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Figure 1: Scene Graph Embedding Representation.

Scene graph embeddings are used in applications such
as image retrieval, image generation and image captioning.
Many of the models for these tasks are trained on large
datasets such as Visual Genome [1], but the collection
of these human-annotated datasets is costly and onerous
[2]. We seek to improve scene graph embedding repre-
sentation learning by leveraging the already available data
(e.g. the scene graphs themselves) with the addition of
self-supervision. In self-supervised learning, models are
trained for pretext tasks which do not depend on manual
labels and use the existing available data. However, it is
largely unexplored in the area of image scene graphs. In this work, starting from a baseline scene graph embedding
model trained on the pretext task of layout prediction, we propose several additional self-supervised pretext tasks. The
impact of these additions is evaluated on a downstream retrieval task that was originally associated with the baseline
model [3]. Experimentally, we demonstrate that the addition of each task individually and cumulatively improves on the
retrieval performance of the baseline model, resulting in near saturation when all are combined.

A scene graph is a structured data format which encodes semantic and geometric relationships between objects. It
contains a set of visual relationships containing a <subject, predicate, object> (”man walks dog”), where nodes repre-
senting objects identify the class of an object as well as provide a bounding box for the location of that object in an image.
Edges representing relationships connect nodes. We use the human-annotated scene graphs from the Visual Genome (VG)
dataset [1].

Model R@1 R@25 R@50 R@100
Baseline [3] 0.18 0.42 0.49 0.76
Semb,Oemb,Sbox,Obox→Pclass 0.19 0.43 0.51 0.80
Semb,Pemb,Sbox,Pbox→Oclass 0.25 0.55 0.64 0.89
Pemb,Oemb,Pbox,Obox→Sclass 0.31 0.72 0.82 1.0
Oemb→Oclass 0.29 0.66 0.76 0.99
masked SG→Pclass 0.21 0.43 0.52 0.86
Predicate SCL 0.24 0.54 0.63 0.91
Object SCL 0.26 0.59 0.69 0.94
All above combined 0.46 0.86 0.94 1.00
Token match (ideal) 0.47 0.86 0.94 1.00
Random 0.00 0.00 0.01 0.06

Table 1: Retrieval Evaluation Results.

Following earlier work [3] (the baseline), we
trained a graph convolutional neural network (GCN)
(see Fig.1) on the pretext task of layout (bounding
box) prediction. In our approach (similar to [4]), we
add new auxiliary heads and self-supervised train-
ing losses to this otherwise unmodified backbone
architecture (see Fig. 1 “new tasks”) . For example,
in Table 1, Se,Pe,Sbox,Pbox →Oclass is the loss as-
sociated a pretext task that uses the embedding and
bounding box parameters for each relationship’s
subject and predicate to predict the class of relation-
ship’s object. Oemb → Oclass is a loss associated
with the pretext task of predicting all classes of ob-
ject nodes in a scene graph. masked SG→Pclass is
a loss which replaces the randomly selected 50% of
a scene graph’s predicate classes with a MASK token value and predicts withheld class label as a pretext task. Finally,
supervised contrastive loss (Predicate SCL and Object SCL) [5] is applied to the predicate and object embeddings
respectively (similar to the “encoded” representation of images traditionally used with SCL) to improve their learned
representation.

Our experiments evaluate the impact of the proposed new pretext tasks on a downstream visual relationship retrieval
task. Queries, using visual relationships from the scene graphs of the form <subject, predicate, object>, are used
to form an embedding vector (from the output embedding vectors in Fig. 1). A database of documents (in this case,
images), where each contains a similar embedding-based visual relationship, is queried. Results are ranked by their L2
distance to the query vector. For the purposes of evaluating relevance, we say that a query triple matches a candidate
document triple if it has an exactly matching subject, predicate, and object. Summarizing retrieval performance using
the Recall@k metric, Table 1 shows that each addition independently improves over the baseline, in some cases quite
significantly, while their combination approaches ideal performance on this task (perfect matching of all documents and
queries).
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