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Abstract

The availability of powerful computing resources has led scientists to increasingly utilize
simulation as a research tool. The statistical analysis of simulations, referred to as computer
experiments, has similarly grown. Gaussian Process (GP) models have proven themselves
exceptionally useful in this domain and have become a standard methodology for emulation
of simulator response. However, with moderately large training data, GP’s require careful
implementation to scale appropriately. There are a number of reasonable emulation methods
available from ready to use software packages. In this paper we compare four such models:
BASS; BART; SEPIA; and RobustGaSP, by applying them to high-resolution hurricane in-
undation (flooding) data obtained from the Sea, Lake, and Overland Surges from Hurricanes
(SLOSH) simulator. Both SEPIA and RobustGaSP are based on Gaussian Process modeling,
while BASS implements a model based on adaptive splines, and BART is based on sums of
regression trees. We will describe the modeling strategies implemented in these four packages,
which run on R and Python, and then compare them in terms of computation time and a
variety of predictive metrics. The four models included in this comparison study were chosen
for their proven and distinct methodologies, their availability through easily accessible soft-
ware, and their ability to quantify prediction uncertainty in the context of our application.
The data in our case study form a large spatial grid with millions of response values. We
find that SEPIA and RobustGaSP provide exceptional predictive power, but cannot scale to
accommodate computer experiments as large as the one considered in this paper as effectively
as BASS and BART.

1. Introduction.

1.1. Background. The study of complex physical systems is often limited by the acqui-
sition of experimental data which can be expensive or even impossible to gather in many
fields. As a result, scientists turn to simulation to supplement experimental data, to gain un-
derstanding, and to make predictions (Sacks et al., 1989). Aided by advances in computing,
simulators based on mathematical models of physical processes have become a fundamental
tool to obtain scientifically motivated representations of a system of interest. Simulators de-

pend on a number of inputs (parameters) that control their behavior. We refer to the set
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of all possible input values as the parameter space. To obtain a realistic description of the
system, and a good understanding of the simulator’s capabilities, we must analyze simulation
output at collections of points in the parameter space.

Computer simulations do not completely remedy the challenges associated with experimen-
tal data. The information that can be obtained from simulations is limited by the feasibility
of running the simulation at a given point in the parameter space. Depending on the sys-
tem of interest, simulations can take hours or even days to run for a given combination of
parameter values. This may make it impossible to do an exhaustive direct exploration of the
space, a problem that is compounded as the parameter space increases in size or dimension.
A variety of examples can be found in Sacks et al. (1989). Additionally, simulators are often
deterministic, which typically means that the primary source of uncertainty when running the
simulator is parameter uncertainty. Statistical models of these computer simulations, referred
to here as emulators, are designed to solve these problems.

A seminal work in the literature of computer experiments (Sacks et al., 1989) showed how
a Gaussian Process could be used to build a predictor with uncertainty quantification. GP’s
became and remain a common approach for emulating computer simulations with a vast lit-
erature encompassing a variety of approaches. The main purpose of an emulator is to provide
predictions at untried parameter settings with an estimate of the associated uncertainty, and
to do it much faster than running the actual computer simulation (Salter and Williamson,
2016a). GP’s are therefore very desirable for their predictive power and straightforward uncer-
tainty quantification. They are however not always practical; Gaussian Processes are limited
by the computational bottleneck of covariance matrix inversion which limits applicability to
large data. Many recent methods such as LaGP (Gramacy and Apley, 2015), TGP (Gramacy
and Lee, 2008), GPvecchia (Katzfuss and Guinness, 2021), and RobustGaSP (Gu et al., 2017)
aim to tackle this scalability issue. More recently, competitive alternatives to GP’s have been
proposed such as BASS (Francom and Sansé, 2020) which implements an adaptive spline
model, and BART (Sparapani et al., 2021) which uses additive regression trees. These meth-
ods similarly provide accurate prediction with simple uncertainty quantification and often a
smaller computational footprint.

The analysis presented here will compare four emulation methods on simulated hurri-
cane induced flooding in the Delaware Bay. The simulator considered in this study allows
researchers to learn about hurricane flood risk to critical infrastructure on an accelerated
timeline, and explore different hurricane scenarios by changing the simulation parameters.
The comparison here is motivated by the need for emulation in further analysis based on this
model, as well as potential similar future models.

The goals of this study are to quantify the accuracy of predictions and understand the
computational requirements of each method for a range of training set sizes. In doing so, we
aim to understand how training set size effects predictions and run time. Additionally we
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will compare the variable importance options given by each method. Investigating variable
importance for hurricane flooding models helps researchers understand which qualities of a
hurricane or a particular area are most influential in determining inland flooding. Some
emulators allow for spatially resolved variable importance and variance-based assessment of
importance (e.g., via the Sobol decomposition (Sobol, 2001)), which both benefit analyses
involving highly multivariate emulators.

The remainder of the paper is structured as follows: In Section 1.2 we give a brief overview
of the four methods included in our study and explain why they were chosen; Section 2 is
an overview of the simulations from SLOSH; Section 3 describes of each of the four emulator
formulations; Section 4 presents our comparison study, highlighting a variety of predictive
metrics and scores; Section 5 gives an overview of the variable importance built into each
package; and we conclude with a discussion of our findings and recommendations to the
reader in Section 6.

1.2. Emulation Methods. The emulation methods we have chosen implement very dif-
ferent statistical models, all of which have proven themselves a reasonable choice for similarly
structured spatial data. We will consider two GP based models, SEPIA (Gattiker et al.,
2020b) and RobustGaSP; SEPIA fits a collection of independent GP models to coefficients
of an orthogonal basis representation of the simulation response data, while RobustGaSP im-
plements a Many Single approach, fitting an independent GP to each spatial location. We
also include the two non-GP based models mentioned above; BASS and BART. These four
models cover some diverse modeling strategies, but in no way cover the full spectrum of em-
ulation methodologies. While recognizing the limitations of only considering four models, we
would like to highlight the fact that this study customized implementation and computation
appropriately for each method for the application, an approach that represents a significant
investment in investigator and computational resources compared to a investigation based on
relatively limited customization and tailored test problems. Emulator comparisons have been
done in the past, often comparing on a host of test functions with relatively small amounts
of data, or focusing on parameter calibration rather than strictly emulation (e.g. Salter and
Williamson (2016b), Erickson et al. (2018)). The comparison here is motivated by the re-
quirements of this application which poses particular problems that are relevant to spatial
environmental modeling. What we present is a comparison which focuses only on a few mod-
els in greater detail, in an application driven big-data setting. This, to our knowledge, is not
prevalent in the literature.

The first of the four methods that we consider in this paper is the Simulation Enabled
Prediction Inference and Analysis (SEPIA) software that implements the Gaussian process
model described in Higdon et al. (2008). This model was originally implemented at Los Alamos
National Laboratory as the MATLAB code GPMSA (Gattiker et al., 2020a) and in 2020 was

refurbished and translated to python as SEPIA. SEPIA makes use of a basis representation,
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typically empirical orthogonal functions (EOF) (also known as principle components analysis),
of the data to fit a Gaussian process to each of the basis coefficients. This is a tried and
true methodology for spatial modeling that has seen much success in the literature and in
applications.

Our implementation of Bayesian Adaptive Spline Surfaces (BASS) similarly makes use of
a basis representation, but takes a wholly different approach to modeling basis coefficients by
using adaptive splines. BASS has been recently applied to large spatial data from computer
experiments and has shown great results (see, for example, Francom et al., 2019).

The implementation considered in this work of Bayesian Additive Regression Trees (BART)J]
once again makes use of a basis representation where each basis coefficient is fit using an inde-
pendent BART model. The BART package does not inherently manage multivariate response
through basis representation (as in SEPIA and BASS), and so we extend the functionality
by explicitly supplying an EOF basis. The BART model fits the EOF weights and the pre-
dictions are expanded into the native space. This allows a more direct comparison to other
methods. We have explored this implementation in the past (Francom et al., 2020). Treed
models have seen success in the literature for their speed and flexibility, and BART has proven
to be effective in settings similar to the one considered in this paper, such as a recent analysis
of airborne particulate data over California (Zhang et al., 2020). Preliminary comparisons
of BASS and BART in Francom et al. (2019) showed that both approaches can be highly
accurate and efficient.

The fourth method considered in this work consists of Robust Gaussian Stochastic Process
Emulation (RobustGaSP) which handles multivariate response by fitting a GP to each point
in space, rather than reducing the modeling dimension through a linear projection as the other
methods in this comparison. This is made computationally feasible by both parallel compu-
tation, and the assumption of shared range parameters for all GP’s. RobustGaSP does not
make use of Markov-chain Monte Carlo (MCMC) for model fitting like the other three models.
Instead parameters are fit using numerical optimization of marginal posterior distributions.
These major model differences make this an interesting inclusion to our comparison study.
RobustGaSP has also shown promising results on large scale computer model emulation of
large volcanic flow simulations (Gu and Berger, 2016).

Additionally, we include a simple linear model on the coefficients of an orthogonal basis
representation as a baseline to gauge the improvements provided by these complex models.

The models considered in this paper all show accurate predictions using quite different
methodologies. We will give a more detailed description of each model in Section 3.

2. Simulator and Dataset. The Sea, Lake, and Overland Surges from Hurricanes (SLOSH)J]
simulator (Jelesnianski et al., 1992) is a computer code developed by the National Weather
Service to estimate storm surge heights from hurricanes. Storm surge height is defined as the

maximum water height due to a hurricane at any single location. Our data consists of an
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ensemble of 4,000 runs from the SLOSH simulator, corresponding to 4,000 simulated storms.

Fach storm in the ensemble is defined by a unique set of five input parameters:

sea level rise in the year 2100 (lower: -20; upper: 350; units: cm)

heading of the eye of the storm when it made landfall (lower: 204.0349; upper:
384.0244; units: degrees, north is 0/360)

velocity of the eye of the storm when it made landfall (lower: 0; upper: 40; units:
knots)

minimum air pressure of the storm when it made landfall (lower: 930; upper: 980;
units: millibars)

latitude of the eye of the storm when it made landfall (lower: 38.32527; upper:
39.26811; units: degrees)

Input parameters for the ensemble use a space-filling Latin hypercube design over our five

dimensional parameter space. Models are trained on subsets of this ensemble and tested on

storms outside of the training sets.

Hurricane Storm Surge Simulation in
the Delaware Bay

I D. Francom . O

Power stations

Figure 1: Surge output map from SLOSH
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Our interest lies in prediction of hurricane-induced flooding in the Delaware Bay. Under
our model setup, one output from SLOSH is a 4,520x5,115 grid of storm surge heights for
each of the 23,119,800 locations. Figure 1 presents a spatial map of SLOSH output for a given
combination of input parameters. This large number of spatial locations presents a formidable
computational challenge which is fortunately eased by the fact that the majority of the points
on the grid are far enough inland that there is no flooding for any of the 4,000 simulations.
By modeling only cells which take non-zero values in at least one of the simulations we reduce
the size of the field to 3,500,000 locations.

Accurate prediction of flooding is important for a variety of reasons including displacement
of residents, and property/infrastructure damage. One area of specific interest for this project
is possible damage to infrastructure, specifically power stations displayed as black dots in
Figure 1. Power stations in this area are often fortified to handle four feet of flood water, any
more can lead to catastrophic damage. We are therefore interested in the emulators’ ability
to accurately predict that a surge has reached four feet, as this information is very valuable
for determining if an intervention (station shut down) is necessary due to an incoming storm.

We will discuss predictions around this threshold of four feet in more detail in Section 4.

3. Model Formulation. The emulation problem considered in this paper presents the
challenge of building emulators that are able to handle 4,000 runs from SLOSH, each with
ny = 3.5 X 105 response values. One very common approach to reduce the dimension of
a problem like this is to decompose the data into principal components (PCs; Ramsay and
Silverman (1997)) using a singular value decomposition (SVD). The output vector y(x) € R™
from one SLOSH run, corresponding to inputs € R? can be represented on a set of orthogonal
basis functions as Z;’il w;(x)b; where b; € R™ captures the spatial variation. By stacking
the output obtained from each of the m storms in the training set, we obtain the matrix
Y € R™*"™_ which we center by subtracting the mean storm. Yj; then corresponds to the
standardized output from storm i at location k. We compute SVD(Y) = UDVT where
U,V are orthogonal matrices and D is a diagonal matrix of singular values. V7 and UD
store the empirical w;(x) and b; respectively. We choose to truncate the sum at n,. principal
components, so that 99% of the variation in the data is captured by the basis representation.
The number of principal components used varies by training set. The smallest set with only 50
storms requires just n,. = 14 principal components while the largest set with 3,636 requires
npe = 24. The power of this decomposition comes from the fact that, rather than fitting
an emulator to all n, response values, we only need to fit n,. scalar response models to
the coefficients w;(x), which results in drastic computational savings. We utilize the identical
matrix decomposition when fitting BASS, BART, SEPIA, and the linear model. RobustGaSP
does not make use of this representation, as discussed. In Subsections 3.1-3.3 we will suppress

the subscript j for simplicity and refer to an arbitrary w;(x) as w(x).
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3.1. Simulation Enabled Prediction and Inference (SEPIA). SEPIA is a python code
developed by Jim Gattiker, Natalie Klein, Grant Hutchings and Earl Lawrence at Los Alamos
National Laboratory (Gattiker et al., 2020b) and implements the model described in Higdon
et al. (2008), with extensions. Here we use the emulator component only, without SEPIA’s
full model calibration functionality. By utilizing the orthogonal basis representation described
above, a Gaussian process is fit to each basis function coefficient w(x).

(3.1) w(x) ~ GP(0,X); X =021 + O'iC

where Cj; = exp{—% P Bi(zki — ®y;)?} is the matrix obtained by applying the negative
exponential squared (“Normal kernel”) correlation function to each pair of inputs, which is
parameterized by length scale 3. 3 incorporates process variance JI% and includes a noise
process with variance ¢2. This is a Bayesian model with priors on [3,03,0%. For a full
model specification including discussion of priors, refer to Higdon et al. (2008). The resulting

posterior distributions are explored via MCMC.

3.2. Bayesian Adaptive Spline Surfaces (BASS). BASS is an R package to fit Bayesian
adaptive spline surfaces (Francom and Sansé, 2020). It implements a Bayesian version of
multivariate adaptive regression splines (Friedman, 1991). Similar to the approach we took
with SEPIA, we make use of a basis representation for the SLOSH output. BASS models each

w(x) as
M

(3.2) w(@) = a0+ 3 amZum(@) + (), e(@) ~ N(0,0%)
m=1

where ag, a1, ...,ap; are constants and Z1, ..., Zy; are basis functions learned from the data.
The basis functions have the form

Knm
(3.3) Zm(x) = H Grem [Skem max(0, Ty, — tkm)]*

k=1
where sk, € {—1, 1} is the sign, tx,, € [0, 1] is a knot, vy, selects a covariate, K, is the degree
of interaction and grm = [(Skm + 1)/2 — Skmtrm|® is a constant that makes the basis function
have a maximum of one. The exponent « defines the degree of the polynomial splines. Note
that variables can only be used once in each basis function.

To fit this model we need to estimate 8 = {0? M,a,K,s,t,v}. This is done via a

reversible jump MCMC (RJMCMC) algorithm. For specifics on priors and the RIMCMC
algorithm see Francom and Sansé (2020).

3.3. Bayesian Additive Regression Trees (BART). BART is a treed model with strong
predictive power for non-linear responses. A recent example is the use of BART for spatial

modeling of ambient fine particulate matter pollution (PM_2.5) over California (Zhang et al.,
7
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2020). As detailed in Chipman et al. (2010), BART is a sum of trees model where scalar

output w(x) is approximated as

I

(3.4) w(z) =Y g(@|T;, M;) + ¢, €~ N(0,07)

i=1
where each T; is a regression tree that can incorporate one or more of the p inputs, corre-
sponding to main and interaction effects. A tree T utilizing x; C @ consists of a set of interior
nodes with binary decision rules, and a set of leaf nodes containing parameter estimates. Let
M = {p1,...,up} be the parameter estimates associated with the leaf nodes. The interior
decision rules are binary splits of the predictor space, either &; € A or x; ¢ A where A is a
subset of the range of &;. Then any fixed x} is assigned a p* by the function g(x|T', M) based
on the sequence of decision rules leading to a leaf node.

This additive structure endows BART with a high degree of flexibility when the number
of trees is large. This does however come at the price of complexity. BART needs to estimate
{(Th, My), ..., (Tr, My), 0} for I trees where T; and M; are not single parameters, but an entire
tree structure fit with a set of decision rules, and a set of terminal nodes respectively. A
backfitting MCMC algorithm is used for posterior sampling, which is designed to efficiently
sample the many parameters in the additive tree structure. As a result, BART provides great
flexibility with a relatively low computational cost. A key component of the model is a regu-
larization prior which forces the effect from each tree to be small. This prevents individual tree
effects from dominating the additive structure. Once posterior draws (17, M{), ..., (T}, M})
are available, predictions f* can be obtained as

I

(3.5) £ = gCITy M)

i=1
(Sparapani et al., 2021).

3.4. Robust Gaussian Stochastic Process Emulation (RobustGaSP). RobustGaSP (Gu
et al., 2017) is a GP-based method that avoids the use of the basis function representation
that we have used for SEPIA, BASS and BART. Also, unlike the other three models the
estimation procedure relies on marginal likelihood optimization rather than MCMC. This
has its drawbacks when it comes to uncertainty quantification as confidence bounds must be
estimated using distributional assumptions. On the other hand it avoids the iterative sampling
involved in MCMC, which incurs relatively large computational cost and memory footprint.

RobustGaSP implements a computationally feasibly alternative to the Many Single (MS)
emulation approaches (Conti and O’Hagan, 2010; Lee et al., 2011, 2012). Individual emulators
are fit to each coordinate of the output, which, in the context of our case study, consists of

ny independent Gaussian process emulators. Fach emulator has its own mean function and
8

This manuscript is for review purposes only.



268

280

286

variance, but they all share the same correlation parameters v = (y1,...,7y), which are
estimated from the joint marginal likelihood of all emulators (Gu and Berger, 2016).
Let i = 1,...,n, index the locations so that y;(x) denotes the scalar response at location

i with inputs «. y;(x) is modeled with the Gaussian Process
(36) Z/z(w) NGP(MZ'(:B):O'?C(CCNT/))?; L= 17---7k

where p;(x) is the location specific mean function, 01-2 the location specific variance, and
c(x, '), by default, is the product of p Matern 5/2 correlation functions, each with its own
range parameter v = (71,...,7p). Then for m runs of the simulator at inputs 1, ..., z,, we
have the multivariate likelihood

(3.7) (yi(@1), oos Yi (@) |15 07, B) ~ MVN ((fhizy s ooes L) 07 5)

where X is the correlation matrix obtained by applying ¢(x, ) to each pair of input vectors.
The mean function is modelled using a linear regression, ju;(x) = ZZL: 1 hu()6;, with basis func-
tions h;(x) = (hii(x), ..., hir(x)) and unknown regression parameters 6; = (6;1,...,6;). An
important aspect of this approach is the definition of the prior for the model parameters. This
consists of the product of a standard objective prior is for the mean and variance parameters
(Gu and Berger, 2016),

1
(3.8) 0y,...,0, ,0%,...,0% ) X —i—
" H?:yl 01'2

Y ny
and a jointly robust (JR) prior applied to the correlation parameters . This prior was
introduced in Gu (2018) and is called jointly robust because is cannot be written as the
product of marginal priors and its robust in marginal posterior mode estimation.

First consider reparameterizing to the inverse range parameters 5; = 1/v;,7 = 1,...,p.
Then the JR prior is defined as

(3.9) 7 (Br, .., Bp) = Co ( zp: Czﬁl>a exp { - b<§p: Czﬂz) },
=1 =1

(p—1)lpatr 7, C
T'(a+p)
default values for these parameters; a = 0.2, b = n~"?(a + p). The default values for C; are

where Cy = ,a>—(p+1), b >0 and C; > 0 are parameters. We use the
not clearly given in the documentation. As we will discuss in Section 5, this prior facilitates
the form of variable importance provided by the package.

The posterior distribution resulting from this model formulation is marginally optimized

to obtain parameter estimates.
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3.5. Linear Model (LM). For a baseline comparison, we include a simple linear model
on the EOF basis coefficients w(x) with the form

P
(3.10) w(@) =Y Bizi+e, e~N(0,07)

i=1
where 3 = (f1,...,5,) are unknown regression coefficients which we determine using the

function ”Im()” from base R (R Core Team, 2020).

4. Comparison Study. This section presents assessment of the four different emulators
on the basis of out-of-sample predictive accuracy and computational feasibility. Predictive
accuracy is assessed using scores including root-mean-squared error (RMSE), energy score, and
coverage. RMSE assesses the mean prediction, whereas the energy score and coverage assess
the uncertainty associated with predictions. We will organize our comparison of predictive
accuracy into two Subsections, one for assessing the accuracy of the mean, and the other
considering estimates to be used in uncertainty quantification. Our results will show that in
these metrics Gaussian Process based emulators (SEPIA and RobustGaSP) produce better
mean predictions, however they appear less accurate in their predicted uncertainty.

We would like to be able to train our models with as few storms as needed for accuracy,
while minimizing computation time and leaving more examples in the model test set. To
examine the impact of training set size for each emulator we consider seven different training
sets; 50, 100, 500, 1000, 1750, 2500, and 3636 storms. 3636 was chosen as the largest training
set size because it is the largest number that permits a testing set size of 10% of the training
set (364 testing storms). The largest training set was sampled randomly from the full 4000
storm ensemble, and subsequent training sets sampled randomly from this set of 3,636. While
randomly subsampling a space-filling design is not optimal, the same selection is used for each
emulator, affording fair comparison.

Our comparison study involves training each of the four emulators on each of the seven
training sets, and computing all prediction metrics on the testing set. All models are tested
on the same 364 storms. This allows estimation of the impact of training set size, and com-
parison of performance both within and between these training set sizes. Computation time
is compared across training set sizes revealing the scaling properties of each algorithm. Our
results underline an important and well known fact that Gaussian Process, while providing
exceptional predictive power, becomes prohibitive with large data-sets. This is evident in that
we were only able to fit SEPIA and RobustGaSP with a maximum of 1000 and 500 training
storms respectively. We will discuss this further in Section 4.3.

BASS, BART, and SEPIA all make use of MCMC for parameter estimation. For each
model we have chosen to collect 10,000 MCMC samples, and discard the first 9000 to eliminate
transient state (so-called “burn-in”). Because of the size of the spatial field, we thin the

remaining samples down to 50, driven by memory constraints on our computational resources.
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To fully appreciate the memory challenge, recall that our testing set is 364 storms. To generate
predictions using all 1000 posterior samples requires a double precision matrix of size (364 x
3,500,000 x 1000), which requires 10 terabytes of storage. We are limited on our platforms to
a more modest 500 gigabyte matrix resulting from the use of 50 samples. This is one of the
many challenges involving an application dataset of this size. We appreciate that given the
relatively small number of initial samples (10,000) and even smaller number retained samples
(50), there may be questions regarding the convergence and mixing of our initial chains, and
of how well the 50 samples represent the posterior distributions. These software packages do
not provide methods to quantify convergence or mixing, and it is infeasible for us (and in
general practice) to tackle this problem for each combination of emulator, training set, and
EOFs. The results should be viewed with the understanding that poor convergence/mixing
and issues due to small sample set are potentially present in predictive metrics of accuracy
and coverage. For a practitioner interested in assessing MCMC convergence, they may want
to pursue a thorough analysis of chains which we do not consider here. For those who require
this analysis, we would have to recommend reducing the computation by further reduction of
the spatial data to make investigation tractable.

The following Subsection will present results for a variety of predictive metrics which can
be used to compare the models.

4.1. Predictive Accuracy: Mean. In this section we will access the accuracy of mean
predictions from each emulator. For MCMC based models, this is the mean over our 50
posterior predictive samples and for RobustGaSP, the mean is returned to us by the package.
Our assessment will consider RMSE, mean absolute error (MAE), and our own loss function
designed specifically for flood risk analysis.

Figure 2a shows boxplots of RMSE for each emulation method and for each training set
size at which they were run. Samples in each correspond to the 364 test storms dataset.
As expected, RMSE is generally decreasing with training set size. The plots show diminish-
ing returns, with a reasonable conclusion that a training set size greater than 1000 runs is
unnecessary to achieve best performance in RMSE. Additionally, the figures show that that
methods utilizing Gaussian process, SEPIA and RobustGaSP, tend to have the lowest RMSE
at each training set size. Furthermore, they produce comparable RMSE to BASS trained on
the full 3,636 storms. BASS and BART produce fairly similar results, lagging behind SEPTA
and RobustGaSP, with BASS slightly outperforming BART. The results for MAE are very
similar to RMSE and are reported in the supplementary material.

In Section 2 we noted that a flooding threshold of four feet is of special interest. This
number has real implications in that many power stations are fortified to withstand this level
of flood water. ! Therefore, it is desirable for an emulator to correctly predict flood level above

!Different flood impact thresholds can be found in the literature. The four foot threshold is driven by our
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Figure 2: Predictive metrics for mean predictions by training set size.

four feet, a domain-relevant criterion for evaluation. We will evaluate this with standard em-
ulation methods, rather than creating an emulator to satisfy the application-specific loss. To
assess these emulators with respect to this feature, we consider the percentage of predictions
that correctly indicate that an intervention is needed, which we call the intervention accuracy.
To compute this metric for the mean prediction, we consider all cells in which the true SLOSH
output is greater than four feet, and determine the percentage of cells in which the prediction
is also greater than four feet. Figure 2b shows boxplots of our results where distributions are
over the 364 testing storms. We see that SEPTA and RobustGaSP performance is better than
BASS, BART, and the linear model at every training set size. Additionally, RobustGaSP with
only 500 training storms is able to achieve indistinguishable performance to BASS with the
full training set. SEPIA achieves a comparable performance with 1000 training storms. This
is further evidence that GP-based methods are able to provide better mean predictions with
less training data. This metric is especially interesting when viewed from a risk-management
perspective; With SEPTA and RobustGaSP, we are less likely to miss an important interven-

application context of US infrastructure planning, and is indicative of threshold-based evaluation of emulators.
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tion. There are a number of near zero values in Figure 2b which we found to be associated
with storms for which an especially low number of locations reached the four foot threshold.
One reason why this may result in low intervention accuracy is the smoothing associated with
prediction. Fewer locations above the four foot threshold likely means those locations reside
in smaller clusters which are more likely to be under-predicted due to smoothing effects.

4.2. Predictive Accuracy: Uncertainty. This section presents the results of predictive
metrics which take uncertainty into consideration: coverage probability, energy score, and
interval score.

4.2.1. Coverage. As all our emulators provide confidence intervals we are interested as-
sessing in their level of coverage. In Figure 3a we present coverage probability distributions
for a 95% interval over the 364 testing storms. Using the dashed red line at 0.95, we can see
that the linear model, SEPIA, and RobustGaSP all consistently over-cover. BART tends to
over-cover with small training sets and under-cover with larger training sets. BASS does the
opposite, but seems to be consistently closest to the true 95% coverage. We will now extend
our assessment of coverage by comparing the models using a score proposed in Gneiting and
Raftery (2007), the interval score.

The interval score for confidence level « is defined as

(4.1) Sl s z) = (u—1) + %(z oz <+ %(:ﬁ —uyi{z > u}.

Where [, u are the lower and upper bounds of the 1 — o confidence interval, and x is the true
data value. This is a negative oriented score that is minimized at the width of the interval.
The score then increases proportional to « if the true data value is outside the interval. This
score provides more insight than coverage probability by consciously favoring models with the
smallest possible intervals that still contain the data. In Figure 3b we present interval score
distributions over the 364 testing storms where each storms score is an average over scores for
each cell. BASS appears to be quite superior to the other emulators, while the linear model
performs poorly in comparison. For small training sets, BART seems to do almost as poorly
as the linear model, only catching up to SEPIA at 1000 training storms.

4.2.2. Energy Score. The energy score, a multivariate extension of the Continuous Rank
Probability Score (CRPS) is proposed in Gneiting and Raftery (2007). This score takes
into account not only the predictive accuracy of each sample from the posterior predictive
distribution, but also the level of uncertainty in the distribution. For this reason, the CRPS
and energy score have gained interest in recent literature as a model ranking mechanism
(Heaton et al. (2018), Moller et al. (2013), Muniain and Ziel (2020)). With m draws from the

posterior predictive distribution, ¥ = {}71, Yi, ..., ffm}, we compute the energy score as

~ 1 m ~ 1 m m ~ ~
(42 es(V,V) = SV =Yl = 55 >3 IIY il
j=1

j=1k=1
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Figure 3: Coverage Metrics

where Y is the true response.

Results from Subsection 4.1 indicate that Gaussian Process models might be superior in
terms of mean predictions. Interestingly, the energy score, which uses predictive samples
rather than the mean tends to favor the tree and spline based models over the GP based
models. So, while GP’s may provide very good mean predictions, results from this section
indicate that they may not provide competitive uncertainty quantification to BASS.

4.3. Computational Feasibility. Computation time is an important aspect of any com-
parison of emulators especially on large data sets where some methods are simply not feasible.
All of our models were built on a Los Alamos compute cluster 1.5TB node with 96 cores, 2
Xeon Platinum 8260 CPUs @ 2.40GHz, and 192GB of Dynamic RAM with the exception of
RobustGaSP at 500 training storms and SEPIA at 1000 training storms, which were run on
a similar but 3.4GHz node due to limits on clock run-time.

As expected, the baseline linear model is extremely fast and scales well but as shown above
performs poorly. We can see that BASS remains relatively fast and scales well over the range

of training set sizes, requiring a modest 1 minute of computation time to fit the full training
14
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Figure 4: Energy score by training set size

set of 3,636 storms. BART scales similarly, requiring about 5.5 minutes for the full training
set.

SEPIA and RobustGaSP scale relatively poorly. Both methods make use of Gaussian
process which is inherently O(n?) scaling, so these methods quickly become infeasible. Ro-
bustGaSP is the slowest of the four emulators, perhaps not surprising given the scope of the
optimization problem it is addressing, on the native response space.

Parallel MCMC chain approaches may be able reduce execution time for SEPIA by a
fixed factor admitting somewhat larger problems, but will not change the inherent scaling.
Fortunately for RobustGaSP and SEPIA, in this application we showed that 3,636 training
storms is not necessary to achieve near optimal predictive performance. We have seen that
RMSE for surge height, flood area, and flood volume all reach best performance with around

1000 training storms.

4.4. Application Specific Metrics. We also considered application-specific flooding and
risk analysis related metrics which can be found in the supplementary materials. Specifically,
we looked at predictions for the area and volume of catastrophic flooding, where area is defined
as the number of land cells with greater than four feet of flood water, and volume is defined
as the total water depth summed over all catastrophically flooded locations. We did not
find our results to add a significant amount of information regarding the emulator methods
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directly to our already rich comparison. To illustrate our point, we provide one example here
in Figure 6 which shows the log RMSE for flood volume predictions. This shows little contrast
to the information in Figure 2a. Additional results are available to the interested reader in
the supplement.

There is also a description in the supplementary materials of an asymmetric loss function
that we created to penalize emulators more heavily for under-prediction. This is of interest
as a tunable metric that can express risk-aversion of decision-makers, especially surrounding
the four foot threshold that results in power station damage. We applied this loss function to
mean predictions and again found the results have no significant difference for the purposes
of comparative evaluation, when compared to RMSE.

5. Variable Importance. Variable importance for computer models (often referred to as
sensitivity analysis) consists of determining which inputs have the greatest (least) effect on
the response. Validated emulators are useful for sensitivity analysis and variable importance
calculations, as these operations typically require extensive evaluation of the response. Global
sensitivity analysis consists of quantifying the percentage of the variability in the response
due to each input, or combination of inputs, and is done through functional analysis of vari-
ance (ANOVA) (Gu, 2018). More specifically, practitioners often use Sobol indices computed
using draws from the emulator posterior predictive distribution (Sobol, 2001). An additional,
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very desirable property of Sobol indices is that different uncertainty distributions on the
model inputs can be considered, and sensitivities can be compared across these distributional
assumptions. This is very applicable to our case study as hurricane impacts are location
specific, and there is no broad consensus on their spatial distributions (and the associated
distributions in parameters).

SEPIA and BASS have built in functionality to compute Sobol indices, BART and Robust-
GaSP do not. Methods for computing Sobol indices have been generalized in the R package
“sensitivity” (Iooss and Pujol, 2021), so in principle sensitivity indices is available through
extensions of the packages. However, the Sobol analysis requires many predictions from the
emulator at various input settings, compounded by distribution samples, which would entail
considerable computation. For this reason, we will instead compare the variable importance
metrics that RobustGaSP and BART provide natively, rather than using those emulators to
obtain Monte Carlo based Sobol indices.

The variable importance measures significantly differ in their implications and presenta-
tion. This section is not a direct comparison of like quantities as above, but rather a presen-
tation and qualitative comparison of the different information available from the methods to
the user.
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5.1. BASS. BASS includes a closed-form technique for obtaining Sobol indices, facilitated
by the underlying model form. The right four plots in Figure 7 show main effect Sobol indices
colored by the square root of the explained variance. We can see that sea level rise explains
most of the variation in the emulator and that velocity is most important at the northern
opening to the bay, with a significant effect all along the northern coast.

We can also get sensitivity indices for interaction effects, shown in the left two plots
of Figure 7. We see that interactions between sea level rise and minimum pressure play
an important role in the furthest inland flooding. Our goal here is not to analyze these
sensitivities, but rather to demonstrate the information provided by the Sobol decomposition.

These results were generated using simple uniform priors over the input parameters.

5.2. SEPIA. SEPIA also has built in functionality for computing Sobol indices which
provides sensitivities for the original response, not just the basis coefficients. Unfortunately,

we found data of this size infeasible in the current implementation.

5.3. BART. BART offers a unique form of variable importance (and hence, sensitivity
analysis) by keeping track of the number of times each input variable is included in the
regression trees. For every posterior predictive sample, we calculate the percentage of trees

containing each input variable. This gives a distribution of percentages over posterior draws.
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The drawback is that information is only available for individual models corresponding to a
single basis coefficient and we cannot simply aggregate over components to get sensitivity for
the original response.

Figure 8a shows these distributions for the third PC and we notice that heading (theta),
velocity (v), and latitude (lat) appear to be the most important inputs. This plot is more
informative when combined with a visualization of the principal component as seen in Figure
8b. Now we can see that these inputs explain variability mostly near the northern coast
between 39 and 40 degrees latitude. Combining information from these figures gives us an
idea of the locations in space where certain inputs are having an important effect. We show
PC3 rather than another PC simply because it shows interesting structure and provides a
good example of the results that are available from BART.
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Figure 8: BART variable importance

5.4. RobustGaSP. RobustGaSP determines if an input is believed to be inert, or contrib-
utes little to response variability. Inertness is decided through the estimated range parameters
4. This is really more of a variable selection technique introduced in (Linkletter et al., 2006),
but can be considered a form of variable importance or sensitivity analysis. If ~; is inert,
4 — oo and has little effect response variability (Gu, 2018). The JR prior we described in
Section 3.4 is required for this to work. The key is that this prior, unlike the reference prior,
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makes sure the marginal posterior for v > 0 even if some 4; — co. To decide whether a 4; is
sufficiently large to consider the associated input inert, we consider the normalized inverse

(5.1) b= pcliﬁl
iil Czﬂi

where Bl = 1/4; and Cj is a normalization constant to account for the different scales of the
inputs (Gu, 2018). We can then set a threshold (default of 0.1) below which an input is
determined to be inert. Table 1 shows the results for our RobustGaSP model trained on 500
storms. We see that none of the inputs are found to be inert.

Table 1: Estimated normalized inverse range parameters

sea level rise heading velocity min pressure latitude
0.58 2.50 1.15 0.34 0.43

Albeit far less informative from a sensitivity analysis point of view than a Sobol decom-
position, this is valuable information which comes for free as a byproduct of the model fit.

6. Discussion. Computer model emulation is most beneficial when applied to a simulator
that is expensive to run. The SLOSH simulator is expensive enough to require emulation for
analysis, but is not overly expensive; SLOSH’s relative speed is what allowed us to generate a
generous ensemble of 4000 runs making a training set size study possible. The insight gained
from this study can provide guidance for studies with more complex storm surge simulators
like ADCIRC (Luettich and Westerink, 2015), which incorporates more physics, as well as
modeling at greater resolution. As a final note about SLOSH, it was created by the National
Weather Service and has thus proven to be the simulator of choice for analysis by government
agencies. Given that SLOSH is so widely used, this comparison may be interesting to a wide
audience of not only statisticians, but applied scientists exploring uncertainty quantification
methods.

Figures 2a and 2b indicate that, for our case study, GP based models produced the most
accurate mean predictions. This however comes at a significant computational cost as seen
in Figure 5. Additionally we see evidence that our GP based models do not perform as well
as BASS in terms of uncertainty quantification in Figures 3a, 3b. Therefore, we recommend
SEPTA or RobustGaSP when the size of the ensemble is relatively small with correspondingly
tractable computational time, and when uncertainty quantification is not the over-riding em-
phasis. For most users, efficiency is likely to be very important and for these users we recom-
mend BASS. BASS tends to outperform BART in our predictive metrics such as energy score,
coverage probability, and interval score and it is relatively computationally tractable. Addi-
tionally BASS supplies intuitive variable importance analysis through Sobol indices, relevant

20

This manuscript is for review purposes only.



for this application.

In future work we would like to confront some of the questions and limitations that arose
during this study. One of which is the outliers seen in all scores. It is clear that some storms are
performing very poorly for our predictive metrics, and although we examined some of these,
it is not clear whether or how these are systematic in the emulation application. An extension
of this work could examine whether these storms have particular features, for example a
particular region of the parameter space, and if outliers are consistent across methods. Another
limitation that comes with data of this size is the storing of large matrices, which led us
to use a relatively small number of posterior predictive samples. We would like to further
investigate whether each model has sufficiently converged. For SEPIA, BASS, and BART this
means analysis and diagnostics of the MCMC performance to ensure samples represent the
model posterior distributions, and for RobustGaSP running the optimization with a number
of different parameter initializations to ensure that we have not converged to a local mode. As
discussed, these analyses come with heavy computational burden and time that would likely
not be available in a typical applied analysis. Finally, in Section 4 we discussed the possibility
of reducing the area of particular interest to the application context of power grid impacts,
which would admit an effectively larger analysis within computational limitations.
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