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Abstract

We consider a constructive definition of the multivariate Pareto that factorizes the random vector
into a radial component and an independent angular component; The former following a univari-
ate Pareto distribution, and the latter defined on the surface of the positive orthant of the infinity
norm unit hypercube. In this paper, we propose a method for inferring the distribution of the angu-
lar component. We identify its support as the limit of the positive orthant of the unit p–norm
spheres, and introduce a projected gamma family of distributions defined through the normaliza-
tion a vector of independent gamma random variables to the p–norm sphere. This family serves
as a building block for a flexible family of distributions obtained as a Dirichlet process mixture
of projected gammas. For model assessment, we discuss scoring methods appropriate to distribu-
tions on the unit hypercube. In particular, working with the energy score criterion, we develop
a kernel metric that produces a proper scoring rule, and present a simulation study to compare
different modeling choices using the proposed scoring rules. Finally we apply our approach to
describe the dependence structure of the extreme values of the magnitude of the integrated vapor
transport (IVT), data describing the flow of atmospheric moisture along the coast of California
for the years of 1979 through 2020. We find clear but heterogeneous geographical dependence.

1 Introduction

The statistical analysis of extreme values focuses
on inference for rare events that correspond to
the tails of probability distributions. As such, it
is a key ingredient in the risk assessment of phe-
nomena that can have strong societal impacts like
floods, heat waves, high concentration of pollu-
tants, crashes in the financial markets, among
others. The fundamental challenge of extreme
value theory (EVT) is to use information, col-
lected over limited periods of time, to extrapolate
to long time horizons. This sets EVT apart from
most of statistical inference, where the focus is on
the bulk of the distribution. Extrapolation to the

tails of the distributions is possible thanks to the-
oretical results that give asymptotic descriptions
of the probability distributions of extreme values.

Inferential methods for the extreme values of
univariate observations are well established and
software is widely available (see, for example,
Coles, 2001). For variables in one dimension the
application of EVT methods considers the asymp-
totic distribution of either the maxima calculated
for regular blocks of data, or the values that
exceed a certain threshold. The former leads to a
Generalized Extreme Value (GEV) distribution,
that depends on three parameters. The latter
leads to a Generalized Pareto (GP) distribution,
that depends on a shape and a scale parameter.
Likelihood-based approaches to inference can be
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readily implemented in both cases. In the mul-
tivariate case the GEV theory is well developed
(see, for example De Haan and Ferreira, 2006),
but the inferential problem is complicated by the
fact that there is no parametric representation of
the GEV. This problem is inherited by the peaks
over threshold (PoT) approach and compounded
by the fact that there is no unique definition of an
exceedance of a multivariate threshold, as there is
an obvious dependence on the norm that is used
to measure the size of a vector.

During the last decade or so, much work has
been done in the exploration of the definition
and properties of an appropriate generalization of
the univariate GP distribution to a multivariate
setting. To mention some of the papers on the
topic, the work of (Rootzén and Tajvidi, 2006)
defines the generalized Pareto distribution, with
further analysis on these classes of distributions
presented in Falk and Guillou (2008) and Michel
(2008). A recent review of the state of the art
in multivariate peaks over threshold modelling
using generalized Pareto is provided in Rootzén
et al (2018) while Rootzén et al (2018) provides
insight on the theoretical properties of possible
parametrizations. These are use in Kiriliouk et al
(2019) for likelihood-based models for PoT esti-
mation. A frequently used method for describing
the dependence in multivariate distributions is to
use a copula. Renard and Lang (2007), and Falk
et al (2019) provide successful examples of this
approach in an EVT framework.

Ferreira and de Haan (2014) presents a con-
structive definition of the Pareto process, that
generalizes the GP to an infinite dimensional set-
ting. It consists of decomposing the process into
independent radial and angular components. Such
an approach can be used in the finite dimen-
sional case, where the angular component contains
the information pertaining to the dependence
structure of the random vector. Based on this
definition, we present a novel approach for mod-
elling the angular component with families of
distributions that provide flexibility and can be
applied in a moderately large dimensional setting.
Our focus on the angular measure is similar to
that in Boldi and Davison (2007), Sabourin and
Naveau (2014) and Hanson et al (2017a), that con-
sider Bayesian non-parametric approaches. Yet,
our approach differs in that it is established in
the peaks-over-threshold regime, and avoids the
problem of dealing with the so called moment

constraint by considering a constructive defini-
tion of the multivariate GP, based on the infin-
ity norm. The approach proposed in this paper
adds to the growing literature on Bayesian mod-
els for multivariate extreme value analysis (see,
for example, Boldi and Davison (2007),Guillotte
et al (2011), Sabourin and Naveau (2014),Hanson
et al (2017b)), providing a model that has strong
computational advantages due its structural sim-
plicitly, achieves flexibility using a mixture model,
imposes no moment constraints, and scales well to
moderately large dimensions.

The remainder of this paper is outlined as fol-
lows. Section 2 comprises a brief review of multi-
variate PoT, detailing the separation of the radial
measure from the angular measure. Section 3
details our approach for estimating the angular
measure, based on projecting an arbitrary distri-
bution supported in Rd+ onto unit hyper-spheres
defined by p-norms. Section 4 develops criteria
for model selection in the support of the angular
measure. Section 5 explores the efficacy of the pro-
posed approach on a set of simulated data, and,
acknowledging the relevance of extreme value the-
ory to climatological events (Jentsch et al, 2007;
Vousdoukas et al, 2018; Li et al, 2019), estimates
the extremal dependence structure for a measure
of water vapor flow in the atmosphere, used for
identifying atmospheric rivers. Finally, Section 6
presents our conclusions and discussion.

Throughout the paper, we adopt the operators
∧ to denote minima, and the ∨ to denote max-
ima. Thus ∧isi = mini si, and ∨isi = maxi si.
These operators can also be applied component-
wise between vectors, such as a∧b = (a1∧b1, a2∧
b2, . . .). We use uppercase to indicate random vari-
ables, lowercase to indicate points, and bold-face
to indicate vectors or matrices thereof.

2 A multivariate PoT model

To develop a multivariate PoT model for extreme
values consider a d-dimensional random vector
W = (W1, . . . ,Wd) with cumulative distribu-
tion F . Following Rootzén et al (2018), assume
that there exists sequences of vectors an and
bn, and a d-variate distribution G such that
limn→∞ Fn(anw + bn) = G(w). G is a d-variate
generalized extreme value distribution. It follows
that

lim
n→∞

Pr
[
a−1
n (W − bn) ≤ w |W 6≤ bn)

]
=

logG(w ∧ 0)− logG(w)

logG(0)
= H(w).
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H is a multivariate Pareto distribution, and cor-
responds to a joint distribution conditional on
exceeding a multivariate threshold. In addition
to a copula function, H depends on two d-
dimensional vectors of parameters that we denote
as ξ for the shapes and σ for the scales. Rootzén
et al (2018) provide a number of stochastic rep-
resentations for H. In particular, denote as Z a
random variable with distribution H where ξ = 1
and σ = 0. Then, Remark 1 justifies the repre-
sentation in Ferreira and de Haan (2014), giving
Z = V R where R and V are independent. R =
‖Z‖∞ is distributed as a standard Pareto random
variable, and V = Z/‖Z‖∞ is a random vector
in Sd−1

∞ , the positive orthant of the unit sphere
under L∞ norm, with distribution Φ. This repre-
sentation is central to the methods proposed in
this paper. R and V are referred to, respectively,
as the radial and angular components of H. The
angular measure controls the dependence struc-
ture of Z in the tails. In view of this, to obtain
a PoT model we seek a flexible model for the
distribution of V ∈ Sd−1

∞ .
The approach considered in Rootzén et al

(2018) focuses on the limiting conditional distri-
bution H. An alternative approach consists of
assuming that regular variation (see, for example,
Resnick, 2008) holds for the limiting distribution
of W , implying

lim
n→∞

nPr
[
n−1W ∈ A

]
= µ(A),

where µ is termed the exponent measure. µ has
the homogeneity property µ(tA) = t−1µ(A). Let-
ting ρ = ‖W‖p, p > 0 and θ = W /ρ, define
Ψ(B) = µ({w : ρ > 1,θ ∈ B}), which is
referred to as the angular measure. After some
manipulations, we obtain that

lim
r→∞

Pr [θ ∈ A|ρ > r] =
Ψ(A)

Ψ(Sd−1
p )

. (1)

Thus, a model for the exponent measure induces a
model for the limiting distribution conditional on
the observations being above a threshold defined
with respect to their p-norm. The constraint
that all marginals of µ correspond to a standard
Pareto distribution leads to the so called moment
constraints on Ψ. Inference for the limiting dis-
tribution of the exceedances needs to account for
the normalizing constant in Equation (1), as well
the moment constraints.

3 Estimation of the angular
measure

Our approach to estimating the PoT distribution
considers two steps: First we estimate the shape
and scale parameters for the multivariate Pareto
distribution, using the univariate marginals; Then
we focus on the dependence structure in extreme
regions by proposing a flexible model for the dis-
tribution of V . Consider wi, i = 1, . . . , n a
collection of realizations of W . We start by set-
ting a large threshold bt,` for the `-th marginal,
` = 1, . . . , d. Then, the distribution of the obser-
vations for the `-th component, conditional on
exceeding the threshold, can be approximated as

1− (1+ξ`(wi`− bt,`)/σ`)1/ξ`
+ , where (·)+ indicates

the positive part function. We proceed by setting a
threshold equal to the empirical (1−1/t)-quantile.
Thus bt,l = F̂−1

` (1−1/t). We then use the approx-
imate exceedance distribution to estimate ξ` and
σ`, for each `, using likelihood based methods.
Then, in order to estimate the angular distribu-
tion, we use those estimates to standardize each
of the marginals. The standardization yields

zi` =

(
1 + ξ`

wi` − bt,`
a`

)1/ξ`

+

. (2)

Note that zi` > 1 implies that wi` > bt,`, mean-
ing that the observation wi is extreme in the `-th
dimension. Thus, ri = ‖zi‖∞ > 1 implies that at
least one dimension has an extreme observation,
and corresponds to a very extreme observation
when t is large. We focus on the observations
that are such that ri > 1. These provide a sub-
sample of the stardardized original sample. We
define vi = zi/ri ∈ Sd−1

∞ . These vectors are used
for the estimation of Φ.

3.1 Projected gamma family

The Lp-norm, for p > 0 is defined as

‖x‖p =
(∑d

`=1|s`|
p
) 1

p

,

The absolute and Euclidean norms are obtained
for p = 1 and p = 2 respectively, and the L∞
norm can be obtained as a limit,

‖s‖∞ = lim
p→∞

‖s‖ =

d∨
`=1

s`.
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To obtain a distribution on Sd−1
p = {s : s ∈

Rd+, ‖s‖p = 1} we start with a vector in x ∈ Rd+,
and normalize it to obtain y = x/‖x‖p ∈ Sd−1

p . A

natural distribution to consider in Rd+ is given by a
product of independent univariate Gamma distri-
butions. LetX ∼

∏d
`=1 Ga (X` | α`, β`), α` and β`

are the shape and scale parameters, respectively.
For any finite p > 0, letting yd = (1−

∑d−1
`=1y

p
` )1/p,

the transformation

T (x1, . . . , xd) =

(
‖x‖p ,

x1

‖x‖p
, . . . ,

xd−1

‖x‖p

)
= (r, y1, . . . , yd−1)

(3)
is invertible with

T−1 (r, y1, . . . , yd−1) =

(
ry1, . . . , ryd−1, r

(
1−

∑d−1
`=1y

p
`

) 1
p

)
.

(4)
The Jacobian of the transformation takes the form

rd−1

[(
1−

∑d−1
`=1y

p
`

) 1
p

+
∑d−1

`=1y
p
`

(
1−

∑d−1
l=1 y

p
`

) 1
p−1
]
.

(5)
The normalization provided by T maps a vector in
Rd+ onto Sd−1

p . With a slight abuse of terminology
we refer to it as a projection. Using Equations
(3)–(5) we have the joint density

f(r,y) =

d∏
`=1

[
βα`

`

Γ(α`)
(ry`)

α`−1 exp{−β`ry`}
]
×rd−1

[
yd +

∑d−1
`=1y

p
` y

1−p
d

]
.

(6)
Integrating out r yields the resulting Projected
Gamma density

PG(y | α,β) =

d∏
`=1

[
βα`

`

Γ(α`)
yα`−1
`

]
×
[
yd +

∑d−1
`=1y

p
` y

1−p
d

]
×

Γ(
∑d

`=1α`)(∑d
`=1β`y`

)∑d
`=1 α`

,

(7)
defined for y ∈ Sd−1

p , and for any finite p > 0.
To avoid identifiability problems when estimating
the shape and scale parameters, we set β1 = 1.
Núñez-Antonio and Geneyro (2019) obtain the
density in Equation (7) for p = 2 as a multivariate
distribution for directional data, using spherical
coordinates. For y ∈ Sd−1

1 , and β` = β for all `,
the density in Equation (7) corresponds to that of
a Dirichlet distribution.

The projected gamma family is simple to spec-
ify and has very tractable computational prop-
erties. Thus, we use it as a building block for
the angular measure Φ models. To build a flex-
ible family of distributions in Sd−1

p we consider

mixtures of projected gamma densities defined as

f(y) =

∫
Θ

PG(y | θ)dG(θ), (8)

where θ = (α,β). Following a Bayesian non-
parametric approach (Ferguson, 1974; Antoniak,
1974; Müller et al, 2015), we assume that G is
drawn from a random measure. In particular,
assuming a Dirichlet process prior for G, we have
a hierarchical formulation of the mixture model
that, for a vector of observations yi, is given by

yi ∼ PG(yi | θi) θi ∼ G G ∼ DP(η,G0)
(9)

where DP denotes a Dirichlet process, η is the
precision parameter, and G0 is the centering
distribution.

Unfortunately, in the limit when p → ∞, the
normalizing transformation is not differentiable.
Thus, a closed form expression like Equation (7)
for the projected gamma density on Sd−1

∞ is not
available. Instead, we observe that for a suffi-
ciently large p, Sd−1

p will approach Sd−1
∞ . With

that in mind, our strategy consists of describing
the angular distribution Φ using a sample based
approach with the following steps: (i) Apply the
transformation in Equation (2) to the original
data; (ii) Obtain the subsample of the standard-
ized observations that satisfy R > 1; (iii) Take a
finite p and project the observations onto Sd−1

p ;
(iv) Fit the model in Equation (8) to the resulting
data and obtain samples from the fitted model;
(v) Project the resulting samples onto Sd−1

∞ . For
step (iv) we use a Bayesian approach that is
implemented using a purposely developed Markov
chain Monte Carlo sampler described in the next
section.

A measure that is used to characterize the
strength of the dependence, in the tail, for two
random variables Z1 and Z2, with marginal dis-
tributions F1 and F2 is given by (Coles, 2001)

χ12 = lim
u↑1

Pr [F1(Z1) > u | F2(Z2) > u] .

χ12 provides information about the distribution
of extremes for the variable Z1 given that Z2 is
very large. When χ12 > 0, Z1 and Z2 are said to
be asymptotically dependent, otherwise they are
asymptotically independent. The following result
provides the asymptotic dependence coefficient
between two components of Z after PoT limit.
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Fig. 1: The positive orthant of the p–norm sphere
for d = 2.

Proposition 1. Suppose that Z = RV with R ∼
Pa(1), Pr [V` > 0] = 1 and E [V`] exists, for ` =
1, . . . , d, then

χ` = E

[
V

E [V]
∧ V`

E [V`]

]
(10)

Proof: Denote as F` the marginal distribution
of Z`. To obtain χ` we need Pr(Z > z, Z` > z`),
where z` = F−1

` (u) = E [V`] /(1−u), ` = 1, . . . , d.
Using the fact that V` > 0,∀` almost surely, we
have that the former is equal to

Pr

[
R >

z
V
∨ z`
V`

]
= E

[
1 ∧

(
z
V
∨ z`
V`

)−1
]

= E

[
V
z
∧ V`
z`

]
= (1−u)E

[
V

E [V]
∧ V`

E [V`]

]

where the second identity is justified by the fact
that Vi is bounded and zi → ∞. The proof is
completed by noting that Pr [Fi(Zi) > u] = 1 −
u. �

Equation (10) implies that χ` > 0, and so,
no asymptotic independence is possible under our
proposed model. For the analysis of extreme val-
ues it is of interest to calculate the multivariate
conditional survival function. The following result
provides the relevant expression, as a function of
the angular measure.

Proposition 2. Assume the same conditions of
Proposition 1. Let α ⊂ {1, . . . , d} be a collections
of indexes. Then

Pr

⋂
`∈α

Z` > z` |
⋂
` 6∈α

Z` > z`

 =
E
[∧d

k=1 1 ∧ Vk

zk

]
E
[∧

k 6∈α 1 ∧ Vk

zk

] .
(11)

The proof uses a similar approach to the proof
of Proposition 1.

Equations (10) and (11) provide relevant tools
for inference on the tail behavior of the joint dis-
tribution of the observations. The expressions can
be readily calculated within a sample-based infer-
ential approach like the one considered in the
following section.

3.1.1 Inference for the projected
Gamma mixture model

In a sample-based inference approach, for a given
iteration the Dirichlet process mixture model
groups observations into stochastically assigned
clusters, where members of a cluster share distri-
butional parameters (Müller et al, 2015; Ascolani
et al, 2022). Building out the methods of infer-
ence for Equation (9), let n−ij be the number of
observations in cluster j not including observation
i. Let J−i be the number of extant clusters, not
including any singleton containing observation i.
Under this model, the probability of cluster mem-
bership for a given observation is proportional
to

Pr [δi = j | . . .] ∝

{
n−ij PG (yi | αj ,βj)
η
∫
PG (yi | αj ,βj) dG0(αj ,βj),

where the top case is iterating over extant clusters
j = 1, . . . , J−i, and the bottom case is for a new
cluster. IfG0 is not a conjugate prior for the kernel
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density, the integral in the above formula may not
be available in closed form. We sidestep this using
Algorithm 8 from Neal (2000): by Monte Carlo
integration, we draw m candidate clusters, αj ,βj
for j = J−i + 1, . . . , J−i + m from G0. Then, we
sample the cluster indicator γi from extant or can-
didate clusters, where the probability of cluster
membership is proportional to

Pr [δi = j | . . .] ∝

{
n−ij PG (yi | αj ,βj)
η
mPG (yi | αj ,βj) .

(12)

Again, the top case is iterating over extant clus-
ters, and now the bottom case is iterating over
new candidate clusters. If a candidate cluster is
selected, then γi = J = J−i+1, and the associated
cluster parameters are saved.

A key feature of the the projected Gamma
distribution is its computational properties. We
augment PG(yi | αi,βi) by introducing a latent
radial component ri, for each observation. Using
Equation (6) we observe that the full conditional
of ri is easy to sample from, as it is given as

ri | αi,βi ∼ G

(
ri

∣∣∣∣∣
d∑
`=1

αi`,

d∑
`=1

β`yi`

)
. (13)

Moreover, the full conditional for αj ,βj is then
proportional to

f(αj ,βj | Y , r, δ, . . .) ∝
∏
i:γi=j

d∏
`=1

G (riyi` | αj`, βj`)×dG0(αj ,βj).

(14)
Note that the ordering of the products can be
reversed in Equation (14), indicating that with
appropriate choice of centering distribution, the
full conditionals for αj ,βj become separable by
dimension. We first consider a centering distribu-
tion given by a product of independent Gammas:

G0(αj ,βj | ξ, τ , ζ,σ) =

d∏
`=1

G(αj` | ξ`, τ`)×
d∏
`=2

G(βj` | ζ`, σ`).

(15)
This model is completed with independent
Gamma priors on ξ`, τ`, ζ`, σ`. We also assume
a Gamma prior on η, that is updated via the
procedure outlined in Escobar and West (1995).
We refer to this model as the projected gamma–
gamma (PG–G) model. An advantage of the
PG–G model is that, thanks to conjugacy, the rate

parameters can easily be integrated out for infer-
ence on αj . Then, the full conditional for αj` takes
the form

π(αj` | r,Y ,γ, ξ`, τ`, ζ`, σ`) ∝

(∏
i:γi=j

riyi`

)αj`−1

αξ`−1
j` e−τ`αj`

Γnj (αj`)
× Γ (njαj` + ζ`)(∑

i:γi=j
riyi` + σ`

)njαj`+ζ`

(16)
for ` = 2, . . . , d. For ` = 1, as β1 := 1, the full
conditional takes the simpler form

π(αj1 | r,Y ,γ, ξ1, τ1) ∝

(∏
i:γi=j

riyi1

)αj1−1

αξ1−1
j1 e−τ1αj1

Γnj (αj1)
.

(17)
Samples of αj` can thus be obtained using a
Metropolis step. In our analysis, we first transform
αj` to the log scale, and use a normal proposal
density. The full conditional for β is

βj` | r,Y , α, ζ`, σ` ∼ G

(
βj`

∣∣∣∣∣njαj` + ζ`,
∑
i:γi=j

riyi` + σ`

)
,

(18)
for ` = 2, . . . , d. Updating βj` is done via a
Gibbs step. The hyper-parameters ξ`, τ`, ζ`, σ` fol-
low similar gamma-gamma update relationships.
We also explore a restricted form of this model,
where β` = 1 for all `. Under this model, we use
the full conditional in Equation (17) for all `, and
omit inference on ζ,σ. We refer to this model as
the projected restricted gamma–gamma (PRG–G)
model.

The second form of centering distribution we
explore is a multivariate log-normal distribution
on the shape parameters αj , with independent
gamma βj` rate parameters.

G0 (αj ,βj | µ,Σ, ζ, σ) = LN (αj | µ,Σ)×
d∏
`=2

G (βj` | ζ`, σ`) .

(19)
This model is completed with a normal prior on
µ, an inverse Wishart prior on Σ, and Gamma
priors on ζ` and σ`, and η. This model is
denoted as the projected gamma–log-normal (PG–
LN) model. We also explore a restricted Gamma
form of this model as above, where β` = 1 for all `.
This is denoted as the projected restricted gamma–
log-normal (PRG–LN) model. Updates for α can
be accomplished using a joint Metropolis step,
where βj` for ` = 2, . . . , d have been integrated
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out of the log-density. That is,

π(αj | Y , r, δ,µ,Σ, ζ,σ) ∝ exp

{
−1

2
(logαj − µ)TΣ−1(logαj − µ)

}
× 1∏d

`=1 αj`

×

(∏
i:γi=j

riyi1

)αj1−1

∏d
`=1 Γnj (αj`)

×
d∏
`=2

Γ (njαj` + ζ`)(∑
i:γi=j

riyi` + σ`

)njαj`+ζ`

The inferential forms for βj` and its priors are
the same as for PG–G. The normal prior for µ is
conjugate for the log-normal αj , and can be sam-
pled via a Gibbs step. Finally, the inverse Wishart
prior for Σ is again conjugate to the log-normal
αj , implying that it can also be sampled via a
Gibbs step.

To effectively explore the sample space with a
joint Metropolis step, as well as to speed conver-
gence, we implement a parallel tempering algo-
rithm(Earl and Deem, 2005) for the log-normal
models. This technique runs parallel MCMC
chains at ascending temperatures. That is, for
chain s, the posterior density is exponentiated
to the reciprocal of temperature ts. For the cold
chain, t1 := 1. Let Es be the log-posterior den-
sity under the current parameter state for chain
s. Then states between chains r, s are exchanged
via a Metropolis step with probability

αrs = min
[
1, exp

{
(t−1
r − t−1

s )(Er − Es)
}]
.

Higher temperatures serve to flatten the posterior
distribution, meaning hotter chains have a higher
probability of making a given transition, or will
make larger transitions. As such, they will more
quickly explore the parameter space, and share
information gained through state exchange.

4 Scoring criteria for
distributions on the
infinity–norm sphere

In order to assess and compare the estimation
of a distribution on Sd−1

∞ we consider the the-
ory of proper scoring rules developed in Gneiting
and Raftery (2007). As mentioned in Section 3.1,
our approach does not provide a density on Sd−1

∞ ,
restricting our ability to construct model selection
criteria to sample-based approaches. To this end,
we employ the energy score criterion introduced
therein.

The energy score criterion defined for a general
probability distribution P , with finite expecta-
tion, is developed as

SES (P,xi) = Ep [g (Xi,xi)]−
1

2
Ep [g (Xi,X

′
i)] ,

(20)
where g is a kernel function. The score defined
in Equation (20) can be evaluated using samples
from P , with the help of the law of large numbers.
Moreover, Theorem 4 in Gneiting and Raftery
(2007), states that if g(·, ·) is a negative definite
kernel, then S(P,x) is a proper scoring rule. Recall
that a real valued function g is a negative defi-
nite kernel if it is symmetric in its arguments, and∑n

i=1

∑n
j=1 aiajg(xi, xj) ≤ 0 for all positive inte-

gers n, and any collection a1, . . . , an ∈ R such that∑n
i=1 ai = 0.
In a Euclidean space, these conditions are sat-

isfied by the Euclidean distance (Berg et al, 1984).
However, for observations on different faces of
Sd−1
∞ , the Euclidean distance will under-estimate

the geodesic distance, the actual distance required
to travel between the two points. Let

Cd−1
` = {x : x ∈ Sd−1

∞ , x` = 1}

comprise the `th face. For points on the same face,
the Euclidean distance corresponds to the length
of the shortest possible path in Sd−1

∞ . For points on
different faces, the Euclidean distance is a lower
bound for that length.

For a finite p, the shortest connecting path
between two points in Sd−1

p is the minimum
geodesic; its length satisfying the definition of a
distance. Thus its length can be used as a neg-
ative definite kernel for the purpose of defining
an energy score. Unfortunately as p → ∞ the
resulting surface Sd−1

∞ is not differentiable, imply-
ing that routines to calculate geodesics are not
readily available. However, as Sd−1

∞ is a portion
of a d-cube, we can borrow a result from geome-
try (Pappas, 1989) stating that the length of the
shortest path between two points on a geomet-
ric figure corresponds to the length of a straight
line drawn between the points on an appropri-
ate unfolding, rotation, or net of the figure from
a d-dimensional to a d − 1-dimensional space.
The optimal net will have the shortest straight
line between the points, as long as that line is
fully contained within such net. As Sd−1

∞ has d
faces—each face pairwise adjacent, there are d!
possible nets. However, we are only interested in
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nets that begin and end on the source and des-
tination faces respectively, reducing the number
of nets under consideration to

∑d−2
k=0

(
d−2
k

)
. This

is still computationally burdensome for a large
number of dimensions. However, we can efficiently
establish an upper bound on the geodesic length.
We use this upper bound on geodesic distance as
the kernel function for the energy score.

To calculate the energy score we define the
kernel

g(a, b) = min
c∈Cd−1

 ∩Cd−1
`

{‖c− a‖2 + ‖b− c‖2} .

where a ∈ Cd−1
` , and b ∈ Cd−1

 , for `,  ∈
{1, . . . , d}. Evaluating g as described requires the
solution of a (d − 2)-dimensional optimization
problem. The following proposition provides a
straightforward approach.

Proposition 3. Let a ∈ Cd−1
` , and b ∈ Cd−1

 ,
for `,  ∈ {1, . . . , d}. For ` 6= , the transformation
P`(·) required to rotate the th face along the `th
axis produces the vector b′, where

b′i = P`(b) =


bi for i 6= , `

1 for i = `

2− b` for i = 

. (21)

Then g(a, b) = ‖a− b′‖2.

Proof: Notice that for c ∈ Cd−1
 ∩ Cd−1

` ,
‖b− c‖2 = ‖b′ − c‖2. We then have that

g(a, b) = min
c∈Cd−1

 ∩Cd−1
`

{‖c− a‖2 + ‖b− c‖2}

= min
c∈Cd−1

 ∩Cd−1
`

{‖c− a‖2 + ‖b′ − c‖2}

= ‖a− b′‖2 .

The last equality is due to the fact that a and b′

belong to the same hyperplane. �
Using the rotation in Proposition 3 we obtain

the following result.

Proposition 4. g is a negative definite kernel.

Proof: For a given n consider an arbitrary set
of points a1, . . . ,an ∈ Sd−1

∞ , and α1, . . . , αn ∈ R,
such that

∑n
i=1 αi = 0. Then∑

i,

αiαg(ai,a) =
∑
i,

αiα‖ai − a′‖2 ≤ 0,

where a′ is defined as in Proposition 3. The last

equality holds as ‖x−x′‖2,x,x′ ∈ Rd is negative
definite (Gneiting and Raftery, 2007) �

Proposition 3 provides a computational effi-
cient way to evaluate the proper scoring rule SES

defined on Sd−1
∞ , for each observation. For the

purpose of model assessment and comparison, we
report the average SES taken across all observed
data, and notice that the smaller the score, the
better.

5 Data illustrations

We apply the aforementioned models to simulated
angular data. We then consider the analysis of
atmospheric data. To tackle the difficult prob-
lem of assessing the convergence an MCMC chain
for a large-dimensional model, we monitor the
log-posterior density. In all the examples con-
sidered, MCMC samples produced stable traces
of the log-posterior in less than 40 thousand
iterations. We use that as a burn-in, and there-
after sample 10 thousand additional iterations.
We then thin the chain by retaining one every
ten samples, to obtain 1000 total samples. These
are used to generate samples from the posterior
predictive densities. We used two different strate-
gies to implement the MCMC samplers. For the
models whose DP prior is centered around a log-
normal distribution we used parallel tempering.
This serves to overcome the very slow mixing that
we observed for these cases. The temperature lad-
der was set as ts = 1.3s, for s ∈ {0, 1, . . . , 5}. This
was set empirically in order to produce acceptable
swap probabilities both for the simulated data,
and real data. Parallel tempering produces chains
with good mixing properties, but has a computa-
tional cost that grows linearly with the number
of temperatures. Thus, for the gamma-centered
models, we used a single chain. We leverage the
fast speed of each iteration, to obtain a large num-
ber of samples, that are appropriately thinned to
deal with a mild autocorrelation. In summary, the
strategy for log-normal centered models is based
on a costly sampler with good mixing properties.
The strategy for the gamma-centered models is
based on a cheap sampler that can be run for a
large number of iterations.

Our hyperprior parameters are set as fol-
lows: for the gamma-centered models (PG–G,
PRG–G), the shape parameter for the center-
ing distribution ξ` ∼ G (1, 1), and rate param-
eter τ` ∼ G (2, 2). For the log-normal centered
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models (PG–LN, PRG–LN), the centering distri-
bution’s log-mean µ ∼ Nd (0, Id), and covariance
matrix Σ ∼ IW (d+ 10, (d+ 10)Id). These values
are intended such that draws from the prior for Σ
will weakly tend towards the identity matrix. For
models learning rate parameters βj` (PG–G, PG–
LN), the centering distribution’s shape parameter
ζ ∼ G (1, 1) and rate parameter σ ∼ G (2, 2). The
choice of the G(2, 2) for rate parameters places lit-
tle mass near 0, in order to draw estimates for the
value away from 0 for numerical stability.

Algorithm 1 Simulated Angular Dataset Gen-
eration Routine. µj , Σj are the parameters of
the mixture component distribution; π is the
probability vector assigning weight mixture com-
ponents; δi is the mixture component identifier for
each simulated observation.

for niter in [1, . . . , 10] do
for nmix in [1, 2, 4, 8] do

for j in 1, . . . , nmix do
Generate µj ∼ N32 (0, I)
Generate Σj ∼ IW32 (70, 70I)

end for
Generate π ∼ Dirichlet(10nmix

)
for i in 1, . . . , 1000 do

Generate δi ∼ Categorical(π)
Generate Xi ∼ LN

(
µ[δi],Σ[δi]

)
end for
for ncol in [2, 4, 8, 16, 24, 32] do

Project columns 1 to ncol of X onto
Sncol−1
∞ and save.

end for
end for

end for

5.1 Simulation Study

To evaluate our proposed approach for angu-
lar measure estimation we consider simulated
datasets on Sd−1

∞ , for values of d ranging between 2
and 32. We generated each dataset as a mixture of
multivariate log-normal distributions, projected
onto Sd−1

∞ . The generation procedure is detailed in
Algorithm 1. We produced ten replicates of each
configuration. We consider two gamma-centered
and two log-normal centered DP mixture mod-
els, with and without restrictions in each case. To
perform a comparative analysis we fitted the pair-
wise betas model proposed in Cooley et al (2010).
We chose this model for comparison as it is imple-
mented in the readily available package BMAmevt
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Fig. 2: Average energy score rise over baseline
(on Sd−1

∞ ) for various models fitted to simulated
data, with ascending count of mixture compo-
nents (indicated by plot heading) and number of
dimensions (indicated by horizontal axis). Note
that pairwise betas is a moment-restricted model.

in R (Sabourin, 2023). BMAmevt provides samples
from the predictive posterior distribution. These
are needed for the calculation of the energy scores
that are at the basis of our comparison. In addi-
tion, BMAmevt can be fitted to moderately large
multivariate observations. For the DP mixture
models, the data are projected onto Sd−1

10 . For the
other two models they are projected on Sd−1

1 . We
sampled each model for 50,000 iterations, drop-
ping the first 40,000 as burn-in, and thinning to
keep every 10th iteration after. These settings
were intended to provide a consistent sampling
strategy that would work with every model, even
if inefficient for some.

Figure 2 shows the average rise over base-
line in energy score as calculated on Sd−1

∞ using
the kernel metric described in Proposition 3, for
models trained on simulated data. After training
a model, a posterior predictive dataset is gen-
erated, and the energy score is calculated as a
Monte Carlo approximation of Equation (20). In
our analysis, after burn-in and thinning, we had
1,000 replicates from the posterior distribution,
and generated 10 posterior predictive replicates
per iteration. The baseline value is the energy
score of a new dataset from the same generat-
ing distribution as the training dataset, evaluated
against the training dataset. For the simulated
data, we observe that the projected gamma mod-
els dominate the other two options considered,
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regardless of the choice of centering distribu-
tion. The projected restricted gamma models with
a multivariate log-normal centering distribution
appears to be dominated by the models based on
the alternative centering distributions. Moreover,
the performance deteriorates with the increase
in dimensionality. Additionally, models centered
around the log-normal distribution incur in the
computational cost of multivariate normal evalua-
tion and parallel tempering, taking approximately
six times longer to sample relative to the gamma
models. We also note that the computational cost
of the pairwise betas model grows combinatori-
ally, with a sample space of dimension

(
d
2

)
+ 1. In

our testing, BMAmevt is substantially faster than
any of our proposed DP mixture models for low
dimensions, however for examples with high num-
ber of dimensions, the computational time for
BMAmevt was comparable or greater than that for
DP-PG-G. We compare computing times in our
data analysis in Table 1b.

5.2 Integrated Vapor Transport

The integrated vapor transport (IVT) is a two
component vector that tracks the flow of the total
water volume in a column of air over a given area
(Ralph et al, 2017). IVT is increasingly used in the
study of atmospheric rivers because of its direct
relationship with orographically induced precipi-
tation (Neiman et al, 2009). Atmospheric rivers
(AR) are elongated areas of high local concentra-
tion of water vapor in the atmosphere that trans-
port water from the tropics around the world.
AR can cause extreme precipitation, something
that is usually associated with very large values
of the IVT magnitude over a whole geographi-
cal area. In spite of this, AR are fundamental for
the water supply of areas like California. Thus
the importance of understanding the extreme
behavior of IVT, including extreme tail depen-
dence. We consider datasets that correspond to
IVT estimated at two different spatial resolu-
tions. The coarse resolution dataset is obtained
from the European Centre for Medium-Range
Weather Forecasts (ECMWF) Interim reanalysis
(ERA-Interim) (Berrisford et al, 2011; Dee et al,
2011). The high resolution dataset corresponds to
the latest ECMWF observational product, ERA5
(Hersbach et al, 2020).

Our data correspond to daily average values
for the IVT magnitude along the coast of Cal-
ifornia. The ERA-Interim data used covers the
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Fig. 3: Grid cell locations for ERA-Interim (left)
and ERA5 (right).

time period 1979 through 2014 (37 years) omit-
ting leap days, and eight grid cells that correspond
to the coast of California. The ERA5 data cover
the time period 1979 through 2019 (42 years) with
the same restriction, and 47 grid cells for the
coast of California. This gives us the opportunity
to illustrate the performance of our method in
multivariate settings of very different dimensions.
Figure 3 provides a visual representation of the
area these grid cells cover.

Algorithm 2 Data preprocessing to isolate and
transform data exhibiting extreme behavior. ri
represents the radial component, and vi the
angular component. The declustering portion is
relevant for data correlated in time.

for ` = 1, . . . , d do
Set bt,` = F̂−1

`

(
1− 1

t

)
.

With x` > bt,`, fit a`, ξ` via MLE according
to generalized Pareto likelihood.
end for
for i = 1, . . . , n do

Define zi,` =
(

1 + ξ`
xi,`−bt,`

a`

)1/ξ`

+
; then

ri = ‖zi‖∞, vi = zi

‖zi‖∞
end for
Subset r,v such that ri ≥ 1
if declustering then

for i = 1, . . . , n do
If ri ≥ 1 and ri−1 ≥ 1, drop the lesser

(and associated vi) from data set.
end for

end if

Fitting our models to the IVT data requires
some pre-processing. First, we subset the data to
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Fig. 4: Pairwise plots from ERA-Interim data
after transformation and projection to S7

∞. Down
the diagonal are marginal kernel densities, with
two-dimensional histograms on the off-diagonal.
In those plots, red indicates a higher density. All
data is between 0 and 1.

the rainy season, which in California runs roughly
from November to March. Following the approach
described in Section 3 we estimate the shape
and scale parameters of a univariate GP, in each
dimension, using maximum likelihood. We set the
threshold in each dimensions ` as bt,` = F̂−1

` (1−
t−1), where F̂ is the empirical CDF and t = 20,
that corresponds to the 95 percentile. We then use
the transformation in Equation (2) to standard-
ize the observations. Dividing each standardized
observation by its L∞ norm, we obtain a projec-
tion onto Sd−1

∞ . As the data correspond to a daily
time series, the observations are temporally corre-
lated. For each group of consecutive standardized
vectors zi such that ‖zi‖∞ > 1, we retain only the
vector with the largest L∞ norm. The complete
procedure is outlined in Algorithm 2.

After subsetting the ERA-Interim data to the
rainy season we have 5587 observations. After
the processing and declustering described in Algo-
rithm 2, this number reduces to 511 observations.
A pairwise plot of the transformed data after pro-
cessing and declustering is presented in Figure 4.
From this, we note that the marginal densities dis-
play strong similarities, with a large spike near 0
and a small spike near 1. A value of 1 in a particu-
lar axis indicates that the standardized threshold
exceedance was largest in that dimension. The
off-diagonal plots correspond to pairwise density
plots. We observe that some site pairs, such as
(1, 2), (7, 8), and especially (4, 5) have the bulk of
their data concentrated in a small arc along the

Table 1: Model fit assessment and computation
time on ERA–interim and ERA5 data.

Source
Pairwise
Betas

PG-G PG-LN PRG-G PRG-LN

ERA–Interim 0.8620 0.8003 0.7986 0.7966 0.7970
ERA5 2.0311 1.6404 1.5576 1.4349 1.5051

(a) Energy score criterion from fitted models against the IVT data. Lower is
better.

Source
Pairwise
Betas

PG-G PG-LN PRG-G PRG-LN

ERA–Interim 1.5 16.3 66.5 14.8 52.9
ERA5 53.1 19.4 153.4 24.6 121.4

(b) Time to sample (in minutes) 50,000 iterations for various models

45◦, while other site combinations such as (3, 6),
(2, 7), or (1, 8) the data is split, favoring one side
or the other of the 45◦ line. For the ERA5 data,
after subsetting we have 6342 observations, which
reduces to 532 observations after processing and
declustering. We fit the PG–G, PRG–G, PG–LN,
and PRG–LN models to both datasets.

Table 1a shows the values of the estimated
energy scores for the different models considered.
We observe that, contrary to the results in the
simulation study in Figure 2, the preferred model
is the projected restricted gamma models, though
for the lower-dimensional ERA-Interim data, all
models perform comparably. Table 1b shows the
computing times needed to fit the different mod-
els to the two datasets. We see the effect of
dimensionality on the various models; for gamma
centered models it grows linearly; for the log–
normal centered model, it will grow superlinearly
as matrix inversion becomes the most costly oper-
ation. For BMAmevt, its parameter space grows
combinatorically with the number of dimensions,
and thus so does computational complexity and
sampling time.

We consider an exploration of the pairwise
extremal dependence using Monte Carlo estimates
of the coefficients in Equation (10). For this we
use samples obtained from the PRG–G model.
Figure 5 provides a graphical analysis of the
results. The coefficients achieve values between
0.286 and 0.759 for the ERA-Interim data and
between 0.181 and 0.840 for the ERA5 data. The
greater range in dependence scores observed with
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the ERA5 data versus ERA-Interim speaks to the
greater granularity of the ERA5 data, indicating
that distance between locations is a strong con-
tributor to the strength of the pairwise asymptotic
dependence. The highest coefficients are 0.759
for locations 4 and 5 in the ERA-Interim data
and 0.840 for locations 1 and 2 in the ERA5
data. Clearly, pairwise asymptotic dependence
coefficients tell a limited story, as a particular
dependence may include more than two loca-
tions. We can, however, glean some information
from the patterns that emerge in two dimensions.
For the ERA-Interim data, we observe a possi-
ble cluster between cells 5-8, indicating a strong
dependence among these cells. Analogously, for
the ERA5 data, we observe three possible groups
of locations.

Figure 6 shows, for the ERA-Interim data
under the PRG–G model, the conditional sur-
vival curve defined in Equation (11), for one
dimension, conditioned on all other dimensions
being greater than their (fitted) 90th percentile.
Figure 7 presents the bi-variate conditional sur-
vival function, conditioning on all other dimen-
sions. These results illustrate quantitatively how
extremal dependence affects the shape of the
conditional survival curves. The two top panels
represent the joint survival function between grid
locations 4 and 5, which are shown in Figure 5 to
exhibit strong extremal dependence. We observe
that the joint survival surface is strongly convex.
The bottom panels represent the joint survival
surface between grid locations 1 and 5, which
exhibited low extremal dependence. In this case
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Fig. 5: Pairwise extremal dependence coefficients
for IVT data using the PRG–G model.
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Fig. 7: Pairwise conditional survival curves for
selected locations, using ERA-Interim, and PRG-
G model, conditioning on all other dimensions at
greater than 90th percentile (fitted).

the shape of the contours tend to be concave,
quite different from the shapes observed in the top
panels.

Using our proposed scoring criteria, we
explored the effect of the choice of p on the final
results. Using the simulated data, generated from
a mixture of projected Gammas, we were unable
to observe sizeable differences in the scores for
p ranging between 1 and 15. However, for the
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IVT data, we observed a drop in the energy score
associated with higher p, with diminishing effect
as p increased. We observed no significant dif-
ferences in the performance of the model that
uses p = 10, which corresponds to the analysis
presented, relative to the one that uses p = 15.

6 Conclusion

In this paper, we have built upon the definition
of the multivariate Pareto described in Ferreira
and de Haan (2014) to establish a useful rep-
resentation of its dependence structure through
the distribution of its angular component, which
is supported on the positive orthant of the unit
hypersphere under the L∞ norm, Sd−1

∞ . Due to
the inherent difficulty of obtaining the likelihood
of distributions with support on Sd−1

∞ our method
transforms the data to Sd−1

p , fits then using mix-
tures of products of independent gammas, then
transforms the predictions back to Sd−1

∞ . As Sd−1
p

converges to Sd−1
∞ as p → ∞, we expect the pro-

posed resampling to be efficient for large enough
p. In fact, our exploration of the simulated and
real data indicates that the procedure is robust
to the choice of moderately large values of p. Our
method includes two inferential steps. The first
consists of the estimation of the marginal Pareto
distributions; the second consists of the estima-
tion of the angular density. Parameter uncertainty
incurred in the former is not propagated to the
latter. Conceptually, an integrated approach that
accounts for all the estimation uncertainty is
conceivable. Unfortunately, this leads to poste-
rior distributions with complex data dependent
restrictions that are very difficult to explore, espe-
cially in large dimensional settings. In fact, our
attempts to fit a simple parametric model for
the marginals and the angular measure jointly in
several dimensions were not successful.

In this paper we have focused on a partic-
ular representation of the multivariate Pareto
distribution for PoT inference on extreme val-
ues. To this end, our model provides a com-
putationally efficient and flexible approach. An
interesting extension of the proposed model is to
consider regressions of extreme value responses,
due to extreme value inputs following the ideas in
de Carvalho et al (2022). This will produce PoT
based Bayesian non-parametric extreme value
regression models. More generally, models that
allow for covariate-dependent extremal depen-
dence (Mhalla et al, 2019) could be considered. In

addition, we notice that our approach is based on
flexibly modeling angular distributions for any p-
norm. As such, it can be applied to other problems
focused on high dimensional directional statistics
constrained to a cone of directions.

Establishing the angular measure specifically
in Sd−1

∞ provides two benefits over Sd−1
p . First,

the transformation to Sd−1
∞ is unique. Observe

in Equation (4), establishing yd as a function of
y1, . . . , yd−1 can be replaced in form with any y`,
indicating there are d equivalent transformations,
each yielding a different Jacobian and, for p > 1,
potentially resulting in a different calculated den-
sity. Second, evaluation of geodesic distance on
Sd−1
p is not straightforward. However, we have

demonstrated a computationally efficient upper
bound on geodesic distance on Sd−1

∞ . Accepting
these foibles, it would be interesting to explore the
distribution on Sd−1

p ,
The computations in this paper were per-

formed on a desktop computer with an AMD
Ryzen 5000 series processor. The program is
largely single-threaded, so computation time is
not dependent on available core count. In each
case, we run the MCMC chain for 50 000 itera-
tions, with a burn-in of 40 000 samples. Fitting
the PG–G model on the ERA5 dataset took
approximately 15 minutes. Work is in progress
to optimize the code, and explore parallelization
where possible. We are also exploring alternative
computational approaches that will make it feasi-
ble to tackle very high dimensional problems, such
as variational Bayes. In fact, to elaborate on the
study of IVT, there is a need to consider several
hundreds, if not thousands, of grid cells over the
Pacific Ocean in order to obtain a good descrip-
tion of atmospheric events responsible for large
storm activity over California.
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