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Abstract

We develop a nonparametric Bayesian modeling approach to ordinal regression
based on priors placed directly on the discrete distribution of the ordinal responses.
The prior probability models are built from a structured mixture of multinomial
distributions. We leverage a continuation-ratio logits representation to formulate
the mixture kernel, with mixture weights defined through the logit stick-breaking
process that incorporates the covariates through a linear function. The implied
regression functions for the response probabilities can be expressed as weighted sums
of parametric regression functions, with covariate-dependent weights. Thus, the
modeling approach achieves flexible ordinal regression relationships, avoiding linearity
or additivity assumptions in the covariate effects. A key model feature is that the
parameters for both the mixture kernel and the mixture weights can be associated
with a continuation-ratio logits regression structure. Hence, an efficient and relatively
easy to implement posterior simulation method can be designed, using Pólya-Gamma
data augmentation. Moreover, the model is built from a conditional independence
structure for category-specific parameters, which results in additional computational
efficiency gains through partial parallel sampling. In addition to the general mixture
structure, we study simplified model versions that incorporate covariate dependence
only in the mixture kernel parameters or only in the mixture weights. For all proposed
models, we discuss approaches to prior specification and develop Markov chain Monte
Carlo methods for posterior simulation. The methodology is illustrated with several
synthetic and real data examples.
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1 Introduction

Ordinal responses are widely encountered in many fields, including econometrics and the

biomedical and social sciences, typically accompanied by covariate information. Hence,

estimation and prediction of ordinal regression relationships remains a methodologically

and practically relevant problem. A univariate ordinal response Y with C categories can

be encoded as a C-dimensional binary vector Y. The components of Y do not necessarily

need to be binary, they may be extended to non-negative integers. We refer to data

structures of these two types as the “standard” and “extended” setting, respectively. The

modeling challenge for the ordinal regression problem involves capturing general regression

relationships in the response probabilities (especially for moderate to large C), while at the

same time appropriately accounting for the ordinal nature of the response distribution.

Traditionally, the standard ordinal regression problem is approached by treating the

ordinal responses as a discretized version of latent continuous responses, which are usually

assumed to be normally distributed resulting in popular ordinal probit models. For Bayesian

inference, such data augmentation facilitates posterior simulation (Albert and Chib, 1993).

However, probit models generally preclude a flexible analysis of probability response curves.

For instance, covariate effects enter linearly and additively, and the normality assumption

implies restrictions on the marginal response probabilities (e.g., Boes and Winkelmann,

2006). In general, parametric ordinal regression models sacrifice flexibility in the response

distribution and/or the regression functions for the response probabilities.

To overcome such limitations, the earlier work in the Bayesian nonparametrics literature

has explored semiparametric models, although most of this work has focused on the binary

regression problem. Such methods relax parametric assumptions for the distribution of the

latent variables (e.g., Basu and Chib, 2003) or for the regression function (e.g., Choudhuri

et al., 2007). As a further extension, Chib and Greenberg (2010) modeled covariate effects

additively by cubic splines, combined with a scale normal mixture for the latent responses,

using the Dirichlet process (DP) prior (Ferguson, 1973) for the mixing distribution. More

general DP mixture priors for the distribution of the latent continuous responses have been

considered in Bao and Hanson (2015) and DeYoreo and Kottas (2018). The latter involves

2



a fully nonparametric Bayesian method under the density regression framework, modeling

the joint distribution of covariates and latent responses with a DP mixture of multivariate

normals. We refer to DeYoreo and Kottas (2020) for a review of the joint response-covariate

modeling approach with categorical variables. The density regression modeling framework

is appealing with regard to the scope of ordinal regression inferences. However, it involves

computationally intensive posterior simulation which does not scale with the number of

covariates. Moreover, the modeling approach is not suitable for applications where the

assumption of random covariates is not relevant. Finally, for a different nonparametric

Bayesian modeling perspective, we refer to the recent work of Saarela et al. (2022) that

extends monotonic multivariable regression to ordered categorical responses.

The “logits regression family” of parametric models (e.g., Agresti, 2012) offers an

alternative approach to the ordinal regression problem, based on direct modeling of the

response distribution. Of particular interest to our methodology are continuation-ratio

logits models (Tutz, 1991). The continuation-ratio logits parameterization of the multinomial

distribution implies a sequential mechanism, such that the ordinal response is determined

through a sequence of binary outcomes. Starting from the lowest category, each binary

outcome indicates whether the ordinal response belongs to that category or to one of

the higher categories. The continuation-ratio logit for response category j is the logit

of the conditional probability of response j, given that the response is j or higher. A

key consequence is that, in a multinomial continuation-ratio logits regression model, the

response distribution can be factorized into complete conditionals which are given by

Binomial logistic regression models.

To our knowledge, continuation-ratio logits have not been explored for general Bayesian

nonparametric methods for ordinal regression. For nominal regression, Linderman et al.

(2015) discussed a semiparametric model that, under the mutlinomial response distribution,

replaces the linear covariate effects within the continuation-ratio logits by Gaussian process

priors. More relevant to our methodology is the dependent DP mixture model in Kottas

and Fronczyk (2013), based on a trinomial kernel that builds from the continuation-ratio

logits formulation. This modeling approach was developed specifically in the context
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of developmental toxicity studies, rather than for general ordinal regression problems.

Developmental toxicology data provide an important example of the extended setting. We

thus use such data to demonstrate the proposed methodology, which develops different

(including more general) mixture models than the ones in Kottas and Fronczyk (2013).

The continuation-ratio logits structure is particularly attractive as a building block

for general nonparametric Bayesian ordinal regression modeling, and this is the primary

motivation for the proposed methodology. We build the response distribution from a

nonparametric mixture of multinomial distributions, mixing on the regression coefficients

under the continuation-ratio logits formulation for the mixture kernel. Model flexibility

is enhanced through covariate-dependent mixture weights, assigned a logit stick-breaking

prior (Rigon and Durante, 2021). The stick-breaking structure, along with the logistic

form for the underlying covariate-dependent variables, yields a continuation-ratio logits

regression representation also for the mixture weights. The similarity in the structure for

the parameters of both the mixture kernel and the mixture weights is a distinguishing

feature of the methodology, both in terms of model properties and model implementation.

With regard to the latter, using the Pólya-Gamma data augmentation approach for logistic

regression (Polson et al., 2013), we design an efficient Gibbs sampling algorithm for posterior

inference. The posterior simulation method is ready to implement, in particular, it does

not require specialized techniques or tuning of Metropolis-Hastings steps. Moreover, the

product of Binomials formulation of the multinomial kernel yields a Gibbs sampler which,

given all other model parameters, allows for separate updates for each set of mixture

kernel parameters associated with each response category. Hence, the complexity of the

inference procedure is not unduly increasing with the number of response categories. The

model yields flexible probability response curves that can be represented as weighted sums

of parametric regression functions with local, covariate-dependent weights. As simplified

versions of the general model structure, we explore mixture models that incorporate the

covariates only in the kernel parameters or only in the weights. We study model properties

and use synthetic and real data examples to compare the different model formulations.

Our objective is to develop a general toolbox for ordinal regression that allows flexibility
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in both the response distribution and the ordinal regression relationships. The toolbox

comprises models of different complexity, all of which can be implemented with relatively

straightforward posterior simulation methods. It also includes prior specification methods

that range from a fairly non-informative choice to more informative options that enable

incorporation of monotonicity trends for the probability response functions.

The rest of the article is organized as follows. In Section 2, we formulate the general

ordinal regression mixture model, including discussion of model properties, prior specification,

and posterior inference (with technical details given in the Supplementary Material). Section

3 presents the two simplified mixture models. The methodology is illustrated in Section 4

with synthetic and real data examples. Section 5 concludes the paper with discussion.

2 General methodology

2.1 From building blocks to general model

Suppose that an ordinal response Y with C possible categories is recorded, along with a

covariate vector x ∈ Rp. We can equivalently encode the response as a vector of binary

variables Y = (Y1, · · · , YC), such that Y = j is equivalent to Yj = 1 and Yk = 0 for any

k ̸= j. Let m =
∑C

j=1 Yj, such that for the standard problem, m = 1.

The continuation-ratio logits regression model builds from the factorization of the

multinomial distribution in terms of Binomial distributions,

Mult(Y | m,π1, · · · , πC) = Bin(Y1 | m1, φ(θ1)) · · ·Bin(YC−1 | mC−1, φ(θC−1)), (1)

where mj = m if j = 1, and mj = m−
∑j−1

k=1 Yk, for j = 2, · · · , C − 1, θj ≡ θj(x) = xTβj,

and φ(x) = exp(x)/(1 + exp(x)) denotes the expit function. For notation simplicity, we

use K(Y | m,θ), where θ = (θ1, · · · , θC−1), for the continuation-ratio logits representation

of the multinomial distribution.

The parametric model is limited in the response distribution and the form of covariate

effects. A strategy that surpasses these limitations and achieves flexible inference is to

generalize the model via Bayesian nonparametric mixing. Using the kernel function in (1)
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in conjunction with a nonparametric prior for the covariate-dependent mixing distribution,

we achieve the general nonparametric extension of the continuation-ratio logits model,

Y | Gx ∼
∫

K(Y | m,θ) dGx(θ) =
∞∑
ℓ=1

ωℓ(x)K(Y | m,θℓ(x)). (2)

Here, the countable mixture form emerges under the nonparametric prior formulation for

the mixing distribution that represents it as a discrete distribution, Gx =
∑∞

ℓ=1 ωℓ(x) δθℓ(x),

with covariate-dependent atoms, θℓ(x), and weights, ωℓ(x).

The prior formulation for Gx in (2) is generic. There are several options for building

the model for the atoms and weights, a stick-breaking formulation for the latter being

the more commonly utilized strategy. The DDP prior and related models (MacEachern,

2000; Quintana et al., 2022) has been explored in different applications, including simplified

“common-weights” or “common-atoms” versions under which only the atoms or the weights,

respectively, depend on the covariates. Other options include the kernel stick-breaking

process (Dunson and Park, 2008), the probit stick-breaking process (Dunson and Rodríguez,

2011), and the logit stick-breaking process (Rigon and Durante, 2021).

As discussed below, for the ordinal regression problem with mixture kernel K(Y | m,θ),

the logit stick-breaking process (LSBP) prior offers a key advantage in model structure and

in posterior simulation. Therefore, for the general model in (2), we assume the following

LSBP prior for the covariate-dependent weights:

ω1(x) = φ(xTγ1), ωℓ(x) = φ(xTγℓ)
ℓ−1∏
h=1

(1− φ(xTγh)), ℓ ≥ 2; γℓ
i.i.d.∼ N(γ0,Γ0) (3)

In addition, the atoms are built through a linear regression structure,

θjℓ(x) = xTβjℓ | µj,Σj
ind.∼ N(xTµj,x

TΣjx), j = 1, · · · , C − 1, ℓ ≥ 1, (4)

with the random variables that define the atoms assumed a priori independent of those

that define the weights. The model is completed with the conjugate prior for the collection

of hyperparameters ψ = {µj,Σj}C−1
j=1 , that is,

Σj
ind.∼ IW (ν0j,Λ

−1
0j ), µj | Σj

ind.∼ N(µ0j,Σj/κ0j), j = 1, · · · , C − 1. (5)

In Section 2.3, we discuss prior specification for {ν0j,Λ0j,µ0j, κ0j}C−1
j=1 , and for γ0,Γ0.
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Generate H1 ∼ Bern(∆1),∆1 = φ(xTβ1),β1 ∼ N(µ1,Σ1)

Y = 1

H1 = 1

Generate H2 ∼ Bern(∆2),∆2 = φ(xTβ2),β2 ∼ N(µ2,Σ2)

Y = 2

H2 = 1

Generate H3 ∼ Bern(∆3),∆3 = φ(xTβ3),β3 ∼ N(µ3,Σ3)

Y = 3

H3 = 1

· · ·
H3 = 0

H2 = 0

H1 = 0

Figure 1: Illustration of the continuation-ratio logits structure in sequentially determining

the ordinal variable.

To point to the benefit of working with the LSBP prior, we examine the continuation-ratio

logits structure in (1). As illustrated in Figure 1, such structure implies a sequential

mechanism in determining the ordinal response Y . At a generic step j, a Bernoulli

variable Hj ∼ Bern(∆j) is generated to either set Y = j if Hj = 1, or to allocate Y

to {k : k > j} when Hj = 0. The j-th step can only be reached if Y has not been

assigned to 1, · · · , j − 1. To bring in the covariate effects, we place a logit-normal prior

on ∆j, that is, ∆j = φ(xTβj) and βj ∼ N(µj,Σj). This procedure provides a natural

way of defining a stick-breaking process, engendering the LSBP as mentioned in Rigon and

Durante (2021). Consider a configuration variable L, corresponding to Y, that indicates

the mixture component in (2) from which Y is generated. The same sequential generative

process applies to L. At generic step ℓ, a Bernoulli variable H∗
ℓ ∼ Bern(ηℓ) is generated,

serving the same role as Hj in determining whether L locates at the current stage, or

moves to later stages. Treating ηℓ as the stick-breaking proportion, the covariate effects

are incorporated through ηℓ(x) = φ(xTγℓ). The resulting nonparametric model admits the

countable mixture representation in (2), with weights and atoms depending on covariates in

a similar fashion. We highlight this correspondence because it paves the way in developing

tractable posterior inference strategies, which will be discussed in Section 2.4.

In this section, we consider properties under the general model formulation in (2)

comprising the covariate-dependent weights and atoms in (3) and (4), respectively. In

Section 3, we discuss the simpler common-weights and common-atoms models as a means
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to address the trade-off between the flexibility of model (2) and its potential computational

cost. Our study of model properties and data illustrations explore such trade-off and suggest

scenarios for which the simpler models may be suitable.

2.2 Model properties

The covariate-response relationship can be studied through the marginal probability response

curves Pr(Y = j | Gx), for j = 1, · · · , C. Given the ordinal nature of the response, also of

interest are the conditional probability response curves, Pr(Y = j | Y ≥ j, Gx). Here, we

slightly abuse notation by writing Y = j, while it is actually Y = 1j, the unit vector in

RC with the jth element equal to 1.

Based on the particular mixture of multinomial distributions for the general model in

(2), the marginal probability response curve for j = 1, · · · , C can be expressed as

Pr(Y = j | Gx) =
∞∑
ℓ=1

ωℓ(x)
{
φ(θjℓ(x))

∏j−1

k=1
[1− φ(θkℓ(x))]

}
, (6)

where the weights, ωℓ(x), and atoms, θjℓ(x), are defined in (3) and (4), respectively, and

we set φ(θCℓ(x)) ≡ 1. Moreover, the conditional probability response curves are given by

Pr(Y = j | Y ≥ j, Gx) =
∞∑
ℓ=1

wjℓ(x)φ(θjℓ(x)); wjℓ(x) =
ωℓ(x)

∏j−1
k=1[1− φ(θkℓ(x))]∑∞

ℓ=1 ωℓ(x)
∏j−1

k=1[1− φ(θkℓ(x))]

(7)

Both the marginal and conditional probability response curves admit a weighted sum

representation with component regression functions that correspond to the parametric

continuation-ratio logits model. The covariate-dependent weights in (6) and (7) allow for

local adjustment over the covariate space, thus enabling non-standard regression relationships

and relaxing the restrictions on the covariate effects under the parametric model.

A useful observation is that the continuation-ratio logits model plays the role of a

parametric backbone for the nonparametric model, in the sense of prior expectation. More

specifically, using (6), and the assumptions of the prior model in (2), (3) and (4),

E(Pr(Y = j | Gx)) =
∞∑
ℓ=1

E(ωℓ(x))E
{
φ(θjℓ(x))

∏j−1

k=1
[1− φ(θkℓ(x))]

}
= E

{
φ(xTβj)

∏j−1

k=1
[1− φ(xTβk)]

}
,

(8)
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where the last expectation is taken with respect to βj
ind.∼ N(µj,Σj), j = 1, · · · , C −

1. Hence, the prior expectation for the marginal probability response curves under the

nonparametric model reduces to the prior expectation under the parametric model. This

property facilitates prior specification, as discussed in Section 2.3.

The general model can capture a spectrum of inferences, with the parameters γℓ
controling the number of effective mixture components. Suppose the covariates take values

in a bounded region. If γ1 results in φ(xTγ1) effectively equal to one, then the nonparametric

model collapses to its parametric backbone. On the other hand, if the first several γℓ are

such that φ(xTγℓ) are relatively small, a larger number of effective components is favored,

in the extreme utilizing a distinct multinomial component for each ordinal response. In

practice, the strength of the nonparametric model lies between these two extremes.

Our modeling approach and the properties discussed here apply to both the standard

and the extended ordinal regression problem. Under the former setting, each component

of the response vector Y = (Y1, · · · , YC) is a binary variable, whereas the latter involves

response components that take integer values from 0 to m, with m =
∑C

j=1 Yj > 1.

Of particular interest for the extended problem is the clustering structure in the responses.

Consider data {(Yi,xi)}, with mi =
∑C

j=1 Yij > 1. Each data point (Yi,xi) can be viewed

as a “cluster” consisting of mi standard ordinal responses, {(Ỹiq,xi) : q = 1, · · · ,mi}, which

share the same covariate xi. As a concrete, scientifically relevant application area, consider

developmental toxicity studies, where the covariate is the level of a particular toxin. For

each pregnant laboratory animal exposed to a specific toxin level, the typical data structure

involves responses recorded for its offspring on embryolethality, malformation, and normal

offspring. Here, the clustering can be associated with the outcomes from the mi different

offspring of the ith animal. (Section 4.3 provides more details on this application area, as

well as a specific data example.) Modeling methods for the extended ordinal regression

problem typically seek to capture overdispersion at each response category, that is, a

positive intracluster correlation Corr(Ỹiqj , Ỹiq′j), for q, q′ ∈ {1, · · · ,mi} and j = 1, · · · , C.

In the context of developmental toxicity studies, this corresponds to the (toxin-dependent)

correlation in the outcomes from two different offspring of the same animal.
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Under the proposed model, the intracluster correlation at category j is given by

Corr(Ỹiqj , Ỹiq′j | Gxi
) =

E(ỸiqjỸiq′j | Gxi
)− E(Ỹiqj | Gxi

)E(Ỹiq′j | Gxi
)

{Var(Ỹiqj | Gxi
)Var(Ỹiq′j | Gxi

)}1/2

where E(Ỹiqj | Gxi
) = E(Ỹiq′j | Gxi

) =
∑∞

ℓ=1 ωℓ(xi) {φ(xT
i βjℓ)

∏j−1
k=1[1−φ(xT

i βkℓ)]}, Var(Ỹiqj |

Gxi
) = Var(Ỹiq′j | Gxi

) = E(Ỹiqj | Gxi
) − [E(Ỹiqj | Gxi

)]2, and E(ỸiqjỸiq′j | Gxi
) =∑∞

ℓ=1 ωℓ(xi) {φ(xT
i βjℓ)

∏j−1
k=1[1 − φ(xT

i βkℓ)]}2. Fronczyk and Kottas (2014) have shown

that the intracluster correlation is positive under a common-weights DDP mixture of

Binomial distributions. The required assumptions are that the variance, Var(Ỹiqj | Gxi
),

and correlation, Corr(Ỹiqj , Ỹiq′j | Gxi
), are common within the cluster. These assumptions

hold in our case, since {Ỹiqj : q = 1, · · · ,mi} are associated with the same covariate xi.

Consequently, the positive intracluster correlations result extends to our modeling approach

for multi-category responses.

2.3 Prior specification

To implement the general model in (3), (4) and (5), we need to specify the parameters of

the hyperpriors, that is, (γ0,Γ0) and {ν0j,Λ0j,µ0j, κ0j}C−1
j=1 .

We set κ0j = ν0j = p + 2 for all j, where p is the dimension of the covariate vector

x (including the intercept). For the other prior hyperparameters, the proposed strategy

is developed by first considering the prior expected probability response curves to specify

{µ0j,Λ0j}C−1
j=1 , and then using the prior expected weight placed on each mixing component

to determine γ0 and Γ0.

The weights and atoms of the mixture model have the same structure. Specifically,

the weights are generated from a stick-breaking process with breaking proportion ηℓ(x) =

φ(xTγℓ), while the atoms can also be viewed as possessing a stick-breaking form with

breaking proportion ∆jℓ(x) = φ(xTβjℓ). Taking the prior into consideration, we have

ηℓ(x) ∼ LN(xTγ0,x
TΓ0x) and ∆jℓ(x) ∼ LN(xTµ0j, (κ0j + 1)/(κ0j(ν0j − p − 1))xTΛ0jx),

where LN(·, ·) denotes the logit-normal distribution. Therefore, a key quantity in prior

specification is the expectation of a logit-normal distributed random variable, which does

not have analytical form in general.
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Nonetheless, if Z ∼ N(0, σ2), then E(φ(Z)) = 0.5, for any value of the variance σ2

(Pirjol, 2013). This result motivates the default choice of hyperparameters we use in

practice, that is, µ0j = γ0 = 0p, and Λ0j = Γ0 = 102 Ip. We refer to this specification

as the “baseline” prior, which yields E(Pr(Y = j | Gx)) = 2−j, for j = 1, · · · , C − 1, and

E(Pr(Y = C | Gx)) = 2−(C−1), for all x. The prior expectation of the weight associated

with the ℓth mixing component is given by 2−ℓ, for any ℓ.

In general, both the shape of the prior expected probability response curves and the

prior expected weight placed on each mixing component depend on the expectation of the

logit-normal distribution. Even though that expectation does not have analytical form, it

can be readily obtained by simulation. Therefore, we can tune the prior hyperparameters

and evaluate the prior expectation of ηℓ(x) and ∆jℓ(x). For instance, we can favor prior

expected probability response curves possessing some specific pattern (such as monotonicity)

and/or a certain number of mixture components. The following proposition, which can be

obtained using results from Pirjol (2013), facilitates the tuning of prior hyperparameters.

Proposition 1. If Z ∼ N(µ, σ2), then φ(µ− σ2/2) ≤ E(φ(Z)) ≤ φ(µ+ σ2/2).

As an illustration, consider an ordinal response with C = 3 categories, and a single

covariate taking values in (−10, 10). Suppose the prior information is that the first marginal

probability response function is decreasing, whereas the second is increasing. Using a

particular prior choice, Figure 2 shows point and interval estimates that reflect such

prior information, with a fair amount of variability. The details for determining the

hyperparameters, using Proposition 1, are presented in the Supplementary Material.

2.4 Posterior inference

For Markov chain Monte Carlo (MCMC) posterior simulation, we work with a truncation

approximation of the mixing distribution in the spirit of blocked Gibbs sampling for

stick-breaking priors (Ishwaran and James, 2001). We favor the blocked Gibbs sampler

as it results in practical model implementation and it allows for full posterior inference

for general regression functionals. Hence, for posterior simulation, the mixing distribution
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Figure 2: Illustration of the prior specification strategy (see Section 2.3 for details). In

each panel, the red solid line corresponds to the prior expected probability response curve,

the blue dashed lines and shaded region indicate the prior 95% interval estimate, and the

green dotted lines show 5 prior realizations.

Gx in (2) is replaced by GL
x =

∑L
ℓ=1 pℓ(x) δθℓ(x), with θℓ(x) defined as before, and pℓ(x) =

ωℓ(x), for ℓ = 1, ..., L− 1, whereas pL(x) = 1−
∑L−1

ℓ=1 pℓ(x).

The truncation level L can be chosen to achieve any desired level of accuracy. For normal

mixtures with LSBP weights, Rigon and Durante (2021) show that, for fixed sample size

and covariates, the L1 distance between the prior predictive distribution of the sample

under Gx and GL
x decreases exponentially in L. In practice, we can specify L using the

prior expectation for the partial sum of weights. Under the prior in (3), E(
∑L

ℓ=1 ωℓ(x)) =

1 − {1 − E(φ(xTγ))}L, where the expectation on the right-hand-side is with respect to

γ ∼ N(γ0,Γ0). Hence, L can be selected by evaluating numerically the expectation at a few

representative values in the covariate space. Note that, when γ0 = 0p, E(φ(xTγ)) = 0.5,

for any x. We also recommend monitoring the posterior samples for pL(x) for different

values x in the covariate space. Using a combination of such strategies, we worked with

the (conservative) truncation level of L = 50 for the data examples of Section 4.

Denote by Yi = (Yi1, · · · , YiC), with mi =
∑C

j=1 Yij, the ith observed response, and by

xi the corresponding covariate vector, for i = 1, · · · , n. We introduce a latent configuration

variable Li for each response, such that Li = ℓ if and only if Yi is assigned to the ℓth
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mixture component. Then, the hierarchical model for the data can be expressed as

Yi | {βjℓ},Li
ind.∼ K(Yi | mi,θLi

) =
C−1∏
j=1

Bin(Yij | mij, φ(x
T
i βjLi

)), i = 1, · · · , n

Li | {γℓ}
ind.∼

L∑
ℓ=1

piℓ δℓ(Li), i = 1, · · · , n

βjℓ | (µj,Σj)
ind.∼ N(µj,Σj), j = 1, · · · , C − 1, ℓ = 1, · · · , L

γℓ
i.i.d.∼ N(γ0,Γ0), ℓ = 1, · · · , L− 1

(µj,Σj)
ind.∼ N(µj | µ0j,Σj/κ0j) IW (Σj | ν0j,Λ−1

0j ), j = 1, · · · , C − 1

(9)

where mi1 = mi, mij = mi −
∑j−1

k=1 Yik, for j = 2, · · · , C − 1, piℓ = φ(xT
i γℓ)

∏ℓ−1
h=1(1 −

φ(xT
i γh)), for ℓ = 1, · · · , L− 1, and piL =

∏L−1
ℓ=1 (1− φ(xT

i γℓ)).

Akin to the data Yi and its original form Yi, we can view the latent configuration

variable Li as the allocation of its multivariate form Li = (Li1, · · · ,LiL) ∈ RL, with the

connection defined as Li = ℓ ⇐⇒ Li = 1ℓ, the unit vector in RL with the ℓth element equal

to 1. An important observation is that the prior model for the Li in (9) can be equivalently

defined through a continuation-ratio logits regression model for their multivariate images

Li. More specifically,

Li | {γℓ}
ind.∼ Bin(Li1 | 1, η1(xi))Bin(Li2 | 1−Li1, η2(xi)) · · ·Bin

(
Li,L−1 | 1−

L−2∑
k=1

Lik, ηL−1(xi)

)

where ηℓ(xi) = φ(xT
i γℓ), for ℓ = 1, · · · , L− 1.

The form of the hierarchical model for the data, along with the observation above,

elucidate the key model property discussed in Section 2.1. Under the (truncated) LSBP

prior for the covariate-dependent weights, we achieve effectively the same structure for

the weights and atoms of the general mixture model. In turn, this allows us to use the

Pólya-Gamma data augmentation approach (Polson et al., 2013) to update both the atoms

parameters as well as the ones for the weights. In particular, for each response Yi, we

introduce two sets of Pólya-Gamma latent variables, such that conditionally conjugate

updates emerge for the parameters defining both the weights and the atoms. Therefore, all

model parameters can be updated via Gibbs sampling. Moreover, taking advantage of the

continuation-ratio logits model structure for the mixture kernel, parallel computing for the

different mixing components can be adopted, facilitating implementation in applications
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where the number of response categories is moderate to large. Details of the posterior

simulation method are presented in the Supplementary Material.

Using the posterior samples for model parameters, we can obtain full inference for any

regression functional of interest. For instance, for any j = 1, · · · , C, posterior realizations

for the marginal probability response curve, Pr(Y = j | Gx), can be computed over a grid

in x via
L∑

ℓ=1

{
φ(xTγ

(t)
ℓ )
∏ℓ−1

h=1
(1− φ(xTγ

(t)
h ))

} {
φ(xTβ

(t)
jℓ )
∏j−1

k=1
[1− φ(xTβ

(t)
kℓ )]
}

where φ(xTγ
(t)
L ) = φ(xTβ

(t)
Cℓ) ≡ 1, and the superscript (t) indicates the tth posterior sample

for the model parameters.

The MCMC posterior samples can also be used to estimate the posterior predictive

distribution for new response Y∗ given new covariate vector x∗ (and m∗). In particular,

the tth posterior predictive sample can be obtained by first sampling the corresponding

configuration variable L(t)
∗ from the discrete distribution on {1, · · · , L} with probabilities

φ(xT
∗ γ

(t)
ℓ )
∏ℓ−1

h=1(1−φ(xT
∗ γ

(t)
h )), for ℓ = 1, · · · , L, and then sampling Y

(t)
∗ from K(· | m∗,θ

(t)
∗ ),

with the jth element of θ(t)∗ given by φ(xT
∗ β

(t)

jL(t)
∗
), for j = 1, · · · , C − 1.

3 Specific models for ordinal regression

As discussed in Section 2.1, there is a trade-off between the flexibility of the general mixture

model in (2) and the complexity of model implementation. It is thus useful to study

simplified model versions, which are naturally suggested given the two building blocks of

the general model. Here, we discuss the two simpler ordinal regression models that arise

by retaining covariate dependence only in the atoms (Section 3.1) or only in the weights

(Section 3.2). The different model versions are empirically compared in Section 4.

3.1 The common-weights model

As a first simplification, we can remove the covariate dependence from the mixture weights.

That is, the ordinal regression mixture model is built from the common-weights mixing
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distribution Gx =
∑∞

ℓ=1 ωℓ δθℓ(x), such that

Y | Gx ∼
∞∑
ℓ=1

ωℓ K(Y | m,θℓ(x))

where the covariate-dependent atoms are defined as in the general model in (4) and (5).

Regarding the prior model for the weights, one option would be to keep the LSBP

structure, that is, reduce xTγℓ in (3) to scalar parameter γℓ, with the γℓ independent

and identically normally distributed. We work instead with a prior that retains the

stick-breaking formulation for the weights, but corresponds to the DP. Hence, ω1 = V1,

and ωℓ = Vℓ

∏ℓ−1
h=1(1− Vh), for ℓ ≥ 2, where Vℓ | α

i.i.d.∼ Beta(1, α).

Using the DP-induced prior for the weights allows connections with the well-established

literature on DDP mixture models, including the early work with common-weights DDP

priors, such as the ANOVA DDP (DeIorio et al., 2004), the spatial DP (Gelfand et al.,

2005), and the linear DDP (DeIorio et al., 2009). In particular, the common-weights

ordinal regression mixture model can be equivalently written as a DP mixture model:

Y | F ∼
∫

K(Y | m, (xTβ1, · · · ,xTβC−1)) dF (β1, · · · ,βC−1)

where F follows a DP prior with total mass parameter α, and centering distribution defined

through βj | (µj,Σj)
ind.∼ N(µj,Σj), for j = 1, · · · , C − 1. The model is completed

with a Gamma(aα, bα) hyperprior for α, and the prior for the (µj,Σj) in (5). For prior

specification, we combine the approach for the atoms in the general model with techniques

for specifying the prior for the total mass DP parameter. The posterior simulation method

replaces the steps for updating the weights with the update for the DP weights under

blocked Gibbs sampling. The details can be found in the Supplementary Material.

With the expression for the weights appropriately adjusted, the common-weights model

inherits the properties of the general model, developed in Section 2.2. The prior expectation

in (8) is not affected by the form of the weights. However, the probability response curves

admit a potentially less flexible form than the one in (6) under the general model. We

still have a weighted combination of parametric regression functions, but now without the

local adjustment afforded by covariate-dependent weights. The data analyses in Section 4
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demonstrate the practical utility of the general model, but also include examples where the

common-weights model yields practical, sufficiently flexible inference.

3.2 The common-atoms model

The alternative way to simplify the general model is to use mixing distribution Gx =∑∞
ℓ=1 ωℓ(x) δθℓ , resulting in the common-atoms mixture model:

Y | Gx ∼
∞∑
ℓ=1

ωℓ(x)K(Y | m,θℓ)

where θℓ = (θ1ℓ, · · · , θC−1,ℓ). The covariate-dependent weights are defined using the LSBP

prior in (3). The prior model for the atoms is built from θjℓ | µj, σ
2
j

ind.∼ N(µj, σ
2
j ), for

j = 1, · · · , C − 1, and ℓ ≥ 1. The model is completed with the conjugate prior for the

hyperparameters: σ2
j

ind.∼ IG(a0j, b0j), and µj | σ2
j

ind.∼ N(µ0j, σ
2
j/ν0j), for j = 1, · · · C − 1,

where IG(·, ·) denotes the inverse-gamma distribution.

Model implementation builds from the general model, with appropriate adjustments

for the atoms. Here, E(Pr(Y = j | Gx)) = E
{
φ(θj)

∏j−1
k=1(1− φ(θk))

}
, for j = 1, · · · , C,

where the expectation is taken with respect to θj
ind.∼ N(µ0j, (ν0j + 1)b0j/ν0j(a0j − 1))

(obtained by marginalizing over the prior for (µj, σ
2
j )). Hence, the prior expected marginal

probability response curves are constants over the covariate space. The prior specification

strategy utilizes this property, by setting {µ0j, ν0j, a0j, b0j}C−1
j=1 such that these constants

correspond to prior information for the ordinal response probabilities. The key quantity

is again the expectation of a logit-normal distributed random variable (discussed earlier

in Section 2.3). The posterior sampling scheme is adapted from the general model, with

the normal-inverse-Wishart update for the atoms parameters replaced by the univariate

normal-inverse-Gamma analogue. Details are given in the Supplementary Material.

The common-atoms mixture structure offers a parsimonious model formulation, especially

for problems with a moderate to large number of response categories. On the other hand,

the simplified model form involves a potential limitation. The marginal and conditional

probability response curves have the form in (6) and (7), respectively, with θjℓ(x) replaced

by θjℓ. Hence, the covariates inform the shape of the regression curves only through the
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mixture weights. As a practical consequence, the common-atoms model typically activates

a larger number of effective mixture components to estimate the regression relationship,

and it thus encounters a higher risk of overfitting for problems with a moderate to large

number of covariates. This point is illustrated with the data examples of Section 4.

4 Data illustrations

4.1 Synthetic data examples

We present two simulation examples to demonstrate the proposed modeling framework,

including comparative study of the common-weights model, the common-atoms model, and

the general model. To facilitate graphical illustrations, we consider a single (continuous)

covariate and an ordinal response with C = 3 categories. In both examples, n pairs of

ordinal response and covariate (Yi, xi) are generated, where xi
i.i.d.∼ Unif(−10, 10), such

that with the intercept, the covariate vector is xi = (1, xi)
T . The posterior analyses are

based on 4000 posterior samples collected every 5 iterations from a Markov chain of 30000

iterations, with the first 10000 samples being discarded.

First experiment

We generate n = 100 responses from a probit model, that is, we first sample normally

distributed latent continuous variables ỹi, and then discretize the ỹi with cut-off points to

get the ordinal responses Yi, for i = 1, · · · , n. The objective is to study how the different

models handle the challenge of recovering standard regression relationships for which the

nonparametric mixture model structure is not necessary.

The nonparametric mixture models are applied to the data, using the (non-informative)

baseline prior for their hyperparameters. Figure 3 plots posterior point and interval

estimates for the marginal probability response curves, including, as a reference point,

estimates under the parametric probit model used to generate the data. As expected,

the nonparametric models result in wider posterior uncertainty bands than the parametric

model. In terms of recovering the underlying regression curves, the common-atoms model is
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(a) Probit model.

(b) Common-weights model.

(c) Common-atoms model.

(d) General model.

Figure 3: First simulation example. Inference results for the marginal probability response

curves, under the baseline prior for the nonparametric models. In each panel, the dashed

line and shaded region correspond to the posterior mean and 95% credible interval estimates,

whereas the (green) solid line denotes the true regression function.

less effective than the common-weights and the general model. As discussed in Section 3.2,

this can be explained from the common-atoms model property that the regression curve

shapes are adjusted essentially only through the mixture weights. The findings from the
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(a) Common-weights model.

(b) Common-atoms model.

(c) General model.

Figure 4: First simulation example. Box plots of the posterior samples for the three largest

mixture weights under each of the nonparametric models.

graphical comparison are supported by results from formal comparison, using the posterior

predictive loss criterion from Gelfand and Ghosh (1998) (see the Supplementary Material).

The model comparison criterion suggests comparable performance for the common-weights

and general models, whereas both outperform the common-atoms model.

To further explore how the different nonparametric models utilize the mixture structure,

Figure 4 shows the posterior distributions of the three largest mixture weights across

covariate values. (A plot that contains the posterior mean estimates for the weights and

the corresponding atoms is given in the Supplementary Material.) The general model is

the most efficient in terms of the number of effective mixture components, using a second

component (with small weight) only for covariates values around 0. This is to be expected,

since it is those covariate values that result in practically relevant differences between the
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(a) Common-weights model.

(b) Common-atoms model.

(c) General model.

Figure 5: First simulation example. Inference results for the marginal probability response

curves, under the informative prior specification. In each panel, the dashed line and shaded

region correspond to the posterior mean and 95% credible interval estimates, whereas the

(green) solid line denotes the true regression function.

probit regression function (used to generate the data) and the logistic regression kernel.

The common-atoms model activates effectively one extra component for covariate values

where the regression functions are not flat. Compared to the general model, it places larger

weights on the second component to account for the constant atoms. On the other hand,

the mixture weights can not change with the covariates for the common-weights model.

Hence, in order to recover the probit regression function, this model utilizes effectively

three mixture components, with the second and third assigned larger (global) weight than

the other two models.

The sample size for this example was intentionally taken to be relatively small, in order
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to study sensitivity to the prior choice, as well as to demonstrate the practical utility of

a more focused prior specification approach. If the monotonicity of two of the regression

functions was in fact available as prior information, such information can be incorporated

into the model, as discussed in Section 2.3. Indeed, Figure 5 reports posterior inference

results under a more informative prior specification, the details of which can be found in the

Supplementary Material. Comparing with Figure 3, we notice more accurate posterior mean

estimates and a reduction in the width of the posterior uncertainty bands, the improvement

being particularly noteworthy for the common-atoms model.

Second experiment

Here, our objective is to highlight the benefits of local, covariate-dependent weights in

capturing non-standard shapes of probability response curves. To this end, we generate

the responses from a three component mixture of multinomial distributions, expressed in

their continuation-ratio logis form. That is, Y ∼
∑3

k=1 wk(x)K(Y | m,θk(x)), where

θjk(x) = bjk0+ bjk1x, for j = 1, 2 and k = 1, 2, 3. To introduce covariate dependence also in

the weights, we compute pjx = Φ(aj0 + aj1x), for j = 1, 2, where Φ is the standard normal

distribution function, and set (w1(x), w2(x), w3(x)) = (p1x, (1− p1x)p2x, (1− p1x)(1− p2x)).

The parameters for the weights and atoms are chosen such that the resulting probability

response curves have non-standard shapes (see Figure 6). We perform the experiment with

two sample sizes, n = 200 and n = 800.

The prior hyperparameters for the atoms are set according to the baseline choice. For

the common-atoms and general models, we specify the LSBP prior hyperparameters (γ0,Γ0)

to favor a priori more mixture components in the interval of covariate values (−10, 0)

where there is more variation in the regression functions. We note however that the prior

specification is still fairly non-informative regarding the shape of the regression functions.

In particular, under all three models, the prior mean estimates for the probability response

curves are flat, and the prior 95% interval estimates span a substantial portion of the unit

interval (the prior estimates are shown in the Supplementary Material).

Inference results under the general and common-atoms models are contrasted with
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(a) Common-weights and common-atoms models (n = 200).

(b) Common-weights and general models (n = 200).

(c) Common-weights and common-atoms models (n = 800).

(d) Common-weights and general models (n = 800).

Figure 6: Second simulation example. Posterior mean and 95% credible interval estimates

for the marginal probability response curves under the common-weights (blue line and

shaded region), common-atoms (orange line and shaded region), and general (red line and

shaded region) models. In each panel, the green solid line is the true regression function.

the common-weights model in Figure 6. As expected, the common-weights model does

not recover well the non-standard regression functions for the first and third response

categories. The two models that use covariate-dependent mixture weights perform notably
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(a) Common-atoms model.

(b) General model.

Figure 7: Second simulation example. Box plots of the posterior samples for the six largest

mixture weights, under the common-atoms and general models.

better, with the general model resulting overall in more accurate estimation. This ranking

in model performance is also supported by the posterior predictive loss criterion (refer to

the Supplementary Material for details). Increasing the sample size results in more precise

point estimates and more narrow posterior uncertainty bands.

Focusing on the models with covariate-dependent mixture weights (and the data set

with n = 800), Figure 7 explores the posterior distribution of the six largest weights over

the covariate space. For both models, it is essentially the first three largest weights that,

given the data, define the probability vector of weights. However, we note the more local
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adjustment in the two largest weights under the common-atoms model, which becomes

more pronounced in parts of the covariate space where the probability curves change more

drastically. This is compatible with the common-atoms model’s structure that seeks to fit

the regression functions with atoms that do not change across the covariate space.

4.2 Credit ratings of U.S. firms

We consider data on Standard and Poor’s (S&P) credit ratings for 921 U.S. firms in 2005

(Verbeek, 2008). The ordinal response is the firm’s credit rating, originally recorded on

a scale with seven categories. Since there were only 17 firms with rating of 1 or 7, and

to facilitate illustration of inference results, we combine the responses in the first two

and last two categories. We thus obtain an ordinal response scale ranging from 1 to 5,

with higher ratings indicating higher creditworthiness. The data set includes five company

characteristics that serve as covariates: book leverage (ratio of debt to assets), x1; earnings

before interest and taxes divided by total assets, x2; standardized log-sales (proxy for firm

size), x3; retained earnings divided by total assets (proxy for historical profitability), x4;

and working capital divided by total assets (proxy for short-term liquidity), x5.

The three nonparametric models were applied to the data, using the baseline choice for

the atoms prior hyperparameters, and priors for the weights hyperparameters that favor a

moderate to large number of distinct mixture components n∗ (i.e., number of distinct Li

in the notation of Section 2.4). Given the number of covariates, one would expect that the

common-atoms model requires larger n∗ compared to the models with covariate-dependent

atoms. Indeed, the posterior median for n∗ is 8, 12, and 21 under the common-weights,

general, and common-atoms model, respectively; in fact, the common-atoms model did

not produce a posterior draw for n∗ smaller than 10. The relative inefficiency of the

common-atoms model is also reflected in its larger penalty term for the posterior predictive

loss criterion. The model comparison criterion essentially does not distinguish between the

general and common-weights models, and inference results are overall similar under these

two models. More details from the model comparison are included in the Supplementary

Material. Here, we discuss results under the common-weights model.
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Figure 8: Credit ratings data. Posterior mean (lines) and 95% interval (shaded regions)

estimates of probability response curves πj(xs). Estimates for all five response categories

are displayed in a single panel for each covariate.

We estimate first-order effects for each covariate xs (denoted by πj(xs), for j = 1, · · · , 5),

by computing posterior realizations for Pr(Y = j | Gx) in (6) at a grid over the observed

range for xs, keeping the values of the other covariates fixed at their observed average.

The resulting point and interval estimates are displayed in Figure 8. The estimates reveal

some interesting relationships between the firm’s characteristics and its credit rating. For

instance, debt may help to fuel growth of the firm, while uncontrolled debt levels can

lead to credit downgrades. Hence, an important question pertains to the relevant debt to

assets ratio. The substantial increase in the probability of the lowest credit rating when

book leverage gets larger than 0.4 (top left panel of Figure 8) suggests that the desirable

ratio may not exceed 0.4. Moreover, there is a positive association between standardized

log-sales (a proxy for firm size) and the firm’s credit rating. The probability of the lowest

credit rating decreases at a particular rate for low to moderate log-sales values, with the

probability becoming exceedingly small for larger firms. The probabilities for ratings 2, 3

and 4 peak at increasingly larger log-sales values, and the probability of the highest rating

is practically zero for low to moderate log-sales values and is increasing for the largest firms.

Similarly to the first-order effects estimates, we can obtain inference for second-order

probability response surfaces for any pair of covariates (xs, xs′), denoted by πj(xs, xs′), for
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Figure 9: Credit ratings data. Posterior mean estimates of probability response surfaces

πj(x2, x3), for j = 1, · · · , 5 (from left to right).

j = 1, · · · , 5. As an illustration of the model’s capacity to accommodate interaction effects

among the covariates, Figure 9 plots posterior mean estimates for the second-order effects

corresponding to earnings divided by total assets (x2) and standardized log-sales (x3).

The Supplementary Material includes additional results from this data analysis. In

particular, the nonparametric modeling approach is shown to outperform the parametric

continuation-ratio logits regression model. Moreover, we study the nonparametric model’s

performance in prediction, studying how the posterior probability of obtaining investment

grade (rating of 3 or higher) changes when each of the covariates changes its value from

the 25th to the 75th observed percentile.

4.3 Developmental toxicology data example

Segment II developmental toxicity studies provide an important area of application under

the extended problem setting. In these studies, at each experimental toxin level, xi, a

number, ni, of pregnant laboratory animals (dams) are exposed to the toxin and the total

number of implants, mid, the number of non-viable fetuses (undeveloped embryos and/or

prenatal deaths), Rid, and the number of live malformed pups, yid, from each dam are

recorded. Thus, the data structure, {(xi;Rid, yid,mid − Rid − yid) : i = 1, · · · , N ; d =

1, · · · , ni}, falls in the extended ordinal regression setting, indeed, with replicated responses

at each value of the single covariate (toxin level).

We consider data from a study where diethylene glycol dimethyl ether (DYME), an
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Figure 10: DYME data. In each panel, a circle corresponds to a particular dam and the

size of the circle is proportional to the number of implants. The coordinates of the circle

are given by the toxin level and the proportion of the specific endpoint: non-viable fetuses

among implants (left panel); malformations among live pups (middle panel); combined

negative outcomes among implants (right panel).

organic solvent, is evaluated for toxic effects in pregnant mice (Price et al., 1987). The

data is available from the National Toxicology Program database. The study involves four

active toxin levels at 0.0625, 0.125, 0.25 and 0.5 g/kg and a control group, with a number

of dams (ranging from 18 to 24) assigned to each group. The empirical proportions of

embryolethality, malformation, and combined negative outcomes (plotted in Figure 10)

suggest an increasing trend across toxin levels, although with no obvious parametric form

for each dose-response curve. Due to the inherent heterogeneity of both the dams and the

pups’ reaction to the toxin, the variation in outcomes is vast.

Because in Segment II toxicity experiments exposure occurs after implantation, we

assume a distribution for the number of implants, m, that does not depend on the toxin level.

In particular, we work with a shifted Poisson distribution, f(m | λ) = e−λλm−1/(m − 1)!,

for m ≥ 1. Hence, the modeling focus is on the toxin-dependent conditional distribution for

the number of non-viable fetuses and malformations, (R, y), given m, for which we explore

the proposed nonparametric mixture models.

The main objective of developmental toxicity studies is to examine the relationship

between the toxin level and the probability of the various responses. We focus on the

endpoints of embryolethality, fetal malformation, and combined negative outcomes. The
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respective dose-response curves are defined by the toxin-dependent probability of a non-viable

fetus, conditional probability of malformation for a live pup, and probability of either of the

two negative outcomes. To develop the expressions for the dose-response curves, it is helpful

to consider the underlying standard ordinal responses. In particular, we denote by R̃ and

ỹ the non-viable fetus indicator and the malformation indicator for a live pup, respectively.

Therefore, for a generic dam with m implants exposed to toxin level x, {R̃q : q = 1, · · · ,m}

are the non-viable fetus indicators, and {ỹl : l = 1, · · · ,m −
∑m

q=1 R̃q} the malformation

indicators for the live pups, such that the (extended) ordinal response is (R, y,m−R− y),

where R =
∑m

q=1 R̃q and y =
∑m−R

l=1 ỹl. Based on (6) and (7), the implied expressions

for the dose-response curves of embryolethality, D(x) = Pr(R̃ = 1 | Gx), malformation,

M(x) = Pr(ỹ = 1 | R̃ = 0, Gx), and combined risk, r(x) = Pr(R̃ = 1 or ỹ = 1 | Gx) =

Pr(R̃ = 0 and ỹ = 1 | Gx) + Pr(R̃ = 1 | Gx), are given by

D(x) =
∞∑
ℓ=1

ωℓ(x)φ(x
Tβ1ℓ); M(x) =

∞∑
ℓ=1

ωℓ(x)[1− φ(xTβ1ℓ)]∑∞
ℓ=1 ωℓ(x)[1− φ(xTβ1ℓ)]

φ(xTβ2ℓ);

r(x) = 1−
∞∑
ℓ=1

ωℓ(x) [1− φ(xTβ1ℓ)][1− φ(xTβ2ℓ)],

with x = (1, x)T , and the weights ωℓ(x) defined in (3).

A practically relevant modeling aspect revolves around possible monotonicity restrictions

for the dose-response functions. Developmental toxicity studies involve a small number of

administered toxin levels. Hence, under nonparametric mixture models for the categorical

responses, a monotonic trend in the prior expectation for the dose-response curves is needed

for effective interpolation and extrapolation inference. This is discussed in Kottas and

Fronczyk (2013) and Fronczyk and Kottas (2014) under common-weights DDP mixture

models, and is also relevant in our model setting. Therefore, this is an application area

for which the common-atoms model is not a practical option, and, indeed, we explore

only the common-weights and the general model. Using for these two models the prior

specification strategy of Section 2.3, we can incorporate a non-decreasing trend in the

prior expected dose-response curves (prior point and interval estimates are displayed in the

Supplementary Material). We note however that prior (and thus posterior) realizations for

the dose-response curves are not structurally restricted to be non-decreasing.
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Figure 11: DYME data. Under the general model, posterior mean (red dashed line) and

95% interval estimates (blue dotted line and shaded region) for the dose-response curves.

The general model outperforms the common-weights model based on the posterior

predictive loss criterion. We also perform model checking (for the general model), using

cross-validated posterior predictive samples, which shows no evidence of lack of fit. Here,

we present results under the general model, although inferences are similar under the

common-weights model. Details on model assessment and comparison, and inference results

under the common-weights model are included in the Supplementary Material.

Figure 11 plots the posterior mean and 95% uncertainty bands for the dose-response

curves. The embryolethality dose-response function depicts a slowly increasing trend.

The conditional probability of malformation has a skewed shape, with larger uncertainty

between the last two observed toxin levels. The combined risk function is similar in shape

to the malformation dose-response curve, though shifted up slightly and with decreased

uncertainty bands. Regarding inference for the response distributions corresponding to the

two endpoints, estimates for the probability mass functions for the number of non-viable

fetuses given a specific number of implants are presented in the Supplementary Material.

Figure 12 displays estimates for the conditional probability mass functions of the number of

malformations given a specified number of implants and the associated number of non-viable

fetuses. The model uncovers non-standard distributional shapes, such as the ones at toxin

levels x = 0.25 g/kg and x = 0.5 g/kg. Also noteworthy is the smooth evolution from right

to left skewness in the probability mass functions as the toxin level increases.
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Figure 12: DYME data. Under the general model, posterior mean (“o”) and 95%

uncertainty bands (dotted lines) for the conditional probability mass function for the

number of malformations given 12 implants and 2 non-viable fetuses, f(y | m = 12, R =

2, Gx), for the five observed toxin levels and for the new value of x = 0.375 g/kg.

5 Discussion

Seeking to incorporate flexibility in both the response distribution and the ordinal regression

relationship, we have developed a Bayesian nonparametric mixture modeling framework for

ordinal regression. We approach the ordinal regression problem by directly modeling the

discrete response distribution. The similarity between the logit stick-breaking prior and

the continuation-ratio logits structure provides an elegant way of incorporating covariate

effects in both the weights and the atoms of the mixture model, leading to the general model.

To investigate the trade-off between model flexibility and implementation complexity, we

introduce two simpler models that arise by retaining covariate dependence only in the

atoms (common-weights model) or only in the weights (common-atoms model). The

proposed models form a comprehensive toolbox that spans a wide range of flexibility in

modeling ordinal regression relationships. Viewing the two simpler models as the building
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blocks of the general model enables us to explore model properties and develop inference

algorithms under a unified framework. The practical advantage of the proposed models lies

in the convenience in prior specification and the computational efficiency of the posterior

simulation method. With regard to the latter, the key feature is the combination of the

continuation-ratio logits representation for the mixture kernel with the Pólya-Gamma data

augmentation technique.

A practical consideration is which model to apply to a specific problem. The principal

rule is to exploit model flexibility while accounting for restrictions induced by available

information. Regarding the latter, the developmental toxicology data analysis (Section 4.3)

provides an example where one of the simpler models can be eliminated from consideration

based on knowledge about the problem under study. As for model flexibility, the other

data examples of Section 4 were chosen to study different scenarios for suitability of the

simplified models, as they pertain to the complexity of the probability response curves,

the sample size, and the number of covariates. The common-weights model can not take

advantage of the local adjustment offered by covariate-dependent weights, and this may

be an issue for non-standard ordinal regression relationships. Among the two simpler

model specifications, the common-atoms model is a more suitable choice when expecting

complicated covariate-response relationships. The caveat is that this model activates a

large number of effective mixture components, thus increasing the computational cost and

facing the potential risk of overfitting. Inheriting features from both of its building blocks,

the general model offers the most versatile structure. Its benefits emerge especially in

applications with sufficiently large amounts of data and non-standard regression relationships,

as demonstrated by the second synthetic data example of Section 4.1. Nonetheless, in

applications with small to moderate sample sizes and moderate to large number of response

categories, the two simpler models are useful options to consider.

The scalability of the proposed models is built upon the continuation-ratio logits structure,

which boosts computation in two ways. First, it implies a conditional independence

structure for category-specific parameters, allowing partial parallel computing across response

categories. In addition, the MCMC algorithm can be potentially replaced by a mean-field
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variational inference approach (e.g., Blei and Jordan, 2006). Taking advantage of the

Pólya-Gamma technique, the variational strategy for our models can be framed within the

well-established exponential family setting, for which there exists a closed-form coordinate

ascent variational inference algorithm (Blei et al., 2017). Therefore, there is exciting

potential to scale up the models to handle ordinal regression problems with large amounts

of data, as in, e.g., business and marketing applications.

The ordinal regression problem we have explored in this work forms a key building

block for more general model settings involving ordinal responses. A primary feature of

the proposed modeling framework is its modularity. As a specific example, the model

structure can be embedded in a hierarchical framework to develop general, nonparametric

inference for longitudinal ordinal regression. Repeated measurements of ordinal responses

are typically measured with covariates over time. A possible way to approach such problems

could be built upon models that allow the ordinal regression relationships at each particular

time point to be estimated in a flexible fashion, combined with a hyper-model for evolving

temporal dynamics. We will report on this modeling extension in a future manuscript.

Supplementary material

The Supplementary Material includes details for the MCMC algorithms (Section S1) and

the prior specification strategy (Section S2), and additional results for the data examples

(Section S3).
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Supplementary Material: Structured
Mixture of Continuation-ratio Logits Models

for Ordinal Regression

S1 MCMC posterior simulation details

The general model

The development of the posterior simulation method for the general model (9) relies heavily

on effectively the same structure for the weights and atoms of the mixture model. The

Pólya-Gamma data augmentation approach are used to update parameters defining both

the weights and atoms, leading to conditionally conjugate update for all parameters. Denote

the Pólya-Gamma distribution with shape parameter b and tilting parameter c by PG(b, c).

Specifically, for each Yi, we introduce two groups of Pólya-Gamma latent variables ξi =

(ξi1, · · · , ξi,L−1) and ζi = (ζi1, · · · , ζi,C−1), where ξiℓ
i.i.d.∼ PG(1, 0) and ζij

ind.∼ PG(mij, 0).

Proceeding to the joint posterior, the contribution from Yi is given by

f(Yi | {βjℓ},Li, ζi) ∝
C−1∏
j=1

exp{ζij
2
(xT

i βjLi
− υij/ζij)

2},

where υij = Yij − mij

2
. Likewise, let ιiℓ = Liℓ − 1

2
, we can write the contribution from Li as

f(Li | {γℓ}, ξi) ∝
L−1∏
ℓ=1

exp{ξiℓ
2
(xT

i γℓ − ιiℓ/ξiℓ)
2}.

These expressions admit closed-form full conditional distributions for {βjℓ} and {γℓ}.

We outline the MCMC sampling algorithm for the full augmented model. This process

can be achieved entirely with Gibbs updates, by iterating the following steps. For notation

simplicity, we let (ϕ | −) denote the posterior full conditional distribution for parameter ϕ.
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Step 1: update parameters in the atoms. In this step, we update two sets of parameters,

{βjℓ : j = 1, · · · , C − 1, ℓ = 1, · · · , L} and {ζij : i = 1, · · · , n, j = 1, · · · , C − 1}.

Denote the set of distinct values of the configuration variables by {L∗
r : r = 1, · · · , n∗}.

Following Polson et al. (2013), it can be done by (βjℓ | −) ∼ N(µ̃jℓ, Σ̃jℓ) and

(ζij | −) ∼ PG(mij,x
T
i βjLi

), whereµ̃jℓ = µj, Σ̃jℓ = Σj if ℓ /∈ {L∗
r : r = 1, · · · , n∗}

µ̃jℓ = Σ̃jℓ(X
T
ℓ υℓ + Σ−1

j µj), Σ̃jℓ = (XT
ℓ ΩℓXℓ + Σ−1

j )−1 if ℓ ∈ {L∗
r : r = 1, · · · , n∗}

.

Here Xℓ is the matrix whose column vectors are given by {xi : Li = ℓ}, Ωℓ is

the diagonal matrix with diagonal elements {ζij : Li = ℓ}, and υℓ is the vector of

{υij : Li = ℓ}. Notice that updating {βjℓ} can be run in parallel across categories

j = 1, · · · , C − 1.

Step 2: update parameters in the weights. Similarly, we update {γℓ : ℓ = 1, · · · , L−

1} and {ξiℓ : i = 1, · · · , n, ℓ = 1, · · · , L− 1} from (γℓ | −) ∼ N(γ̃ℓ, Γ̃ℓ) and (ξiℓ | −) ∼

PG(1,xT
i γℓ), where γ̃ℓ = Γ̃ℓ(X

T
ℓ ιℓ +Γ−1

0 γ0) and Γ̃ℓ = (XT
ℓ ΞℓXℓ +Γ−1

0 )−1. We denote

the diagonal matrix formed by {ξiℓ : Li = ℓ} as Ξℓ, and the vector of{ιiℓ : Li = ℓ} as

ιℓ.

Step 3: update configuration variables. Update Li, for i = 1, · · · , n from

P (Li = ℓ | −) =
piℓ
∏C−1

j=1 Bin(Yij | mij, φ(x
T
i βjℓ))∑L

ℓ=1 piℓ
∏C−1

j=1 Bin(Yij | mij, φ(xT
i βjℓ))

where {piℓ : ℓ = 1, · · · , L} are calculated as pi1 = φ(xT
i γ1), piℓ = φ(xT

i γℓ)
∏ℓ−1

h=1(1 −

φ(xT
i γh)), ℓ = 2, · · · , L− 1, and piL =

∏L−1
ℓ=1 (1− φ(xT

i γℓ)).

Step 4: update hyperparameters. By conjugacy, updating hyperparameters is standard.

We update {µj} and {Σj} by (µj | −) ∼ N(µ∗
j ,Σj/κ

∗
j) and (Σj | −) ∼ IW (ν∗

j , (Λ
∗
j)

−1),

with the parameters given by

µ∗
j =

κ0j

κ0j + n∗µ0j +
n∗

κ0j + n∗ β̄j, κ∗
j = n∗ + κ0j, ν∗

j = n∗ + ν0j β̄j =
1

n∗

n∗∑
r=1

βjL∗
r
,

Λ∗
j = Λ0j + Sj +

n∗κ0j

n∗ + κ0j

(β̄j − µ0j)(β̄j − µ0j)
T , Sj =

n∗∑
r=1

(βjL∗
r
− β̄j)(βjL∗

r
− β̄j)

T .

2



We refer to the above process as the “general process”. From the connection discussed

in Section 3, the Gibbs sampler for the two simpler models are straightforwardly adapted

from the general process.

The common-weights model

In the scenario that a common-weights model is adopted, the mixing weights and the

configuration variables are determined by

Li | ω ∼
L∑

ℓ=1

ωlδℓ(Li), ω | α ∼ f(ω | α), α ∼ Gamma(aα, bα),

where f(ω | α) stands for a special case of the generalized Dirichlet distribution

f(ω | α) = αL−1ωα−1
L (1− ω1)

−1(1− (ω1 + ω2))
−1 · · · (1−

L−2∑
ℓ=1

ωℓ)
−1,

while the atoms are the same as in the general model. Hence, we only need to introduce

the group of Pólya-Gamma latent variables {ζi : i = 1, · · · , n}, which enable the same

conjugate update in sampling atoms related parameters. We keep Step 1 and Step 4 in

the general process, whereas the other two steps are replaced by:

Step 2∗: update parameters in the weights. The parameters to be updated in this

step involve {ωℓ : ℓ = 1, · · · , L− 1} and α. From Ishwaran and James (2001), it can

be done by sample V ∗
ℓ

ind.∼ Beta(1+Mℓ, α+
∑L

h=ℓ+1 Mh) for ℓ = 1, · · · , L−1. Then let

ω1 = V ∗
1 , ωℓ = V ∗

ℓ

∏ℓ−1
h=1(1−V ∗

h ), ℓ = 2, · · · , L−1 and ωL = 1−
∑L−1

ℓ=1 ωℓ. In addition, a

new sample of α is obtained from (α | −) ∼ Gamma(aα+L−1, bα−
∑L−1

ℓ=1 log(1−V ∗
ℓ )).

Step 3∗: update configuration variables. Update Li, i = 1, · · · , n, from

P (Li = ℓ | −) =
ωℓ

∏C−1
j=1 Bin(Yij | mij, φ(x

T
i βjℓ))∑L

ℓ=1 ωℓ

∏C−1
j=1 Bin(Yij | mij, φ(xT

i βjℓ))
.

The common-atoms model

If one choose to fit the common-atoms model, the linear regression terms in the atoms are

simplified by θjℓ with prior θjℓ
ind.∼ N(µj, σ

2
j ), j = 1, · · · , C−1 and ℓ = 1, · · · , L. We replace

Step 1 and Step 4 of the general process with the following alternatives, while the other

steps remain the same.
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Step 1∗: update parameters in the atoms. The two sets of parameters {θjℓ : j =

1, · · · , C − 1, ℓ = 1, · · · , L} and {ζij : i = 1, · · · , n, j = 1, · · · , C − 1} are now

updated by (θjℓ | −) ∼ N(µ̃jℓ, σ̃
2
jℓ) and (ζij | −) ∼ PG(mij, θjLi

), where
µ̃jℓ = µj, σ̃2

jℓ = σ2
j , if ℓ /∈ {L∗

r : r = 1, · · · , n∗}

µ̃jℓ = σ̃2
j (
∑

{i:Li=ℓ}

υij + µj/σ
2
j ), σ̃2

jℓ = σ2
j/(σ

2
j

∑
{i:Li=ℓ}

ζij + 1), if ℓ ∈ {L∗
r : r = 1, · · · , n∗} .

Step 4∗: update hyperparameters. That is, we update {µj : j = 1, · · · , C − 1} and

{σ2
j : j = 1, · · · , C − 1} by (µj | −) ∼ N(µ∗

j , σ
2
j/ν

∗
j ) and (Σj | −) ∼ IW (ν∗

j , (Λ
∗
j)

−1),

where

µ∗
j =

ν0jµ0j + n∗θ̄j
ν0j + n∗ , ν∗

j = n∗ + ν0j, a∗j = aj + n∗/2 θ̄j =
1

n∗

n∗∑
r=1

θjr,

b∗j = bj +
1

2

n∗∑
r=1

(θjr − θ̄j)
2 +

n∗ν0j
n∗ + ν0j

(θ̄j − µ0j)
2

2
.

Finally, for notation consistency, we should also replace the terms xT
i βjℓ with θjℓ in

Step 3, while keeping the same updating mechanism.

S2 Prior specification strategy

The discussion in this section is motivated by applying the proposed model in developmental

toxicity studies. When estimating the probability response curves related to negative

results, one typically expects they are monotonically increasing with respect to dose level.

Without incorporating this information in a prior setting, there is little hope of obtaining

meaningful interpolation and extrapolation results for the dose-response curves (Fronczyk

and Kottas, 2014). We propose a general prior specification strategy that can force the prior

expected regression curves to have specific patterns (especially monotonicity) that reflect

the available information. The strategy relies on the bounds provided in Proposition 1.

As an illustrative example, consider the case when the covariates vector is x = (1, x)T

and the information is available for the first probability response curve. Suppose the prior

hyperparameters are µ01 = (µ01,0, µ01,1)
T and Λ01 = diag(λ01,0, λ01,1). In such a case,
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(a) Monotonically decreasing function. (b) Monotonically increasing function.

Figure S1: Illustration of how the two bounds can be used to set the monotonic pattern of

the prior expected probability response curve.

the prior expected first probability response curve E(Pr(Y = 1 | Gx)) = E(φ(xTβ1)),

where xTβ1 ∼ N(µ01,0 + µ01,1x, (κ01 + 1)/(κ01(ν01 − p− 1))(λ01,0 + λ01,1x
2)). For notation

simplicity, let us denote µs = µ01,s, λs = (κ01 + 1)/(2κ01(ν01 − p − 1))λ01,s, s = 0, 1. Then

from Proposition 1, E(Pr(Y = 1 | Gx)) is bounded by

φ(−λ1x
2 + µ1x+ µ0 − λ0) ≤ E(Pr(Y = 1 | Gx)) ≤ φ(λ1x

2 + µ1x+ µ0 + λ0)

Because the expit function preserves monotonicity, it is helpful to study the relative position

of the two parabolas inside. Indeed, we can choose the prior hyperparameters such that

the two bounds squeeze a small region. The first prior expected probability response curve

pinches through that region, possessing certain monotonicity, illustrated in Figure S1.

Specifically, suppose the prior guess for the first probability response curve is a decreasing

function with respect to x. As shown in Figure S1a, we can put the range of x inside the

two axes of symmetry. In addition, the quantity d = 2λ0+µ2
1/2λ1 determines the maximum

difference of the two bounds. The two vertices determine the prior mean at the minimum

and maximum value of x. To summarize, the parameters µ0, µ1, λ0, λ1 can be specified by
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the equations 

µ1

2λ1

= a1, − µ1

2λ1

= −a1

2λ0 +
µ2
1

2λ1

= a2

µ0 + λ0 −
µ2
1

4λ1

= −a3

µ0 − λ0 +
µ2
1

4λ1

= a4

⇐⇒



µ0 =
a4 − a3

2

µ1 = −a2 + a3 + a4
2a1

λ0 =
a2 − a3 − a4

4

λ1 =
a2 + a3 + a4

4a21

(S1)

with positive numbers a1, a2, a3, a4 choosing based on the prior information. Note that λ0

should be positive, so it imposes the constraint a2 > a3 + a4 on the choice of these four

numbers. Using (S1), we can specific the prior hyperparameters µ01,0, µ01,1, λ01,0, λ01,1. The

same strategy can be extended for the monotonic increasing case.

To specify µ0j and Λ0j for j > 1, we can sequentially implement this strategy. Furthermore,

if the dimension of covariates p > 2, it becomes more difficult to specify hyperparameters,

but the same strategy can be applied by considering each covariate xs, s = 1, · · · , p

marginally while fixing xs′ , s
′ ̸= s.

We specify the prior hyperparameters of the illustrative example in Section 2.3 by the

proposed strategy. Suppose the prior information we want to incorporate is Pr(Y = 1 | x)

decreasing from 1 to 0 while Pr(Y = 2 | x) increasing from 0 to 1 in the region (−10, 10).

For the first decreasing probability curve, we set a1 = a2 = 10, a3 = 6, a4 = 2 to specify µ01

and Λ01. As for the second probability curve, since E(Pr(Y = 2 | Gx)) = [1 − E(Pr(Y =

1 | Gx))]E[φ(xTβ2)] and utilizing the specified monotonicity for E(Pr(Y = 1 | Gx))),

sequentially we focus on E[φ(xTβ2)]. To force a increasing trend, we further choose µ02

and Λ02 by applying the strategy for the increasing case with same setting on a1 to a4.

After simple algebra we obtain prior hyperaprameters choice

µ01 = (−2,−0.9)T , µ02 = (−2, 0.9)T , Λ01 = Λ02 =

0.8 0

0 0.072


This set of prior hyperparameters lead to Figure 2.
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S3 Additional results for data examples

S3.1 Synthetic data examples

First experiment

We perform a formal model comparison using the posterior predictive loss criterion (Gelfand

and Ghosh, 1998). The criterion contains a goodness-of-fit term and a penalty term. Since

the response variable Y is multivariate, we consider posterior predictive loss for every

entry of it. Specifically, let Y∗
i denote the replicate response drawn from the posterior

predictive distribution. Then, the goodness-of-fit term is defined as Gj(M) =
∑n

i=1[Yij −

EM(Y∗
ij|data)]2, whereas the penalty term is defined as Pj(M) =

∑n
i=1 VarM(Y∗

ij|data),

for j = 1, · · · , C. After fitting the three proposed models, we calculate posterior predictive

loss with its two components. The results are summarized in Table S1. We also plot the

posterior mean of the three largest weights and the corresponding atoms φ(θ1) and φ(θ2)

in Figure S2. Combining with the posterior predictive loss criterion for each model, we can

diagnose how the three models estimate the probability response curves. For similarities, it

appears that all three models are dominated by the mixing component with the largest

weight, whose shape is similar to the truth. (The common-weights model favors two

mixing components, but the two components are close to each other.) For differences, the

common-atoms model can only adjust the shape of regression lines through the mixing

weights. It uses more effective mixing components with shapes differing dramatically,

yielding larger goodness-of-fit and penalty terms. The general model is more effective in

capturing the actual shape. It uses fewer and similar effective mixing components, leading

to smaller penalty terms. In addition, the covariate effect is partly explained by the weights,

causing slight bias compared to the common-weights model.

Under the first experiment setting, the true probability response curves are known and

have specific monotonic patterns. It would be interesting to see the models’ behavior if

we specify the prior hyperparameters with more caution, such that the prior point and

interval estimates of the probability response curves possess the true monotonicity. That

is, we use the prior information that Pr(Y = 1|x) decreasing from 1 to 0 and Pr(Y = 3|x)
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Table S1: First simulation example. Summary of model comparison using the posterior

predictive loss criterion.

Model G1(M) P1(M) G2(M) P2(M) G3(M) P3(M)

Common-weights 6.94 7.94 12.95 13.59 8.41 9.00

Common-atoms 7.35 9.73 13.76 15.43 8.73 11.99

General 7.26 7.38 12.94 12.78 8.51 8.84

(a) Common-weigths model.

(b) Common-atoms model.

(c) General model.

Figure S2: First simulation example. Posterior mean estimates of the three largest mixing

weights and atoms in estimating the probability response curves. The red circle, blue plus

and green triangle correspond to the first to the third largest weights, respective.

increase from 0 to 1 in the region (−10, 10) to specify a more informative prior. Using

the aforementioned prior specification strategy, the prior hyperparameters we use for the
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general model is

µ0j = (−2,−0.9)T , Λ0j =

0.8 0

0 0.072

 , j = 1, 2

and we set γ0 = (−2.5, 0) and Γ0 = diag(10, 1) to favor a priori enough number of distinct

components while keep the truncated model closely enough to the countable mixture model.

The prior hyperparameters of the other two simplified models are specified accordingly.

This set of prior hyperparameters leads to the posterior inference shown in Figure 5.

Second experiment

To illustrate the benefits of incorporating local, covariate-dependent weights in the nonparametric

mixture model, we conduct the second experiment. The prior hyperparameters are specified

deliberately, yielding fairly noninformative prior such that the three nonparametric models

provide similar prior point and interval estimates of the probability response curves. As

a consequence, the disparity in posterior estimates should be led by the difference in the

mixing structure. More specifically, we set the LSBP prior hyperparameters (γ0,Γ0) to

favor a priori enough mixture components over the covariate space. The hyperparameters

(aα, bα) in the common-weights model are set accordingly to favor a comparable number of

mixing components. In addition, the hyperparameters corresponding to the atoms are set

as the baseline choice. Figure S3 displays the prior point and interval estimates under the

proposed models. The three subfigures display the same pattern: the prior mean estimate

are flat, and the prior 95% interval estimates span a substantial portion of the unit interval.

Under the displayed prior, the posterior estimates are shown in Figure 6. The models

with covariate-dependent weights learn the true probability regression function pattern

from the data. In contrast, the common-weights model struggles when the regression curves

behave locally atypical. Examining the results allows us to conclude that covariate-dependent

weights are practically helpful in inferring the covariate-response relationship.

To further investigate how the proposed models behave in capturing non-standard

probability response curves, we conduct a model comparison using the aforementioned

posterior predictive loss criterion, with the result summarized in Table S2. Clearly, the
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(a) Common-weights model.

(b) Common-atoms model.

(c) General model.

Figure S3: Second simulation example. In each panel, the red solid line corresponds to the

prior expected probability response curve, the blue dashed lines and shaded region indicate

the prior 95% interval estimate.

two models with covariate-dependent weights outperform the common-weights model. The

common-atoms model and the general model are comparable in terms of goodness of fit.

Nonetheless, the common-atoms model activates more effectively components to compensate

for the constant atoms in curve fitting, resulting in a larger penalty.

S3.2 Credit ratings of U.S. firms

We first compare the posterior point estimates of the first-order marginal probability curves

πj(xs), j = 1, · · · , 5 and s = 1, · · · , 5, obtained by the proposed nonparametric models and

their parametric backbone. The results are shown in Figure S5. The continuation-ratio

10



Table S2: Second simulation example. Summary of model comparison using the posterior

predictive loss criterion.

Model G1(M) P1(M) G2(M) P2(M) G3(M) P3(M)

Common-weights 132.59 141.27 72.76 83.54 136.40 141.91

Common-atoms 90.52 103.84 65.79 82.25 89.45 107.64

General 89.96 96.25 64.14 72.56 88.24 94.39

logits regression model contains fewer parameters than the nonparametric models, leading

to reduced flexibility. As shown in Figure S5a, the estimated curves have a standard shape.

In contrast, the flexible nature of the nonparametric models enables complicated regression

relationships to be extracted from the data. To discuss the difference in the estimated

regression trends regarding a certain covariate, consider the standardized log-sales variable

as an example. For low to moderate log-sales values, the probability of the lowest rating

level decreases at about the same rate under the continuation-ratio logits model, while the

decreasing rate varies under the three nonparametric models. The latter pattern is more

plausible.

A formal model comparison based on the posterior predictive loss criterion (definition

provided in Section S3.1) is presented in Table S3. The common-weights model and the

general model yield comparable results, while both models outperform the parametric

model in predicting the probability of the first four credit levels. As for credit level 5, the

three models are comparable regarding the goodness-of-fit criterion, while the nonparametric

models yield larger penalty terms. We notice that there are substantially fewer firms with

credit level 5, which may be the reason the nonparametric models provide larger penalty.

11



Table S3: Credit ratings data. Summary of the posterior predictive loss criteria for model

comparison. Each pair of numbers corresponds to (Gj(M), Pj(M)), j = 1, · · · , 5. The

term “parametric” refers to the continuation-ratio logits model.

Parametric Common-weights Common-atoms General

Credit level 1 (92.65, 90.17) (88.07, 92.38) (92.64, 104.97) (86.61, 95.79)

Credit level 2 (158.71, 158.72) (153.13, 158.92) (156.04, 163.96) (153.10, 158.07)

Credit level 3 (150.18, 150.82) (145.40, 150.38) (149.00, 152.03) (148.11, 148.60)

Credit level 4 (95.95, 96.29) (95.08, 97.23) (97.41, 100.10) (94.20, 94.24)

Credit level 5 (17.80, 17.46) (17.85, 20.57) (21.19, 31.04) (17.74, 20.47)

Figure S4: Credit ratings data. Posterior distributions for the number of distinct

components. The purple dashed line indicates the posterior mean. The panels correspond

to, from left to right, the common-weights model, the common-atoms model, and the

general model, respectively.

We also notice the significantly larger penalty terms for the common-atoms model.

This is to be expected, since the shape of the regression curves are only allowed to be

adjusted through the mixing weights under the common-atoms model. Therefore, to

provide regression curve estimates as in Figure S5c, it should activate more mixing components.

Figure S4 shows the posterior distribution for the number of distinct components under

the three nonparametric models. It demonstrates that the common-atoms model suffers

from overfitting in this specific example, leading to the larger penalty terms.

Furthermore, it is also of interest to investigate the model performance on prediction.
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(a) The continuation-ratio logits regression model.

(b) The common-weights model.

(c) The common-atoms model.

(d) The general model.

Figure S5: Credit ratings data. Posterior mean of πj(xs), for s = 1, · · · , 5 and j = 1, · · · , 5.

All five ordinal response curves are displayed in a single panel for each covariate.
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The credit rating of firms can be partitioned into two categories: investment grade (rating

score is 3 or higher) and speculative grade. Because many bond portfolio managers are not

allowed to invest in speculative grade bonds, firms with a speculative rating incur significant

costs. It is helpful to check the models’ implied posterior probability of obtaining an

investment grade for a particular firm. We consider five prediction scenarios corresponding

to the five covariates. In each scenario, we evaluate the change in the investment grade

probability associated with one of the covariates changing from the 25th to the 75th

percentile of the observed values, while holding all the other covariates at the average

value of all observations. Figure S6 displays the posterior distribution of the probability of

obtaining investment grade under the common-weights model.

Under the common-weights model, the probability moves along the expected direction

concerning all covariates, except for the working capital, which coincides with the discovery

in Verbeek (2008). The results indicate higher leverage, meaning that a firm is financed

relatively more with debt, which reduces the expected credit rating. It is due to that

firms with high leverage face substantially higher debt financing costs. In addition, the

larger firms, indicated by larger log-sales, have significantly better credit ratings than

smaller firms, ceteris paribus. Higher earnings before interest and taxes and higher retained

earnings also improve credit ratings. Furthermore, one would expect that maintaining a

high level of working capital would enhance a company’s credit rating since it reduces

risk. However, a high level of working capital reduces profits, raising concern about

the company’s ability to cover interest payments. This argument suggests a concave

relationship between working capital and credit rating, postulating that firms could have

an optimal working capital ratio. Our result indicates that the optimal ratio lies between

the first and third quartiles.

S3.3 Developmental toxicology data example

We notice that, to ensure monotonicity of the prior expected dose-response curve, as pointed

out by Fronczyk and Kottas (2014), we can restrict the support of βj1, for j = 1, 2, to be

[0,∞), using, for example, an exponential prior. However, that choice breaks the conjugacy
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Figure S6: Credit ratings data. Posterior distributions of the probability of obtaining

investment grade rating under the common-weights model. The red solid lines indicate the

posterior mean.
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(a) Common-weights model.

(b) General model.

Figure S7: DYME data. In each panel, the red solid line corresponds to the prior expected

probability response curve, the blue dashed lines and shaded region indicate the prior 95%

interval estimate, and the green dotted lines show 5 prior realizations.

in posterior full conditional distributions, complicating the posterior simulation procedure.

We instead follow the procedure in Section S2 to choose the prior hyperparameters such

that the non-decreasing trend is present in the prior expected dose-response curves. Indeed,

the trend is strongly favored in individual priors realizations for the dose-response curves.

This is a useful compromise, since it effectively achieves the practical goal of the monotonic

trend, and at the same time, it retains the efficient posterior simulation method discussed

in the paper. Figure S7 displays the prior expectation and interval estimates for the

various dose-response curves under the specified prior hyperparameters, together with 5

prior realizations.

We consider model comparison based on the posterior predictive loss criterion applied

to each of the endpoints. Let d = 1, · · · , ni index the dams at observed dose level xi, for

i = 1, · · · , N . At each iteration, we draw one set of posterior predictive sample at each

observed dose level, denoted as m∗
i , R∗

i and y∗i . This is because the responses from the ni

dams at the ith dose level share the same covariate xi. For each endpoint, the criterion

favors the model M that minimizes both a goodness-of-fit term G(M), and a penalty
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Table S4: Values for the two terms of the posterior predictive loss criterion for each endpoint.

The bold values are for the general model while the numbers inside the bracket are for the

common-weights model.

Endpoint G(M) P (M)

Embryolethality 2.140 (2.185) 2.015 (2.258)

Malformation 1.720 (1.714) 1.626 (2.325)

Combined risk 1.946 (1.955) 1.412 (1.969)

Figure S8: DYME data. Posterior point and interval estimate of the dose-response curves

under the common-weights model. The red dashed line denotes the posterior mean while the

blue dotted line and shaded region represent the posterior 95% credible interval estimate.

term for model complexity P (M). Specifically, for the embryolethality endpoint, we define

G(M) =
∑N

i=1

∑ni

d=1{Rid/mid − E(R∗
i /m

∗
i | data)}2, and the penalty term is defined as

P (M) =
∑N

i=1 niVar(R∗
i /m

∗
i | data). These two terms are defined analogously for the

other two endpoints, based on posterior predictive samples y∗i /(m∗
i −R∗

i ) and (R∗
i +y∗i )/m

∗
i .

The results, reported in Table S4, favor the general model.

The posterior estimates of the dose-response curves under the common-weights model

and the general model are shown in Figure S8 and Figure 11 (in the main manuscript),

respectively. Contrasting with the prior estimate presented in Figure S7, there is substantial

learning for the proposed models as the posterior estimate is significantly concentrated

relative to the corresponding prior estimate.

We also study the probability mass functions under the common-weights and general

models. Figure S9 displays estimates for the probability mass functions corresponding to

the number of non-viable fetuses given a specific number of implants. Similar to the Figure
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(a) The common-weights model.

(b) The general model.

Figure S9: DYME data. Posterior mean (“o”) and 95% uncertainty bands (dotted lines)

for the probability mass function associated with the number of non-viable fetuses given

m = 12 implants, p(R | m = 12, Gx), under two models. Results are shown for the five

observed toxin levels and for the new value of x = 0.375 g/kg.
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Figure S10: DYME data. Posterior mean (“o”) and 95% uncertainty bands (dotted lines)

for the conditional probability mass function associated with the number of malformations

given m = 12 implants and R = 2 non-viable fetuses, p(y | m = 12, R = 2, Gx), under the

common-weights model. Results are shown for the five observed toxin levels and for the

new value of x = 0.375 g/kg.

12 in the main manuscript, Figure S10 displays estimates for the conditional probability

mass functions of the number of malformations given a specified number of implants

and the associated number of non-viable fetuses under the common-weights model. The

common-weights model and the general model provide comparable results. These results

demonstrate that the proposed models can effectively estimate response distributions with

different shapes across different toxin levels.

For the the general model, we perform model checking by cross-validation. We use one

randomly chosen sample comprising data from 20 dams (approximately 20% of the data)

spread roughly evenly across the dose levels as the test set. After fitting the general model

to the reduced DYME data, we obtain for each observed toxin level posterior predictive

samples for R∗/m∗, y∗/(m∗ −R∗) and (R∗ + y∗)/m∗. Figure S11, which displays box plots

of these samples along with the corresponding values from the cross-validation data points,

does not show evidence of ill-fitting.
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Figure S11: Box plots of posterior predictive samples for the embryolethality (left panel),

malformation (middle panel), and combined risk (right panel) endpoint at the observed

toxin levels. The corresponding values from the 20 cross-validation data points are denoted

by "o".
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