchia (m = 10) - - - -
Vecchia (m = 20) - - - -
Vecchia (m = 30) - - - -
MPP (r = 200) (0.9931, 2.1464) (0.1307, 0.1760) (0.1104, 0.1327) (0.0073, 0.0081)
MPP (r = 400) (0.6130, 1.8412) (0.1269, 0.1876) (0.1096, 0.1480) (0.0076, 0.0084)

DISK (r = 200, k = 10) (0.7961, 1.2722) (0.1783, 0.2418) (0.1088, 0.1439) (0.0084, 0.0091)
DISK (r = 400, k = 10) (0.8180, 1.1582) (0.1743, 0.2589) (0.1192, 0.1773) (0.0079, 0.0086)
DISK (r = 200, k = 20) (0.7987, 1.2719) (0.1781, 0.2417) (0.1087, 0.1434) (0.0084, 0.0091)
DISK (r = 400, k = 20) (0.8172, 1.1568) (0.1721, 0.2588) (0.1190, 0.1806) (0.0079, 0.0086)

to little better surface estimation for random partitioning scheme than grid-based
partitioning scheme, but practically indistinguishable predictive performance as
demonstrated in Table 6. We conclude that the distributed methods are promising
tools even when the spatial surface is not simulated from a GP.

4.4 Real Data Analysis: Sea Surface Temperature Data

A description of the evolution and dynamics of the SST is a key component
of the study of the Earth’s climate. SST data (in centigrade) from ocean sam-
ples have been collected by voluntary observing ships, buoys, and military and
scientific cruises for decades. During the last 20 years or so, the SST database
has been complemented by regular streams of remotely sensed observations from
satellite orbiting the earth. A careful quantification of variability of SST data is
important for climatological research, which includes determining the formation
of sea breezes and sea fog and calibrating measurements from weather satellites
(Di Lorenzo et al., 2008). A number of articles have appeared to address this
issue in recent years; see Berliner et al. (2000), Lemos and Sansó (2009), Wikle
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Table 6
Inference on the values of spatial surface and response at the locations in S∗ in Simulation 2.
The estimation and prediction errors are defined in (15) and coverage and credible intervals
are calculated pointwise for the locations in S∗. The entries in the table are averaged over 10
simulation replications; ‘-’ indicates that the estimates are not provided by the software or the

competitor.

Est Err Pred Err 95% CI Coverage 95% CI Length
GP Y GP Y GP Y

INLA - 0.1552 - 0.0755 - 0.0268
laGP 0.0004 0.0103 1.0000 0.9456 0.3890 0.3902

NNGP (m = 10) 0.5058 0.0104 0.0000 0.9439 0.1496 0.3949
NNGP (m = 20) 0.4908 0.0103 0.0000 0.9456 0.1392 0.3938
NNGP (m = 30) 0.5103 0.0103 0.0000 0.9479 0.1388 0.3969

LatticeKrig 0.0002 0.0101 0.9867 0.9463 - 0.3901
GpGp - 0.0103 - - - -

Vecchia (m = 10) - 0.0106 - 0.3559 - 0.0951
Vecchia (m = 20) - 0.0103 - 0.2815 - 0.0728
Vecchia (m = 30) - 0.0102 - 0.2612 - 0.0674
MPP (r = 200) 0.3732 0.0105 0.0000 0.9498 0.4061 0.4061
MPP (r = 400) 0.0623 0.0102 0.2946 0.9477 0.3976 0.3976

Random Partitioning
DISK (r = 200, k = 10) 0.0017 0.1035 1.0000 0.9696 0.5388 0.4449
DISK (r = 400, k = 10) 0.0009 0.1026 1.0000 0.9724 0.4477 0.4578
DISK (r = 200, k = 20) 0.0015 0.1041 1.0000 0.9646 0.5211 0.4248
DISK (r = 400, k = 20) 0.0007 0.1031 1.0000 0.9672 0.4253 0.4359

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.0394 0.1036 1.0000 0.9660 0.4452 0.4452
DISK (r = 400, k = 10) 0.0368 0.1028 1.0000 0.9594 0.4249 0.4249
DISK (r = 200, k = 20) 0.0304 0.1040 1.0000 0.9700 0.4590 0.4590
DISK (r = 400, k = 20) 0.0268 0.1030 1.0000 0.9642 0.4371 0.4371

and Holan (2011), Hazra and Huser (2021).
We consider the problem of capturing the spatial trend and characterizing the

uncertainties in the SST in the west coast of mainland U.S.A., Canada, and Alaska
between 40◦–65◦ north latitudes and 100◦–180◦ west longitudes. The data is ob-
tained from NODC World Ocean Database (https://www.nodc.noaa.gov/OC5/
WOD/pr_wod.html) and the entire data corresponds to sea surface temperature
measured by remote sensing satellites on 16th August 2016. All data locations
are distinct and there is no time replicate; therefore, we can practically ignore
the temporal variation of sea surface temperature for our analysis. After screen-
ing the data for quality control, we choose a random subset of 1, 000, 800 spatial
observations over the selected domain. From these observations, we randomly se-
lect 106 observations as training data and the remaining observations are used
to compare the performance of distributed and non-distributed competitors. We
replicate this setup ten times. The selected domain is large enough to allow con-
siderable spatial variation in SST from north to south and provides an important
first step in extending these models for analyzing global-scale SST database.

The SST data in the selected domain shows a clear decreasing trend in SST
with increasing latitude (Figure 2). Based on this observation, we add latitude
as a linear predictor in the univariate spatial regression model (14) to explain
the long-range directional variability in the SST. Similar to Simulation 1 and 2,
Section 4.4 in the supplementary material shows that among distributed com-
petitors DISK shows identical or little better performance than the other dis-
tributed approaches for the sea surface data. Thus, we only present results from
DISK in this section due to space constraint considering it as a representative

https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html
https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html
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distributed competitor. The detailed performance comparison of all distributed
competitors in the real data can be found in Section 4.4 of the supplementary
material. To fit distributed competitors, we set k = 300, which results in sub-
sets of approximately 3300 locations. Since each subset has larger sample size
than the simulation studies, we increase the number of knots in each subset for
model fitting and use MPP priors with 400 and 600 knots, respectively, in each
subset. All the non-distributed competitors except laGP fail to produce results
due to numerical issues. Specifically, GPvecchia and GpGp fail after 8 and 21
iterations with an error in vecchia Linv function, INLA fails with an error in
GMRFLib factorise sparse matrix TAUCS function, spNNGP fails an error in
the dpotrf function, and MPP fails from memory bottlenecks. Due to the lack
of ground truth for estimating w(s∗), we compare the DISK and laGP in terms
of their inference on ΩΩΩ and prediction of y(s∗) for s∗ ∈ S∗ in terms of MSPE and
the length and coverage of 95% posterior PIs.

DISK provides inference on the covariance function, including credible inter-
vals for σ2, ϕ, and τ2, which are unavailable in laGP. The 50%, 2.5%, and 97.5%
quantiles of the posterior distributions for ΩΩΩ, w(s∗) and y(s∗) for every s∗ ∈ S∗

are used for estimation and uncertainty quantification. We observe significantly
higher estimation of spatial variability than non-spatial variability from DISK
indicating local spatial variation in SST. Importantly, the point estimate of β1 is
negative and its 95% CI does not include zero, which confirms that SST decreases
as latitude increases. For every s∗ ∈ S∗, laGP’s and DISK’s estimates of w(s∗)
and y(s∗) agree closely (Figures 2 and 3 and Table 7). The pointwise predic-
tive coverages of laGP and DISK match their nominal levels; however, the 95%
posterior PIs of DISK are wider than those of laGP because DISK accounts for
uncertainty due to the error term and unknown parameters (Figure 2 and Table
7). As a whole, SST data analysis reinforces our findings on the importance of
distributed Bayesian methods as computationally efficient and flexible tools for
full Bayesian inference.

Table 7
Parametric inference and prediction in SST data. DISK uses MPP-based modeling with

r = 400, 600 on k = 300 subsets. For parametric inference posterior medians are provided along
with The 95% credible intervals (CIs) in the parentheses, where available. Similarly mean

squared prediction errors (MSPEs) along with length and coverage of 95% predictive intervals
(PIs) are presented, where available. The upper and lower quantiles of 95% CIs and PIs are

averaged over 10 simulation replications; ‘-’ indicates that the parameter estimate or prediction
is not provided by the software or the competitor

β0 β1 σ2 ϕ τ2

Parameter Estimate
laGP 32.98 -0.37 - - -

DISK (r = 400) 32.33 -0.32 11.82 0.04 0.18
DISK (r = 600) 32.33 -0.32 11.85 0.04 0.18

95% Credible Interval
laGP - - - - -

DISK (r = 400) (31.72, 32.93) (-0.33, -0.31) (11.24, 12.43) (0.0373, 0.0412) (0.18, 0.19)
DISK (r = 600) (31.72, 32.93) (-0.33, -0.31) (11.25, 12.45) (0.0372, 0.0413) (0.18, 0.19)

Predictions
MSPE 95% PI 95% PI

Coverage Length
laGP 0.24 0.95 1.35

DISK (r = 400) 0.43 0.95 2.65
DISK (r = 600) 0.36 0.95 2.34
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Fig 2: Prediction of sea surface temperatures at the locations in S∗. Negative
longitude means degree west from Greenwich. DISK uses MPP-based modeling
with r = 400, 600 on k = 300 subsets and laGP uses the ‘nn’ method. The 2.5%,
50%, and 97.5% quantile surfaces, respectively, represent pointwise quantiles of
the posterior distribution for y(s∗) for every s∗ ∈ S∗.

5. DISCUSSION

This article presents a comparative study of a class of distributed Bayesian
and popular non-distributed methods that are tuned for spatial GP regression in
massive data settings. As part of our exposition, we have demonstrated through
simulated and real data analyses that distributed Bayesian methods compare
well with state-of-the-art non-distributed methods. Motivated by the promising
empirical performance, we provide theoretical support for our numerical results.
In particular, under commonly assumed regularity conditions, we have provided
explicit upper bound on the number of subsets k depending on the analytic prop-
erties of the spatial surface so that the Bayes L2-risk of the combined pseudo
posterior for a subclass of distributed methods is nearly minimax optimal. Addi-
tional empirical and theoretical results in the supplementary material shed light
on the relative empirical performances of different distributed Bayesian methods
in simulations and in the real data analyses.

The simplicity and generality of distributed frameworks enable scaling of any
spatial model. For example, recent applications have confirmed that the NNGP
prior requires modifications if scalability is desired for even a few millions of
locations (Finley et al., 2019b). While computing subset posteriors with MCMC
algorithm, we have tacitly assumed that the MCMC chain converges to the subset
posterior. While there is no theoretical result to support this, we find enough
empirical evidence regarding convergence of the MCMC chain for each subset
posterior. We plan to explore this issue theoretically in a future work. In future,
we also aim to scale ordinary NNGP and other multiscale approaches to tens of
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Fig 3: Interpolated spatial surface w at the locations in S∗. Negative longitude
means degree west from Greenwich. DISK uses MPP-based modeling with r =
400, 600 on k = 300 subsets and laGP uses the ‘nn’ method. The 2.5%, 50%,
and 97.5% quantile surfaces, respectively, represent pointwise quantiles of the
posterior distribution for w(s∗) for every s∗ ∈ S∗.

millions of locations with distributed frameworks.
We have focused on developing the distributed framework for spatial modeling

due to the motivating applications from massive geostatistical data. The dis-
tributed frameworks, however, are applicable to any mixed effects model where
the random effects are assigned a GP prior, which includes Bayesian nonpara-
metric regression using GP prior. We plan to explore more general applications
in the future with high dimensional covariates.
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Lemos, R. T. and B. Sansó (2009). A spatio-temporal model for mean, anomaly, and trend
fields of north Atlantic sea surface temperature. Journal of the American Statistical Associ-
ation 104 (485), 5–18.

Li, C., S. Srivastava, and D. B. Dunson (2017). Simple, scalable and accurate posterior interval
estimation. Biometrika 104 (3), 665–680.

Lindgren, F., H. Rue, and J. Lindström (2011). An explicit link between gaussian fields and
gaussian markov random fields: the stochastic partial differential equation approach. Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 73 (4), 423–498.

Lindsten, F., A. M. Johansen, C. A. Naesseth, B. Kirkpatrick, T. B. Schön, J. Aston, and
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1. PROOF OF THEOREMS IN SECTION 3.4

Recall that the spatial regression model with a GP prior considered in Section
3.4 is

y(si) = w(si) + ϵ(si), ϵ(si) ∼ N(0, τ2),

w(·) ∼ GP{0, λ−1
n Cα(·, ·)}, i = 1, . . . , n.(1)

Writing this model for the n locations in S gives

y = w0+ ϵ, ϵ | S ∼ N(0, τ2 I), y | S ∼ N(w0, τ
2 I),(2)

where w0 = {w0(s1), . . . , w0(sn)} and ϵ = {ϵ(s1), . . . , ϵ(sn)} are the true value of
the residual spatial surface and white noise realized at the locations in S. We can
write the model in a similar format for each data subset. Let s ∈ D be a location,
w0(s) be the true value of the residual spatial surface, Es∗ , E0, ES , Ey | S , and
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Ey,w(s∗)| S respectively be the expectations with respect to the distributions of s∗,
(S,y), S, y given S, and (y, w(s∗)) given S, s∗.

In this section, we assume the Assumption A.5, so that the parameters (τ2,α)
are fixed at their truth and the same across all subsets. In this case, if w(s∗) is
a random variable that follows the DISK posterior for estimating w0(s

∗), then
conditional on τ2 and α, w(s∗) has the density N(m, v), where

m =
1

k

k∑
j=1

cTj,∗(Cj,j +
τ2λn
k I)−1 yj ,

v1/2 =
1

k

k∑
j=1

v
1/2
j , vj = λ−1

n

{
c∗,∗ − cTj,∗(Cj,j +

τ2λn
k I)−1 cj,∗

}
,(3)

where c∗,∗ = Cα(s
∗, s∗), and cTj,∗ = cTj (s

∗) = [Cα(sj1, s
∗), . . . , Cα(sjm, s∗)]. In the

proofs below, without confusion, we use the notation cj,∗ and cj(s
∗) interchange-

ably.
The Bayes L2-risk in estimating w0 using the DISK posterior is defined as

E0 Es∗
[
{w(s∗)− w0(s

∗)}2
]

(i)
= ES

∫
D
Ey,w(s∗)| S

[
{w(s∗)− w0(s

∗)}2
]
Ps(d s

∗),(4)

where (i) follows from Fubini’s theorem. Using bias-variance decomposition,

Ey,w(s∗)| S
[
{w(s∗)− w0(s

∗)}2
]

= Ey,w(s∗)| S
[
w(s∗)− Ey,w(s∗)| S{w(s∗)}+ Ey,w(s∗)| S{w(s∗)} − w0(s

∗)
]2

=
[
Ey,w(s∗)| S{w(s∗)} − w0(s

∗)
]2

+ Ey,w(s∗)| S
[
w(s∗)− Ey,w(s∗)| S{w(s∗)}

]2
≡ bias2y,w(s∗)| S{w(s

∗)}+ vary,w(s∗)| S{w(s∗)}.

If cTj (·) = [cov{w(·), w(sj1)}, . . . , cov{w(·), w(sjm)}] = {Cα(sj1, ·), . . . , Cα(sjm, ·)},
cT (·) = {cT1 (·), . . . , cTk (·)},wT

0j = {w0(sj1), . . . , w0(sjm)}, andwT
0 = {wT

01, . . . ,w
T
0k},

then the distribution of w(s∗) in (3) implies that

Ey,w(s∗)| S{w(s∗)} =
1

k

k∑
j=1

cTj (s
∗)
(
Cj,j +

τ2λn
k I

)−1
w0j

= cT∗ (kL+τ2λn I)
−1w0,

vary,w(s∗)| S{w(s∗)} = vary | S [E{w(s∗) | y}] + Ey | S [var{w(s∗) | y}]

(i)
= vary | S

1
k

k∑
j=1

cTj,∗(Cj,j +
τ2λn
k I)−1 yj

+ Ey | S [v(s∗)]

= τ2 cT (s∗)(kL+τ2λn I)
−2 c(s∗) + v(s∗),(5)

where L is a block-diagonal matrix with C1,1, . . . ,Ck,k along the diagonal. The
equality (i) holds due to the following reasons: (i) The true data follows y(sji) =
w0(sji)+ ϵ(sji) (j = 1, . . . , k and i = 1, . . . ,m), where ϵ(sji)’s are all independent
with variance τ20 = τ2 by Assumption A.5; (ii) {y1, . . . ,yk} conditional on S are
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jointly independent since they are a disjoint (random) partition of the full dataset

by Assumption A.1, which implies that vary | S

(∑k
j=1 a

T
j yj

)
= τ2

∑k
j=1 a

T
j aj for

any vectors a1, . . . ,ak ∈ Rm.
Therefore, the Bayes L2-risk in (4) can be decomposed into three parts:

Es∗ ES{cT∗ (kL+τ2λn I)
−1w0−w0(s

∗)}2 + τ2 Es∗ ES
{
cT∗ (kL+τ2 I)−2 c∗

}
+ Es∗ ES {v(s∗)} ,(6)

which correspond to bias2, varmean and varDISK in Theorem 3.1.

1.1 Proof of Theorem 3.1

The next three sections find upper bounds for each of the three terms in (6).
The conclusion of Theorem 3.1 follows directly by combining the three upper
bounds.

1.1.1 An upper bound for the squared bias Consider the squared-bias term in
(6). For ease of presentation, assume that {s1, . . . , sn} are relabeled to

{s11, . . . , s1m, . . . , sk1, . . . , skm}

corresponding to the k subsets. Define ξsji(·) = Cα(sji, ·),

wT
0 = (⟨w0, ξs11⟩H, . . . , ⟨w0, ξs1m⟩H, . . . , ⟨w0, ξsk1⟩H, . . . , ⟨w0, ξskm⟩H)
≡ (wT

01, . . . ,w
T
0k),

cT (·) = (ξs11 , . . . , ξs1m , . . . , ξsk1 , . . . , ξskm)

= {cT1 (·), . . . , cTk (·)} ≡ (cT1 , . . . , c
T
k ).(7)

The following lemma provides an upper bound on the squared bias of the DISK
posterior.

Lemma 1.1 If Assumptions A.1–A.5 in the main paper hold, then for some
global constant A > 0,

Es∗ ES{cT∗ (kL+τ2λn I)
−1w0−w0(s

∗)}2 ≤ 8τ2λn

n
∥w0∥2H

+ ∥w0∥2H inf
d∈N

[
8n

τ2λn
ρ4 tr(Cα) tr(C

d
α) + µ1

{
Ab(m, d, q)ρ2γ( τ

2λn
n )

√
m

}q]
.

Proof Based on the term cT∗ (kL+τ2λn I)
−1w0 in (6), we define ∆j (j =

1, . . . , k) and ∆ as

∆j(·) = yT
j (Cj,j +

τ2λn
k I)−1 cj(·)− w0(·) ≡ w̃j(·)− w0(·),

∆(·) = yT (kL+τ2λn I)
−1 c(·)− w0(·) =

1

k

k∑
j=1

{w̃j(·)− w0(·)} =
1

k

k∑
j=1

∆j(·),

(8)

so that Ey | S(∆) = wT
0 (kL+τ2λn I)

−1 c(·) − w0(·) = k−1
∑k

j=1 Ey | S(∆j) and

ES ∥Ey | S(∆)∥22 yields the bias2 term in (6). Jensen’s inequality implies that
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∥Ey | S(∆)∥22 ≤ k−1
∑k

j=1 ∥Ey | S(∆j)∥22, so we only need to find upper bounds

for ∥Ey | S(∆j)∥22 (j = 1, . . . , k).
We can recognize that the optimization problem below has w̃j(·) defined in (8)

as its solution,

argminw∈H

m∑
i=1

{w(sji)− y(sji)}2

2τ2/k
+

1

2
λn∥w∥2H, j = 1, . . . , k.(9)

Differentiating (9) and taking expectations with respect to Ey | S implies that

m∑
i=1

Ey | S {w̃j(sji)− y(sji)} ξsji +
τ2λn

k
Ey | S(w̃j)

=
m∑
i=1

⟨Ey | S(∆j), ξsji⟩H ξsji +
τ2λn

k
Ey | S(w̃j) = 0,(10)

where the last inequality follows because y(sji) = ⟨w0, ξsji⟩H + ϵ(sji) and
⟨Ey | S(ϵ), ξsji⟩H = ⟨0, ξsji⟩H = 0. Using (8), ∆j = w̃j−w0, Ey | S(w̃j) = Ey | S(∆j)+
w0, and dividing by m in (10), we obtain that

1

m

m∑
i=1

⟨Ey | S(∆j), ξsji⟩H ξsji +
τ2λn

km
Ey | S(∆j) = −τ2λn

km
w0.(11)

If we define the jth sample covariance operator as Σ̂j =
1
m

∑m
j=1 ξsji ⊗ ξsji , then

(11) reduces to (
Σ̂j +

τ2λn
km I

)
Ey | S(∆j) = −τ2λn

km
w0

=⇒ ∥Ey | S(∆j)∥H ≤ ∥w0∥H, j = 1, . . . , k,(12)

where the last inequality follows because Σ̂j is a positive semi-definite matrix.
The rest of the proof finds an upper bound for ∥Ey | S(∆j)∥22. We now reduce

this problem to a finite dimensional one indexed by a chosen d ∈ N. Let δj =
(δj1, . . . , δjd, δj(d+1), . . . , δj∞) ∈ L2(N) such that

Ey | S(∆j) =
∞∑
i=1

δjiφi, δji = ⟨Ey | S(∆j), φi⟩L2(P),

∥Ey | S(∆j)∥22 =
∞∑
i=1

δ2ji, j = 1, . . . , k.(13)

Define the vectors δ↓j = (δj1, . . . , δjd) and δ↑j = (δj(d+1), . . . , δj∞), so

∥Ey | S(∆j)∥22 = ∥ δ↓j ∥22 + ∥ δ↑j ∥22 and we upper bound ∥Ey | S(∆j)∥22 by sep-

arately upper bounding ∥ δ↓j ∥22 and ∥ δ↑j ∥22. Using the expansion Cα(s, s
′) =∑∞

j=1 µjφj(s)φj(s
′) for any s, s′ ∈ D, we have the following upper bound for

∥ δ↑j ∥22:

∥ δ↑j ∥
2
2 =

µd+1

µd+1

∞∑
i=d+1

δ2ji ≤ µd+1

∞∑
i=d+1

δ2ji
µi

(i)

≤ µd+1∥Ey | S(∆j)∥2H
(ii)

≤ µd+1∥w0∥2H,

(14)
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where (i) follows because ∥Ey | S(∆j)∥2H =
∑∞

i=1 δ
2
ji/µi and (ii) follows from (12).

We then derive an upper bound for ∥ δ↓j ∥22. Let M = diag(µ1, . . . , µd) ∈ Rd×d,

Φj ∈ Rm×d be a matrix such that

Φj
ih = φh(sji), i = 1, . . . ,m, h = 1, . . . , d, j = 1, . . . , k,(15)

w0 =
∑∞

i=1 θiφi, and the tail error vector vj = (vj1, . . . , vjm)T ∈ Rm (j =
1, . . . , k) such that

vji =

∞∑
h=d+1

δjhφh(sji), i = 1, . . . ,m.

For any g ∈ {1, . . . , d}, taking the H-inner product with respect φg in (12) yields〈(
1

m

m∑
i=1

ξsji ⊗ ξsji +
τ2λn
km I

)
Ey | S(∆j), φg

〉
H

= −τ2λn

km
⟨w0, φg⟩H = −τ2λn

km

θg
µg

, j = 1, . . . , k.(16)

Expanding the left hand side in (16), we obtain that

1

m

m∑
i=1

⟨φg, ξsji⟩H Ey | S {∆j(sji)}+
τ2λn

km
⟨φg,Ey | S(∆j)⟩H

=
1

m

m∑
i=1

φg(sji)Ey | S {∆j(sji)}+
τ2λn

km

δjg
µg

.

The term 1
m

∑m
i=1 φg(sji)Ey | S {∆j(sji)} on the right hand side is

=
1

m

m∑
i=1

Φj
ig

d∑
h=1

δjhφh(sji) +
1

m

m∑
i=1

Φj
ig

∞∑
h=d+1

δjhφh(sji)

=
1

m

d∑
h=1

δjh

m∑
i=1

Φj
ig Φ

j
ih+

1

m

m∑
i=1

Φj
ig vji

=
1

m

d∑
h=1

δjh

(
ΦjT Φj

)
gh

+
1

m

m∑
i=1

(
ΦjT vj

)
g

=
1

m

(
ΦjT Φj δ↓

)
g
+

1

m

(
ΦjT vj

)
g
.(17)

Substitute (17) in (16) for g = 1, . . . , d to obtain that

1

m
ΦjT Φj δ↓j +

1

m
ΦjT vj +

τ2λn

km
M−1 δ↓j = −τ2λn

km
M−1 θ↓(

1

m
ΦjT Φj +

τ2λn

km
M−1

)
δ↓j = −τ2λn

km
M−1 θ↓− 1

m
ΦjT vj .(18)

The proof is completed by showing that the right hand side expression in (18)

gives an upper bound for ∥ δ↓j ∥22. Define Q =
(
I+ τ2λn

km M−1
)1/2

, then

1

m
ΦjT Φj +

τ2λn

km
M−1 = I+

τ2λn

km
M−1+

1

m
ΦjT Φj − I
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= Q

{
I+Q−1

(
1

m
ΦjT Φj − I

)
Q−1

}
Q

and using this in (18) gives

{
I+Q−1

(
1

m
ΦjT Φj − I

)
Q−1

}
Q δ↓j = −τ2λn

km
Q−1M−1 θ↓− 1

m
Q−1ΦjT vj .

(19)

Now we define the P-measureable event

E1 =

{∣∣∣∣∣∣∣∣∣∣∣∣Q−1

(
1

m
ΦjT Φj − I

)
Q−1

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 1/2

}
,(20)

where |||·||| is the matrix operator norm.We have that I+Q−1
(

1
m ΦjT Φj − I

)
Q−1 ⪰

(1/2) I whenever E1 occurs. Furthermore, when E1 occurs, (19) implies that

∥ δ↓j ∥
2
2 ≤ ∥Q δ↓j ∥

2
2 ≤ 4

∥∥∥∥τ2λn

km
Q−1M−1 θ↓+

1

m
Q−1ΦjT vj

∥∥∥∥2
2

≤ 8

∥∥∥∥τ2λn

km
Q−1M−1 θ↓

∥∥∥∥2
2

+ 8

∥∥∥∥ 1

m
Q−1ΦjT vj

∥∥∥∥2
2

,

where the last inequality follows because (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R.
Since E1 is P-measureable, ES

(
∥ δ↓j ∥22

)
= ES

{
∥ δ↓j ∥22 1 (E1)

}
+ES

{
∥ δ↓j ∥22 1 (E

c
1)
}

and the previous display gives

ES

{
∥ δ↓j ∥

2
2 1 (E1)

}
≤ 8

∥∥∥∥τ2λn

km
Q−1M−1 θ↓

∥∥∥∥2
2

+ 8ES

∥∥∥∥ 1

m
Q−1ΦjT vj

∥∥∥∥2
2

.(21)

From Lemma 10 in Zhang et al. (2015), we have that under our assumptions A.1-
A.5, there exists a universal constant A > 0 that does not depend on λn, n, τ

2,
such that∥∥∥∥τ2λn

km
Q−1M−1 θ↓

∥∥∥∥2
2

≤ τ2λn

km
∥w0∥2H,

ES

∥∥∥∥ 1

m
Q−1ΦjT vj

∥∥∥∥2
2

≤ km

τ2λn
ρ4 tr(Cα) tr(C

d
α)∥w0∥2H,

P (Ec
1) ≤

{
Amax

(√
max(q, log d),

max(q, log d)

m1/2−1/q

)
ρ2γ( τ

2λn
km )

√
m

}q

=

{
Ab(m, d, q)ρ2γ( τ

2λn
km )

√
m

}q

.(22)

Since µ1 ≥ µ2 ≥ . . . ≥ 0, the optimality condition in (12) implies that

∥∥Ey | S(∆j)
∥∥2
2
=

µ1

µ1

∞∑
i=1

δjiφi ≤ µ1

∞∑
i=1

δji
µi

φi = µ1∥Ey | S(∆j)∥2H ≤ µ1∥w0∥2H.

(23)
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Using the shorthand (22) and (23), we obtain that

ES

{
∥ δ↓j ∥

2
2 1 (Ec

1)
}
≤ ES

{
∥Ey | S(∆j)∥22 1 (Ec

1)
}
≤ P(Ec

1)µ1∥w0∥2H.(24)

Combining (21) and (24) gives

ES(∥ δj ∥22) ≤
8τ2λn

km
∥w0∥2H +

8km

τ2λn
ρ4 tr(Cα) tr(C

d
α)∥w0∥2H

+

{
Ab(m, d, q)ρ2γ( τ

2λn
km )

√
m

}q

µ1∥w0∥2H.(25)

Finally, we use that ∥Ey | S(∆)∥22 ≤ k−1
∑k

j=1 ∥Ey | S(∆j)∥22 = k−1
∑k

j=1 ∥ δj ∥22
to obtain that

ES(∥Ey | S(∆)∥22) ≤
8τ2λn

km
∥w0∥2H +

8km

τ2λn
ρ4 tr(Cα) tr(C

d
α)∥w0∥2H

+

{
Ab(m, d, q)ρ2γ( τ

2λn
km )

√
m

}q

µ1∥w0∥2H

=
8τ2λn

n
∥w0∥2H + ∥w0∥2H

[
8n

τ2λn
ρ4 tr(Cα) tr(C

d
α) + µ1

{
Ab(m, d, q)ρ2γ( τ

2λn
n )

√
m

}q]
,

(26)

where we have replaced km by n in the last equality. Taking the infimum over
d ∈ N leads to the proof.

1.1.2 An upper bound for the first variance term The following lemma provides
an upper bound the first part of the variance term in (6).

Lemma 1.2 If Assumptions A.1–A.5 in the main paper hold, then

τ2 Es∗ ES
{
cT∗ (kL+τ2λn I)

−2 c∗
}
≤(

2n

kλn
+

4∥w0∥2H
k

)
inf
d∈N

[
µd+1 + 12

n

τ2λn
ρ4 tr(Cα) tr(C

d
α)

+

{
Ab(m, d, q)ρ2γ( τ

2λn
n )

√
m

}q ]
+

12τ2λn

kn
∥w0∥2H + 12

τ2λn

n
γ

(
τ2λn

n

)
.

Proof Continuing from (8), we start by finding an upper bound for Ey,w(s∗)| S ∥∆j∥2H,
which is required later to upper bound E0 ∥∆j∥2H. From (8) we have

Ey,w(s∗)| S ∥∆j∥2H ≤ 2Ey,w(s∗)| S ∥w̃j∥2H + 2∥w0∥2H.(27)

An upper bound for Ey,w(s∗)| S ∥w̃j |2H gives the desired bound. Using the objective
in (9),

1

2
∥w̃j∥2H

(i)

≤
m∑
i=1

{w̃j(sji)− y(sji)}2

2τ2λn/k
+

1

2
∥w̃j∥2H
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(ii)

≤
m∑
i=1

{w0(sji)− y(sji)}2

2τ2λn/k
+

1

2
∥w0∥2H,(28)

where (i) follows because the term inside the summation is non-negative and (ii)
follows because w̃j minimizes the objective. Since w(sji) − y(sji) = −ϵ(sji) and
Ey,w(s∗)| S{ϵ2(sji)} ≤ τ2 by Assumption A.2, (28) reduces to

Ey,w(s∗)| S ∥w̃j∥2H ≤ k

τ2λn

m∑
i=1

Ey,w(s∗)| S {ϵ(sji)}2 + ∥w0∥2H ≤ km

λn
+ ∥w0∥2H.(29)

Substituting (29) in (27) gives

Ey,w(s∗)| S ∥∆j∥2H ≤ 2km

λn
+ 4∥w0∥2H.(30)

First notice that

τ2 Es∗ ES
{
cT∗ (kL+τ2λn I)

−2 c∗
}

=
1

k2

k∑
j=1

τ2 Es∗ ES

{
cTj∗

(
Cj,j +

τ2λn
k I

)−2
cj∗

}
.(31)

and from (6) we have

τ2 Es∗ ES

{
cTj∗

(
Cj,j +

τ2λn
k I

)−2
cj∗

}
= Es∗ ES vary,w(s∗)| S

{
cTj∗

(
Cj,j +

τ2λn
k I

)−1
yj

}
≤ Es∗ ES Ey,w(s∗)| S

{
cTj∗

(
Cj,j +

τ2λn
k I

)−1
yj −w0(s

∗)

}2

= Es∗ ES Ey,w(s∗)| S ∥∆j∥22.(32)

Substituting (32) to (31) leads to

τ2 Es∗ ES
{
cT∗ (kL+τ2λn I)

−2 c∗
}
≤ Es∗

 1

k2

k∑
j=1

ES Ey,w(s∗)| S ∥∆j∥22

 .(33)

We then find an upper bound for ES Ey,w(s∗)| S ∥∆j∥22 by following similar steps
to the proof of Lemma 1.1. Let δj ∈ L2(N) be the expansion of ∆j in the basis
{φi}∞i=1, so that ∆j =

∑∞
i=1 δjiφi (the δj sequence here is different from the one in

the previous section). Similar to Section 1.1.1, choose a fixed d ∈ N and truncate

∆j by defining ∆↓
j , ∆

↑
j , δ

↓
j , and δ↑j as

∆↓
j =

d∑
i=1

δjiφi, ∆↑
j =

∞∑
i=d+1

δjiφi = ∆j −∆↓
j ,

δ↓j = (δj1, . . . , δjd), δ↑j = (δj(d+1), . . . , δj∞).

The orthonormality of {φi}∞i=1 implies that

ES Ey,w(s∗)| S ∥∆j∥22 = ES Ey,w(s∗)| S ∥∆↓
j∥

2
2 + ES E0| S ∥∆↑

j∥
2
2
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= ES Ey,w(s∗)| S ∥ δ↓j ∥
2
2 + ES Ey,w(s∗)| S ∥ δ↑j ∥

2
2.(34)

First, the upper bound for Ey,w(s∗)| S ∥ δ↑j ∥22 follows from (14),

Ey,w(s∗)| S ∥∆↑
j∥

2
2 =

∞∑
i=d+1

Ey,w(s∗)| S(δ
2
ji)

= µd+1

∞∑
i=d+1

Ey,w(s∗)| S(δ
2
ji)

µd+1
≤ µd+1

∞∑
i=d+1

Ey,w(s∗)| S(δ
2
ji)

µi

= µd+1 Ey,w(s∗)| S ∥∆↑
j∥

2
H ≤ µd+1 Ey,w(s∗)| S ∥∆j∥2H,

and using (30),

Ey,w(s∗)| S ∥∆↑
j∥

2
2 ≤ µd+1

(
2km

λn
+ 4∥w0∥2H

)
.(35)

We now find an upper bound for ES Ey,w(s∗)| S ∥∆↓
j∥22. Following Section 1.1.1,

define the error vector vj = (vj1, . . . , vjm)T ∈ Rm with vji =
∑∞

h=d+1 δjiφh(sji)
(i = 1, . . . ,m), and M = diag(µ1, . . . , µd). From (9) and (10), w̃j(·) in (8) satisfies

1

m

m∑
i=1

⟨ξsji , w̃j − w0 − ϵ⟩H ξsji +
τ2λn

km
w̃j = 0.(36)

For any g ∈ {1, . . . , d}, taking the H-inner product with respect φg in (36) to
obtain that

1

m

m∑
i=1

⟨ξsji ,∆j − ϵ⟩H ⟨ξsji , φg⟩H +
τ2λn

km
⟨∆j + w0, φg⟩H =

1

m

m∑
i=1

{∆j(sji)− ϵ(sji)}φg(sji) +
τ2λn

km

δjg
µg

+
τ2λn

km

θg
µg

= 0,

1

m

m∑
i=1

{
d∑

h=1

δjhφh(sji) +

∞∑
h=d+1

δjhφh(sji)− ϵ(sji)

}
φg(sji) +

τ2λn

km

δjg
µg

= −τ2λn

km

θg
µg

,

1

m

d∑
h=1

{
m∑
i=1

φh(sji)φg(sji)

}
δjh +

1

m

m∑
i=1

{vji − ϵ(sji)}φg(sji) +
τ2λn

km

δjg
µg

= −τ2λn

km

θg
µg

,

1

m

(
ΦjT Φj δ↓j

)
g
+

1

m

{
ΦjT (vj − ϵj)

}
g
+

τ2λn

km
(M−1 δ↓j )g = −τ2λn

km
(M−1 θ↓)g.

Writing this equation in the matrix form yields,(
1

m
ΦjT Φj +

τ2λn

km
M−1

)
δ↓j = −τ2λn

km
M−1 θ↓− 1

m
ΦjT vj +

1

m
ΦjT ϵj .(37)

Following Section 1.1.1, by defining Q = (I+ τ2λn
km M−1)1/2, (37) reduces to{

I+Q−1

(
1

m
ΦjT Φj − I

)
Q−1

}
Q δ↓j
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= −τ2λn

km
Q−1M−1 θ↓− 1

m
Q−1ΦjT vj +

1

m
Q−1ΦjT ϵj .(38)

On the event E1 defined as in (20), we have that I+Q−1
(

1
m ΦjT Φj − I

)
Q−1 ⪰

(1/2) I. Furthermore, when E1 occurs, (38) implies that

∥∆↓
j∥

2
2 ≤ ∥Q δ↓j ∥

2
2 ≤ 4

∥∥∥∥−τ2λn

km
Q−1M−1 θ↓− 1

m
Q−1ΦjT vj +

1

m
Q−1ΦjT ϵj

∥∥∥∥2
2

≤ 12

∥∥∥∥τ2λn

km
Q−1M−1 θ↓

∥∥∥∥2
2

+ 12

∥∥∥∥ 1

m
Q−1ΦjT vj

∥∥∥∥2
2

+ 12

∥∥∥∥ 1

m
Q−1ΦjT ϵj

∥∥∥∥2
2

,

where the last inequality follows because (a + b + c)2 ≤ 3a2 + 3b2 + 3c2 for any
a, b, c ∈ R. Since E1 is P-measureable,

Ey,w(s∗)| S

(
∥∆↓

j∥
2
2

)
= Ey,w(s∗)| S

{
∥∆↓

j∥
2
2 1 (E1)

}
+ Ey,w(s∗)| S

{
∥∆↓

j∥
2
2 1 (Ec

1)
}
.

If the event E1 occurs, then the upper bounds for the first term and the last two
terms in the last inequality are given by Lemmas 10 and 7 of Zhang et al. (2015),
respectively, and we have that∥∥∥∥τ2λn

km
Q−1M−1 θ↓

∥∥∥∥2
2

≤ τ2λn

km
∥w0∥2H,

ES

∥∥∥∥ 1

m
Q−1ΦjT vj

∥∥∥∥2
2

≤ km

τ2λn
ρ4 tr(Cα) tr(C

d
α)

(
2km

λn
+ 4∥w0∥2H

)
,

ES Ey,w(s∗)| S

∥∥∥∥ 1

m
Q−1ΦjT ϵj

∥∥∥∥2
2

≤ 1

m2

d∑
h=1

m∑
i=1

1

1 + τ2λn
km

1
µh

ES Ey,w(s∗)| S
{
φ2
h(sji)ϵ

2(sji)
}
.(39)

Since the error ϵ(·) and w(·) are independent, by Assumption A.4,

ES Ey,w(s∗)| S
{
φ2
h(sji)ϵ

2(sji)
}
= ES

{
φ2
h(sji)

}
Ey,w(s∗)| S

{
ϵ2(sji)

}
≤ τ2,

and the last inequality in (39) simplifies to

ES Ey,w(s∗)| S

∥∥∥∥ 1

m
Q−1ΦjT ϵj

∥∥∥∥2
2

≤ τ2

m

d∑
h=1

1

1 + τ2λn
km

1
µh

≤ τ2

m
γ

(
τ2λn

km

)
.

Hence when the event E1 occurs,

ES Ey,w(s∗)| S

{
∥∆↓

j∥
2
2 1(E1)

}
≤

12
τ2λn

km
∥w0∥2H + 12

km

τ2λn
ρ4 tr(Cα) tr(C

d
α)

(
2km

λn
+ 4∥w0∥2H

)
+ 12

τ2

m
γ

(
τ2λn

km

)
.

(40)

If the event E1 does not occur, then

ES Ey,w(s∗)| S

{
∥∆↓

j∥
2
2 1(Ec

1)
}
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≤ ES

{
1(Ec

1)Ey,w(s∗)| S ∥∆↓
j∥

2
2

} (i)

≤ P(Ec
1)

(
2km

λn
+ 4∥w0∥2H

)
(ii)
=

{
Ab(m, d, q)ρ2γ( τ

2λn
km )

√
m

}q (
2km

λn
+ 4∥w0∥2H

)
,(41)

where (i) follows from (30) and (ii) follows from (22). Substituting (40), (41),
and (35) in (34) implies that

ES Ey,w(s∗)| S
{
∥∆j∥22

}
≤ 12

τ2λn

km
∥w0∥2H + 12

τ2

m
γ

(
τ2λn

km

)
+[

µd+1 + 12
km

τ2λn
ρ4 tr(Cα) tr(C

d
α)+{

Ab(m, d, q)ρ2γ( τ
2λn
km )

√
m

}q ](
2km

λn
+ 4∥w0∥2H

)
.(42)

Therefore, substituting (42) in (33) implies that

τ2 Es∗ ES
{
cT∗ (kL+τ2λn I)

−2 c∗
}
≤(

2n

kλn
+

4∥w0∥2H
k

)[
µd+1 + 12

n

τ2λn
ρ4 tr(Cα) tr(C

d
α)+{

Ab(m, d, q)ρ2γ( τ
2λn
n )

√
m

}q ]
+

12τ2λn

kn
∥w0∥2H + 12

τ2

n
γ

(
τ2λn

n

)
.(43)

where we have replace km by n. Taking the infimum over d ∈ N leads to the
proof.

1.1.3 An upper bound for the second variance term The following lemma pro-
vides an upper bound the second part of the variance term in (6).

Lemma 1.3 If Assumptions A.1–A.5 in the main paper hold, then

Es∗ ES v(s∗) ≤ 3
τ2

n
γ

(
τ2λn

n

)
+ inf

d∈N

[{
4n

τ2λ2
n

tr(Cα) +
1

λn

}
tr(Cd

α) + λ−1
n tr(Cα)

{
Ab(m, d, q)ρ2γ( τ

2

n )
√
m

}q]
.

Proof First we have the following relation between v and the subset variance
vj :

v(s∗) =
{
k−1

k∑
j=1

v
1/2
j (s∗)

}2
≤ 1

k

k∑
j=1

vj(s
∗)

=
1

k

k∑
j=1

λ−1
n

{
Cα(s

∗, s∗)− cTj (s
∗)
(
Cj,j +

τ2λn
k I

)−1
cj(s

∗)

}
.(44)
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Since Cα(s, s
′) =

∑∞
i=1 µiφi(s)φi(s

′) for s, s′ ∈ D, we have

Cα(s
∗, s∗) =

∞∑
a=1

µaφ
2
a(s

∗), {cj(s∗)}i =
∞∑
a=1

µaφa(sji)φa(s
∗), i = 1, . . . ,m.

These together with the orthogonality property of {φi}∞i=1 imply that

Es∗ ES {vj(s∗)} = λ−1
n

∞∑
a=1

µa Es∗ φ
2
a(s

∗)

− λ−1
n

m∑
i=1

m∑
i′=1

∞∑
a=1

∞∑
b=1

µaµb

{(
Cj,j +

τ2λn
k I

)−1
}

i′i′′

× ES
[
φa(sji)φb(sji′)Es∗ {φa(s

∗)φb(s
∗)}
]

= λ−1
n tr(Cα)− λ−1

n ES

m∑
i=1

m∑
i′=1

∞∑
a=1

µ2
a

{(
Cj,j +

τ2

k I
)−1

}
ii′
φa(sji)φa(sji′)

= λ−1
n

d∑
a=1

µa − λ−1
n ES

d∑
a=1

µ2
a

[
m∑
i=1

m∑
i′=1

{(
Cj,j +

τ2λn
k I

)−1
}

ii′
φa(sji)φa(sji′)

]
+

λ−1
n tr(Cd

α)− λ−1
n ES

∞∑
a=d+1

µ2
a

[
m∑
i=1

m∑
i′=1

{(
Cj,j +

τ2λn
k I

)−1
}

i′i′′
φa(sji)φa(sji′)

]

(i)

≤ λ−1
n ES

d∑
a=1

{
µa − µ2

aφ
jT

a (Cj,j +
τ2λn
k I)−1φj

a

}
+ λ−1

n tr(Cd
α),

(45)

where iath element of the matrix Φj (defined in the proof of Lemma 1.1) is

φa(sji), φ
j
a is the ath column of Φj , and (i) follows because

(
Cj,j +

τ2λn
k I

)
is a

positive definite matrix and φjT
a

(
Cj,j +

τ2λn
k I

)−1
φj

a ≥ 0.

Let M = diag(µ1, . . . , µd) and Q =
(
I+ τ2λn

km M−1
)1/2

as defined in the proofs

of Lemmas 1.1 and 1.2. Define a d×dmatrixB ≡ M−MΦjT
(
Cj,j +

τ2λn
k I

)−1
Φj M,

so that from (45),

tr(B) =
d∑

a=1

{
µa − µ2

aφ
jT

a

(
Cj,j +

τ2λn
k I

)−1
φj

a

}
,

Es∗ ES {vj(s∗)} ≤ λ−1
n ES tr(B) + λ−1

n tr(Cd
α).(46)

Let

Cj,j = Φj MΦjT +Φj↑M↑Φj↑T ≡ Φj MΦjT +C↑
j,j ,

M↑ = diag(µd+1, . . . , µ∞), Φj↑ = [φj
d+1, · · · ,φ

j
∞],

then the Woodbury formula (Harville, 1997) and the definition of Q imply that

B =

{
M−1+ΦjT

(
C↑

j,j +
τ2λn
k I

)−1
Φj

}−1
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=
τ2λn

km

{
I+

τ2λn

km
M−1+

1

m
ΦjT

(
k

τ2λn
C↑

j,j + I
)−1

Φj − I

}−1

=
τ2λn

km
Q−2

[
I+Q−1

{
1

m
ΦjT

(
k

τ2λn
C↑

j,j + I
)−1

Φj − I

}
Q−1

]−1

.(47)

Define the event E2 =
{

k
τ2λn

C↑
j,j ⪯

1
4 I
}
. Since the matrix C↑

j,j is nonnegative

definite, we have the relation that{
tr
(

k
τ2λn

C↑
j,j

)
≤ 1

4

}
⊆
{
smax

(
k

τ2λn
C↑

j,j

)
≤ 1

4

}
⊆ E2,

smax(A) is the maximum eigenvalue of the square matrixA. Therefore, by Markov’s
inequality, we have that

P(Ec
2) ≤ P

{
tr
(

k
τ2λn

C↑
j,j

)
>

1

4

}
≤ 4ES tr

(
k

τ2λn
C↑

j,j

)
=

4k

τ2λn

m∑
i=1

∞∑
a=d+1

µa ES φ2
a(sji) =

4km

τ2λn
tr
(
Cd
α

)
.(48)

Now on the event E1 ∩E2 (with E1 defined in (20)), we have that

I+Q−1

{
1

m
ΦjT

(
k

τ2λn
C↑

j,j + I
)−1

Φj − I

}
Q−1

(i)

⪰ I+Q−1

{
1

m
ΦjT

(
1

4
I+ I

)−1

Φj − I

}
Q−1

= I−1

5
Q−2+

4

5
Q−1

{
1

m
ΦjT Φj − I

}
Q−1

(ii)

⪰ I−1

5
I−4

5
· 1
2
I =

2

5
I,(49)

where (i) follows on the event E2, and (ii) holds on the event E1 and from the
fact Q−2 ⪯ I.

Therefore, by combining (48), (49), and the upper bound for P(Ec
1) given in

(22) under our assumptions, we obtain that

ES tr(B)

≤ ES {tr(B)1(E1 ∩E2)}+ ES [tr(B) {1(Ec
1) + 1(Ec

2)}]
(i)

≤ 5

2

τ2λn

km
tr
(
Q−2

)
+ tr(Cα) {P(Ec

1) + P(Ec
2)}

(ii)

≤ 3
τ2λn

n
γ

(
τ2λn

n

)
+

4n

τ2λn
tr(Cα) tr(C

d
α)

+ tr(Cα)

{
Ab(m, d, q)ρ2γ( τ

2λn
n )

√
m

}q

,(50)

where (i) follows from (49), and (ii) follows from (48), (22), and by replacing km
with n.
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(45), (47), and (50) together yield

Es∗ ES {vj(s∗)}

≤ λ−1
n ES tr(B) + λ−1

n tr
(
Cd
α

)
≤ 3

τ2

n
γ

(
τ2λn

n

)
+

{
4n

τ2λ2
n

tr(Cα) +
1

λn

}
tr(Cd

α)

+ λ−1
n tr(Cα)

{
Ab(m, d, q)ρ2γ( τ

2

n )
√
m

}q

.(51)

Since the righthand side of (51) does not depend on j, a further upper bound
for (44) is given by

Es∗ ES {v(s∗)} ≤ 1

k

k∑
j=1

Es∗ ES {vj(s∗)}

≤ 3
τ2

n
γ

(
τ2λn

n

)
+

{
4n

τ2λ2
n

tr(Cα) +
1

λn

}
tr(Cd

α)

+ λ−1
n tr(Cα)

{
Ab(m, d, q)ρ2γ( τ

2

n )
√
m

}q

.(52)

Taking the infimum over d ∈ N leads to the proof.

1.2 Proof of Theorem 3.2

The proof of parts (i)–(iv) are as follows.

(i) Since d∗ is a constant integer and k = o(n), we can take m sufficiently large
such that n ≥ m > max(d∗, eq). In the upper bounds of Theorem 3.1, we choose
d = n in every infimum to make the upper bounds larger. This implies that
tr
(
Cd
α

)
= 0, µd+1 = 0, and b(m, d, q) ≤ log n. Also notice that in this case,

γ(a) ≤ d∗ for any a > 0. Then, with λn = 1, Theorem 3.1 implies that

Es∗ ES Ey,w(s∗)| S{w(s∗)− w0(s
∗)}2

≤
(
8∥w0∥2H + 12k−1∥w0∥2H + 15d∗

) τ2
n

+

{
µ1∥w0∥2H +

2n

k
+

4∥w0∥2H
k

+ tr(Cα)

}(
Aρ2d∗ log n√

n/k

)q

≤ O(n−1) + {1 + o(1)}
2
(
Aρ2d∗ log n

)q
kr/2−1

nr/2−1

= O(n−1),

where the last equality follows from the condition on k.

(ii) In the upper bounds of Theorem 3.1, we choose d = n2 in every infimum for
sufficiently large n such that log d = 2 log n > q. Then

µd+1 ≤ c1µ exp
(
−c2µn

2κ
)
= O(n−4),
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b(m, d, q) ≤ max

(√
log d,

log d

m1/2−1/q

)
≤ log d ≤ 2 log n,

tr
(
Cd
α

)
=

∞∑
i=n2+1

µi ≤
∞∑

i=n2+1

c1µ exp (−c2µi
κ) ≤ c1µ

∫ ∞

n2

exp (−c2µz
κ) dz

= c1µ

∫ ∞

n2κ

1

κ
t
1
κ
−1 exp (−c2µt) dt,(53)

where in the last step, we use the change of variable t = zκ. If κ ≥ 1, then since
t ≥ n2κ ≥ 1, we have t

1
κ
−1 ≤ 1. If 0 < κ < 1, then there exists a large n0 ∈ N

that depends on only c2µ and κ, such that for all n ≥ n0 and t ≥ n2κ, we have

t
1
κ
−1 ≤ exp(c2µt/2). Therefore, in all cases,

tr
(
Cd
α

)
≤ c1µ

κ

∫ ∞

n2κ

exp (−c2µt/2) dt =
2c1µ
c2µκ

exp
(
−c2µn

2κ/2
)
= O(n−4).(54)

Let d1 =
(

2
c2µ

log n
)1/κ

. For sufficiently large n, with λn ≡ 1, γ(τ2λn/n) can be

bounded as

γ(τ2λn/n) = γ(τ2/n) =

∞∑
i=1

µi

µi +
τ2

n

=

⌊d1⌋+1∑
i=1

µi

µi +
τ2

n

+

∞∑
i=⌊d1⌋+2

µi

µi +
τ2

n

≤ d1 + 1 +
n

τ2

∞∑
i=⌊d1⌋+1

c1µ exp (−c2µi
κ)

≤ d1 + 1 +
n

τ2

∫ ∞

d1

c1µ exp (−c2µz
κ) dz

= d1 + 1 +
nc1µ
τ2κ

∫ ∞

dκ1

t
1
κ
−1 exp (−c2µt) dt

≤ d1 + 1 +
nc1µ
τ2κ

∫ ∞

dκ1

exp (−c2µt/2) dt

= d1 + 1 +
nc1µ
c2µτ2κ

exp (−c2µd
κ
1/2)

=
(

2
c2µ

log n
)1/κ

+ 1 +
c1µ

c2µτ2κ
= O

(
(log n)1/κ

)
.(55)

Therefore, from (53), (54), (55), and the bounds in Theorem 3.1, we obtain that

Es∗ ES Ey,w(s∗)| S{w(s∗)− w0(s
∗)}2

≤ O(n−1) + 15
τ2

n
γ

(
τ2

n

)
+ {1 + o(1)}2n

k

{
Ab(m, d, q)ρ2γ( τ

2

n )
√
m

}q

≤ O(n−1) +O
(
(log n)1/κ/n

)
+O(1) · n

k

{
(log n)1/κ · log n√

n/k

}q

≤ O
(
(log n)1/κ/n

)
+O(1) · k

q
2
−1(log n)

q(1+κ)
κ

n
q
2
−1

= O
(
(log n)1/κ/n

)
,
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where the last equality follows from the condition on k.

(iii) Let λn = 1. In the upper bounds of Theorem 3.1, we choose d = ⌊n3/(2η−1)⌋
in every infimum for sufficiently large n such that log d ≥ log

(
n

3
2η−1 − 1

)
> q.

Then

µd+1 ≤ cµn
−6η/(2η−1) ≤ cµn

−3,

tr
(
Cd
α

)
=

∞∑
i=d+1

µi ≤
∞∑

i=d+1

cµi
−2η ≤ cµ

∫ ∞

d

1

z2η
dz

=
cµ

2η − 1
d−(2η−1) ≤ cµ

2η − 1
n−3,

b(m, d, q) ≤ max

(√
log d,

log d

m1/2−1/q

)
≤ log d ≤ 3

2η − 1
log n.(56)

γ(τ2λn/n) = γ(τ2/n) can be bounded as

γ(τ2/n) =
∞∑
i=1

1

1 + τ2

nµi

≤
∞∑
i=1

1

1 + τ2i2η

cµn

≤ n1/(2η) + 1 +
cµn

τ2

∞∑
i=⌊n1/(2η)⌋+2

1

i2η

≤ n1/(2η) + 1 +
cµn

τ2

∫ ∞

n1/(2η)

1

z2η
dz

= n1/(2η) + 1 +
cµn

τ2(2η − 1)n(2η−1)/(2η)
≤
(

cµ
τ2(2η − 1)

+ 1

)
n1/(2η).(57)

From (56), (57), and the bounds in Theorem 3.1, we obtain that

Es∗ ES Ey,w(s∗)| S{w(s∗)− w0(s
∗)}2

≤ O(n−1) + 15
τ2

n
γ

(
τ2

n

)
+ {1 + o(1)}2n

k

{
Ab(m, d, q)ρ2γ( τ

2

n )
√
m

}q

≤ O(n−1) +
15τ2

(
2 +

cµ
τ2(2η−1)

)
n1/(2η)

n

+ {1 + o(1)}2n
k

3Aρ2
(
2 +

cµ
τ2(2η−1)

)
n1/(2η) log n

(2η − 1)
√

n/k


q

≤ O(n−1) +O
(
n
− 2η−1

2η

)
+O(1) · k

q
2
−1(log n)q

n
q
2
−1− q

2η

= O
(
n
− 2η−1

2η

)
,

where the last equality follows from the condition on k.

(iv) Now let λn = c1n
1/(2η+1). In the upper bounds of Theorem 3.1, we choose

d = ⌊n3/(2η−1)⌋ in every infimum for sufficiently large n, in the same way as in
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Part (iii). Therefore, (56) still holds true. Furthermore, since λn = c1n
1/(2η+1),

we have that

γ(τ2λn/n) =
∞∑
i=1

(
1 +

τ2λn

nµi

)−1

≤
∞∑
i=1

(
1 +

τ2c1i
2η

cµn2η/(2η+1)

)−1

≤ n1/(2η+1) + 1 +
cµn

2η
2η+1

τ2c1

∞∑
i=⌊n

1
2η+1 ⌋+2

1

i2η

≤ n1/(2η+1) + 1 +
cµn

2η
2η+1

τ2c1

∫ ∞

n
1

2η+1

1

z2η
dz

= n1/(2η+1) + 1 +
cµn

2η
2η+1

τ2c1(2η − 1)n(2η−1)/(2η+1)

≤
(

cµ
τ2(2η − 1)

+ 1

)
n

1
2η+1 .(58)

From (56), (58), and the bounds in Theorem 3.1, we obtain that

Es∗ ES Ey,w(s∗)| S{w(s∗)− w0(s
∗)}2

≤ O(λn/n) + 15
τ2

n
γ

(
τ2λn

n

)
+ {1 + o(1)} 2n

kλn

{
Ab(m, d, q)ρ2γ( τ

2λn
n )

√
m

}q

≤ O
(
n
− 2η

2η+1

)
+ 15τ2

(
cµ

τ2(2η − 1)
+ 1

)
n
− 2η

2η+1

+ {1 + o(1)}2n
2η

2η+1

k

3Aρ2
(

cµ
τ2(2η−1)

+ 1
)
n

1
2η+1 log n

(2η − 1)
√

n/k


q

≤ O(n−1) +O
(
n
− 2η

2η+1

)
+O(1) · k

q
2
−1(log n)q

n
(2η−1)q
2(2η+1)

− 2η
2η+1

= O
(
n
− 2η

2η+1

)
,

where the last equality follows from the condition on k.

1.3 Extension to Unknown τ 2

In this section, we extend the convergence rates of Bayes L2-risk in Theorem
3.2 to the case where the covariance function is parameterized in a different way
and is scaled by τ2, such that τ2 is unknown and assigned a prior distribution. We
modify the GP prior on w(·) in Equation (11) of the main text to the following

y(si) = w(si) + ϵ(si), ϵ(si) ∼ N
(
0, τ2

)
,

w(·) ∼ GP{0, λ−1
n τ2Cα(·, ·)};(59)

that is, Cα is scaled with τ2, the same as the error variance. This parameterization
has also been used in the application of GP models before. We maintain the same
eigen-decomposition of the kernel Cα0(·, ·) and the Assumptions A.3 and A.4 as
before. We assume that α is still fixed at its truth α0, but now impose a prior
on τ2.
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A.5′ (Prior) For each of the k subsets, τ2 is assigned a prior with a bounded
support in (0, τ2] for some finite constants τ2 > 0.

Let Eτ2|y and Ew(s∗)|τ2,y,s∗ be the expectations of {τ2j : j = 1, . . . , k} given y,

and w(s∗) given y, {τ2j : j = 1, . . . , k}, and s∗, respectively, where τ2j is drawn

from the posterior of τ2 given yj from the jth subset posterior. Then the Bayes
L2-risk of the DISK posterior for w(·) can be written as

Es∗ ES Ey | S Eτ2|y Ew(s∗)|y,τ2,s∗ {w(s∗)− w0(s
∗)}2 .(60)

Then, we have the following corollary when a prior distribution is imposed on τ2.

Corollary 1.1 If Assumptions A.1 – A.4 and A.5′ hold, then all the convergence
rates in the four cases of Theorem 3.2 still hold true for the Bayes L2-risk given
in (62).

Proof [Proof of Corollary 1.1] We proceed to prove a similar bound for the Bayes
L2 risk to Theorem 3.1 in the main paper under A.5′. By A.5′, we need to account
for the randomness in the posterior of p(τ2j |yj) across j = 1, . . . , k. Based on the

model (59), we can see that conditional on the subset posterior draws of τ2j from

the subset posterior p(τ2|yj) for j = 1, . . . , k, the DISK posterior draw w(s∗)
follows the distribution N(m, v), with

m =
1

k

k∑
j=1

cTj,∗
{
Cj,j +

λn
k I
}−1

yj ,

v1/2 =
1

k

k∑
j=1

v
1/2
j , vj =

τ2j
λn

{
c∗,∗ − cTj,∗

(
Cj,j +

λn
k I
)−1

cj,∗

}
,(61)

where cj,∗,Cj,j , c∗,∗ are defined similarly to those in (3) according to the base
kernel Cα0 . Notice that m does not depend on τ2j due to the rescaled kernel

τ2Cα0 in (59).
Let Es∗ , E0, ES , Ey | S , and Ew(s∗)|y,τ2 , Eτ2|y respectively be the expectations

with respect to the distributions of s∗, (S,y), S, y given S, w(s∗) given y and
{τ2j : j = 1, . . . , k}, and {τ2j : j = 1, . . . , k} given y. Then based on A.5′, the
Bayes L2-risk of the DISK posterior for w(·) can be written as

Es∗ ES Ey | S Eτ2|y Ew(s∗)|y,τ2 {w(s∗)− w0(s
∗)}2 .(62)

To upper bound (62), we apply the law of total variance repeatedly to obtain
that

Ey | S Eτ2|y Ew(s∗)|y,τ2 {w(s∗)− w0(s
∗)}2

=
[
Ey | S Eτ2|y Ew(s∗)|y,τ2 {w(s∗)} − w0(s

∗)
]2

+ vary,τ2,w(s∗)| S {w(s∗)}

=
[
Ey | S Eτ2|y Ew(s∗)|y,τ2 {w(s∗)} − w0(s

∗)
]2

+ vary | S
[
Eτ2|y Ew(s∗)|y,τ2 {w(s∗)}

]
+ Ey | S

(
varτ2|y

[
Ew(s∗)|y,τ2 {w(s∗)}

])
+ Ey | S

(
Eτ2|y

[
varw(s∗)|y,τ2 {w(s∗)}

])
.(63)
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Using (61), we can derive that[
Ey | S Eτ2|y Ew(s∗)|y,τ2 {w(s∗)} − w0(s

∗)
]2

=

k−1
k∑

j=1

cTj,∗
{
Cj,j +

λn
k I
}−1

w0j −w0(s
∗)

2

,

=
{
cT∗ (kL+λn I)

−1w0−w0(s
∗)
}2

,(64)

vary | S
[
Eτ2|y Ew(s∗)|y,τ2 {w(s∗)}

]
= vary | S

k−1
k∑

j=1

cTj,∗
{
Cj,j +

λn
k I
}−1

yj


= τ20 c

T (s∗)(kL+λn I)
−2 c(s∗),(65)

Ey | S
(
varτ2|y

[
Ew(s∗)|y,τ2 {w(s∗)}

])
= Ey | S

varτ2|y

1
k

k∑
j=1

cTj,∗
{
Cj,j +

λn
k I
}−1

yj

 = 0,(66)

Ey | S
(
Eτ2|y

[
varw(s∗)|y,τ2 {w(s∗)}

])
= Ey | S

{
Eτ2|y(v)

}
,(67)

where (64) and (67) follow from (61) and (5), (65) follows similarly to (5), and
(66) is zero because m does not depend on τ2j (j = 1, . . . , k). Next, we find upper
bound for (64), (65), and (67), respectively.

First, we notice that (64) has the same expression as (5) by setting τ2 = 1 in
(5). Therefore, the proof and the conclusion of Lemma 1.1 still works as before,
by setting τ2 = 1, i.e.

Es∗ ES{cT∗ (kL+λn I)
−1w0−w0(s

∗)}2 ≤ 8λn

n
∥w0∥2H

+ ∥w0∥2H inf
d∈N

[
8n

λn
ρ4 tr(Cα) tr(C

d
α) + µ1

{
Ab(m, d, q)ρ2γ(λn

n )
√
m

}q]
.(68)

Second, we notice that (65) differs from (5) only with the τ2 outside replaced
by the true error variance τ20 , and that τ2 = 1 in (kL+τ2λn I)

−2. We carefully
inspect and modify the proof of Lemma 1.2 to obtain that

τ20 Es∗ ES
{
cT∗ (kL+λn I)

−2 c∗
}
≤(

2τ20n

kλn
+

4∥w0∥2H
k

)
inf
d∈N

[
µd+1 + 12

n

λn
ρ4 tr(Cα) tr(C

d
α)

+

{
Ab(m, d, q)ρ2γ(λn

n )
√
m

}q ]
+

12λn

kn
∥w0∥2H + 12

τ20λn

n
γ

(
λn

n

)
.(69)

Third, v (and vj) in (61) differs from v (and vj) in (3) only in that (61) has

a τ2j factor outside and it has τ2 = 1 inside
(
Cj,j +

τ2λn
k I

)−1
in (3). Using the

expression of vj in (61) and the upper bound τ2j ≤ τ2 in A.5′, we carefully inspect
and modify the proof of Lemma 1.2 to obtain that

Es∗ ES Ey | S Eτ2|y(v)
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≤ 1

k

k∑
j=1

Es∗ ES Ey | S Eτ2|y(vj)

≤ τ2λ−1
n

k

k∑
j=1

Es∗ ES

{
c∗,∗ − cTj,∗

(
Cj,j +

λn
k I
)−1

cj,∗

}

≤ τ2

{
3

n
γ

(
λn

n

)
+ inf

d∈N

[{
4n

λ2
n

tr(Cα) +
1

λn

}
tr(Cd

α)

+ λ−1
n tr(Cα)

{
Ab(m, d, q)ρ2γ( 1n)√

m

}q ]}
.(70)

Now we can combine (62), (63), (64), (65), (66), (67), (68), (69), and (70) to
obtain that

Es∗ ES Ey | S Eτ2|y Ew(s∗)|y,τ2 {w(s∗)− w0(s
∗)}2

≤ 8λn

n
∥w0∥2H + ∥w0∥2H inf

d∈N

[
8n

λn
ρ4 tr(Cα) tr(C

d
α) + µ1

{
Ab(m, d, q)ρ2γ(λn

n )
√
m

}q ]

+

(
2τ20n

kλn
+

4∥w0∥2H
k

)
inf
d∈N

[
µd+1 + 12

n

τ2λn
ρ4 tr(Cα) tr(C

d
α)

+

{
Ab(m, d, q)ρ2γ(λn

n )
√
m

}q ]
+

12λn

kn
∥w0∥2H + 12

τ20λn

n
γ

(
λn

n

)

+ τ2

{
3

n
γ

(
λn

n

)
+ inf

d∈N

[{
4n

λ2
n

tr(Cα) +
1

λn

}
tr(Cd

α)

+ λ−1
n tr(Cα)

{
Ab(m, d, q)ρ2γ( 1n)√

m

}q ]}
.

(71)

We notice that the upper bound in (71) differs from the upper bound in Theo-
rem 3.1 only by some multiplicative constants in each term and inside the γ(·)
functions. In the previous proof of Theorem 3.2, these constants will only change
the multiplicative constants and do not affect the convergence rates of the Bayes
L2-risk of w(·). As a result, the convergence rate results of Theorem 3.2 continue
to hold for (71) under the various conditions specified in the different cases of
Theorem 3.2. This completes the proof.

2. SAMPLING FROM THE SUBSET POSTERIOR DISTRIBUTIONS
USING A FULL-RANK GP PRIOR

Recall the univariate spatial regression model for the data observed at the ith
location in subset j using a GP prior is

y(sji) = x(sji)
T β+w(sji) + ϵ(sji), j = 1, . . . , k, i = 1, . . . ,mj .(72)

For the simulations and real data analysis, we assume that Cα(sji, sji′) = σ2ρ(sji, sji′ ;ϕ)
and Dα(sji, sji′) = 1(i = i′)τ2, where σ2, ϕ, τ2 are positive scalars, ρ(·, ·) is a
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known positive definite correlation function, and 1(i = i′) = 1 if i = i′ and 0
otherwise. This implies that α = (σ2, τ2, ϕ). The model in (72) is completed by
putting priors on the unknown parameters. The priors distributions on β and α
have the following forms:

β ∼ N(µβ,Σβ), σ2 ∼ IG(aσ, bσ), τ2 ∼ IG(aτ , bτ ), ϕ ∼ U(aϕ, bϕ),(73)

where µβ,Σβ, aσ, bσ, aτ , bτ , aϕ, and bϕ are constants, N represents the multi-
variate Gaussian distribution of appropriate dimension, IG(a, b) represents the
Inverse-Gamma distribution with mean a/(b+1) and variance b/{(a−1)2(a−2)}
for a > 2, and U(a, b) represents the uniform distribution on the interval [a, b].
The spatial process w(·) is assigned a GP prior as

w(·) | σ2, ϕ ∼ GP{0, Cα(·, ·)}, Cα(·, ·) = σ2ρ(·, ·;ϕ).(74)

The training data {x(sj1), y(sj1)}, . . . , {x(sjmj ), y(sjmj )} are observed at the mj

spatial locations and Sj = {sj1, . . . , sjmj} contains the locations in subset j.
Consider the setup for predictions and inferences on subset j. Let S∗ = {s∗1, . . . , s∗l }

be the set of locations such that S∗ ∩Sj = ∅. If wT
j = {w(sj1), . . . , w(sjmj )} and

ϵTj = {ϵ(sj1), . . . , ϵ(sjmj )}, then (72) implies thatwj apriori followsN{0,Cj,j(α)},
where Cj,j(α) is the block of C(α) that corresponds to the locations in Sj , and ϵj
follows N(0, τ2 I), where I is the identity matrix of appropriate dimension. Given
the training data on subset j, our goal is to predict y∗

j = {y(s∗1), . . . , y(s∗l )} and
to perform posterior inference on w∗

j = {w(s1), . . . , w(sl)}, βj , and αj , where the
subscript j denotes that the predictions and inferences condition only on sub-
set j. Standard Markov chain Monte Carlo (MCMC) algorithms exist to achieve
this goal (Banerjee et al., 2014), but conditioning only on subset j ignores the
information contained in the other (k − 1) subsets, resulting in greater posterior
uncertainty compared to the full data posterior distribution.

Stochastic approximation is an approach for proper uncertainty quantification
that modifies the likelihood used for sampling from the subset posterior distribu-
tions for predictions and inferences. The likelihoods for β, α, and wj are raised
to the power of k to compensate for the data in the other (k − 1) subsets, where
we assume that m1 = · · · = mk = m and k = n/m. First, consider stochastic
approximation for the likelihood of β and α. Integrating out wj in (72) gives

yj = Xj β+ηj , ηj ∼ N{0,Cj,j(α) + τ2 I},(75)

where Xj = [x(sj1) : · · · : x(sjm)]T ∈ Rm×p is the design matrix for subset j. The
likelihood of β and α given yj , Xj after stochastic approximation is

{lj(β,α)}k = (2π)−mk/2|Cj,j(α) + τ2 I |−k/2e−
k
2 (yj −Xj β)

T{Cj,j(α)+τ2 I}−1
(yj −Xj β).

(76)

The prior distribution for β in (73), the pseudo likelihood in (76), and Bayes rule
implies that the density of the jth subset posterior distribution for β given the
rest is

β | rest ∝ e−
1
2(yj −Xj β)

T
[k−1{Cj,j(α)+τ2 I}]−1

(yj −Xj β) e−
1
2(β−µβ)

T
Σ−1

β (β−µβ).
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This implies that the complete conditional distribution of βj has densityN(mj β,Vj β),
where

Vj β =
[
kXT

j {Cj,j(α) + τ2 I}−1Xj +Σ−1
β

]−1
,

mj β = Vj β

[
kXT

j

{
Cj,j(α) + τ2 I

}−1
yj +Σ−1

β µβ

]
.(77)

If the density of the prior distribution for α is assumed to be π(σ2)π(τ2)π(ϕ),
where the prior densities π(σ2), π(τ2), and π(ϕ) are defined in (73), then the
pseudo likelihood in (76), and Bayes rule implies that the density of the jth
subset posterior distribution for α given the rest is

α | rest ∝ |Cj,j(α) + τ2 I |−k/2e−
1
2(yj −Xj β)

T
[k−1{Cj,j(α)+τ2 I}]−1

(yj −Xj β)(
σ2
)−aσ−1

e−bσ/σ2 (
τ2
)−aτ−1

e−bτ/τ2(bϕ − aϕ)
−1.(78)

This density does not have a standard form, so we use a Metropolis-Hastings step
with a normal random walk proposal and sample αj using the metrop function
in the R package mcmc (R Development Core Team, 2017).

Second, we derive the posterior predictive distribution of w∗
j given the rest.

The GP prior on (wj ,w
∗
j ) implies that the density of w∗

j given wj is

w∗
j | wj ∼ N

{
C∗,j(α)C−1

j,j (α)wj ,C∗,∗(α)−C∗,j(α)C−1
j,j (α)Cj,∗(α)

}
,(79)

where cov(w∗
j ,w

∗
j ) = C∗,∗(α), cov(w∗

j ,wj) = C∗,j(α), and cov(wj ,w
∗
j ) = Cj,∗(α).

Given α, β, yj , and Xj , (72) implies that the likelihood of wj after stochastic
approximation is

{lj(wj)}k = (2π)−mk/2|τ2 I |−k/2e−
k

2τ2
(yj −Xj β−wj)

T
(yj −Xj β−wj).(80)

The GP prior on wj , the pseudo likelihood in (80), and Bayes rule implies that
the density of the subset posterior distribution for wj given the rest is

wj | rest ∝ e
− 1

2τ2/k
(yj −Xj β−wj)

T
(yj −Xj β−wj)

e−
1
2
wT

j C−1
j,j (α)wj .

This implies that the complete conditional distribution ofwj has densityN(mwj ,Vwj ),
where

Vwj =
{
C−1

j,j (α) + k
τ2

I
}−1

, mwj =
k

τ2
Vwj (yj −Xj β);(81)

therefore, (79) and (81) imply that the complete conditional distribution of w∗
j

has density N(mw∗
j
,Vw∗

j
), where

mw∗
j
= E(w∗

j | rest) = C∗,j(α)C−1
j,j (α)E(wj | rest)

= C∗,j(α)
{
Cj,j(α) + τ2

k I
}−1

(yj −Xj β)(82)

and

Vw∗
j
= var(w∗

j | rest) = E
{
var(w∗

j | wj) | rest
}
+ var

{
E(w∗

j | wj) | rest
}
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= C∗,∗(α)−C∗,j(α)C−1
j,j (α)Cj,∗(α) +C∗,j(α)C−1

j,j (α)Vwj C
−1
j,j (α)Cj,∗(α).

(83)

Finally, we derive the posterior predictive distribution of y∗
j given the rest. If

βj , τ
2
j , w

∗
j are the samples from the jth subset posterior distribution of β, τ2,

and w∗, then (72) implies that y∗
j given the rest is sampled as

y∗
j = Xj βj +w∗

j + ϵ∗j , ϵ∗j ∼ N(0, τ2j I);

therefore, the complete conditional distribution of y∗
j is N(µy∗

j
,Vy∗

j
), where

µy∗
j
= Xj βj +w∗

j , Vy∗
j
= τ2j I .(84)

All full conditionals except that of α are analytically tractable in terms of
standard distributions in subset j (j = 1, . . . , k). The Gibbs sampler with a
Metropolis-Hastings step iterates between the following four steps until sufficient
number of samples of βj ,αj ,w

∗
j , and y∗

j are drawn post convergence to the
stationary distribution:

1. Sample βj from N(µj β,Vj β), where µj β and Vj β are defined in (77).
2. Sample αj using the Metropolis-Hastings algorithm from the jth subset

posterior density (up to constants) of αj in (78) with a normal random
walk proposal.

3. Sample w∗
j from N(µw∗

j
,Vw∗

j
), where µw∗

j
and Vw∗

j
are defined in (82) and

(83).
4. Sample y∗

j from N(µy∗
j
,Vy∗

j
), where µy∗

j
and Vy∗

j
are defined in (84).

3. SAMPLING FROM THE SUBSET POSTERIOR DISTRIBUTIONS
USING A LOW-RANK GP PRIOR

For clarity, we focus on the modified predictive process (MPP) prior as a
representative example of low-rank GP prior. The Gibbs sampling algorithm
derived in this section is easily extended to other low-rank GP priors. Follow-
ing the setup in Section 2, we assume that Cα(sji, sji′) = σ2ρ(sji, sji′ ;ϕ) and
Dα(sji, sji′) = 1(i = i′)τ2, α = (σ2, τ2, ϕ), the prior distributions on β and
α have the same forms as in (73), and Sj contains the locations in subset j.
Following the previous section, we assume that m1 = · · · = mk = m and
k = n/m. The only change in this section is that the spatial process w(·)
in (72) is assigned a MPP prior derived from parent GP prior in (74). MPP
projects the parent GP w(·) onto a subspace spanned by its realization over a

set of r locations, S(0) = {s(0)1 , . . . , s
(0)
r }, known as the “knots”, where no condi-

tions are imposed on S ∩S(0). Let c(·,S(0)) =
{
Cα(·, s(0)1 ), . . . , Cα(·, s(0)r )

}T
and

w(0) =
{
w(s

(0)
1 ), . . . , w(s

(0)
r )
}T

be r × 1 vectors and C(S(0)) be an r × r matrix

whose (i, j)th entry is Cα(s
(0)
i , s

(0)
j ). The MPP prior defines

w̃(·) = cT (·,S(0))C(S(0))−1w(0)+ϵ̃(·),(85)

where the processes ϵ̃(·) and w(·) are mutually independent and ϵ̃(·) is a GP with
mean 0, cov{ϵ̃(a), ϵ̃(b)} = δ(a)1(a = b) for any a,b ∈ D, and

δ(sji) = Cα(sji, sji)− cT (sji,S(0))C(S(0))−1 c(sji,S(0)).



24 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

The process w̃(·) is a low-rank GP with mean 0 and

cov{w̃(a), w̃(b)} = cT (a,S(0))C(S(0))−1 c(b,S(0)) + δ(a)1a=b

for any a,b ∈ D. If we replace w(·) by w̃(·) in (72), then

y(sji) = x(sji)
T β+w̃(sji) + ϵ(sji), j = 1, . . . , k, i = 1, . . . ,mj .(86)

and our definition in (85) implies that w̃(·) is assigned a MPP prior (Finley et al.,
2009).

We start by defining mean and covariance functions specific to univariate spa-
tial regression using MPP. Let w̃j = {w̃(sj1), . . . , w̃(sjm)} and w̃∗

j = {w̃(s1), . . . , w̃(sl)}.
The MPP prior is identical to the FITC approximation in sparse approximate
GP regression, so we use the FITC notations to simplify the description of pos-
terior computations (Quiñonero-Candela and Rasmussen, 2005). Define Qj,j =

Cj,0(α)C−1(S(0))C0,j(α), where cov{w(sja), w(s(0)b )} = {Cj,0(α)}a,b (a = 1, . . . ,m;

b = 1, . . . , r) and C0,j(α) = CT
j,0(α). The density of (w̃j , w̃

∗
j ) under the GP prior

implied by MPP is N{0, C̃(α)}, where 2× 2 block form of C̃(α) is defined using

C̃j,j(α) = Qj,j +diag{Cj,j(α)−Qj,j} = cov(w̃j , w̃j),

C̃j,∗(α) = Qj,∗ = cov(w̃j , w̃
∗
j ),

C̃∗,∗(α) = Q∗,∗+diag{C∗,∗(α)−Q∗,∗} = cov(w̃∗
j , w̃

∗
j ),

C̃∗,j(α) = Q∗,j = cov(w̃∗
j , w̃j).(87)

Stochastic approximation is implemented following Section 2. First, consider
stochastic approximation for the likelihood of β and α. Integrating out w̃j in
(86) gives

yj = Xj β+η̃j , η̃j ∼ N{0, C̃j,j(α) + τ2 I}.(88)

The likelihood of β and α given yj , Xj after stochastic approximation is

{lj(β,α)}k = (2π)−mk/2|C̃j,j(α) + τ2 I |−k/2e−
k
2 (yj −Xj β)

T{C̃j,j(α)+τ2 I}−1
(yj −Xj β).

(89)

The prior distribution for β in (73), the pseudo likelihood in (89), and Bayes rule
implies that the density of the jth subset posterior distribution for β given the
rest is

β | rest ∝ e−
1
2(yj −Xj β)

T
[k−1{C̃j,j(α)+τ2 I}]−1

(yj −Xj β) e−
1
2(β−µβ)

T
Σ−1

β (β−µβ).

This implies that the complete conditional distribution of βj has densityN(m̃j β, Ṽj β),
where

Ṽj β =
[
kXT

j {C̃j,j(α) + τ2 I}−1Xj +Σ−1
β

]−1
,

m̃j β = Ṽj β

[
kXT

j

{
C̃j,j(α) + τ2 I

}−1
yj +Σ−1

β µβ

]
.(90)
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Following Section 2, the density of the jth subset posterior distribution for α
given the rest is

α | rest ∝ |C̃j,j(α) + τ2 I |−k/2e−
1
2(yj −Xj β)

T
[k−1{C̃j,j(α)+τ2 I}]−1

(yj −Xj β)(
σ2
)−aσ−1

e−bσ/σ2 (
τ2
)−aτ−1

e−bτ/τ2(bϕ − aϕ)
−1.(91)

This density does not have a standard form, so we use a Metropolis-Hastings step
with a normal random walk proposal and sample αj using the metrop function
in the R package mcmc.

Second, we derive the posterior predictive distribution of w̃∗
j given the rest.

The MPP prior on (w̃j , w̃
∗
j ) implies that the density of w̃∗

j given w̃j is

w̃∗
j | w̃j ∼ N

{
C̃∗,j(α)C̃

−1
j,j (α)w̃j , C̃∗,∗(α)− C̃∗,j(α)C̃

−1
j,j (α)C̃j,∗(α)

}
.(92)

Given α, β, yj , and Xj , (86) implies that the likelihood of w̃j after stochastic
approximation is

{lj(w̃j)}k = (2π)−mk/2|τ2 I |−k/2e−
k

2τ2
(yj −Xj β−w̃j)

T
(yj −Xj β−w̃j).(93)

The MPP prior on w̃j , the pseudo likelihood in (93), and Bayes rule implies that
the density of the subset posterior distribution for w̃j given the rest is

w̃j | rest ∝ e
− 1

2τ2/k
(yj −Xj β−w̃j)

T
(yj −Xj β−w̃j)

e−
1
2
w̃T

j C̃
−1
j,j (α)w̃j .

This implies that the complete conditional distribution of w̃j has densityN(mw̃j ,Vw̃j ),
where

Vw̃j =
{
C̃

−1
j,j (α) + k

τ2
I
}−1

, mw̃j =
k

τ2
Vw̃j (yj −Xj β);(94)

therefore, (92) and (94) imply that the complete conditional distribution of w̃∗
j

has density N(mw̃∗
j
,Vw̃∗

j
), where

mw̃∗
j
= E(w̃∗

j | rest) = C̃∗,j(α)C̃
−1
j,j (α)E(w̃j | rest)

= C̃∗,j(α)
{
C̃j,j(α) + τ2

k I
}−1

(yj −Xj β)(95)

and

Vw̃∗
j
= var(w̃∗

j | rest) = E
{
var(w̃∗

j | w̃j) | rest
}
+ var

{
E(w̃∗

j | w̃j) | rest
}

= C̃∗,∗(α)− C̃∗,j(α)C̃
−1
j,j (α)C̃j,∗(α) + C̃∗,j(α)C̃

−1
j,j (α)Vw̃j C̃

−1
j,j (α)C̃j,∗(α).

(96)

Finally, we derive the posterior predictive distribution of y∗
j given the rest. If

βj , τ
2
j , w̃

∗
j are the samples from the jth subset posterior distribution of β, τ2,

and w̃∗, then (86) implies that y∗
j given the rest is sampled as

y∗
j = Xj βj +w̃∗

j + ϵ∗j , ϵ∗j ∼ N(0, τ2j I);
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therefore, the complete conditional distribution of y∗
j has density N(µ̃y∗

j
, Ṽy∗

j
),

where

µ̃y∗
j
= Xj βj +w̃∗

j , Ṽy∗
j
= τ2j I .(97)

All full conditionals except that of α are analytically tractable in terms of
standard distributions in subset j (j = 1, . . . , k). The Gibbs sampler with a
Metropolis-Hastings step iterates between the following four steps until sufficient
number of samples of βj ,αj , w̃

∗
j , and y∗

j are drawn post convergence to the
stationary distribution:

1. Sample βj from N(µ̃j β, Ṽj β), where µ̃j β and Ṽj β are defined in (90).
2. Sample αj using the Metropolis-Hastings algorithm from the jth subset

posterior density (up to constants) of αj in (91) with a normal random
walk proposal.

3. Sample w̃∗
j from N(µw̃∗

j
,Vw̃∗

j
), where µw̃∗

j
and Vw̃∗

j
are defined in (95) and

(96).
4. Sample y∗

j from N(µ̃y∗
j
, Ṽy∗

j
), where µ̃y∗

j
and Ṽy∗

j
are defined in (97).

4. COMPARISONS BETWEEN DIVIDE-AND-CONQUER COMPETITORS

4.1 Setup

We compare the four competitors based on the divide-and-conquer technique.
Extending Section 4 of the main manuscript, we compare the performance based
on learning the process parameters, interpolating the unobserved spatial surface,
and predicting the response at new locations. This section presents two simulation
studies and one real data analysis. Recall that the first and second simulations
(Simulation 1 ) generate data from a spatial linear model where the spatial pro-
cesses are simulated from a GP and an analytic function with local features,
respectively. The number of locations in the two simulations is moderately large
with n = 10, 000. Continuing from the main manuscript, our real data analysis is
based on a large data subset of sea surface temperature data with n = 1, 00, 000
locations. For all the three simulations, the response at (n+l) locations is modeled
as

y(si) = β0 + x(si)β1 + w(si) + ϵi, ϵi ∼ N(0, τ2), si ∈ D ⊂ R2,(98)

for i = 1, . . . , n + l, where D is the spatial domain, y(si), x(si), w(si), and ϵi
are the response, covariate, spatial process, and idiosyncratic error values at the
location si, β0 is the intercept, β1 models the covariate effect, and l is the number
of new locations.

The three-step DISK, WASP, DPMC and CMC frameworks are applied using
the low-rank MPP priors using the algorithm outlined in Section 3.3 of the main
paper with two partitioning schemes. The first partitioning scheme randomly
partitions the spatial locations in k groups. In the second partitioning scheme,
we divide the spatial domain into sixteen square grid cells and randomly allocate
locations in every grid cell into k groups.

We compare the quality of prediction and estimation of spatial surface at
predictive locations S∗ = {s∗1, . . . , s∗l }. If w(s∗i′) and y(s∗i′) are the value of the
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spatial surface and response at s∗i′ ∈ S∗, then the estimation and prediction
errors are defined as

Est Err2 =
1

l

l∑
i′=1

{ŵ(s∗i′)− w(s∗i′)}2, Pred Err2 =
1

l

l∑
i′=1

{ŷ(s∗i′)− y(s∗i′)}2,(99)

where ŵ(s∗i′) and ŷ(s∗i′) denote the estimates of w(s∗i′) and y(s∗i′) obtained using
any distributed or non-distributed methods. For sampling-based methods, we set
ŵ(s∗i′) and ŷ(s∗i′) to be the medians of posterior MCMC samples for w(s∗i′) and
y(s∗i′), respectively, for i

′ = 1, . . . , l. We also estimate the point-wise 95% credible
or confidence intervals (CIs) of w(s∗i′) and predictive intervals (PIs) of y(s∗i′) for
every si′ ∈ S∗ and compare the CI and PI coverages and lengths for every method.
Finally, we compare the performance of all the methods for parameter estimation
using the posterior medians or point estimates and the 95% CIs.

4.2 Simulation 1: Spatial Linear Model Based On GP

This section compares DISK with its divide-and-conquer competitors under
the two partitioning schemes and is a continuation of Section 4.2 of the main
manuscript. The four divide-and-conquer methods, CMC DISK, WASP, and
DPMC, have similar performance in parameter estimation (Tables 1, 2, and 3).
The parameter estimates obtained using all these methods are close to the truth
and estimation errors are also very similar. The 95% credible intervals of β0, β1, τ

2

in cover the true values and their lower and upper quantiles are very similar. All
the four methods underestimate σ2 and overestimate ϕ slightly. Both results are
the impacts of parent MPP prior, which also shows a similar pattern for the two
choices of r. We notice that the coverage of CMC is smaller than that of DISK,
WASP, and DPMC. More importantly, the choice of r, k, or partitioning scheme
has a minimal impact on parameter estimation in DISK, WASP, and DPMC.

The inferential and predictive performance of DISK, WASP, and DPMC are
similar, but CMC shows significant differences (Table 4). There are minimal dif-
ferences in the prediction and estimation errors of CMC, DISK, WASP, and
DPMC. This indicates that the estimate of posterior medians are very similar in
all the four methods; however, the pointwise coverage of CMC in prediction of
the response and inference on the spatial surface is significantly smaller than the
nominal value for every choice of r and k. On the other hand, DISK, WASP, and
DPMC have nominal coverage in prediction and inference on the spatial surface.
Furthermore, their CI and PI coverage values are robust to the choices of r, k,
and partitioning scheme.

In summary, the DISK, WASP, and DPMC have similar inferential and pre-
dictive performance. While CMC’s point estimates are close to those of DISK,
WASP, and DPMC, its inferential and predictive performance is worse than its
three competitors. The partitioning scheme, random or grid-based, has no impact
on the performance of all the four divide-and-conquer methods.

4.3 Simulation 2: Spatial Linear Model Based On Analytic Spatial Surface

This section compares DISK with its divide-and-conquer competitors and is
a continuation of Section 4.3 of the main manuscript. Our conclusions remain
similar as those observed in the previous section. Specifically, CMC DISK, WASP,
and DPMC have similar performance in parameter estimation (Tables 5, 6, and
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Table 1
The errors in estimating the parameters β = (β0, β1), σ

2, ϕ, τ2 in Simulation 1 for the
divide-and-conquer methods under random and grid-based partitioning. The parameter

estimates for the Bayesian methods β̂ = (β̂0, β̂1), σ̂
2, ϕ̂, τ̂2 are defined as the posterior medians

of their respective MCMC samples and their true values are β0 = (1, 2), σ2
0 = 1, ϕ0 = 4 and

τ2
0 = 0.1. The entries in the table are averaged across 10 simulation replications.

∥β̂ − β0 ∥ |σ̂2 − σ2
0 | |ϕ̂− ϕ0| |τ̂2 − τ2

0 |
Random Partitioning

CMC (r = 200, k = 10) 0.09 0.12 0.68 0.01
CMC (r = 400, k = 10) 0.09 0.12 0.75 0.01
CMC (r = 200, k = 20) 0.10 0.13 0.95 0.02
CMC (r = 400, k = 20) 0.10 0.13 0.82 0.02

DISK (r = 200, k = 10) 0.09 0.11 0.64 0.01
DISK (r = 400, k = 10) 0.09 0.11 0.64 0.01
DISK (r = 200, k = 20) 0.10 0.12 0.66 0.02
DISK (r = 400, k = 20) 0.10 0.12 0.66 0.02

WASP (r = 200, k = 10) 0.09 0.11 0.64 0.01
WASP (r = 400, k = 10) 0.09 0.11 0.63 0.01
WASP (r = 200, k = 20) 0.10 0.12 0.66 0.02
WASP (r = 400, k = 20) 0.10 0.12 0.66 0.02

DPMC (r = 200, k = 10) 0.09 0.11 0.64 0.01
DPMC (r = 400, k = 10) 0.09 0.11 0.63 0.01
DPMC (r = 200, k = 20) 0.10 0.12 0.66 0.02
DPMC (r = 400, k = 20) 0.10 0.12 0.66 0.02

Grid-Based Partitioning

CMC (r = 200, k = 10) 0.09 0.12 0.63 0.01
CMC (r = 400, k = 10) 0.09 0.12 0.65 0.01
CMC (r = 200, k = 20) 0.10 0.13 0.77 0.01
CMC (r = 400, k = 20) 0.10 0.13 0.83 0.01

DISK (r = 200, k = 10) 0.09 0.12 0.62 0.01
DISK (r = 400, k = 10) 0.09 0.12 0.62 0.01
DISK (r = 200, k = 20) 0.10 0.12 0.63 0.01
DISK (r = 400, k = 20) 0.10 0.12 0.64 0.01

WASP (r = 200, k = 10) 0.09 0.12 0.62 0.01
WASP (r = 400, k = 10) 0.09 0.12 0.62 0.01
WASP (r = 200, k = 20) 0.10 0.12 0.63 0.01
WASP (r = 400, k = 20) 0.10 0.12 0.64 0.01

DPMC (r = 200, k = 10) 0.09 0.12 0.62 0.01
DPMC (r = 400, k = 10) 0.09 0.12 0.62 0.01
DPMC (r = 200, k = 20) 0.10 0.12 0.63 0.01
DPMC (r = 400, k = 20) 0.10 0.12 0.64 0.01

7); however, the inferential and predictive performance of DISK, WASP, and
DPMC are significantly better than those of CMC (Table 8). The partitioning
scheme, random or grid-based, has no impact on the inferential and predictive
performance of CMC, DISK, WASP, and DPMC. The results are also robust to
the choices of k and r.

4.4 Real data analysis: Sea Surface Temperature data

This section is a continuation of Section 4.3 of the main manuscript and com-
pares DISK with its divide-and-conquer competitors in analyzing the Sea Surface
Temperature (SST) data. We have chosen random partitioning based on our con-
clusions in the previous two simulations. Our results for SST data analysis are also
very similar to those in the previous two simulations. Specifically, CMC DISK,
WASP, and DPMC have similar performance in parameter estimation, but signif-
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Table 2
The estimates of parameters β = (β0, β1), σ

2, ϕ, τ2 and their 95% marginal credible intervals
(CIs) in Simulation 1 for the divide-and-conquer methods under random partitioning. The
parameter estimates for the Bayesian methods β̂ = (β̂0, β̂1), σ̂

2, ϕ̂, τ̂2 are defined as the
posterior medians of their respective MCMC samples. The parameter estimates and upper and

lower quantiles of 95% CIs are averaged over 10 simulation replications.

β0 β1 σ2 ϕ τ2

Truth 1.00 2.00 1.00 4.00 0.10
Parameter Estimates

CMC (r = 200, k = 10) 1.00 2.00 0.91 4.38 0.10
CMC (r = 400, k = 10) 1.00 2.00 0.91 4.41 0.10
CMC (r = 200, k = 20) 1.00 2.00 0.90 4.55 0.10
CMC (r = 400, k = 20) 1.00 2.00 0.91 4.46 0.10
DISK (r = 200, k = 10) 1.00 2.00 0.92 4.35 0.11
DISK (r = 400, k = 10) 1.00 2.00 0.92 4.35 0.11
DISK (r = 200, k = 20) 1.00 2.00 0.91 4.38 0.11
DISK (r = 400, k = 20) 1.00 2.00 0.91 4.38 0.11
WASP (r = 200, k = 10) 1.00 2.00 0.92 4.35 0.11
WASP (r = 400, k = 10) 1.00 2.00 0.92 4.34 0.11
WASP (r = 200, k = 20) 1.00 2.00 0.91 4.38 0.11
WASP (r = 400, k = 20) 1.00 2.00 0.91 4.38 0.11
DPMC (r = 200, k = 10) 1.00 2.00 0.92 4.35 0.11
DPMC (r = 400, k = 10) 1.00 2.00 0.92 4.34 0.11
DPMC (r = 200, k = 20) 1.00 2.00 0.91 4.38 0.11
DPMC (r = 400, k = 20) 1.00 2.00 0.91 4.38 0.11

95% Credible Intervals
CMC (r = 200, k = 10) (0.98, 1.02) (2.00, 2.00) (0.90, 0.93) (4.28, 4.49) (0.10, 0.11)
CMC (r = 400, k = 10) (0.98, 1.02) (2.00, 2.00) (0.90, 0.93) (4.31, 4.52) (0.10, 0.11)
CMC (r = 200, k = 20) (0.99, 1.01) (2.00, 2.00) (0.89, 0.92) (4.49, 4.61) (0.10, 0.10)
CMC (r = 400, k = 20) (0.99, 1.01) (2.00, 2.00) (0.90, 0.92) (4.40, 4.53) (0.10, 0.10)
DISK (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.69) (0.09, 0.12)
DISK (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.69) (0.09, 0.12)
DISK (r = 200, k = 20) (0.94, 1.06) (1.98, 2.01) (0.86, 0.96) (4.07, 4.67) (0.09, 0.13)
DISK (r = 400, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.07, 4.68) (0.09, 0.13)
WASP (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.69) (0.09, 0.12)
WASP (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.69) (0.09, 0.12)
WASP (r = 200, k = 20) (0.94, 1.06) (1.98, 2.01) (0.86, 0.96) (4.07, 4.67) (0.09, 0.13)
WASP (r = 400, k = 20) (0.94, 1.06) (1.98, 2.01) (0.86, 0.96) (4.07, 4.68) (0.09, 0.13)
DPMC (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.70) (0.09, 0.12)
DPMC (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (3.99, 4.70) (0.09, 0.12)
DPMC (r = 200, k = 20) (0.94, 1.06) (1.98, 2.01) (0.86, 0.96) (4.06, 4.68) (0.09, 0.13)
DPMC (r = 400, k = 20) (0.94, 1.06) (1.98, 2.01) (0.86, 0.96) (4.06, 4.69) (0.09, 0.13)

icant differences exist in their predictive performance (Table 9). CMC’s predictive
coverage is much smaller than the nominal value, which matches our conclusions
in the previous two simulations. DISK outperforms WASP and DPMC in pre-
dictions in that its MSPE is the smallest among them. DISK also has better
nominal predictive coverage than WASP and DPMC while having comparable
95% PI lengths. The results are also robust to the choices of r. We conclude
that DISK performs better than its divide-and-conquer competitors in SST data
analysis.

4.5 Computation time comparisons

We report the run-times of all the methods used in the simulated and real data
analysis in Section 4 of the main paper. Since distributed methods partition the
data into the same subset size and fit the same MPP model for subset poste-
rior inference, the run times are identical for any method in Simulation 1 and 2.
Thus, we only present run times for simulation and for the sea surface tempera-
ture data; see Tables 10 and 11 for the run-times in log10 seconds for Simulation
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Table 3
The estimates of parameters β = (β0, β1), σ

2, ϕ, τ2 and their 95% marginal credible intervals
(CIs) in Simulation 1 for the divide-and-conquer methods under grid-based partitioning. The

parameter estimates for the Bayesian methods β̂ = (β̂0, β̂1), σ̂
2, ϕ̂, τ̂2 are defined as the

posterior medians of their respective MCMC samples. The parameter estimates and upper and
lower quantiles of 95% CIs are averaged over 10 simulation replications.

β0 β1 σ2 ϕ τ2

Truth 1.00 2.00 1.00 4.00 0.10
Parameter Estimates

CMC (r = 200, k = 10) 1.00 2.00 0.91 4.37 0.10
CMC (r = 400, k = 10) 1.00 2.00 0.91 4.37 0.10
CMC (r = 200, k = 20) 1.00 2.00 0.91 4.44 0.10
CMC (r = 400, k = 20) 1.00 2.00 0.90 4.48 0.10
DISK (r = 200, k = 10) 1.00 2.00 0.91 4.35 0.11
DISK (r = 400, k = 10) 1.00 2.00 0.91 4.35 0.11
DISK (r = 200, k = 20) 1.00 2.00 0.91 4.37 0.11
DISK (r = 400, k = 20) 1.00 2.00 0.91 4.37 0.11
WASP (r = 200, k = 10) 1.00 2.00 0.91 4.35 0.11
WASP (r = 400, k = 10) 1.00 2.00 0.91 4.34 0.11
WASP (r = 200, k = 20) 1.00 2.00 0.91 4.37 0.11
WASP (r = 400, k = 20) 1.00 2.00 0.91 4.37 0.11
DPMC (r = 200, k = 10) 1.00 2.00 0.91 4.35 0.11
DPMC (r = 400, k = 10) 1.00 2.00 0.91 4.34 0.11
DPMC (r = 200, k = 20) 1.00 2.00 0.91 4.37 0.11
DPMC (r = 400, k = 20) 1.00 2.00 0.91 4.37 0.11

95% Credible Intervals
CMC (r = 200, k = 10) (0.98, 1.02) (2.00, 2.00) (0.89, 0.93) (4.27, 4.47) (0.10, 0.11)
CMC (r = 400, k = 10) (0.98, 1.02) (2.00, 2.00) (0.89, 0.93) (4.27, 4.48) (0.10, 0.11)
CMC (r = 200, k = 20) (0.99, 1.01) (2.00, 2.00) (0.90, 0.92) (4.38, 4.50) (0.10, 0.11)
CMC (r = 400, k = 20) (0.99, 1.01) (2.00, 2.00) (0.89, 0.92) (4.42, 4.54) (0.10, 0.11)
DISK (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (3.99, 4.69) (0.09, 0.12)
DISK (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (3.99, 4.70) (0.09, 0.12)
DISK (r = 200, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.06, 4.67) (0.09, 0.13)
DISK (r = 400, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.07, 4.67) (0.09, 0.13)
WASP (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (3.99, 4.69) (0.10, 0.12)
WASP (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (3.98, 4.70) (0.09, 0.12)
WASP (r = 200, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.06, 4.67) (0.09, 0.13)
WASP (r = 400, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.07, 4.67) (0.09, 0.13)
DPMC (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (3.98, 4.70) (0.09, 0.12)
DPMC (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (3.98, 4.71) (0.09, 0.12)
DPMC (r = 200, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.05, 4.69) (0.09, 0.13)
DPMC (r = 400, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.07, 4.68) (0.09, 0.13)

1 and in log10 hours for sea surface temperature data analysis, respectively. Sim-
ilar to our observations in the performance comparisons, the run-times for the
distributed methods are independent of the partitioning schemes. The run-times
cannot be compared directly from the tables due to the differences in implemen-
tation. Specifically, distributed methods are implemented in R for all values of
r and k, whereas most non-distributed methods are implemented in R and a
higher-level language, such as C/C++ and Fortran.

The combination step in any distributed method requires a very small time
compared to the time required for sampling on the subsets. For example, the
time required for combination using the WASP is the largest among all the four
distributed methods, but the maximum of WASP’s combination time is only 8%
of the maximum time required for sampling on the subsets. On an average, the
combination steps of the other three methods require less than 1% of the time
required for sampling on the subsets. This implies that run-times for all the four
distributed methods in the two simulations are fairly similar (Table 10). In the
real data analysis, the combination steps of the all the four distributed methods
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Table 4
Inference on the values of spatial surface and response at the locations in S∗ in Simulation 1
for the divide-and-conquer methods under random and grid-based partitioning. The estimation
and prediction errors are defined in (99) and coverage and credible intervals are calculated
pointwise for the locations in S∗. The entries in the table are averaged over 10 simulation

replications.

Est Err Pred Err 95% CI Coverage 95% CI Length
GP Y GP Y GP Y

Random Partitioning
CMC (r = 200, k = 10) 0.56 0.64 0.38 0.39 0.81 0.81
CMC (r = 400, k = 10) 0.43 0.52 0.40 0.41 0.74 0.74
CMC (r = 200, k = 20) 0.58 0.67 0.27 0.28 0.57 0.57
CMC (r = 400, k = 20) 0.46 0.55 0.28 0.29 0.52 0.52
DISK (r = 200, k = 10) 0.55 0.64 0.97 0.97 3.20 3.45
DISK (r = 400, k = 10) 0.42 0.51 0.97 0.97 2.88 3.15
DISK (r = 200, k = 20) 0.58 0.67 0.97 0.97 3.25 3.51
DISK (r = 400, k = 20) 0.46 0.55 0.97 0.97 2.98 3.25
WASP (r = 200, k = 10) 0.55 0.64 0.96 0.96 3.25 3.25
WASP (r = 400, k = 10) 0.42 0.51 0.96 0.96 2.97 2.97
WASP (r = 200, k = 20) 0.58 0.67 0.96 0.96 3.30 3.30
WASP (r = 400, k = 20) 0.46 0.55 0.96 0.96 3.06 3.06
DPMC (r = 200, k = 10) 0.55 0.64 0.97 0.97 3.46 3.46
DPMC (r = 400, k = 10) 0.42 0.51 0.97 0.97 3.17 3.17
DPMC (r = 200, k = 20) 0.58 0.67 0.97 0.97 3.53 3.53
DPMC (r = 400, k = 20) 0.46 0.55 0.97 0.97 3.28 3.28

Grid-Based Partitioning
CMC (r = 200, k = 10) 0.75 0.80 0.38 0.39 0.81 0.81
CMC (r = 400, k = 10) 0.65 0.72 0.40 0.40 0.74 0.74
CMC (r = 200, k = 20) 0.76 0.82 0.27 0.28 0.57 0.57
CMC (r = 400, k = 20) 0.68 0.74 0.28 0.28 0.52 0.52
DISK (r = 200, k = 10) 0.75 0.80 0.97 0.97 3.45 3.45
DISK (r = 400, k = 10) 0.65 0.72 0.97 0.97 3.15 3.15
DISK (r = 200, k = 20) 0.76 0.82 0.97 0.97 3.51 3.51
DISK (r = 400, k = 20) 0.68 0.74 0.97 0.97 3.26 3.26
WASP (r = 200, k = 10) 0.74 0.80 0.96 0.96 3.25 3.25
WASP (r = 400, k = 10) 0.65 0.72 0.96 0.96 2.97 2.97
WASP (r = 200, k = 20) 0.76 0.82 0.96 0.95 3.30 3.30
WASP (r = 400, k = 20) 0.68 0.74 0.96 0.96 3.06 3.06
DPMC (r = 200, k = 10) 0.74 0.80 0.97 0.97 3.46 3.46
DPMC (r = 400, k = 10) 0.65 0.72 0.97 0.97 3.16 3.16
DPMC (r = 200, k = 20) 0.76 0.82 0.97 0.97 3.53 3.53
DPMC (r = 400, k = 20) 0.68 0.74 0.97 0.97 3.28 3.28

require less that 1% of the time required for sampling on the subsets, so all of
them have nearly identical run-times (Table 11).

5. MARKOV CHAINS ON THE SUBSETS IN DISK

Any divide-and-conquer method runs modified Markov chain Monte Carlo al-
gorithms in parallel on the subsets to obtain draws from the subset posterior
distributions. In our context, we draw parameter and response values from the
respective posterior distributions on every subset. There are no theoretical results
that guarantee convergence of the Markov chain produced by the sampling algo-
rithms to its stationary distribution in a spatial linear model with MPP prior.
This further complicates the theoretical analysis of the Markov chain produced
on the subsets in DISK, where the likelihood is modified. We are not aware any
rigorous approach for comparing the Markov chains obtained from the subset
and true posterior distributions. We use heuristics based on trace plots and auto
correlation functions of the Markov chains for parameters, spatial surface, and
predictive surface to judge “convergence” to the respective subset posterior dis-
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Table 5
The errors in estimating the parameters β, τ2 in Simulation 2 for the divide-and-conquer

methods under random and grid-based partitioning. The parameter estimates for the Bayesian
methods β̂, τ̂2 are defined as the posterior medians of their respective MCMC samples and

β0 = 1 and τ2
0 = 0.01. The entries in the table are averaged across 10 simulation replications.

∥β̂ − β0∥ |τ̂2 − τ20 |
Random Partitioning

CMC (r = 200, k = 10) 0.03 0.00
CMC (r = 400, k = 10) 0.03 0.09
CMC (r = 200, k = 20) 1.41 0.09
CMC (r = 400, k = 20) 1.41 0.09
DISK (r = 200, k = 10) 0.18 0.04
DISK (r = 400, k = 10) 0.13 0.04
DISK (r = 200, k = 20) 0.18 0.04
DISK (r = 400, k = 20) 0.13 0.04
WASP(r = 200, k = 10) 0.68 0.09
WASP (r = 400, k = 10) 0.68 0.09
WASP (r = 200, k = 20) 0.72 0.09
WASP (r = 400, k = 20) 0.72 0.09
DPMC (r = 200, k = 10) 0.68 0.09
DPMC (r = 400, k = 10) 0.68 0.09
DPMC (r = 200, k = 20) 0.72 0.09
DPMC (r = 400, k = 20) 0.72 0.09

Grid-Based Partitioning
CMC (r = 200, k = 10) 0.03 0.09
CMC (r = 400, k = 10) 0.03 0.09
CMC (r = 200, k = 20) 0.02 0.09
CMC (r = 400, k = 20) 0.02 0.09
DISK (r = 200, k = 10) 0.03 0.09
DISK (r = 400, k = 10) 0.03 0.09
DISK (r = 200, k = 20) 0.02 0.09
DISK (r = 400, k = 20) 0.02 0.09
WASP(r = 200, k = 10) 0.03 0.09
WASP (r = 400, k = 10) 0.03 0.09
WASP (r = 200, k = 20) 0.02 0.09
WASP (r = 400, k = 20) 0.02 0.09
DPMC (r = 200, k = 10) 0.03 0.09
DPMC (r = 400, k = 10) 0.03 0.09
DPMC (r = 200, k = 20) 0.02 0.09
DPMC (r = 400, k = 20) 0.02 0.09

tributions.
Unfortunately, it is impractical to compare trace plots and auto correlation

functions obtained using subset and true posterior distributions; therefore, we
compare the effective sample sizes of Markov chains for the parameters, spatial
surface, and response obtained on the subsets using an MPP prior relative to
those obtained using the full data and the same MPP prior. The number of
posterior samples in both cases is 1000, which are obtained from a Markov chain
of 10000 draws after using a burn-in of 5000 and collecting every fifth sample.
The effectiveSize command coda R package is used for estimating the effective
sample sizes for every choice of k and r (Plummer et al., 2006). We compute
the ratio of the effective sample sizes of the Markov chains produced on the
subsets in DISK to those obtained using the MPP prior and the full data. For
two- or higher-dimensional parameters, spatial surface, and predictive surface,
we average the ratio of the effective sample sizes across all the dimensions. While
there are no theoretical justifying the convergence of the Markov chain to the
stationary distribution, we still assume so because MPP has been used extensively
for analyzing spatial data. This heuristic shows that the Markov chains obtained
using the data subsets and full data are “similar” in that their effective sample
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Table 6
The estimates of parameters β, σ2, ϕ, τ2 and their 95% marginal credible intervals (CIs) in
Simulation 2 for the divide-and-conquer methods under random partitioning. The parameter
estimates for the Bayesian methods β̂, σ̂2, ϕ̂, τ̂2 are defined as the posterior medians of their

respective MCMC samples. The parameter estimates and upper and lower quantiles of 95% CIs
are averaged over 10 simulation replications

β σ2 ϕ τ2

Truth 1.00 - - 0.01
Parameter Estimates

CMC (r = 200, k = 10) 1.03 0.22 0.11 0.01
CMC (r = 400, k = 10) 1.03 0.22 0.11 0.01
CMC (r = 200, k = 20) 0.98 0.23 0.13 0.01
CMC (r = 400, k = 20) 0.98 0.23 0.13 0.01
DISK (r = 200, k = 10) 1.03 0.21 0.12 0.01
DISK (r = 400, k = 10) 0.98 0.22 0.14 0.01
DISK (r = 200, k = 20) 1.03 0.21 0.12 0.01
DISK (r = 400, k = 20) 0.98 0.22 0.14 0.01
WASP (r = 200, k = 10) 1.03 0.21 0.12 0.01
WASP (r = 400, k = 10) 1.03 0.21 0.12 0.01
WASP (r = 200, k = 20) 0.98 0.22 0.14 0.01
WASP (r = 400, k = 20) 0.98 0.22 0.14 0.01
DPMC (r = 200, k = 10) 1.03 0.21 0.12 0.01
DPMC (r = 400, k = 10) 1.03 0.21 0.12 0.01
DPMC (r = 200, k = 20) 0.98 0.22 0.14 0.01
DPMC (r = 400, k = 20) 0.98 0.22 0.14 0.01

95% Credible Intervals
CMC(r = 200, k = 10) (0.96, 1.11) (0.22, 0.23) (0.11, 0.12) (0.01, 0.01)
CMC (r = 400, k = 10) (0.96, 1.11) (0.22, 0.23) (0.11, 0.12) (0.01, 0.01)
CMC (r = 200, k = 20) (0.94, 1.02) (0.22, 0.24) (0.13, 0.13) (0.01, 0.01)
CMC (r = 400, k = 20) (0.94, 1.02) (0.22, 0.24) (0.12, 0.13) (0.01, 0.01)
DISK (r = 200, k = 10) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
DISK (r = 400, k = 10) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)
DISK (r = 200, k = 20) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
DISK (r = 400, k = 20) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)
WASP (r = 200, k = 10) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
WASP (r = 400, k = 10) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
WASP (r = 200, k = 20) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)
WASP (r = 400, k = 20) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)
DPMC (r = 200, k = 10) (0.80, 1.27) (0.17, 0.25) (0.10, 0.15) (0.01, 0.01)
DPMC (r = 400, k = 10) (0.80, 1.27) (0.17, 0.25) (0.10, 0.15) (0.01, 0.01)
DPMC (r = 200, k = 20) (0.82, 1.16) (0.17, 0.26) (0.11, 0.18) (0.01, 0.01)
DPMC (r = 400, k = 20) (0.82, 1.16) (0.17, 0.26) (0.11, 0.19) (0.01, 0.01)

sizes are very close.
The effective sample sizes of the Markov chains for the parameters and the

spatial surface and response at the locations in S∗ are very similar to those
obtained using the full data and the same MPP prior in Simulation 1 (Table 12).
The effective sample sizes decrease with k in Simulation 2 slightly for the spatial
surface and response at the locations in S∗ (Table 13); however, this spatial
surface is not simulated from a GP in this simulation, so the comparisons are less
reliable. The partitioning scheme, random or grid-based, has a minimal impact
on the effective sample sizes. The ratio of the effective sample sizes are equal
for the β, spatial surface, and predictions in Simulation 1; however, there are
differences in the effective sample sizes of the Markov chains for σ2, ϕ, τ2 in both
simulations. These differences mainly arise due to the non-identifiability of the
covariance function parameters. In most spatial applications, the main interest
lies in inference and prediction, where the effective sample sizes on the subsets are
very similar to their full data benchmarks; therefore, we conclude that the Markov
chains produced on the subsets in DISK have similar properties as their full data
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Table 7
The estimates of parameters β, σ2, ϕ, τ2 and their 95% marginal credible intervals (CIs) in

Simulation 2 for the divide-and-conquer methods under grid-based partitioning. The parameter
estimates for the Bayesian methods β̂, σ̂2, ϕ̂, τ̂2 are defined as the posterior medians of their

respective MCMC samples. The parameter estimates and upper and lower quantiles of 95% CIs
are averaged over 10 simulation replications

β σ2 ϕ τ2

Truth 1.00 - - 0.01
Parameter Estimates

CMC (r = 200, k = 10) 1.03 0.22 0.11 0.01
CMC (r = 400, k = 10) 1.03 0.22 0.11 0.01
CMC (r = 200, k = 20) 0.98 0.23 0.13 0.01
CMC (r = 400, k = 20) 0.98 0.23 0.13 0.01
DISK (r = 200, k = 10) 1.03 0.21 0.12 0.01
DISK (r = 400, k = 10) 1.03 0.21 0.12 0.01
DISK (r = 200, k = 20) 0.98 0.22 0.14 0.01
DISK (r = 400, k = 20) 0.98 0.22 0.14 0.01
WASP (r = 200, k = 10) 1.03 0.21 0.12 0.01
WASP (r = 400, k = 10) 1.03 0.21 0.12 0.01
WASP (r = 200, k = 20) 0.98 0.22 0.14 0.01
WASP (r = 400, k = 20) 0.99 0.22 0.14 0.01
DPMC (r = 200, k = 10) 1.03 0.21 0.12 0.01
DPMC (r = 400, k = 10) 1.03 0.21 0.12 0.01
DPMC (r = 200, k = 20) 0.98 0.22 0.14 0.01
DPMC (r = 400, k = 20) 0.99 0.22 0.14 0.01

95% Credible Intervals
CMC(r = 200, k = 10) (0.96, 1.10) (0.21, 0.23) (0.11, 0.12) (0.01, 0.01)
CMC (r = 400, k = 10) (0.95, 1.10) (0.21, 0.23) (0.11, 0.12) (0.01, 0.01)
CMC (r = 200, k = 20) (0.94, 1.02) (0.22, 0.23) (0.13, 0.14) (0.01, 0.01)
CMC (r = 400, k = 20) (0.94, 1.02) (0.22, 0.24) (0.13, 0.13) (0.01, 0.01)
DISK (r = 200, k = 10) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
DISK (r = 400, k = 10) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
DISK (r = 200, k = 20) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)
DISK (r = 400, k = 20) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)
WASP (r = 200, k = 10) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
WASP (r = 400, k = 10) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
WASP (r = 200, k = 20) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)
WASP (r = 400, k = 20) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)
DPMC (r = 200, k = 10) (0.80, 1.27) (0.17, 0.24) (0.10, 0.15) (0.01, 0.01)
DPMC (r = 400, k = 10) (0.80, 1.27) (0.17, 0.25) (0.10, 0.15) (0.01, 0.01)
DPMC (r = 200, k = 20) (0.82, 1.16) (0.17, 0.26) (0.11, 0.18) (0.01, 0.01)
DPMC (r = 400, k = 20) (0.82, 1.16) (0.17, 0.26) (0.11, 0.18) (0.01, 0.01)

versions in Simulations 1 and 2 in terms of effective sample size comparisons.
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Table 8
Inference on the values of spatial surface and response at the locations in S∗ in Simulation 2
for the divide-and-conquer methods under random and grid-based partitioning. The estimation
and prediction errors are defined in (99) and coverage and credible intervals are calculated
pointwise for the locations in S∗. The entries in the table are averaged over 10 simulation

replications.

Est Err Pred Err 95% CI Coverage 95% CI Length
GP Y GP Y GP Y

Random Partitioning
CMC (r = 200, k = 10) 0.56 0.64 0.38 0.39 0.10 0.10
CMC (r = 400, k = 10) 0.43 0.52 0.40 0.41 0.10 0.10
CMC (r = 200, k = 20) 0.58 0.67 0.27 0.28 0.07 0.07
CMC (r = 400, k = 20) 0.46 0.55 0.28 0.29 0.07 0.07
DISK (r = 200, k = 10) 0.00 0.01 1.00 0.97 0.54 0.45
DISK (r = 400, k = 10) 0.00 0.01 1.00 0.97 0.45 0.47
DISK (r = 200, k = 20) 0.00 0.01 1.00 0.97 0.52 0.43
DISK (r = 400, k = 20) 0.00 0.01 1.00 0.97 0.43 0.44
WASP (r = 200, k = 10) 0.55 0.64 0.96 0.96 0.42 0.42
WASP (r = 400, k = 10) 0.42 0.51 0.96 0.96 0.40 0.40
WASP (r = 200, k = 20) 0.58 0.67 0.96 0.96 0.43 0.43
WASP (r = 400, k = 20) 0.46 0.55 0.96 0.96 0.41 0.41
DPMC (r = 200, k = 10) 0.55 0.64 0.97 0.97 0.45 0.45
DPMC (r = 400, k = 10) 0.42 0.51 0.97 0.97 0.43 0.43
DPMC (r = 200, k = 20) 0.58 0.67 0.97 0.97 0.46 0.46
DPMC (r = 400, k = 20) 0.46 0.55 0.97 0.97 0.44 0.44

Grid-Based Partitioning
CMC (r = 200, k = 10) 0.05 0.10 0.80 0.38 0.10 0.10
CMC (r = 400, k = 10) 0.04 0.10 0.85 0.37 0.10 0.10
CMC (r = 200, k = 20) 0.03 0.10 0.71 0.28 0.07 0.07
CMC (r = 400, k = 20) 0.03 0.10 0.70 0.28 0.07 0.07
DISK (r = 200, k = 10) 0.04 0.10 1.00 0.97 0.45 0.45
DISK (r = 400, k = 10) 0.04 0.10 1.00 0.96 0.42 0.42
DISK (r = 200, k = 20) 0.03 0.10 1.00 0.97 0.46 0.46
DISK (r = 400, k = 20) 0.03 0.10 1.00 0.96 0.44 0.44
WASP (r = 200, k = 10) 0.04 0.10 1.00 0.95 0.42 0.42
WASP (r = 400, k = 10) 0.04 0.10 1.00 0.94 0.40 0.40
WASP (r = 200, k = 20) 0.03 0.10 1.00 0.96 0.43 0.43
WASP (r = 400, k = 20) 0.03 0.10 1.00 0.95 0.41 0.41
DPMC (r = 200, k = 10) 0.04 0.10 1.00 0.97 0.45 0.45
DPMC (r = 400, k = 10) 0.04 0.10 1.00 0.96 0.43 0.43
DPMC (r = 200, k = 20) 0.03 0.10 1.00 0.97 0.46 0.46
DPMC (r = 400, k = 20) 0.03 0.10 1.00 0.97 0.44 0.44
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Table 9
Parametric inference and prediction in SST data using the divide-and-conquer methods and
MPP-based modeling with r = 400, 600 knots on k = 300 subsets. For parametric inference

posterior medians are provided along with the 95% credible intervals (CIs) in the parentheses.
Similarly, mean squared prediction errors (MSPEs) along with length and coverage of 95%

predictive intervals (PIs) are presented. The upper and lower quantiles of 95% CIs and PIs are
averaged over 10 simulation replications.

β0 β1 σ2 ϕ τ2

Parameter Estimate
CMC 32.37 -0.32 12.38 0.03 0.18

(r = 400, k = 300)
CMC 32.36 -0.32 12.31 0.03 0.18

(r = 600, k = 300)
DISK 32.33 -0.32 11.82 0.04 0.18

(r = 400, k = 300)
DISK 32.33 -0.32 11.85 0.04 0.18

(r = 600, k = 300)
WASP 32.33 -0.32 11.82 0.04 0.18

(r = 400, k = 300)
WASP 32.33 -0.32 11.85 0.04 0.18

(r = 600, k = 300)
DPMC 32.33 -0.32 11.82 0.04 0.18

(r = 400, k = 300)
DPMC 32.33 -0.32 11.85 0.04 0.18

(r = 600, k = 300)
95% Credible Interval

CMC (32.33, 32.4) (-0.32, -0.32) (12.37, 12.39) (0.0339, 0.0340) (0.18, 0.18)
(r = 400, k = 300)

CMC (32.33, 32.4) (-0.32, -0.32) (12.3, 12.31) (0.0342, 0.0343) (0.18, 0.18)
(r = 600, k = 300)

DISK (31.72, 32.93) (-0.33, -0.31) (11.24, 12.43) (0.0373, 0.0412) (0.18, 0.19)
(r = 400, k = 300)

DISK (31.72, 32.93) (-0.33, -0.31) (11.25, 12.45) (0.0372, 0.0413) (0.18, 0.19)
(r = 600, k = 300)

WASP (31.72, 32.93) (-0.33, -0.31) (11.22, 12.46) (0.0372, 0.0413) (0.18, 0.19)
(r = 400, k = 300)

WASP (31.72, 32.93) (-0.33, -0.31) (11.24, 12.47) (0.0372, 0.0413) (0.18, 0.19)
(r = 600, k = 300)

DPMC (31.72, 32.94) (-0.33, -0.31) (11.09, 12.55) (0.0369, 0.0416) (0.18, 0.19)
(r = 400, k = 300)

DPMC (31.72, 32.94) (-0.33, -0.31) (11.14, 12.56) (0.0368, 0.0416) (0.18, 0.19)
(r = 600, k = 300)

Predictions
MSPE 95% PI 95% PI

Coverage Length
CMC 0.74 0.05 0.08

(r = 400, k = 300)
CMC 0.67 0.05 0.07

(r = 600, k = 300)
DISK 0.43 0.95 2.65

(r = 400, k = 300)
DISK 0.36 0.95 2.34

(r = 600, k = 300)
WASP 0.66 0.93 2.39

(r = 400, k = 300)
WASP 0.60 0.92 2.11

(r = 600, k = 300)
DPMC 0.66 0.95 2.67

(r = 400, k = 300)
DPMC 0.60 0.94 2.36

(r = 600, k = 300)
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Table 10
Run-time (in log10 seconds) of the non-distributed methods and distributed methods under the
random and grid-based partitioning schemes in Simulations 1 and 2, where MPP prior is used

on the subsets.
INLA LaGP NNGP NNGP NNGP (m = 30) LatticeKrig GpGp

(m = 10) (m = 20) (m = 30)
1.08 0.08 2.96 3.42 3.74 2.03 0.96

Vecchia Vecchia Vecchia MPP MPP
(m = 10) (m = 20) (m = 30) (r = 200) (r = 400)

2.76 3.20 3.50 3.97 4.31
k = 10

CMC DISK WASP DPMC
r = 200 r = 400 r = 200 r = 400 r = 200 r = 400 r = 200 r = 400

Random 3.18 3.18 3.18 3.18 3.20 3.20 3.18 3.18
Grid 3.18 3.18 3.18 3.18 3.20 3.20 3.18 3.18

k = 20
CMC DISK WASP DPMC

r = 200 r = 400 r = 200 r = 400 r = 200 r = 400 r = 200 r = 400
Random 3.17 3.17 3.17 3.17 3.20 3.20 3.17 3.17

Grid 3.17 3.17 3.17 3.17 3.20 3.20 3.17 3.17

Table 11
Run-time (in log10 hours) of laGP and the distributed methods in the sea surface temperature

data analysis, where MPP prior is used on the subsets.

laGP MPP, r = 400, k = 300 MPP, r = 600, k = 300
CMC DISK WASP DPMC CMC DISK WASP DPMC

-1.32 1.67 1.67 1.67 1.67 1.69 1.69 1.69 1.69

Table 12
The ratio of effective sample sizes of the Markov chains produced on the subsets using the MPP
prior and those obtained using the full data and the same MPP prior in Simulation 1 under
random and grid-based partitioning. The effective sample sizes have been averaged over the

parameter dimensions and over 10 simulation replications.

β σ2 ϕ τ2 GP Y

Random Partitioning

k = 10 and r = 200 0.99 0.35 3.24 0.53 1.00 1.00
k = 20 and r = 200 1.00 0.61 3.92 0.40 1.00 1.00
k = 10 and r = 400 1.0 0.93 2.53 0.57 1.00 1.00
k = 20 and r = 400 1.11 1.45 2.88 0.43 1.00 1.00

Grid-Based Partitioning

k = 10 and r = 200 1.00 0.34 3.37 0.55 1.00 1.00
k = 20 and r = 200 1.00 0.61 3.89 0.39 1.00 1.00
k = 10 and r = 400 1.11 1.00 2.44 0.55 1.00 1.00
k = 20 and r = 400 1.11 1.65 2.97 0.41 1.00 1.00

Table 13
The ratio of effective sample sizes of the Markov chains produced on the subsets using the MPP
prior and those obtained using the full data and the same MPP prior in Simulation 2 under
random and grid-based partitioning.The effective sample sizes have been averaged over the

parameter dimensions and over 10 simulation replications.

β σ2 ϕ τ2 GP Y

Random Partitioning

k = 10 and r = 200 0.98 0.46 1.32 3.45 0.93 1.00
k = 20 and r = 200 0.69 0.20 1.25 3.30 0.79 1.00
k = 10 and r = 400 0.89 1.65 1.81 2.84 0.91 1.00
k = 20 and r = 400 0.57 1.05 1.94 2.60 0.73 1.00

Grid-Based Partitioning

k = 10 and r = 200 0.98 0.62 1.27 3.52 0.94 1.00
k = 20 and r = 200 0.65 0.24 1.33 3.32 0.79 1.00
k = 10 and r = 400 0.88 1.81 1.97 2.73 0.91 1.00
k = 20 and r = 400 0.63 0.94 2.05 2.70 0.77 1.00
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