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Abstract

We develop a class of nearest neighbor mixture transition distribution process
(NNMP) models that provides flexibility and scalability for non-Gaussian geosta-
tistical data. We use a directed acyclic graph to define a proper spatial process
with finite-dimensional distributions given by finite mixtures. We develop conditions
to construct general NNMP models with pre-specified stationary marginal distribu-
tions. We also establish lower bounds for the strength of the tail dependence implied
by NNMP models, demonstrating the flexibility of the proposed methodology for
modeling multivariate dependence through bivariate distribution specification. To
implement inference and prediction, we formulate a Bayesian hierarchical model for
the data, using the NNMP prior model for the spatial random effects process. From
an inferential point of view, the NNMP model lays out a new computational approach
to handling large spatial data sets, leveraging the mixture model structure to avoid
computational issues that arise from large matrix operations. We illustrate the ben-
efits of the NNMP modeling framework using synthetic data examples and through
analysis of sea surface temperature data from the Mediterranean sea.

Keywords: Bayesian hierarchical models; Copulas; Mixture transition distribution; Station-
ary marginal distributions; Tail dependence

1



1 Introduction

Gaussian processes have been widely used as an underlying structure in the model-based

analysis of irregularly located spatial data in order to capture short range variability. The

fruitfulness of these spatial models owes to the simple characterization of the Gaussian

process by a mean and a covariance function, and the optimal prediction it provides that

justifies kriging. However, the assumption of Gaussianity is unrealistic in many fields where

the data exhibits non-Gaussian features such as heavy tails or skewness. Moreover, it is not

clear that approaches for scalable models, such as low-rank models and sparsity-inducing

models, are extendable when it comes to non-Gaussian data. Accordingly, this article aims

at developing a class of geostatistical models that is scalable and customizable to general

non-Gaussian nature, with particular focus on continuous data.

Gaussian process-based approaches for modeling continuous, non-Gaussian geostatisti-

cal datasets proceed by either representing skewed or long-tailed distributions as location-

scale mixtures of Gaussian distributions, or by applying a transformation to a Gaussian

process. In the former approach, it is possible to mix over location parameters to capture

skewness (Kim and Mallick, 2004; Zhang and El-Shaarawi, 2010; Mahmoudian, 2017) or

over scale parameters to capture heavy tails (Palacios and Steel, 2006; Sun et al., 2015).

Morris et al. (2017) and Bevilacqua et al. (2020) provide examples of using both types of

mixing. Although these models can accommodate skewness and non-standard tail behav-

ior, modeling through mixtures of Gaussian distributions leads to the same computational

issues faced by Gaussian process models.

The approach based on transforming a Gaussian process is usually applied to positive

continuous data. A popular family of the so-called trans-Gaussian processes is obtained

from the Box-Cox family of non-linear transformations (De Oliveira et al., 1997; Allcroft

and Glasbey, 2003). Alternatively, Xu and Genton (2017) consider a different family of

transformation, the Tukey g-and-h transformation. After transformation, standard Gaus-

sian process statistical analysis can be carried out on the transformed data. However, given

a transformation, it is possible that properties of the Gaussian process are not preserved

for the transformed process. For example, the square-root transformation induces a non-
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stationary covariance function, even though the covariance function associated with the

original Gaussian process is stationary (Wallin and Bolin, 2015).

An alternative to Gaussian process-based approaches is to apply a copula for the joint

distribution of the underlying spatial process. A copula (Joe, 2014) is used to characterize

the dependence structure between random variables, separately from the specification of

marginal distributions, so it has been used to describe non-Gaussian spatial variability with

general non-Gaussian marginals; see, e.g., Bárdossy (2006), Ghosh and Mallick (2011),

Beck et al. (2020). However, copulas need to be used with careful consideration of their

properties in a spatial setting. For example, it is common to assume that spatial processes

exhibit stronger dependence at smaller distances. Thus, copulas such as the multivariate

Archimedean copula that induce an exchangeable dependence structure are inappropriate.

Moreover, it is difficult to strike a good balance between the flexibility provided by a copula

and the computational demand required to fit it; see, e.g., Gräler (2014).

Bayesian nonparametric methods have also been explored for geostatistical modeling,

starting with the approach in Gelfand et al. (2005) which extends the Dirichlet process

(DP) (Ferguson, 1973) to a prior model for random spatial surfaces. We refer to Müller

et al. (2018) for a review. Bayesian nonparametric methods are appealing for their large

prior support on the finite-dimensional distributions of the spatial process. However, such

models typically require replication at the observed spatial locations for effective inference,

and they are computationally prohibitive for large data sets.

The modeling framework proposed in this article is distinctly different from the afore-

mentioned approaches, as it builds on the class of nearest neighbor processes. Nearest

neighbor processes are spatial processes obtained by extending a joint density over a refer-

ence set to the entire domain, based on a sparse directed acyclic graph (DAG). The joint

density is derived from a stochastic process, referred to as the parent process. A Gaus-

sian parent process results in the nearest neighbor Gaussian process (NNGP; Datta et al.

2016a) that has received substantial attention in the recent literature; see, e.g., Datta et al.

(2016b), Finley et al. (2019), and Peruzzi et al. (2020), Katzfuss and Guinness (2021).

By construction, the NNGP introduces sparsity in the precision matrix, and thus delivers
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computational scalability for large spatial data sets.

In this article, we propose a novel family of nearest neighbor processes using a mixture

transition distribution (MTD) model (Le et al., 1996; Zheng et al., 2020) for the parent pro-

cess. The parent MTD process is based on a weighted combination of first-order spatially

varying conditional densities, each of which depends on a specific neighbor. Such local de-

pendence, together with location-dependent mixture weights, provide flexible descriptions

of the spatial variability. We refer to the resulting process as the nearest neighbor mixture

transition distribution process (NNMP). The mixture structure of the parent MTD process

gives rise to mixtures for the NNMP finite-dimensional distributions, as well as the con-

venience of building the multivariate dependence specification through a set of bivariate

distributions that define the first-order conditional densities of the parent MTD process.

Utilizing this model property, we study the tail dependence and provide results that can

guide modeling choices. In addition, extending the temporal MTD framework in Zheng

et al. (2020), we develop a sufficient condition to construct NNMPs with general station-

ary marginal distributions. In essence, the NNMP framework provides a flexible class of

models for spatial data that is able to accommodate wide families of marginal distribu-

tions, complex spatial dependence, and a variety of tail behaviors, coupled with a scalable

computational approach leveraged from the mixture structure of the model.

The rest of the article is organized as follows. In Section 2, we formulate the NNMP

using the parent MTD process, present the constructive framework for stationary NNMPs,

and study the model’s tail dependence properties. Specific examples of NNMP models

illustrate different components of the methodology. Section 3 introduces the use of the

NNMP as a prior for spatial processes in a Bayesian hierarchical regression setting, and

discusses the approach to inference and prediction. In Sections 4 and 5, we illustrate

different classes of NNMP-based spatial models with synthetic data examples and with

analysis of Mediterranean sea surface temperature data, respectively. Finally, Section 6

concludes with a summary and discussion of future work.
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2 Nearest neighbor MTD processes for spatial data

2.1 Modeling framework

Consider a univariate spatial process {Z(v) : v ∈ D}, where D ⊂ Rp, for p ≥ 1. Let

S = {s1, . . . , sn} be a finite collection of locations in D, referred to as the reference set.

We write the joint density of the random vector zS = (Z(s1), . . . , Z(sn))> as

p(zS) = p(z(s1))
n∏
i=2

p(z(si) | z(si−1), . . . , z(s1)). (1)

If we regard the conditioning set of z(si) as the set of parents of z(si), the joint density

p(zS) in (1) is a factorization according to a DAG whose vertices are z(si). We obtain

a sparse DAG by reducing the conditioning set of z(si) to a smaller subset, denoted as

zNe(si), with Ne(si) ⊂ S i = {s1, . . . , si−1}. We refer to Ne(si) as the neighbor set for si,

having at most L elements with L� n. The resulting density for the sparse DAG is

p̃(zS) = p(z(s1))
n∏
i=2

p(z(si) | zNe(si)), (2)

which has been verified as a proper density (Lauritzen, 1996).

Choosing the neighbor sets Ne(si) creates different sparse DAGs. There are different

ways to select members from S i for Ne(si); see, for example, Vecchia (1988), Stein et al.

(2004), and Gramacy and Apley (2015). Our selection is based on the geostatistical distance

between si and sj ∈ S i. The selected locations sj are placed in ascending order according

to the distance, denoted as s(i1), . . . , s(i,iL), where iL := (i − 1) ∧ L. We note that the

development of the proposed framework holds true for any choice of the neighbor sets.

The crucial step of constructing the process model is the specification of a stochastic

process over the reference set S. This process characterizes p̃(zS), so it is appealing to

consider processes that have a Markov property, as it naturally connects to the conditional

densities in (2). To this end, we consider a MTD process such that the conditional density

5



for location si ∈ S in (2) is

p(z(si) | zNe(si)) =

iL∑
l=1

wl(si) fsi,l(z(si) | z(s(il))), (3)

where fsi,l is the lth component conditional density of the mixture density p for si ∈ S,

and the weights are subject to
∑iL

l=1wl(si) = 1, wl(si) ≥ 0 for every si ∈ S and for all l.

Spatial dependence characterized by (3) is twofold. First, each component fsi,l of the

density p(z(si) | zNe(si)) is associated with spatially varying parameters indexed at si ∈ S,

defined by a probability model or a link function. Secondly, the weights wl(si) are spatially

varying. As each component density fsi,l depends on a specific neighbor, the weights

indicate the contribution of each neighbor of si. Besides, the weights adapt to the change

of locations. For two different si, sj in S, the relative locations of the nearest neighbors

Ne(si) to si are different from that of Ne(sj) to sj. If all elements of Ne(si) are very close

to si, then values of (w1(si), . . . , wiL(si))
> should be quite even. On the other hand, if, for

sj, only a subset of its neighbors in Ne(sj) are close to sj, then the weights corresponding

to this subset should receive larger values. We remark that in general, probability models

or link functions for the spatially varying parameters should be considered case by case,

given different specifications on the components fsi,l. Details of the construction for the

component densities and the weights are deferred to later sections.

To obtain a properly defined spatial process in D, we extend (3) to an arbitrary set of

non-reference locations U = {u1, . . . ,ur} where U ⊂ D \ S. In particular, we define the

conditional density of zU given zS as

p̃(zU | zS) =
r∏
i=1

p(z(ui) | zNe(ui)) =
r∏
i=1

L∑
l=1

wl(ui) fui,l(z(ui) | z(u(il))), (4)

where the specification on wl(ui) and fui,l for all i and all l is analogous to that for (3),

except that Ne(ui) = {u(i1), . . . ,u(iL)} are the first L locations in S that are closest to ui

in terms of geostatistical distance. Building the construction of the neighbor sets Ne(ui)

on the reference set ensures that p̃(zU | zS) is a proper density.

Given (3) and (4), we can obtain the joint density p̃(zV) of a realization zV over any
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finite set of locations V ⊂ D. When V ⊂ S, the joint density p̃(zV) is directly available as

the appropriate marginal of p̃(zS). Otherwise, we have that

p̃(zV) =

∫
p̃(zU | zS)p̃(zS)

∏
{si∈S \V}

dz(si), (5)

where U = V \S. If S \V is empty, p̃(zV) is simply p̃(zU | zS)p̃(zS).

The resulting spatial process defined using (3) and (4) is a legitimate process over the

entire domain D. This result is a direct application of the nearest neighbor process (Datta

et al., 2016a), which is constructed from specifying a parent process that defines p̃(zS) in

(2) over S based on a DAG, and then extending the parent process to arbitrary finite set

U ⊂ D\S. We call the proposed model the nearest neighbor MTD process (NNMP), derived

from a parent MTD process. In the subsequent development of the model properties, we

will use the associated conditional density

p(z(v) | zNe(v)) =
L∑
l=1

wl(v) fv,l(z(v) | z(v(l))), v ∈ D, (6)

to characterize an NNMP, where Ne(v) contains the first L locations that are closest to

v, selected from locations in S. These locations in Ne(v) are placed in ascending order

according to distance, denoted as v(1), . . . ,v(L).

In general, the joint density p̃(zV) of an NNMP is intractable. However, from (5)

where both p̃(zU | zS) and p̃(zS) are products of mixtures, we can recognize that p̃(zV) is

a finite mixture, which suggests flexibility of the model to capture complex non-Gaussian

dependence over the domain D. Moreover, we show in Section 2.3 that for some NNMP

models, the joint density p̃(zV) has a closed-form expression.

Before closing this section, we would like to point out that spatial locations are not

naturally ordered. Given a distance function, a different topological ordering on the loca-

tions si results in different neighbor sets Ne(si). Therefore, a different sparse DAG with

density p̃(zS) is created accordingly for model inference. For the NNMP models illustrated

in the data examples, we found by simulation experiments that there were no discernible

differences between the inferences based on p̃(zS), given two different orderings. This ob-
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servation is coherent with that from the NNGP models and other literature that considers

nearest-neighbor likelihood approximations. Since the approximation of p̃(zS) to p(zS) de-

pends on the information borrowed from the neighbors, as outlined in Datta et al. (2016a),

the effectiveness is determined by the size of Ne(si) rather than the ordering.

2.2 NNMPs with stationary marginal distributions

In this section, we develop a sufficient condition to construct NNMPs with general sta-

tionary marginal distributions. The result is given in the following proposition, the proof

of which can be found in the Supplementary Material. The key feature of this result is

that the condition relies on the distributional assumption for the bivariate distributions

that define the MTD component conditional densities in (3) and (4), without the need to

impose restrictions on the parameter space.

Proposition 1. Consider an NNMP characterized by (6) for which the component density

fv,l corresponds to a bivariate distribution of a random vector (Uv,l, Vv,l) with marginal

densities fUv,l
and fVv,l, for l = 1, . . . , L. The NNMP has a stationary marginal density

fZ if it satisfies the invariant condition: Z(s1) ∼ fZ, s1 ∈ S, and for every v ∈ D,

fZ(z) = fUv,l
(z) = fVv,l(z) for all z and for all l.

This result builds from the one in Zheng et al. (2020) where temporal MTD processes

with stationary marginal distributions were constructed. It applies regardless of Z(v) being

a continuous, discrete or mixed random variable, thus allowing for a wide range of marginal

distributions and a general functional form, either linear or non-linear, for the expectation

with respect to the conditional density p in (3) and (4).

As previously discussed, the mixture formulation of the parent MTD process induces

a finite mixture for the finite-dimensional distribution of the NNMP. On the other hand,

due to the mixture form, an explicit expression for the covariance is difficult to derive. A

recursive equation can be obtained for a class of NNMP models for which the conditional

expectation with respect to (Uv,l, Vv,l) is linear, i.e., E(Uv,l |Vv,l = z) = al(v) + bl(v) z for

some al(v), bl(v) ∈ R, l = 1, . . . , L, and for all v ∈ D. Suppose the NNMP has a stationary
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marginal distribution with finite first and second moments. Without loss of generality, we

assume the first moment is zero. Then the covariance over any two locations v1,v2 ∈ D is

Cov(Z(v1), Z(v2))

=



∑L
l=1wl(si) bl(si)E(Z(sj)Z(s(il))), v1 ≡ si ∈ S,v2 ≡ sj ∈ S,∑L
l=1wl(v1) bl(v1)E(Z(sj)Z(v(1l))), v1 /∈ S,v2 ≡ sj ∈ S,∑L
l=1

∑L
l′=1wll′ {all′ + bll′E(Z(v(1l))Z(v(2l′)))}, v1,v2 /∈ S,

(7)

where wll′ ≡ wl(v1)wl′(v2), all′ ≡ al(v1)al′(v2), bll′ ≡ bl(v1)bl′(v2), and without loss of

generality, we assume i > j. The covariance in (7) implies that, even though the process

has a stationary marginal distribution, the NNMP is second-order non-stationary.

2.3 Construction of NNMP models

To balance model flexibility and scalability, we build the sequence of bivariate distributions

indexed at v, namely, (Uv,l, Vv,l), from a random vector (Ul, Vl), by modifying some of its

parameters to be spatially varying, i.e., indexed at v, through a probability model or a

link function, for l = 1, . . . , L. We refer to the random vectors (Ul, Vl) as the set of base

random vectors. With a careful choice of the probability model or link function for the

spatially varying parameter, this construction method reduces significantly the dimension

of the parameter space, while preserving the capability of the model to capture spatial

dependence. This is best illustrated through an example.

Example 1. Gaussian and continuous mixture of Gaussian NNMP models.

Take the set of (Ul, Vl) to be bivariate Gaussian random vectors, with mean (µl, µl)
> and

covariance matrix Σl = σ2
l

(
1 ρl
ρl 1

)
, resulting in a Gaussian conditional density fUl|Vl(ul | vl) =

N(ul | (1 − ρl)µl + ρlvl, σ
2
l (1 − ρ2l )), for l = 1, . . . , L. Using a correlation function kl for ρl

such that ρl(v) = kl(v,v(l)), we obtain the spatially varying conditional density,

p(z(v) | zNe(v)) =
L∑
l=1

wl(v)N(z(v) | (1− ρl(v))µl + ρl(v)z(v(l)), σ
2
l (1− ρl(v)2)). (8)
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This NNMP is referred to as the Gaussian NNMP (GNNMP). If we take Z(s1) ∼ fZ =

N(z |µ, σ2), and constrain the parameters to be µ = µl and σ2 = σ2
l for all l, it can be

easily verified that the resulting GNNMP satisfies the invariant condition of Proposition 1,

with a stationary marginal fZ(z). Moreover, when L = 1, the model is a Gaussian process.

The finite-dimensional distribution of the GNNMP model is characterized by the following

proposition, the proof of which is included in the Supplementary Material.

Proposition 2. Consider the GNNMP characterized by (8) with µ = µl and σ2 = σ2
l

for all l. If Z(s1) ∼ fZ = N(z |µ, σ2), the GNNMP has stationary marginal fZ and its

finite-dimensional distribution is a mixture of multivariate Gaussian distributions.

Based on the GNNMP, various NNMP models with different families for (Ul, Vl) can be

constructed by exploiting location-scale mixture of Gaussian distributions. For example,

replacing µl of the bivariate Gaussian distribution by λlz0 where z0 follows a Gaussian

distribution truncated at [0,∞), yields a bivariate skew-Gaussian distribution (Azzalini,

2013). We can construct a skew-GNNMP model using the associated conditional density

of the bivariate skew-Gaussian distribution. A stationary skew-GNNMP model is demon-

strated in the second experiment of the simulation study. Other families that admit a

location-scale mixture representation include, for example, Student-t, skew-t, Laplace and

asymmetric Laplace. Using the associated conditional density we can construct the cor-

responding NNMP model. The following proposition characterizes the finite-dimensional

distribution of these NNMPs when they satisfy the invariant condition of Proposition 1.

Proposition 3. Consider a class of NNMPs with stationary marginal distribution such that

the family of distributions for the base random vector (Ul, Vl) is a location-scale mixture of

Gaussian distributions for all l. Then, the NNMP finite-dimensional distribution is a finite

mixture with mixture components that belong to the same family of the base random vectors.

Proposition 3 is easily verified. Suppose zV is a p-dimensional realization from a

GNNMP with stationary marginal fZ(z) = N(z |µ, σ2). Then, by Proposition 2, we can

write p̃(zV) =
∑M

m=1wmN(zV |µ1p, σ
2Rm), where 1p is a column vector of ones and Rm is

the correlation matrix of the mth component. Reparameterizing µ and σ2 with different
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distributional assumptions on the transformed parameters, we can obtain different families

of distributions for the mixture component of the joint distribution.

2.4 Models based on copulas

As implied by Example 1, a practical choice to construct an NNMP model with a sta-

tionary marginal distribution is to consider the same family of bivariate distributions for

all base random vectors (Ul, Vl). In order to satisfy the invariant condition of Proposition

1, we require that the corresponding conditional density preserves some spatially varying

parameter that is not shared with the stationary marginal distribution. In this regard, a

useful strategy is to use a copula for the bivariate distributions of (Ul, Vl).

A copula function C : [0, 1]p → [0, 1] is a function such that, due to Sklar’s Theorem

(Sklar, 1959), for any multivariate distribution F (z1, . . . , zp), there exists a copula C for

which F (z1, . . . , zp) = C(F1(z1), . . . , Fp(zp)), where Fj is the marginal distribution function

of Zj, j = 1, . . . , p. If Fj is continuous for all j, C is unique. A copula enables us to

separate the modeling of the marginal distributions from the bivariate dependence. Thus,

the invariant condition can be easily satisfied by specifying the stationary distribution FZ

as the marginal distribution of (Ul, Vl) for all l. The copula parameter that determines the

dependence can be made spatially varying. We focus on continuous stationary distributions,

although this strategy can be applied for any family of distributions for FZ .

To construct a copula NNMP model, we consider a base copula Cl for (Ul, Vl), for

l = 1, . . . , L. We obtain the spatially varying copula Cv,l for (Uv,l, Vv,l) by working

with spatially varying copula parameter. The joint density of (Uv,l, Vv,l) is given by

cv,l(z(v), z(v(l)))fUv,l
(z(v))fVv,l(z(v(l))), where cv,l is the copula density of Cv,l, and fUv,l

and fVv,l are the marginal densities of Uv,l and Vv,l, respectively. Given a pre-specified

stationary marginal fZ from essentially any continuous family of distributions, we replace

both fUv,l
and fVv,l with fZ . We then obtain the conditional density

p(z(v) | zNe(v)) =
L∑
l=1

wl(v) cv,l(z(v), z(v(l)))fZ(z(v)) (9)
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that characterizes the stationary copula NNMP. Some of the NNMPs of Section 2.3 can

be regarded as special cases of copula NNMPs; e.g., the bivariate Gaussian distribution of

(Ul, Vl) in the GNNMP corresponds to a Gaussian copula with Gaussian marginals.

Under the copula framework, one strategy to specify the spatially varying parameters is

through the Kendall’s τ coefficient. The Kendall’s τ , taking values in [−1, 1], is a bivariate

concordance measure with properties useful for non-Gaussian modeling. In particular, its

existence does not require finite second moment and it is invariant under strictly increasing

transformations. If (Ul, Vl) is continuous with a copula Cl, the associated Kendall’s τ is

given by ρτ,l = 4
∫ 1

0

∫ 1

0
Cl(qulqvl)dqulqvl − 1, where qul = FUl

(ul) and qvl = FVl(vl). Taking

Al ⊂ [−1, 1] as the range of ρτ,l, we can construct a composition function hl := gl ◦ kl for

some link function gl : Al → Hl and kernel function kl : D × D → Al, where Hl is the

parameter space associated with Cl. The kernel kl should be specified with caution; kl must

satisfy axioms in the definition of a bivariate concordance measure (Joe 2014, sec. 2.12).

We illustrate the strategy with the following example.

Example 2. The bivariate Gumbel copula is an asymmetric copula useful for modeling

dependence when the marginal distributions are positive and heavy-tailed. The spa-

tially varying Gumbel copula can be defined as Cv,l = exp(−[(− logFUv,l
(z(v))ηl(v) +

(− logFVv,l(z(v(l)))
ηl(v)]1/ηl(v)), where ηl(v) ∈ [1,∞) and perfect dependence is obtained

if ηl(v) → ∞. The Kendall’s τ is ρτ,l(v) = 1 − η−1l (v), taking value in [0, 1]. We define

ρτ,l(v) := kl(||v−v(l)||), an isotropic correlation function. Let gl(x) = (1−x)−1. Then, the

function hl(||v − v(l)||) = gl ◦ kl(||v − v(l)||) = (1− kl(||v − v(l)||))−1. Thus, the parameter

ηl(v) ≡ η(||v − v(l)||) is given by hl(||v − v(l)||), and ηl(v)→∞ as ||v − v(l)|| → 0.

In addition to a convenient strategy to achieve stationarity, copula NNMP models offer

avenues to capture complex dependence using general bivariate copulas. In spatial copula

modeling, when multivariate copulas are applied to the joint density of a spatial realization,

many of them are inappropriate, for example, the Gumbel copula in Example 2 that has

exchangeable dependence. Though spatial vine copula models (Gräler, 2014) were proposed

to resolve this restriction, their model structure and computation are substantially more

complicated than copula NNMP models.
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2.5 Mixture component specification and tail dependence

A benefit of building the NNMPs from a set of base random vectors is that specification of

the multivariate dependence of Z(v) given its neighbors is determined mainly by that of

the base random vectors. In this section, we illustrate this attractive property of the model

with the establishment of lower bounds for two measures used to assess the strength of the

tail dependence of NNMPs.

To establish our results we rely on the assumption that the base random vector (Ul, Vl)

has stochastically increasing positive dependence. Ul is said to be stochastically increasing

in Vl, if P (Ul > ul |Vl = vl) increases as vl increases. The definition is extended to

a multivariate random vector (Z1, . . . , Zp). Z1 is said to be stochastically increasing in

(Z2, . . . , Zp) if P (Z1 > z1 |Z2 = z2, . . . , Zp = zp) ≤ P (Z1 > z1 |Z2 = z′2, . . . , Zp = z′p), for

all (z2, . . . , zp) and (z′2, . . . , z
′
p) in the support of (Z2, . . . , Zp), where zj ≤ z′j for j = 2, . . . , p.

The conditional density in (6) implies that

P (Z(v) > z |ZNe(v) = zNe(v)) =
L∑
l=1

wl(v)P (Z(v) > z |Z(v(l)) = z(v(l))).

Therefore, Z(v) is stochastically increasing in ZNe(v) if Z(v) is stochastically increasing

in Z(v(l)) with respect to (Uv,l, Vv,l) for all l. If the sequence (Uv,l, Vv,l) is built from

the (Ul, Vl), then the set of base random vectors determines the stochastically increasing

positive dependence of Z(v) given its neighbors.

For a bivariate random vector (Ul, Vl), the upper and lower tail dependence coefficients,

denoted as λH,l and λL,l, respectively, are λH,l = limq→1− P (Ul > F−1Ul
(q) | Vl > F−1Vl

(q)) and

λL,l = limq→0+ P (Ul ≤ F−1Ul
(q) | Vl ≤ F−1Vl

(q)). When λH,l > 0, we say Ul and Vl have upper

tail dependence. When λH,l = 0, Ul and Vl are said to be asymptotically independent in

the upper tail. Lower tail dependence and asymptotically independent in the lower tail are

similarly defined using λL,l. Analogously, we can define the upper and lower tail dependence

13



coefficients for Z(v) given its nearest neighbors, namely,

λH(v) = lim
q→1−

P (Z(v) > F−1Z(v)(q) | Z(v(1)) > F−1Z(v(1))
(q), . . . , Z(v(L)) > F−1Z(v(L))

(q)),

λL(v) = lim
q→0+

P (Z(v) ≤ F−1Z(v)(q) | Z(v(1)) ≤ F−1Z(v(1))
(q), . . . , Z(v(L)) ≤ F−1Z(v(L))

(q)).

The following proposition gives lower bounds for the tail dependence coefficients.

Proposition 4. Consider the NNMP characterized by (6) constructed from a set of base

random vectors (Ul, Vl) supported on Ω × Ω, Ω ⊂ R, with bivariate distribution function

FUl,Vl and marginal distribution functions FUl
, FVl, for l = 1, . . . , L. Moreover, assume the

random variable Ul is stochastically increasing in Vl for all l. Then, for every v ∈ D, the

lower bound for the upper tail dependence coefficient λH(v) is
∑L

l=1wl(v) limq→1− P (Z(v) >

F−1Uv,l
(q) |Z(v(l)) = F−1Vv,l

(q)), and the lower bound for the lower tail dependence coefficient

λL(v) is
∑L

l=1wl(v) limq→0+ P (Z(v) ≤ F−1Uv,l
(q) |Z(v(l)) = F−1Vv,l

(q)).

The proof of the proposition is provided in the Supplementary Material. In a nutshell,

Proposition 4 shows that the lower and upper tail dependence coefficients are bounded

below by a convex combination of, respectively, the limits of the conditional cumulative

distribution functions, and the limits of the conditional survival functions. These are fully

determined by the dependence structure of the bivariate distribution for (Ul, Vl). This

result is best illustrated with an example.

Example 3. Consider a Lomax NNMP for which the bivariate distributions of the base

random vectors correspond to a bivariate Lomax distribution (Arnold et al., 1999), resulting

in an associated conditional density of the model as follows

p(z(v) | zNe(v)) =
L∑
l=1

wl(v)P (z(v) | z(v(l)) + φl, αl(v)),

where P (x |φ, α) = αφ−1(1 + xφ−1)−(α+1) denotes the Lomax density, a shifted version of

the Pareto Type I density. A small value of α indicates a heavy tail. The component

conditional survival function of the Lomax NNMP, expressed in terms of the quantile q, is{
1 + F−1Uv,l

(q)/(F−1Vv,l
(q) + φl)

}−αl(v)

which converges to 2−αl(v) as q → 1−. Therefore, the
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lower bound for λH(v) is
∑L

l=1wl(v) 2−αl(v). As αl(v) → 0 for all l, the lower bound for

λH(v) tends to one, and hence λH(v) tends to one, since λH(v) ≤ 1. As αl(v)→∞ for all

l, the lower bound tends to zero.

Proposition 2 holds for the general NNMP framework. If the distribution of (Ul, Vl)

with FUl
= FVl has first order partial derivatives and exchangeable dependence, namely

(Ul, Vl) and (Vl, Ul) have the same joint distribution, the lower bounds of the tail dependence

coefficients depend on the component tail dependence coefficients. The result is summarized

in the following corollary, the proof of which is given in the Supplementary Material.

Corollary 1. Suppose that the base random vectors (Ul, Vl) in Proposition 4 is exchange-

able, and its bivariate distribution with marginals FUl
= FVl has first order partial deriva-

tives, for all l. Then the upper and lower tail dependence coefficients λH(v) and λL(v) are

bounded below by
∑L

l=1wl(v)λH,l(v)/2 and
∑L

l=1wl(v)λL,l(v)/2, where λH,l(v) and λL,l(v)

are the tail dependence coefficients with respect to (Uv,l, Vv,l) induced from (Ul, Vl).

Under Corollary 1, if the bivariate distribution of (Ul, Vl) is symmetric, e.g., an ellip-

tically symmetric distribution, the upper and lower tail dependence coefficients coincide,

and can simply be denoted as λ(v). Then we have that λ(v) ≥
∑L

l=1wl(v)λl(v)/2, where

λl(v) is the tail dependence coefficient with respect to (Uv,l, Vv,l).

Tail dependence can also be quantified using the boundary of the conditional c.d.f.,

as proposed in Hua and Joe (2014) for a bivariate random vector. In particular, the

upper tail dependence of (Ul, Vl) is said to have some strength if the conditional c.d.f.

FUl|Vl(F
−1
Ul

(q) |F−1Vl
(1)) is positive at q = 1. Likewise, a non-zero FUl|Vl(F

−1
Ul

(q) |F−1Vl
(0)) at

q = 0 indicates some strength of dependence in the lower tails. The functions FUl|Vl(· |

F−1Vl
(0)) and FUl|Vl(· | F

−1
Vl

(1)) are referred to as the boundary conditional c.d.f.s.

By an abuse of notation, we use F1|2(· |F−1ZNe(v)
(q)) for the conditional c.d.f. F (· |Z(v(1)) =

F−1Z(v(1))
(q), . . . , Z(v(L)) = F−1Z(v(L))

(q)). Then F1|2(· |F−1ZNe(v)
(0)) and F1|2(· |F−1ZNe(v)

(1)) are the

boundary conditional c.d.f.s for the NNMP model. The upper tail dependence is said to

be i) strongest if F1|2(F
−1
Z(v)(q) |F

−1
ZNe(v)

(1)) equals 0 for 0 ≤ q < 1 and has a mass of 1

at q = 1; ii) intermediate if F1|2(F
−1
Z(v)(q) |F

−1
ZNe(v)

(1)) has positive but not unit mass at

q = 1; iii) weakest if F1|2(F
−1
Z(v)(q) |F

−1
ZNe(v)

(1)) has no mass at q = 1. The strength of lower
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tail dependence is defined likewise using F1|2(F
−1
Z(v)(q) |F

−1
ZNe(v)

(0)). The proposition below

provides lower bounds for the boundary conditional c.d.f.s. The proof can be found in the

Supplementary Material.

Proposition 5. Consider the NNMP characterized by (6) constructed from a set of base

random vectors (Ul, Vl) supported on Ω × Ω, Ω ⊂ R, with bivariate distribution func-

tion FUl,Vl and marginal distribution functions FUl
, FVl, for l = 1, . . . , L. Moreover, as-

sume the random variable Ul is stochastically increasing in Vl for all l. Let λH,l(v) and

λL,l(v) be the upper and lower component tail dependence coefficients, respectively, for

l = 1, . . . , L. If given v, there exists λL,l(v) > 0 for some l, then the conditional c.d.f.

F1|2(F
−1
Z(v)(q) |F

−1
ZNe(v)

(0)) has strictly positive mass p0(v) at q = 0 with p0(v) ≥
∑L

l=1wl(v)λL,l(v).

Similarly, if given v, there exists λH,l(v) > 0 for some l, then the conditional c.d.f.

F1|2(F
−1
Z(v)(q) |F

−1
ZNe(v)

(1)) has strictly positive mass p1(v) at q = 1 with p1(v) ≥
∑L

l=1wl(v)λH,l(v).

Proposition 5 complements Proposition 4 to assess the strength of the tail dependence.

It readily applies for bivariate distributions, especially for copulas which yield explicit

expressions for the tail dependence coefficients. For example, the spatially varying Gumbel

copula Cv,l in Example 2 has upper tail dependence coefficient 2−21/ηl(v) > 0 for ηl(v) > 1,

so the tail dependence of a Gumbel copula NNMP model has some strength if ηl(v) > 1

for some l. In fact, applying the result in Hua and Joe (2014), with a Gumbel copula,

F1|2(F
−1
Z(v)(q) |F

−1
ZNe(v)

(1)) degenerates at q = 1, implying strongest tail dependence.

3 Bayesian hierarchical model and inference

3.1 Hierarchical model formulation

We consider the following univariate spatially varying regression model,

y(v) = x(v)>β + z(v) + ε(v), v ∈ D, (10)

where y(v) ∈ R is a continuous, geostatistical outcome, x(v) is a p × 1 vector of spa-

tially referenced predictors, z(v) is a spatial process, and ε(v)
i.i.d.∼ N(0, τ 2) represents the

16



measurement error. To account for non-Gaussian spatial variability, we assume an NNMP

model for z(v), with the components fv,l built from real-valued bivariate distributions.

A key component of the proposed model formulation is the prior model for the weights.

The model allows the weights to vary in space and adjust the differences among the neighbor

structures of different reference locations. In particular, we consider a collection of spatially

dependent c.d.f.s {Gv : v ∈ D} supported on (0, 1). For each v, the weights are defined as

the increments of Gv with a set of random cutoff points rv,0, . . . , rv,L. More specifically,

wl(v) =

∫
1(rv,l−1,rv,l)(·) dGv(·), l = 1, . . . , L, (11)

where 1A denotes the indicator function for set A. The cutoff points 0 = rv,0 < rv,1 < · · · <

rv,L = 1 are such that, for l = 1, . . . , L, rv,l−rv,l−1 = k′(v,v(l) | ζ)/
∑L

l=1 k
′(v,v(l) | ζ), where

k′ : D × D → [0, 1] is a bounded kernel function with parameters ζ. With a choice of the

kernel k′, the random cutoff points reflect the structure in the neighbors (v(1), . . . ,v(L))

of v. The choices of the kernel and the associated parameter affect the smoothness of

the resulting random field. The distribution function Gv is a logit Gaussian distribution

such that the corresponding Gaussian distribution has mean µ(v) and variance κ2. We

denote the logit Gaussian distribution as Gv(· |µ(v), κ2). The spatial dependence across

the weights wl(v) is introduced through the distribution functions Gv by assuming the

mean µ(v) = γ0 + γ1v1 + γ2v2, where v1 and v2 are the first and second coordinates of v.

Given the cutoff points and κ2, a smaller value of µ(v) indicates more weights assigned to

the nearer neighbors of v. As a simpler version of the model in (11), if Gv is the uniform

distribution on (0, 1), the weights become k′(v,v(l) | ζ)/
∑L

l=1 k
′(v,v(l) | ζ). With a set of

fixed, uniform cutoff points on [0, 1], i.e., rv,l−rv,l−1 = 1/L, the prior model for the weights

was considered in Cadonna et al. (2019) for spectral density estimation, with the collection

of logit Gaussian distributions indexed at frequency.

The mixture formulation for z(v) includes the choice of the component conditional

density, so we employ data augmentation to facilitate posterior simulation. We take the

reference set S = {s1, . . . , sn} as a subset of locations where both the outcomes and

predictors are observed. For each observed y(si), i = 3, . . . , n, we introduce a latent
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Gaussian variable ti with mean µ(si) and variance κ2. Conditioning on the latent variables,

the regression model on the observations y(si) can be written as

y(si) | z(si),β, τ
2 ind.∼ N(y(si) | x(si)

>β + z(si), τ
2), i = 1, . . . , n,

z(s1) | θ ∼ p1(z(s1) | θ), z(s2) | z(s1),θ ∼ fs2,1(z(s2) | z(s1),θ),

z(si) | {z(s(il)}iLl=1,θ, ζ
ind.∼

iL∑
l=1

fsi,l(z(s) | z(sil),θ)1(r∗si,l−1,r
∗
si,l

)(ti), i = 3, . . . , n,

ti | γ, κ2
ind.∼ N(ti | γ0 + γ1si1 + γ2si2, κ

2), i = 3, . . . , n,

(12)

where γ = (γ0, γ1, γ2)
> and r∗si,l = log(rsi,l/(1 − rsi,l)), l = 1, . . . , iL, i = 3, . . . , n. The

vector θ contains all the parameters of the densities fsi,l and p1. The full Bayesian model

is completed with prior specification for parameters β,γ,θ, ζ, τ 2 and κ2. The priors for θ

and ζ depend on the choices of the densities fsi,l, p1, and the kernel k′, respectively. For

parameters β, γ, τ 2, and κ2, we specify N(β |µβ,Vβ), N(γ |µγ,Vγ), IG(τ 2 |uτ2 , vτ2), and

IG(κ2 |uκ2 , vκ2) priors, respectively, where IG denotes the inverse gamma distribution.

3.2 Estimation and prediction

We implement a Gibbs sampler to simulate from the posterior distribution of model parame-

ters (β,γ,θ, ζ, τ 2, κ2) and latent variables {ti}ni=3 in (12). Denote by yS = (y(s1), . . . , y(sn))>

and let X be the covariate matrix with the ith row being x(si)
>. The posterior full

conditional distribution for β is N(β |µ∗β,V ∗β ) where V ∗β = (V −1β + τ−2X>X)−1 and

µ∗β = V ∗β (V −1β µβ+τ−2X>(yS−zS)). An inverse gamma prior for τ 2 yields an IG(τ 2 |uτ2 +

n/2, vτ2 +
∑n

i=1 e
2
i /2) posterior full conditional, where ei = y(si) − x(si)

>β − z(si). The

posterior full conditional distribution of θ depends on the choice of fsi,l and p1.

We facilitate the update of z(si) with a set of configuration variables `i such that `2 = 1

and `i = l if ti ∈ (r∗si,l−1, r
∗
si,l

) for i ≥ 3. The posterior full conditional distribution for

z(s1) is proportional to N(y(s1) |x(s1)
>β + z(s1), τ

2)p1(z(s1) |θ)
∏

j:s(j,`j)=s1
fsj ,`j(z(sj) |

z(s1),θ). For z(si), i ≥ 2, the posterior full conditional distribution is proportional to

N(y(si) | x(si)
>β + z(si), τ

2)fsi,`i(z(si) | z(s(i,`i)),θ)
∏

j:s(j,`j)=si
fsj ,`j(z(sj) | z(si),θ).

We compute the weights wl(si) = Gsi(rsi,l |µ(si), σ
2) − Gsi(rsi,l−1 |µ(si), σ

2), for l =
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1, . . . , iL, and i = 3, . . . , n. The posterior full conditional distribution of ζ is propor-

tional to p(ζ)
∏n

i=3(Gsi(rsi,`i)−Gsi(rsi,`i−1)). We update ζ on its log scale with a random

walk Metropolis step. If ζ is accepted, we update the cutoff points rsi,l for all i and all

l. The posterior full conditional distribution of the latent variable ti, i = 3, . . . , n, is a

piecewise truncated Gaussian distribution N(ti |µ(si), κ
2)1(r∗si,l−1,r

∗
si,l

)(ti) with probability

proportional to wl(si)fsi,l. Let D be the matrix such that the ith row is (1, si1, si2) where

si1, si2 are the first and second coordinates of si. The posterior full conditional distribution

of γ is N(γ |µ∗γ,V ∗γ ) where V ∗γ = (V −1γ + κ−2D>D)−1 and µ∗γ = V ∗γ (V −1γ µγ + κ−2D>t)

with t = (t3, . . . , tn)>. The posterior full conditional distribution of κ2 is IG(κ2 |uκ2 + (n−

2)/2, vκ2 +
∑n

i=3(ti − µ(si))
2/2).

Let v0 ∈ D where the predictor x(v0) is observed. We obtain posterior predictive sam-

ples of y(v0) by the following steps. If v0 /∈ S, for each posterior sample of the parameters,

we first compute the cutoff points rv0,l for which rv0,l−rv0,l−1 = k′(v0,v(0l))/
∑L

l=1 k
′(v0,v(0l)),

and obtain the weights wl(v0) = Gv0(rv0,l)−Gv0(rv0,l−1) for l = 1, . . . , L. We then predict

z(v0) using (4), and generate y(v0) using (10). If v0 ≡ si ∈ S, we generate y(v0) similar

to the earlier case but using posterior samples of the weights obtained from the MCMC,

and applying (3) instead of (4) to generate z(v0).

4 Simulation study

We conduct three simulation experiments to demonstrate the benefits of the proposed mod-

eling framework. First, we demonstrate the effectiveness of the GNNMP in approximating

Gaussian random fields, by comparing its performance to the NNGP model. Next, we illus-

trate the capacity of the skew-GNNMP model to capture different levels of skewness over

the domain. Finally, we study inference for tail dependence using copula NNMP models.

In each of the experiments, we created a regular grid of 200× 200 resolution on a unit

square domain, and generated data on each grid location. We then randomly selected a

subset of observations as the reference set for model fitting. For all experiments, we used

a random ordering for the reference set. For model assessment and comparison, we used

root mean square predictive error (RMSPE), 95% posterior credible interval coverage rate
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(95% CI coverage), deviance information criterion (DIC; Spiegelhalter et al. 2002), GG

criterion (Gelfand and Ghosh, 1998), continuous ranked probability score (CRPS; Gneiting

and Raftery 2007), and log-score (Gneiting and Raftery, 2007).

All posterior analyses are based on posterior samples collected every 10 iterations from

a Markov chain of 30000 iterations, with the first 10000 samples being discarded.

4.1 First experiment

We generated data from the regression in (10), where z(v) follows a zero-mean Gaussian

process with a unit variance and an exponential correlation function with range parameter

1/12. We included an intercept and a covariate drawn from N(0, 1) in the model, and chose

β = (β0, β1)
> = (1, 5)>, and τ 2 = 0.1. The setting followed Datta et al. (2016a).

We applied two models. The first one assumes that z(v) follows an NNGP model with

variance σ2
0 and exponential correlation function with range paramger φ0. The second one

assumes that z(v) follows the GNNMP model defined in (8) with µ = µl and σ2 = σ2
l for all

l, such that z(v) has a stationary marginal N(µ, σ2). For the GNNMP, we used exponential

correlation functions with range parameter φ and ζ, respectively, for the correlation with

respect to the component density, and the kernel function that defines the cutoff points

for the weights. Details of the MCMC algorithm to implement the GNNMP model are

provided in the Supplementary Material. For the NNGP model, we implement the latent

NNGP algorithm from the spNNGP package in R (Finley et al., 2020)

For both models, the regression coefficients β were assigned flat priors. The variances

σ2
0 and σ2 received the same inverse gamma prior IG(2, 1), and τ 2 was assigned IG(2, 0.1).

The range parameter φ0 of the NNGP received a uniform prior Unif(1/30, 1/3), while the

range parameters φ and ζ of the GNNMP received inverse gamma priors IG(3, 1/3) and

IG(3, 0.2), respectively. Regarding the logit Gaussian distribution parameters, γ and κ2,

we used N((−1.5, 0, 0), diag(213)) and IG(3, 1) priors, respectively.

The posterior estimates from the two models for the common parameters, β and τ 2,

were quite close. The RMSPE, 95% CI coverage, and CRPS from the GNNMP model

were 0.03, 0.01, and 0.02 higher than the NNGP model, respectively. The DIC and GG
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(a) True GP (b) NNGP (L = 10) (c) GNNMP (L = 10)

Figure 1: Synthetic data analysis - first experiment. Interpolated surfaces of the true Gaussian process
and posterior median estimates from the NNGP and GNNMP models.

criterion are also higher than the NNGP by small margins. The posterior median estimate

of the spatial random effects from both models are shown in Figure 1. On the whole,

the GNNMP model provides a reasonably good approximation to the Gaussian random

field. Moreover, the performance metrics of the GNNMP model are comparable to those of

the NNGP model, the model assumptions of which are more well suited to the particular

synthetic data example.

4.2 Second experiment

In this scenario, we generated data from the following skew-Gaussian process (Zhang and

El-Shaarawi, 2010),

y(v) = σ1 |ω1(v)|+ σ2 ω2(v), v ∈ D (13)

where ω1(v) and ω2(v) are both zero-mean standard Gaussian processes with correlation

matrix specified by an exponential correlation function with range parameter 1/12. The

parameter σ1 ∈ R controls the skewness, whereas σ2 > 0 is a scale parameter. The model

has a stationary skew-Gaussian (Azzalini, 2013) marginal density fY (y) = 2N(y | 0, σ2
1 +

σ2
2)Φ(σ1y/(σ2

√
σ2
1 + σ2

2)). We took σ2 = 1, and generated data with σ1 = −5, 1 and 10,

resulting in three different random fields that are, respectively, moderately negative-skewed,

slightly positive-skewed, and strongly positive-skewed, as shown in Figure 2(a)-2(c).

We applied the stationary skew-GNNMP model with L = 10 to 2000 observations. The

model is obtained by modifying the GNNMP model in (8), taking σ2
l = σ2, and µl = λz0,
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(a) True y(v) (σ1 = −5) (b) True y(v) (σ1 = 1) (c) True y(v) (σ1 = 10)

(d) Skew-GNNMP (L = 10) (e) Skew-GNNMP (L = 10) (f) Skew-GNNMP (L = 10)

Figure 2: Synthetic data analysis - second experiment. Top panels are interpolated surfaces of y(v)
generated by (13). Bottom panels are the posterior median estimates from the skew-GNNMP model.

with z0 ∼ N(0, 1)I(z0 ≥ 0). Here, λ ∈ R controls the skewness, such that a large positive

(negative) value of λ indicates strong positive (negative) skewness. If λ = 0, the skew-

GNNMP model reduces to the GNNMP model. After marginalizing out z0, we obtain a sta-

tionary skew-Gaussian density fZ(z) = 2N(z | 0, λ2+σ2)Φ(λz/(σ
√
λ2 + σ2)). We completed

the full Bayesian specification for the model, by assigning priors N(λ | 1, 5), IG(σ2 | 2, 1),

IG(φ | 3, 1/3), IG(ζ | 3, 0.2), N(γ | (−1.5, 0, 0), diag(213))) and IG(κ2 | 3, 1), where ζ is the

range parameter of the exponential correlation function for the random cutoff points of the

weights. Details of the model and implementation are given in the Supplementary Material.

We focus on the model performance on capturing skewness. The posterior mean and

95% credible interval of λ for the three scenarios were −3.65 (−4.10,−3.27), 1.09 (0.91, 1.28)

and 7.69 (6.88, 8.68), respectively, indicating the model’s ability to estimate different levels

of skewness. The bottom row of Figure 2 shows that the posterior median estimates of

the surfaces capture well features of the true surfaces, even when the level of skewness is
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(a) Histogram of y(v) (σ1 = −5) (b) Histogram of y(v) (σ1 = 1) (c) Histogram of y(v) (σ1 = 10)

Figure 3: Synthetic data analysis - second experiment. Posterior means (dashed lines) and 95% credible
intervals (shaded regions) for the stationary marginal density.

small, thus demonstrating that the model is also able to recover near-Gaussian features.

Figure 3 plots the posterior mean and pointwise 95% credible interval for the marginal

density, overlaid on the histogram of the simulated data for each of the three cases. These

estimates demonstrate the adaptability of the skew-GNNMP model in capturing skewed

random fields with different levels of skewness.

4.3 Third experiment

The goal of the last experiment is to demonstrate the use of copulas to construct NNMPs

for tail dependence modeling. We note that the focus here is to illustrate the flexibility of

the NNMPs with copulas for modeling complex dependence structures, but not for extreme

value modeling. To this end, we generated data from the random field

y(v) = F−1(Tν(ω(v))), v ∈ D, (14)

where ω(v) is a zero-mean standard Student-t process with tail parameter ν and scale

matrix specified by an exponential correlation function with range parameter φw. The

distribution functions F and Tν correspond to a gamma distribution Ga(2, 2) and a standard

Student-t distribution with tail parameter ν, respectively. For a given pair of locations

in D with correlation ρ0 = exp(−d0/φw), the corresponding tail dependence coefficient

of the random field is χν = 2Tν+1(−
√

(ν + 1)(1− ρ0)/(1 + ρ0)). We took φw = 1/12,

and chose ν = 10 so that the synthetic data exhibits moderate tail dependence at close
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(a) True y(v) (b) Gaussian copula NNMP (c) Gumbel copula NNMP

(d) Estimated marginals (e) Site 1 estimated probabilities (f) Site 2 estimated probabilities

Figure 4: Synthetic data analysis - third experiment. Top panels are interpolated surfaces of the true field
generated by (14) and posterior median estimates from both models with L = 10. Bottom panels are
estimated marginal densities and conditional survival probabilities from the two models. The green dashed
lines correspond to the true model. The red (blue) dash lines and shaded regions are the posterior means
and 95% credible intervals from the Gaussian (Gumbel) copula NNMP models.

distance, and the dependence decreases rapidly as the distance d0 becomes larger. When

ρ0 = 0.05, 0.5, 0.95, χ10 = 0.01, 0.08, 0.61, respectively.

We applied two copula NNMP models to 2000 observations. The models are of the form

in (9) with stationary gamma marginal Ga(a, b). In the first model, the component copula

density cv,l corresponds to a bivariate Gaussian copula that is known to be unsuitable

for tail dependence modeling. The correlation parameter of the copula was specified by

an exponential correlation function with range parameter φ1. In the second model, we

consider a spatially varying Gumbel copula as in Example 2. For each component copula

density cv,l, we define the spatially varying parameter through the link function ηl(v) ≡

ηl(||v − v(l)||) = min{(1− exp(−||v − v(l)||/φ2)
−1, 50}, where the upper bound 50 ensures

numerical stability. When ηl(d0) = 50, exp(−d0/φ2) = 0.98. With this link function, we

assume that given φ2, the strength of the tail dependence with respect to the lth component
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Table 1: Synthetic data analysis - third experiment. Log-scores for subsets that exceed the
c-th percentile of the held-out data

c 0 10 30 50 70 90 95
Gaussian copula model 140.009 80.713 30.224 -15.479 -28.806 -20.377 -13.750
Gumbel copula model 118.684 63.962 17.242 -24.300 -28.232 -16.952 -11.422

of the Gumbel copula model stays the same for any distance smaller than d0 between two

locations. For the random cutoff points of the mixture weights, we specified an exponential

correlation function with range parameters ζ1 and ζ2, respectively, for each model. The

Bayesian model is fully specified with a IG(3, 1/3) prior for φ1 and φ2, a Ga(1, 1) prior

for a and b, a IG(3, 0.2) prior for ζ1 and ζ2, N(γ | (−1.5, 0, 0), 2diag(213)) and IG(κ2 | 3, 1)

priors. Model and computation details are provided in the Supplementary Material.

We focus on the performance of the two models with respect to tail dependence infer-

ence. Table 1 presents the log-scores for subsets of the held-out data that exceed the c-th

percentile of the held-out data. The out-of-sample log-score is the predictive log-likelihood

averaging over the model parameters. It reflects the ability of a model to capture depen-

dence structure in the data. We can see that for held-out data that exceed high sample

percentiles, the Gumbel copula model gives a higher log-score.

Figure 4 shows the random fields, marginals and conditional survival probabilities es-

timated by the two models. From Figure 4(a)-4(c), we see that, comparing with the true

field, the posterior median estimate by the Gumbel copula model seems to recover the large

values better than the Gaussian copula model. Besides, the Gumbel copula NNMP model

provides a more accurate estimate of the marginal distribution, especially in the tails. We

computed the conditional survival probabilities at two different unobserved sites marked

in Figure 4(a). In particular, Site 1 is surrounded with reference observations with mod-

erate values, while Site 2 is surrounded with large reference observations. We see that the

Gumbel copula model provides much closer estimates to the probabilities, indicating that

the model captures better the tail dependence structure in the data. Overall, this example

demonstrates that the Gumbel copula NNMP model is a useful option for modeling spatial

processes with tail dependence.
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Figure 5: SST data analysis: observed Mediterranean SST.

5 Application: Mediterranean sea surface tempera-

ture data analysis

The study of Ocean’s dynamics is crucial for understanding of climate variability. One of

the most valuable sources of information regarding the evolution of the state of the ocean is

provided by the centuries-long record of temperature observations recorded from the surface

of the oceans. The record of sea surface temperatures (SST) consists of data collected over

time at irregularly scattered locations. This information needs to be processed into spatially

continuous fields. In this section, we examine the SST from the Mediterranean sea during

December 2003, as shown in Figure 5. The data consist of in situ measurements from

different types of devices. Some locations had multiple observations,thus for these sites, we

took the median of the observations, resulting in totally 3072 observations.

To deal with the difficulty of producing a spatially continuous field from observations

that are irregular-spaced along ship lines and account for the complexity of the surrounding

coastlines as well as the circulation system, we considered the spatially varying regression

model in (10). From Figure 5, we observed that SST tend to increase as latitude decreases,

so we took latitude as a covariate to account for the long range variability in SST.
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We first focus on SST along the islands near the shores of Spain, France, Monaco and

Italy, between 0 - 9 E. longitude and 33.5 - 44.5 N. latitude. The SST observations in

the region, as shown in Figure 6(a), are very heterogeneous, implying that the short range

variability is likely to be non-Gaussian. We applied the GNNMP for the spatial random

effect in (10), and applied the NNGP for comparison. For both models, we chose the

neighbor size L = 10 and applied the same prior specifications as in the first experiment.

A random topological ordering was used for both models. We took 64 observations, around

10% of the data in the region, as the held-out data for model comparison and used the

remaining 580 observations to train the models. For both models, we ran the MCMC

with 120000 iterations, discarding the first 20000 samples, and collected samples every 20

iterations.

(a) Regional SST (b) Predicted SST (GNNMP) (c) Predicted SST (NNGP)

(d) Random effect (GNNMP) (e) Random effect (NNGP)

Figure 6: SST data analysis. Panels (a) is observation at the selected region. Panels (b) - (e) are posterior
median estimates of the SST and spatial random effects by the GNNMP and NNGP models with L = 10.
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Table 2: Performance metrics of the GNNMP and NNGP models

RMSPE 95% CI 95% CI width CRPS G P D DIC
GNNMP 1.03 0.95 4.31 0.56 6.31 103.07 109.37 529.21
NNGP 1.07 0.95 4.35 0.59 176.15 529.06 705.22 1530.67

The posterior mean (95% CI) of the regression intercept from the GNNMP was higher

than the NNGP. They were 28.38 (21.92, 37.60) and 25.95 (22.03, 29.88), respectively. The

posterior estimates of the coefficient for latitude given by the GNNMP and the NNGP were

−0.31 (−0.54,−0.15) and−0.25 (−0.35,−0.15), respectively, both indicating that there was

a trend of SST decreasing in the latitude at the selected region. For the measurement error

τ 2, the GNNMP provided a smaller estimate 0.09 (0.02, 0.27), compared to 0.61 (0.08, 0.91)

from the NNGP.

Table 2 shows the performance metrics for both models. Both the DIC and the GG

criterion suggest that the GNNMP had a better goodness-of-fit than the NNGP. For out-

of-sample prediction, the GNNMP produced smaller RMSPE and CRPS than the NNMP,

Both models gave the same accurate 95% CI coverage with similar coverage widths. Figure

6(b)-6(e) show the posterior median estimates of the temperature field and the spatial

random effects from both models. Compared to the NNGP, we see that the GNNMP

provided much smoother surfaces which closely represents the pattern in the observations.

Given the result for the selected region, we concluded that the GNNMP model was a

better candidate to capture the spatial heterogeneity in the Mediterranean SST. We applied

the GNNMP model to the whole dataset, with the same prior specification for fitting the

regional data. We chose a large L = 30 and let the model estimate effective weights

for the neighbors. We note that when fitting the model to the whole dataset, the Gibbs

sampler experienced slow convergence issues, since the data is strongly heterogeneous and

the elements of the spatial random effect zS was sequentially updated in the sampler. To

achieve better mixing, we ran the algorithm for 300000 iterations and collected samples

every 30 iterations after the first 150000 as burn-in.

The posterior estimates of the regression parameters β0 and β1 were 32.26 (30.83, 34.25)

and −0.42 (−0.46,−0.38), respectively. The estimate suggested that the SST decreased as

28



(a) 50% predicted SST (b) 5% predicted SST

(c) 95% predicted SST (d) 95% CI width

Figure 7: SST data analysis: posterior median (a), 5-th percentile (b), 95-th percentile (c) and 95% credible
interval (d) from the GNNMP model with L = 10.

the latitude increased for the whole map.

Figure 7(a)-7(c) illustrates the posterior quantile summary of the predicted SST. Com-

pared to Figure 5, we see that the posterior median estimate resembles the observed pattern.

The prediction was quite smooth even for areas with few observations. The 95% credible

interval width in Figure 7(d) shows that the model describes the uncertainty realistically.

The uncertainties were high in areas where there were less observations or the observations

were volatile. Overall, we see the model’s ability to capture the spatial heterogeneity over

the Mediterranean SST.

6 Summary and discussion

We have introduced a class of geostatistical models for large, non-Gaussian data sets,

based on nearest neighbor processes. Using an MTD model as the parent process, we have

demonstrated the NNMP’s flexibility for modeling complex dependence by specification of

29



a collection of bivariate distributions indexed at space.

The computation of the NNMP not only bypasses all the potential issues from large

matrix operations, but also enhances modeling power. Kernel functions, such as wave

covariance functions that were impractical for the Gaussian process-based models due to

numerical instability from matrix inversion, can be used as link functions for the spatially

varying parameter of the NNMP. One limitation of the NNMP’s computation, similar to

mixture models, is that the Markov chain may experience slow convergence issues. We

will need further development on efficient algorithms for fast computation, especially when

dealing with large, complex data sets.

An NNMP model requires a selection of the size L of the neighbor sets. In general, a

larger L increases computational costs. Datta et al. (2016a) conclude from their experi-

ments that a moderate value L (≤ 20) typically suffices for the NNGP to fit Gaussian data

sets. On the other hand, Peruzzi et al. (2020) point out that a smaller L corresponds to

a larger Kullback-Leibler divergence of p̃(zS) from p(zS), regardless of the distributional

assumption of the density. Moreover, it is possible that information from the farthest

neighbors is also important (Stein et al., 2004). Therefore, for non-Gaussian data sets in

which the dependence is complex, one may seek a large L to obtain a better approximation

to the full model. Our prior model for the weights enables us to take a relatively large

neighbor set with less computational demand. We assign small probabilities a priori to

distant neighbors. The contribution of each neighbor is induced by the mixing.

In this article, we have focused on developing the framework for continuous data. The

proposed approach can be naturally extended to modeling discrete data, which is being

undertaken. Modeling options for geostatistical count data in the existing literature in-

volve either spatial generalized linear mixed models (Diggle et al., 1998) or spatial copula

models (Madsen, 2009). However, owing to their structures, both models have limitations

with respect to the distributional assumption for the spatial random effects, as well as in

computational efficiency. We believe that the extension will provide both inferential and

computational benefits to modeling large discrete data sets.

Other research directions include extensions to multivariate and spatio-temporal set-
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tings. The former extension requires families of high-dimensional multivariate distributions

to construct an NNMP. Effective strategies will be needed to define the spatially varying

multivariate distributions that balance flexibility and scalability. When it comes to a joint

model for both time and space, there is a large scope for the exploration of integrating the

time component into the model. An immediate attempt may be to follow the setup in (12)

of Datta et al. (2016a), while more interesting avenues will be to modify the weights or the

mixture component of the NNMP accordingly.

Supplementary Material

Supplementary Material includes proofs of the propositions and MCMC implementation

details of the models applied in the data examples.
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Supplementary Material for

Nearest-Neighbor Geostatistical Models for

Non-Gaussian Data

A Proofs

Proof of Proposition 1. We consider a real-valued univariate spatial process Z(v),v ∈
D ⊂ Rp, p ≥ 1. Let S ⊂ D be a reference set. Without loss of generality, we consider the

continuous case, i.e., Z(v) has a continuous distribution for which its density exists, for all

v ∈ D. To verify the proposition, we partition the domain D into the reference set S and

the nonreference set U .

Given any v ∈ D with a bivariate random vector indexed at v, denoted as (Uv,l, Vv,l),

we denote fv,l as the conditional density of Uv,l given Vv,l, and fUv,l
, fVv,l as the marginal

densities of Uv,l, Vv,l, respectively. Using the proposition assumption that fZ = fUv,l
= fVv,l ,

we have that∫
R
fv,l(u | v)fZ(v)dv =

∫
R
fv,l(u | v)fVv,l(v)dv = fUv,l

(u) = fZ(u), (1)

for every v ∈ D and for all l.

We first prove the result for the reference set S. By the model assumption, locations

in S are ordered. In this regard, using the proposition assumptions, we can show that

Z(s) ∼ fZ for all s ∈ S by applying Proposition 1 in Zheng et al. (2020).

Turning to the nonreference set U . Let gu(z(u)) be the marginal density of Z(u) for

every u ∈ U . Denote by p̃(zNe(u)) the joint density for the random vector zNe(u) where

Ne(u) ⊂ S, so every element of ZNe has marginal density fZ . Then, the marginal density
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for Z(u) is given by:

gu(z(u)) =

∫
RL

p(z(u) | zNe(u))p̃(zNe(u))
∏

{si∈Ne(u)}

d(z(si))

=
L∑
l=1

wl(v)

∫
RL

fv,l(z(u) | z(u(l)))p̃(zNe(u))
∏

{si∈Ne(u),si 6=u(l)}

d(z(si))

=
L∑
l=1

wl(v)

∫
R
fv,l(z(u) | z(u(l)))fZ(z(u(l)))d(z(u(l)))

= fZ(z(u)),

where the second-to-last equality holds by the result that Z(s) ∼ fZ for all s ∈ S and

Ne(u) ⊂ S for every u ∈ U . The last equality follows from (1).

Proof of Proposition 2. We verify the proposition by partitioning the domain D into

the reference set S and the nonreference set U . We first prove by induction the result for

the joint distribution p̃(zS) over S. Then to complete the proof, it suffices to show that

for every location u ∈ U , the joint density p̃(zU1) is a mixture of multivariate Gaussian

distributions, where U1 = S ∪{u}.
Without loss of generality, we assume µ = 0 for the stationary GNNMP with invariant

marginal fZ(z) = N(z | 0, σ2). The associated spatially varying conditional density is

p(z(v)|zNe(v)) =

iL∑
l=1

wl(v)N(z(v)|ρl(v)z(v(l)), σ
2(1− (ρl(v))2)),

where for, i = 3, . . . , L, iL = i − 1, and for i > L, iL = L. For each i, we denote as

{wi,li−2
}iLli−2=1 the vector of mixture weights, as {ρi,li−2

}iLli−2=1 the vector of the correlation

coefficients, and as {zi,li−2
}iLli−2=1 the vector of the nearest neighbors of zi, for i ≥ 2, where

wi,li−2
≡ wli−2

(si), ρi,li−2
≡ ρli−2

(si), zi,li−2
≡ z(s(i,li−2)). We denote by z1:k the realization

of Z(s) over locations (s1, . . . , sk)
> for k ≥ 1, and use z

−zj
1:k to denote the random vector

z1:k with element zj removed, 1 ≤ j ≤ k. In the following, for a vector a = (a1, . . . , am)>,

we have that ac = (a1c, . . . , amc)
>, where c is a scalar.
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Take Z1 ∼ N(z1 | 0, σ2). The joint density of z1:2 is

p̃(z1:2) = N(z2|ρ2,1z1), σ2(1− ρ22,1))N(z1|0, σ2) = N(z1:2|0, σ2Ω2,l0)

where Ω2,l0 =
(

1 ρ2,1
ρ2,1 1

)
with ρ2,1 ≡ ρ2,l0 , i.e. l0 = 1. It follows that w2,l0 = 1.

The joint density of z1:3 is

p̃(z1:3) = p3(z3|z1:2)p̃(z1:2)

=
2∑

l1=1

w3,l1N(z3|ρ3,l1z3,l1 , σ2(1− ρ23,l1))N(z1:2|0, σ2Ω2,l0)

=
2∑

l1=1

w3,l1N(z3|ρ3,l1z3,l1 , σ2(1− ρ23,l1))N(z
−z3,l1
1:2 |ρ2,l0z3,l1 , σ2(1− ρ22,l0))N(z3,l,1|0, σ2)

=
2∑

l1=1

w3,l1N((z3, z
−z3,l1
1:2 )|m3,l1z3,l1 ,V3,l1)N(z3,l1|0, σ2)

where m3,l1 = (ρ3,l1 , ρ2,l0)
>, and V3,l1 =

(
σ2(1−ρ23,l1 ) 0

0 σ2(1−ρ22,l0 )

)
. The last equality follows

from the fact that a product of conditionally independent Gaussian densities is a Gaussian

density.

Making use of the properties of the Gaussian distribution and the model property that

has a stationary marginal N(0, σ2), for each l1, we have that

N(z̃1:3,l1 |0, σ2R3,l1) = N((z3, z
−z3,l1
1:2 )|m3,l1z3,l1 ,V3,l1)N(z3,l1|0, σ2),

where z̃1:3,l1 = (z3, z
−z3,l1
1:2 , z3,l1)

>, with the following partition relevant to the vector z̃1:3,l1 ,

z̃1:3,l1 =

(z3, z
−z3,l1
1:2 )>

z3,l1

 , E(z̃1:3,l1) =

0

0

 , R3,l1 =

R(11)
3,l1

R
(12)
3,l1

R
(21)
3,l1

R
(22)
3,l1

 ,

where R
(22)
3,l1

= 1. It follows that

m3,l1z3,l1 = E((Z3, Z̃
−Z3,l1
1:2 ) |Z3,l1 = z3,l1) = R

(12)
3,l1

z3,l1 , V3,l1 = σ2(R
(11)
3,l1
−R(12)

3,l1
R

(21)
3,l1

).

(2)

From Equation (2), we obtain m3,l1 = R
(12)
3,l1

and R3,l1 =

(
1 ρ2,l0ρ3,l1 ρ3,l1

ρ2,l0ρ3,l1 1 ρ2,l0
ρ3,l1 ρ2,l0 1

)
for l1 =
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1, 2. Then we reorder z̃1:3,l1 with a matrix B3,l1 such that z1:3 = B3,l1 z̃1:3,l1 . It follows that

Ω3,l1 = B3,l1R3,l1B
T
3,l1

, and the joint density is

p(z1:3) =
2∑

l1=1

w3,l1N(z1:3|0, σ2Ω3,l1) =
2∑

l1=1

w3,l1w2,l0N(z1:3|0, σ2Ω3,l1l0),

since w2,l0 = 1 and l0 = 1.

Similarly, the joint density of z1:4 is given by

p̃(z1:4) = p4(z4|z1:3)p̃(z1:3)

=
3∑

l2=1

w4,l2N(z4|ρ4,l2z4,l2 , σ2(1− ρ24,l2))
2∑

l1=1

w3,l1N(z1:3|0, σ2Ω3,l1l0)

=
3∑

l2=1

2∑
l1=1

w4,l2w3,l1N(z4|ρ4,l2z4,l2 , σ2(1− ρ24,l2))

N(z
−z4,l2
1:3 | Ω̃(12)

3,l1l0
z4,l2 , σ

2(Ω̃
(11)
3,l1l0
− Ω̃

(12)
3,l1l0

Ω̃
(21)
3,l1l0

))N(z4,l2|0, σ2)

=
3∑

l2=1

2∑
l1=1

w4,l2w3,l1N((z4, z
−z4,l2
1:3 )|m4,l2l1z4,l2 ,V4,l2l1)N(z4−l2|0, σ2).

Similarly, we have that for l1 = 1, 2, l2 = 1, 2, 3,

N(z̃1:4,l2|0, σ2R4,l2l1) = N((z4, z
−z4,l2
1:3 )|m4,l2l1z4,l2 ,V4,l2l1)N(z4−l2|0, σ2),

and

Ω̃3,l1l0 = B̃4,l2Ω3,l1l0B̃
>
4,l2
, z̃1:4,l2 = (z4, z

−z4,l2
1:3 , z4,l2)

>, m4,l2l1 = (ρ4,l2 , (Ω̃
(12)
3,l1l0

)>)>,

V4,l2l1 =

σ2(1− ρ24,l2) 0T

0 σ2(Ω̃
(11)
3,l1l0
− Ω̃

(12)
3,l1l0

Ω̃
(21)
3,l1l0

)

 ,

R
(12)
4,l2l1

= (R
(21)
4,l2l1

)> = m4,l2l1 , R
(11)
4,l2l1

= V4,l2l1/σ
2 +m4,l2l1m

T
4,l2l1

,

where B̃4,l2 is a rotation matrix such that ((z
−z4,l2
1:3 )>, z4,l2)

> = B̃4,l2z1:3, so that Ω̃
(22)
3,l1l0

corresponds to z4,l2 . Then we reorder z̃1:4,l2 with a matrix B4,l2 such that z1:4 = B4,l2 z̃1:4,l2 .
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It follows that Ω4,l2l1l0 = B4,l2R4,l2l1B
T
4,l1

. Then we can obtain the joint density for z1:4,

p̃(z1:4) =
3∑

l2=1

2∑
l1=1

w4,l2w3,l1w2,l0N(z1:4|0, σ2Ω4,l2l1l0).

Applying the above technique iteratively for p̃(z1:j) for 5 ≤ j ≤ k, we obtain the joint

density p̃(z1:k) ≡ p̃(zS), for k ≥ 2, namely,

p̃(z1:k) =

kL∑
lk−2=1

· · ·
2∑

l1=1

wk,lk−2
. . . w3,l1w2,l0N(z1:k|0, σ2Ωk,lk−2...l1l0)

where kL := (k − 1) ∧ L, w2,l0 = 1, Ω2,l0 =
(

1 ρ2,l0
ρ2,l0 1

)
, and for k ≥ 3,

Ω̃k−1,lk−3...l1l0 = B̃k,lk−2
Ωk−1,lk−3...l1l0B̃k,lk−2

, mk,lk−2...l1 = (ρk,lk−2
, (Ω̃

(12)
k−1,lk−3...l1l0

)>)>,

Vk,lk−2...l1 =

σ2(1− ρ2k,lk−2
) 0

0T σ2(Ω̃
(11)
k−1,lk−3...l1l0

− Ω̃
(12)
k−1,lk−3...l1l0

Ω̃
(21)
k−1,lk−3...l1l0

)

 ,

R
(12)
k,lk−2...l1

= (R
(21)
k,lk−2...l1

)> = mk,lk−2...l1 , R
(11)
k,lk−2...l1

= Vk,lk−2...l1/σ
2 +mk,lk−2...l1m

>
k,lk−2...l1

,

Ωk,lk−2...l1l0 = Bk,lk−2
Rk,lk−2...l1B

T
k,lk−2

,

where B̃k,lk−2
is the rotation matrix such that ((z

−zk,lk
1:(k−1))

>, zk,lk)> = B̃k,lk−2
z1:(k−1), and

Bk,lk−2
is the rotation matrix such that the vector z1:k = Bk,lk−2

z̃1:k,lk−2
, where z̃1:k,lk−2

=

(zk, (z
−zk,lk
1:(k−1))

>, zk,lk)>.

To complete the proof, what remains to show is that the density p̃(zU1) is a mixture of

multivariate Gaussian distributions, where U1 = S ∪{u}. We have that

p̃(zU1) =
L∑
l=1

wlN(z(u) | ρu,lz(u(l)), σ
2(1− ρ2u,l))p̃(z1:k),

where z(u(l)) is an element of z1:k for l = 1, . . . , L. We can express each component density

N(z1:k|0, σ2Ωk,lk−2...l1l0) of the joint density p̃(z1:k) as the product of a Gaussian density of

Z
−Z(u(l))

1:k conditional on Z(u(l)) and a Gaussian density of Z(u(l)). Using the technique

in deriving the joint density over S, we can show that p̃(zU1) is a mixture of multivariate

Gaussian distribution.
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Proof of Proposition 4. For an NNMP Z(v), the conditional probability that Z(v) is

greater than z given its neighbors ZNe(v) = zNe(v), where zNe(v) = (zv(1)
, . . . , zv(L)

), is

P (Z(v) > z |ZNe(v) = zNe(v)) =
L∑
l=1

wl(v)P (Z(v) > z |Z(v(l)) = z(v(l))),

where the conditional probability P (Z(v) > z |Z(v(l)) = z(v(l))) corresponds to the bivari-

ate random vector (Ul, Vl). If Ul is stochastically increasing in Vl for all l, by the assumption

that the NNMP model is built from base random vectors (Ul, Vl), we have that Z(v) is

stochastically increasing in ZNe(v) for every v ∈ D, i.e.

p(Z(v) > z |ZNe(v) = zNe(v)) ≤ p(Z(v) > z |ZNe(v) = z′Ne(v))

for all zNe(v) and z′Ne(v) in RL, such that zv(l)
≤ z′v(l)

for all l.

Let FZ(v) and FZ(v(1)),...,Z(v(L)) be the distribution functions of Z(v) and ZNe(v), respec-

tively. Denote by SZ(v(1)),...,Z(v(L))(z1, . . . , zL) = P (Z(v(1)) > z1, . . . , Z(v(L)) > zL) the joint

survival probability. Then for every v ∈ D and q ∈ (0, 1),

P (Z(v) > F−1Z(v)(q) | Z(v(1)) > F−1Z(v(1))
(q), . . . , Z(v(L)) > F−1Z(v(L))

(q))

=

{∫ ∞
F−1
Z(v(1))

(q)

· · ·
∫ ∞
F−1
Z(v(L))

(q)

P (Z(v) > F−1Z(v)(q) | Z(v(1)) = z1, . . . , Z(v(L)) = zL)

dFZ(v(1)),...,Z(v(L))(z1, . . . , zL)

}/
SZ(v(1)),...,Z(v(L))(F

−1
Z(v(1))

(q), . . . , F−1Z(v(L))
(q))

≥
{∫ ∞

F−1
Z(v(1))

(q)

· · ·
∫ ∞
F−1
Z(v(L))

(q)

P (Z(v) > F−1Z(v)(q) | Z(v(1)) = F−1Z(v(1))
(q), . . . , Z(v(L)) = F−1Z(v(L))

(q))

dFZ(v(1)),...,Z(v(L))(z1, . . . , zL)

}/
SZ(v(1)),...,Z(v(L))(F

−1
Z(v(1))

(q), . . . , F−1Z(v(L))
(q))

= P (Z(v) > F−1Z(v)(q) | Z(v(1)) = F−1Z(v(1))
(q), . . . , Z(v(L)) = F−1Z(v(L))

(q))

=
L∑
l=1

wl(v)P (Z(v) > F−1Uv,l
(q) | Z(v(l)) = F−1Vv,l

(q)),

(3)

where the first inequality follows from the stochastically increasing positive dependence of

Z(v) given ZNe(v).
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Taking q → 1− on both sides of (3), we obtain

λH(v) ≥
L∑
l=1

wl(v) lim
q→1−

P (Z(v) > F−1Uv,l
(q) | Z(v(l)) = F−1Vv,l

(q)).

Similarly, we can obtain the lower bound for λL(v).

Proof of Corollary 1. We prove the result for λL(v). The result for λH(v) is obtained

in a similar way.

Consider a bivariate distribution FUl,Vl for random vector (Ul, Vl), with marginal dis-

tributions FUl
= FVl = Fl and marginal densities fUl

= fVl = fl, for all l. The lower tail

dependence coefficient is expressed as λL,l = limq→0+
FUl,Vl

(F−1
l (q),F−1

l (q))

FUl,Vl
(F−1

l (q))
with q ∈ [0, 1]. If

FUl,Vl has first order partial derivatives, applying the L’Hopital’s rule, we obtain

λL,l = lim
q→0+

∂FUl,Vl/∂Vl(F
−1
l (q), F−1l (q)) + ∂FUl,Vl/∂Ul(F

−1
l (q), F−1l (q))

fl(F
−1
l (q))

= lim
q→0+

P (Ul ≤ F−1l (q) | Vl = F−1l (q)) + lim
q→0+

P (Vl ≤ F−1l (q) | Ul = F−1l (q)).

The above is a reproduced result from Theorem 8.57 of Joe (2014). If (Ul, Vl) is exchange-

able, we have

λL,l = 2 lim
q→0+

P (Ul ≤ F−1l (q) |Vl = F−1l (q)).

If the sequences (Uv,l, Vv,l) of an NNMP model are built from the base random vectors

(Ul, Vl). By our assumption on (Ul, Vl), we have the marginal distributions of (Uv,l, Vv,l)

such that Fv,l = FUv,l
= FVv,l . Then we have

λL,l(v) = 2 lim
q→0+

P (Uv,l ≤ F−1v,l (q) |Vv,l = F−1v,l (q)).

Using the result of Proposition 4, we obtain

λL(v) ≥
L∑
l=1

wl(v) lim
q→0+

P (Uv,l ≤ F−1v,l (q) | Vv,l = F−1v,l (q)) =
L∑
l=1

wl(v)λL,l(v)/2.

Proof of Proposition 5. By the assumption that Ul is stochastically increasing in Vl
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and that (Uv,l, Vv,l) is constructed based on (Ul, Vl), Uv,l is stochastically increasing in Vv,l

for all v ∈ D and for all l. Then for Z(v) with respect to the bivariate distribution of

(Uv,l, Vv,l) with marginal distributions FUv,l
and FVv,l , we have that

P (Z(v) ≤ F−1Uv,l
(q) | Z(v(l)) ≤ F−1Vv,l

(q))

=

∫ F−1
Vv,l

(q)

F−1
Vv,l

(0)

P (Z(v) ≤ F−1Uv,l
(q) | Z(v(l)) = zl)dFVv,l(zl)

/∫ F−1
Vv,l

(q)

F−1
Vv,l

(0)

dFVv,l

≤
∫ F−1

Vv,l
(q)

F−1
Vv,l

(0)

P (Z(v) ≤ F−1Uv,l
(q) | Z(v(l)) = F−1Vv,l

(0))dFVv,l(zl)
/∫ F−1

Vv,l
(q)

F−1
Vv,l

(0)

dFVv,l

= P (Z(v) ≤ F−1Uv,l
(q) | Z(v(l)) = F−1Vv,l

(0)).

It follows that the boundary cdf of the NNMP model

F1|2(F
−1
Z(v)(q) | F

−1
ZNe(v)

(0))

= P (Z(v) ≤ F−1Z(v)(q) | Z(v(1)) = F−1Z(v(1))
(0), . . . , Z(v(L)) = F−1Z(v(L))

(0))

=
L∑
l=1

wl(v)P (Z(v) ≤ F−1Uv,l
(q) | Z(v(l)) = F−1Vv,l

(0))

≥
L∑
l=1

wl(v)P (Z(v) ≤ F−1Uv,l
(q) | Z(v(l)) ≤ F−1Vv,l

(q)),

(4)

Taking q → 0+ on both sides of (4), we obtain

F1|2(F
−1
Z(v)(0) |F−1ZNe(v)

(0)) ≥
L∑
l=1

wl(v)λL,l(v).

Hence, if there exists some l such that λL,l(v) > 0, the conditional cdf F1|2(F
−1
Z(v)(q) |F

−1
ZNe(v)

(0))

has strictly positive mass at q = 0. We can prove the result for F1|2(F
−1
Z(v)(q) | F

−1
ZNe(v)

(1))

in a similar way.

B Model details and MCMC implementation

In this section, we provide details of the models implemented in the data examples of the

paper. Based on the Gibbs sampler described in the paper, we focus on the posterior
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updates of the parameters associated with the component densities of the mixture.

B.1 GNNMP models

We consider the spatial regression model on observations

y(si) = x(si)
>β + z(si) + ε(si), i = 1, . . . , n,

where ε(si)
i.i.d.∼ N(0, τ 2), and the spatial random effect z(si) follows a GNNMP model,

namely, p1(z(s1) = N(z(s1) | 0, σ2), and for i = 2, . . . , n,

p(z(si) | zNe(si)) =

iL∑
l=1

wl(si)N(z(si) | ρl(si)z(s(il)), σ
2(1− ρl(si)2)),

where iL = L ∧ (i− 1), ρl(si) ≡ ρl(||si − s(il)||) = exp(−||si − s(il)||/φ).

Hierarchical representation of the model can written in the form of (12) of the paper. For

the weights, we consider an exponential correlation function with range parameter ζ for the

kernel function that defines the random cutoff points. The posterior updates of the weight-

relevant parameters can be found in Section 3.2 of the paper. We provide the posterior

updates for the component density parameters σ2, φ, and the spatial random effects z(si),

i = 1, . . . , n. We assign inverse gamma priors IG(σ2 |uσ2 , vσ2) and IG(φ |uφ, vφ) to σ2 and

φ, respectively.

The posterior full conditional distribution of σ2 is IG(σ2 |uσ2 +n/2, vσ2 +
∑n

i=1(z(si)−
ρ`i(si)z(s(i,`i)))

2/(2(1− (ρ`i(si))
2))). The posterior full conditional distribution of φ is pro-

portional to IG(φ |uφ, vφ)
∏n

i=2N(z(si) | ρ`i(si)z(s(i,`i)), σ
2
l (1−(ρ`i(si))

2)). We update φ on

its log scale with a random walk Metropolis step. Denote by A
(i)
j = {j : z(s(j,`j)) = z(si)},

and assume ρl(s1) = 0, z(s(1,l)) = 0 for every l. The posterior full conditional of the latent

spatial random effects z(si) is N(z(si) | σ̃2
i µ̃i, σ̃

2
i ) where σ̃2

i = (τ−2 +σ−2(1− (ρ`i(si))
2)−1 +∑

j:j∈A(i)
j
s̃−2ij )−1 and µ̃i = τ−2(y(si) − x(si)

>β) + σ−2(1 − (ρ`i(si))
2)−1ρ`i(si)z(s(i,`i)) +∑

j:j∈A(i)
j
z(sj)(ρ`j(sj))

−1s̃−2ij with s̃2ij = σ2(1− (ρ`j(sj))
2)/(ρ`j(sj))

2, for i = 1, . . . , n.
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B.2 Skew-GNNMP models

Consider a location mixture of bivariate Gaussian distribution for Z = (U, V ), namely,

N(z | λz012, σ
2R), z0 ∼ N(z0 | 0, 1)I(z0 ≥ 0), (5)

where R =
(
1 ρ
ρ 1

)
. Marginalizing out z0, we obtain the joint density of Z,

f(z) = 2N(z | 0,Σ)Φ(λ(1− λ21>2 Σ−112)
−1/21>2 Σ−1z),

where Σ = σ2R + λ2121
>
2 . The marginal distribution of Z is a skew-Gaussian dis-

tribution, denoted as SN(x | 0, ω2, α) with ω2 = λ2 + σ2 and α = λ/σ, with density

f(x) = 2N(x | 0, ω2)Φ(αx/ω), and E(X) =
√

2/πλ, where Φ is the cdf of a standard

Gaussian distribution. The conditional density of U given V = v is then given by

fU |V (u | v) = N(u | ρ̃v, ω2(1− ρ̃2))Φ(α′(u+ v)/ω′)/Φ(αv/ω), (6)

where ρ̃ = (ρσ2 + λ2)/(σ2 + λ2), α′ = λ/s, ω′2 = s2 + 2λ2 and s2 = (1 + ρ)σ2.

The skew-GNNMP is obtained by using (6) as the component fv,l of the mixture, and

making the correlation ρ spatially varying with an exponential correlation function such

that ρl(v) ≡ ρl(||v − v(l)||) = exp(−||v − v(l)||/φ), for l = 1, . . . , L.

To facilitate computation, we use conditional likelihood inference. That is, based on

observations y(si), i = 1, . . . , L, we have that

y(si) | yNe(si)
ind.∼

L∑
l=1

bsi,lN(y(si) | ρ̃l(si)y(s(il)), ω
2(1− (ρ̃l(si))

2))1(r∗si,l−1,r
∗
si,l

)(ti),

ti | γ, κ2
ind.∼ N(ti | γ0 + γ1si1 + γ2si2, κ

2),

for i = L + 1, . . . , n, where bsi,l = Φ(α′si,l(y(si) + y(s(il)))/ω
′
si,l

)/Φ(λy(s(il))/(σ
√
σ2 + λ2)),

ρ̃l(si) = (ρl(si)σ
2 + λ2)/(σ2 + λ2), α′si,l = λ/

√
(1 + ρl(si))σ2, ω′2si,l = 1 + (ρl(si))

2σ2 +

2λ2, and si1, si2 are the first and the second coordinates of si. The transformed cutoff

points r∗si,l = log(rsi,l/(1 − rsi,l)) where rsi,l is specified using an exponential correla-

tion function exp(−||si − s(il)||/ζ). We complete the Bayesian model with prior specifi-

cations for λ, σ2, φ, ζ,γ, κ2. In particular, we consider priors N(λ |µλ, σ2
λ), IG(σ2 |uσ2 , vσ2),
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IG(φ |uφ, vφ), IG(ζ |uζ , vζ), N(γ |µγ,Vγ) and IG(κ2 |uκ2 , vκ2).
The posterior updates of the weight-relevant parameters are provided in Section 3.2 of

the paper. We present the posterior updates of λ, σ2 and φ. These updates are facilitated

with a set of configuration variables `i such that `i = l if ti ∈ (r∗si,l−1, r
∗
si,l

) for i ≥ L +

1. Denote by fsi,l = bsi,lN(y(si)ρ̃l(si)y(s(il)), ω
2(1 − (ρ̃l(si))

2)). We use a random walk

Metropolis step to update λ with target density N(λ |µλ, σ2
λ)
∏n

i=L+1 fsi,`i . The posterior

full conditional distributions of σ2 and φ are proportional to IG(σ2 |uσ2 , vσ2)
∏n

i=L+1 fsi,`i ,

and IG(φ |uφ, vφ)
∏n

i=L+1 fsi,`i , respectively. For each parameter, we update it on its log

scale with a random walk Metropolis step.

Turning to the prediction. We generate predictions based on the skew-Gaussian’s lo-

cation mixture representation in (5). For a location v0 ∈ D outside the reference set, the

predictive distribution p(y(v0) |yNe(v0)) is

L∑
l=1

wl(v0)

∫
N(y(v0) | (1− ρl(v0))λz0 + ρl(v0)y(v(0l)), σ

2(1− (ρl(v0))
2))TN(z0 |µ0l, τ

2
0 )dz0,

with µ0l = λy(v(0l))/(λ
2 + σ2) and τ 20 = σ2/(λ2 + σ2). We denote TN(· |µ0, τ

2
0 ) as the

Gaussian distribution truncated at [0,∞), with mean µ0 and variance τ 20 . If v0 ≡ si is in

the reference set, we replace L with iL in the above predictive distribution.

B.3 Copula NNMP models

B.3.1 The Gaussian and Gumbel copula

We consider a bivariate vector (X1, X2) with marginal distributions F1 and F2 such that

F1(x1) = t1 and F2(x2) = t2. We introduce basic properties of the Gaussian and Gumbel

copulas. For more details we refer to Joe (2014).

Gaussian copula A Gaussian copula with correlation ρ ∈ (0, 1) for (X1, X2) is C(t1, t2 |
ρ) = Φ(Φ−1(t1) + Φ−1(t2)). The copula is asymptotically independent in both the lower

and the upper tails. The corresponding copula density is given by:

1√
1− ρ2

exp

(
2ρΦ−1(t1)Φ

−1(t2)− ρ2(Φ−1(t1)2 + Φ−1(t2)
2)

2(1− ρ2)

)
. (7)
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We obtain the spatial varying Gaussian copula Cv,l by replacing the correlation parameter

ρ in (7) with ρl(v) ≡ ρl(||v − v(l)||) = exp(−||v − v(l)||/φ).

Denote by C1|2(t1 | t2) the conditional cdf of T1 given T2 = t2. Then we have

C1|2(t1 | t2) =
∂C(t1, t2)

∂t2
= Φ

(
Φ−1(t1)− ρΦ−1(t2)√

1− ρ2

)
.

We sample X1, given X2 = x2, with the following steps. Given a realization x2 of X2, we

compute t2 = F2(x2). We then generate a random number z from a uniform distribution on

[0, 1], and compute t1 = C−11|2(z | t2) where C−11|2(z | t2) = Φ
(√

(1− ρ2)Φ−1(z) + ρΦ−1(t2)
)

is the inverse of C1|2(t1 | t2). Finally, we obtain x1 from the inverse cdf F−11 (t1).

Gumbel copula Let u1 = − log(t1) and u2 = − log(t2). A Gumbel copula with param-

eter η ∈ [1,∞) is C(t1, t2 | η) = exp(−((− log(t1))
η + (− log(t2))

η)1/η). It is asymptotically

independent in the lower tail and asymptotically dependent in the upper tail with tail

dependence coefficient 2− 21/η. The corresponding copula density is

exp(−(uη1 + uη2)
1/η)((uη1 + uη2)

1/η + η − 1)(uη1 + uη2)
1/η−2(u1u2)

η−1(t1t2)
−1. (8)

We obtain the spatially varying Gumbel copula by taking the link function for η in (8)

such that ηl(v) ≡ ηl(||v − v(l)||) = min{(1− exp(−||v − v(l)||/φ))−1, 50}, where the upper

bound 50 ensures numerical stability.

The Gumbel copula can be written as C(u1, u2 | η) = exp(−(uη1 + uη2)
1/η), which is a

bivariate exponential survival function, with marginals corresponding to a unit rate expo-

nential distribution. Then the conditional cdf of T1 given T2 = t2 is

C1|2(t1 | t2) = C1|2(u1 |u2) = u−12 exp(−(uη1 + uη2)
1/η)(1 + (u1/u2)

η)1/η−1.

The inverse conditional cdf C−11|2(· | t2) does not have a closed form. To generate X1 given

X2 = x2, following Joe (2014), we first define y = (uη1 + uη2)
1/η. Then we have a realization

of X1, say x1 = (yη0 − u
η
2)

1/η, where y0 is the root of h(y) = y + (η − 1) log(y)− (u2 + (η −
1) log(u2)− log z) = 0, where y ≥ u2, and z is a random number generated from a uniform

distribution on [0, 1].
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B.3.2 The model and inference

Given observations y(si), i = 1, . . . , n, we conduct conditional likelihood inference based

on (y(s1), . . . , y(sL)). The copula NNMP model with stationary marginal fY = Ga(a, b),

and with a set of latent variables ti, is given by

y(si) | yNe(si)
ind.∼

L∑
l=1

csi,l(y(si), y(s(il)))fY (y(si))1(r∗si,l−1,r
∗
si,l

)(ti),

ti | γ, κ2
ind.∼ N(ti | γ0 + γ1si1 + γ2si2, κ

2),

for i = L + 1, . . . , n. We denote csi,l as the copula density associated with the copula

Csi,l for the component bivariate vector (Usi,l, Vsi,l). In either case of Csi,l (a spatially

varying Gaussian copula or a spatially varying Gumbel copula), there is an associated

copula parameter φ. The transformed cutoff points r∗si,l = log(rsi,l/(1 − rsi,l)) where rsi,l

is specified using an exponential correlation function exp(−||si − s(il)||/ζ). We complete

the Bayesian specification by assuming a ∼ Ga(ua, va), b ∼ Ga(ub, vb), φ ∼ IG(uφ, vφ),

IG(ζ |uζ , vζ), N(γ |µγ,Vγ) and IG(κ2 |uκ2 , vκ2).
The posterior updates of the weight-relevant parameters are provided in Section 3.2

of the paper. We provide the updates for parameters (a, b, φ). Let `i be a configura-

tion variable such that `i = l if ti ∈ (r∗si,l−1, r
∗
si,l

) for i ≥ L + 1. Denote by fsi,l =

csi,l(y(si), y(s(il)))fY (y(si)). The posterior full conditional distributions for parameters

a, b and φ are proportional to IG(a |ua, va)
∏n

i=L+1 fsi,`i , IG(b |ub, vb)
∏n

i=L+1 fsi,`i , and

IG(φ |uφ, vφ)
∏n

i=L+1 csi,l(y(si), y(s(il))), respectively. Each parameter is updated on its log

scale with a random walk Metropolis step.
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