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Abstract5

The availability of powerful computing resources has led scientists to increasingly utilize6

simulation as a research tool. The statistical analysis of simulations, referred to as computer7

experiments, has similarly grown. Gaussian Process (GP) models have proven themselves8

exceptionally useful in this domain and have become a standard methodology for emulation9

of simulator response. However, with moderately large training data, GP’s require careful10

implementation to scale appropriately. There are a number of reasonable emulation methods11

available from ready to use software packages. In this paper we compare four such models:12

BASS; BART; SEPIA; and RobustGaSP, by applying them to high-resolution hurricane in-13

undation (flooding) data obtained from the Sea, Lake, and Overland Surges from Hurricanes14

(SLOSH) simulator. Both SEPIA and RobustGaSP are based on Gaussian Process modeling,15

while BASS implements a model based on adaptive splines, and BART is based on sums of16

regression trees. We will describe the modeling strategies implemented in these four packages,17

which run on R and Python, and then compare them in terms of computation time and a18

variety of predictive metrics. The four models included in this comparison study were chosen19

for their proven and distinct methodologies, their availability through easily accessible soft-20

ware, and their ability to quantify prediction uncertainty in the context of our application.21

The data in our case study form a large spatial grid with millions of response values. We22

find that SEPIA and RobustGaSP provide exceptional predictive power, but cannot scale to23

accommodate computer experiments as large as the one considered in this paper as effectively24

as BASS and BART.25

1. Introduction.26

1.1. Background. The study of complex physical systems is often limited by the acqui-27

sition of experimental data which can be expensive or even impossible to gather in many28

fields. As a result, scientists turn to simulation to supplement experimental data, to gain un-29

derstanding, and to make predictions (Sacks et al., 1989). Aided by advances in computing,30

simulators based on mathematical models of physical processes have become a fundamental31

tool to obtain scientifically motivated representations of a system of interest. Simulators de-32

pend on a number of inputs (parameters) that control their behavior. We refer to the set33
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of all possible input values as the parameter space. To obtain a realistic description of the34

system, and a good understanding of the simulator’s capabilities, we must analyze simulation35

output at collections of points in the parameter space.36

Computer simulations do not completely remedy the challenges associated with experimen-37

tal data. The information that can be obtained from simulations is limited by the feasibility38

of running the simulation at a given point in the parameter space. Depending on the sys-39

tem of interest, simulations can take hours or even days to run for a given combination of40

parameter values. This may make it impossible to do an exhaustive direct exploration of the41

space, a problem that is compounded as the parameter space increases in size or dimension.42

A variety of examples can be found in Sacks et al. (1989). Additionally, simulators are often43

deterministic, which typically means that the primary source of uncertainty when running the44

simulator is parameter uncertainty. Statistical models of these computer simulations, referred45

to here as emulators, are designed to solve these problems.46

A seminal work in the literature of computer experiments (Sacks et al., 1989) showed how47

a Gaussian Process could be used to build a predictor with uncertainty quantification. GP’s48

became and remain a common approach for emulating computer simulations with a vast lit-49

erature encompassing a variety of approaches. The main purpose of an emulator is to provide50

predictions at untried parameter settings with an estimate of the associated uncertainty, and51

to do it much faster than running the actual computer simulation (Salter and Williamson,52

2016a). GP’s are therefore very desirable for their predictive power and straightforward uncer-53

tainty quantification. They are however not always practical; Gaussian Processes are limited54

by the computational bottleneck of covariance matrix inversion which limits applicability to55

large data. Many recent methods such as LaGP (Gramacy and Apley, 2015), TGP (Gramacy56

and Lee, 2008), GPvecchia (Katzfuss and Guinness, 2021), and RobustGaSP (Gu et al., 2017)57

aim to tackle this scalability issue. More recently, competitive alternatives to GP’s have been58

proposed such as BASS (Francom and Sansó, 2020) which implements an adaptive spline59

model, and BART (Sparapani et al., 2021) which uses additive regression trees. These meth-60

ods similarly provide accurate prediction with simple uncertainty quantification and often a61

smaller computational footprint.62

The analysis presented here will compare four emulation methods on simulated hurri-63

cane induced flooding in the Delaware Bay. The simulator considered in this study allows64

researchers to learn about hurricane flood risk to critical infrastructure on an accelerated65

timeline, and explore different hurricane scenarios by changing the simulation parameters.66

The comparison here is motivated by the need for emulation in further analysis based on this67

model, as well as potential similar future models.68

The goals of this study are to quantify the accuracy of predictions and understand the69

computational requirements of each method for a range of training set sizes. In doing so, we70

aim to understand how training set size effects predictions and run time. Additionally we71

2

This manuscript is for review purposes only.



will compare the variable importance options given by each method. Investigating variable72

importance for hurricane flooding models helps researchers understand which qualities of a73

hurricane or a particular area are most influential in determining inland flooding. Some74

emulators allow for spatially resolved variable importance and variance-based assessment of75

importance (e.g., via the Sobol decomposition (Sobol, 2001)), which both benefit analyses76

involving highly multivariate emulators.77

The remainder of the paper is structured as follows: In Section 1.2 we give a brief overview78

of the four methods included in our study and explain why they were chosen; Section 2 is79

an overview of the simulations from SLOSH; Section 3 describes of each of the four emulator80

formulations; Section 4 presents our comparison study, highlighting a variety of predictive81

metrics and scores; Section 5 gives an overview of the variable importance built into each82

package; and we conclude with a discussion of our findings and recommendations to the83

reader in Section 6.84

1.2. Emulation Methods. The emulation methods we have chosen implement very dif-85

ferent statistical models, all of which have proven themselves a reasonable choice for similarly86

structured spatial data. We will consider two GP based models, SEPIA (Gattiker et al.,87

2020b) and RobustGaSP; SEPIA fits a collection of independent GP models to coefficients88

of an orthogonal basis representation of the simulation response data, while RobustGaSP im-89

plements a Many Single approach, fitting an independent GP to each spatial location. We90

also include the two non-GP based models mentioned above; BASS and BART. These four91

models cover some diverse modeling strategies, but in no way cover the full spectrum of em-92

ulation methodologies. While recognizing the limitations of only considering four models, we93

would like to highlight the fact that this study customized implementation and computation94

appropriately for each method for the application, an approach that represents a significant95

investment in investigator and computational resources compared to a investigation based on96

relatively limited customization and tailored test problems. Emulator comparisons have been97

done in the past, often comparing on a host of test functions with relatively small amounts98

of data, or focusing on parameter calibration rather than strictly emulation (e.g. Salter and99

Williamson (2016b), Erickson et al. (2018)). The comparison here is motivated by the re-100

quirements of this application which poses particular problems that are relevant to spatial101

environmental modeling. What we present is a comparison which focuses only on a few mod-102

els in greater detail, in an application driven big-data setting. This, to our knowledge, is not103

prevalent in the literature.104

The first of the four methods that we consider in this paper is the Simulation Enabled105

Prediction Inference and Analysis (SEPIA) software that implements the Gaussian process106

model described in Higdon et al. (2008). This model was originally implemented at Los Alamos107

National Laboratory as the MATLAB code GPMSA (Gattiker et al., 2020a) and in 2020 was108

refurbished and translated to python as SEPIA. SEPIA makes use of a basis representation,109
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typically empirical orthogonal functions (EOF) (also known as principle components analysis),110

of the data to fit a Gaussian process to each of the basis coefficients. This is a tried and111

true methodology for spatial modeling that has seen much success in the literature and in112

applications.113

Our implementation of Bayesian Adaptive Spline Surfaces (BASS) similarly makes use of114

a basis representation, but takes a wholly different approach to modeling basis coefficients by115

using adaptive splines. BASS has been recently applied to large spatial data from computer116

experiments and has shown great results (see, for example, Francom et al., 2019).117

The implementation considered in this work of Bayesian Additive Regression Trees (BART)118

once again makes use of a basis representation where each basis coefficient is fit using an inde-119

pendent BART model. The BART package does not inherently manage multivariate response120

through basis representation (as in SEPIA and BASS), and so we extend the functionality121

by explicitly supplying an EOF basis. The BART model fits the EOF weights and the pre-122

dictions are expanded into the native space. This allows a more direct comparison to other123

methods. We have explored this implementation in the past (Francom et al., 2020). Treed124

models have seen success in the literature for their speed and flexibility, and BART has proven125

to be effective in settings similar to the one considered in this paper, such as a recent analysis126

of airborne particulate data over California (Zhang et al., 2020). Preliminary comparisons127

of BASS and BART in Francom et al. (2019) showed that both approaches can be highly128

accurate and efficient.129

The fourth method considered in this work consists of Robust Gaussian Stochastic Process130

Emulation (RobustGaSP) which handles multivariate response by fitting a GP to each point131

in space, rather than reducing the modeling dimension through a linear projection as the other132

methods in this comparison. This is made computationally feasible by both parallel compu-133

tation, and the assumption of shared range parameters for all GP’s. RobustGaSP does not134

make use of Markov-chain Monte Carlo (MCMC) for model fitting like the other three models.135

Instead parameters are fit using numerical optimization of marginal posterior distributions.136

These major model differences make this an interesting inclusion to our comparison study.137

RobustGaSP has also shown promising results on large scale computer model emulation of138

large volcanic flow simulations (Gu and Berger, 2016).139

Additionally, we include a simple linear model on the coefficients of an orthogonal basis140

representation as a baseline to gauge the improvements provided by these complex models.141

The models considered in this paper all show accurate predictions using quite different142

methodologies. We will give a more detailed description of each model in Section 3.143

2. Simulator and Dataset. The Sea, Lake, and Overland Surges from Hurricanes (SLOSH)144

simulator (Jelesnianski et al., 1992) is a computer code developed by the National Weather145

Service to estimate storm surge heights from hurricanes. Storm surge height is defined as the146

maximum water height due to a hurricane at any single location. Our data consists of an147
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ensemble of 4,000 runs from the SLOSH simulator, corresponding to 4,000 simulated storms.148

Each storm in the ensemble is defined by a unique set of five input parameters:149

• sea level rise in the year 2100 (lower: -20; upper: 350; units: cm)150

• heading of the eye of the storm when it made landfall (lower: 204.0349; upper:151

384.0244; units: degrees, north is 0/360)152

• velocity of the eye of the storm when it made landfall (lower: 0; upper: 40; units:153

knots)154

• minimum air pressure of the storm when it made landfall (lower: 930; upper: 980;155

units: millibars)156

• latitude of the eye of the storm when it made landfall (lower: 38.32527; upper:157

39.26811; units: degrees)158

Input parameters for the ensemble use a space-filling Latin hypercube design over our five159

dimensional parameter space. Models are trained on subsets of this ensemble and tested on160

storms outside of the training sets.161

Figure 1: Surge output map from SLOSH
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Our interest lies in prediction of hurricane-induced flooding in the Delaware Bay. Under162

our model setup, one output from SLOSH is a 4,520×5,115 grid of storm surge heights for163

each of the 23,119,800 locations. Figure 1 presents a spatial map of SLOSH output for a given164

combination of input parameters. This large number of spatial locations presents a formidable165

computational challenge which is fortunately eased by the fact that the majority of the points166

on the grid are far enough inland that there is no flooding for any of the 4,000 simulations.167

By modeling only cells which take non-zero values in at least one of the simulations we reduce168

the size of the field to 3,500,000 locations.169

Accurate prediction of flooding is important for a variety of reasons including displacement170

of residents, and property/infrastructure damage. One area of specific interest for this project171

is possible damage to infrastructure, specifically power stations displayed as black dots in172

Figure 1. Power stations in this area are often fortified to handle four feet of flood water, any173

more can lead to catastrophic damage. We are therefore interested in the emulators’ ability174

to accurately predict that a surge has reached four feet, as this information is very valuable175

for determining if an intervention (station shut down) is necessary due to an incoming storm.176

We will discuss predictions around this threshold of four feet in more detail in Section 4.177

3. Model Formulation. The emulation problem considered in this paper presents the178

challenge of building emulators that are able to handle 4,000 runs from SLOSH, each with179

ny = 3.5 × 106 response values. One very common approach to reduce the dimension of180

a problem like this is to decompose the data into principal components (PCs; Ramsay and181

Silverman (1997)) using a singular value decomposition (SVD). The output vector y(x) ∈ Rny182

from one SLOSH run, corresponding to inputs x ∈ Rp can be represented on a set of orthogonal183

basis functions as
∑∞

j=1wj(x)bj where bj ∈ Rny captures the spatial variation. By stacking184

the output obtained from each of the m storms in the training set, we obtain the matrix185

Y ∈ Rm×ny , which we center by subtracting the mean storm. Yik then corresponds to the186

standardized output from storm i at location k. We compute SV D(Y ) = UDV T where187

U ,V are orthogonal matrices and D is a diagonal matrix of singular values. V T and UD188

store the empirical wj(x) and bj respectively. We choose to truncate the sum at npc principal189

components, so that 99% of the variation in the data is captured by the basis representation.190

The number of principal components used varies by training set. The smallest set with only 50191

storms requires just npc = 14 principal components while the largest set with 3,636 requires192

npc = 24. The power of this decomposition comes from the fact that, rather than fitting193

an emulator to all ny response values, we only need to fit npc scalar response models to194

the coefficients wj(x), which results in drastic computational savings. We utilize the identical195

matrix decomposition when fitting BASS, BART, SEPIA, and the linear model. RobustGaSP196

does not make use of this representation, as discussed. In Subsections 3.1-3.3 we will suppress197

the subscript j for simplicity and refer to an arbitrary wj(x) as w(x).198
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3.1. Simulation Enabled Prediction and Inference (SEPIA). SEPIA is a python code199

developed by Jim Gattiker, Natalie Klein, Grant Hutchings and Earl Lawrence at Los Alamos200

National Laboratory (Gattiker et al., 2020b) and implements the model described in Higdon201

et al. (2008), with extensions. Here we use the emulator component only, without SEPIA’s202

full model calibration functionality. By utilizing the orthogonal basis representation described203

above, a Gaussian process is fit to each basis function coefficient w(x).204

(3.1) w(x) ∼ GP (0,Σ); Σ = σ2
nI + σ2

pC205

where Ckl = exp{−1
2

∑p
i=1 βi(xki − xli)2} is the matrix obtained by applying the negative206

exponential squared (“Normal kernel”) correlation function to each pair of inputs, which is207

parameterized by length scale β. Σ incorporates process variance σ2
p and includes a noise208

process with variance σ2
n. This is a Bayesian model with priors on β, σ2

p, σ
2
n. For a full209

model specification including discussion of priors, refer to Higdon et al. (2008). The resulting210

posterior distributions are explored via MCMC.211

3.2. Bayesian Adaptive Spline Surfaces (BASS). BASS is an R package to fit Bayesian212

adaptive spline surfaces (Francom and Sansó, 2020). It implements a Bayesian version of213

multivariate adaptive regression splines (Friedman, 1991). Similar to the approach we took214

with SEPIA, we make use of a basis representation for the SLOSH output. BASS models each215

w(x) as216

(3.2) w(x) = a0 +
M∑
m=1

amZm(x) + ε(x), ε(x) ∼ N(0, σ2)217

where a0, a1, ..., aM are constants and Z1, ..., ZM are basis functions learned from the data.218

The basis functions have the form219

(3.3) Zm(x) =

Km∏
k=1

gkm[skm max(0, xvkm − tkm)]α220

where skm ∈ {−1, 1} is the sign, tkm ∈ [0, 1] is a knot, vkm selects a covariate, Km is the degree221

of interaction and gkm = [(skm + 1)/2− skmtkm]α is a constant that makes the basis function222

have a maximum of one. The exponent α defines the degree of the polynomial splines. Note223

that variables can only be used once in each basis function.224

To fit this model we need to estimate θ = {σ2,M,a,K, s, t,v}. This is done via a225

reversible jump MCMC (RJMCMC) algorithm. For specifics on priors and the RJMCMC226

algorithm see Francom and Sansó (2020).227

3.3. Bayesian Additive Regression Trees (BART). BART is a treed model with strong228

predictive power for non-linear responses. A recent example is the use of BART for spatial229

modeling of ambient fine particulate matter pollution (PM 2.5) over California (Zhang et al.,230

7

This manuscript is for review purposes only.



2020). As detailed in Chipman et al. (2010), BART is a sum of trees model where scalar231

output w(x) is approximated as232

(3.4) w(x) =
I∑
i=1

g(x|Ti,Mi) + ε, ε ∼ N(0, σ2)233

where each Ti is a regression tree that can incorporate one or more of the p inputs, corre-234

sponding to main and interaction effects. A tree T utilizing xt ⊆ x consists of a set of interior235

nodes with binary decision rules, and a set of leaf nodes containing parameter estimates. Let236

M = {µ1, . . . , µb} be the parameter estimates associated with the leaf nodes. The interior237

decision rules are binary splits of the predictor space, either xt ∈ A or xt /∈ A where A is a238

subset of the range of xt. Then any fixed x∗t is assigned a µ∗ by the function g(x|T,M) based239

on the sequence of decision rules leading to a leaf node.240

This additive structure endows BART with a high degree of flexibility when the number241

of trees is large. This does however come at the price of complexity. BART needs to estimate242

{(T1,M1), ..., (TI ,MI), σ} for I trees where Ti and Mi are not single parameters, but an entire243

tree structure fit with a set of decision rules, and a set of terminal nodes respectively. A244

backfitting MCMC algorithm is used for posterior sampling, which is designed to efficiently245

sample the many parameters in the additive tree structure. As a result, BART provides great246

flexibility with a relatively low computational cost. A key component of the model is a regu-247

larization prior which forces the effect from each tree to be small. This prevents individual tree248

effects from dominating the additive structure. Once posterior draws (T ∗1 ,M
∗
1 ), ..., (T ∗I ,M

∗
I )249

are available, predictions f∗ can be obtained as250

(3.5) f∗(·) =

I∑
i=1

g(·|T ∗i ,M∗i )251

(Sparapani et al., 2021).252

3.4. Robust Gaussian Stochastic Process Emulation (RobustGaSP). RobustGaSP (Gu253

et al., 2017) is a GP-based method that avoids the use of the basis function representation254

that we have used for SEPIA, BASS and BART. Also, unlike the other three models the255

estimation procedure relies on marginal likelihood optimization rather than MCMC. This256

has its drawbacks when it comes to uncertainty quantification as confidence bounds must be257

estimated using distributional assumptions. On the other hand it avoids the iterative sampling258

involved in MCMC, which incurs relatively large computational cost and memory footprint.259

RobustGaSP implements a computationally feasibly alternative to the Many Single (MS)260

emulation approaches (Conti and O’Hagan, 2010; Lee et al., 2011, 2012). Individual emulators261

are fit to each coordinate of the output, which, in the context of our case study, consists of262

ny independent Gaussian process emulators. Each emulator has its own mean function and263
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variance, but they all share the same correlation parameters γ = (γ1, . . . , γp), which are264

estimated from the joint marginal likelihood of all emulators (Gu and Berger, 2016).265

Let i = 1, . . . , ny index the locations so that yi(x) denotes the scalar response at location266

i with inputs x. yi(x) is modeled with the Gaussian Process267

(3.6) yi(x) ∼ GP (µi(x), σ2
i c(x,x

′)), ; i = 1, ..., k268

where µi(x) is the location specific mean function, σ2
i the location specific variance, and269

c(x,x′), by default, is the product of p Matèrn 5/2 correlation functions, each with its own270

range parameter γ = (γ1, . . . , γp). Then for m runs of the simulator at inputs x1, . . . ,xm we271

have the multivariate likelihood272

(3.7)
(
yi(x1), ..., yi(xm)|µi, σ2

i ,Σ
)
∼MVN

(
(µix1 , ..., µixm), σ2

iΣ
)

273

where Σ is the correlation matrix obtained by applying c(x,x′) to each pair of input vectors.274

The mean function is modelled using a linear regression, µi(x) =
∑L

l=1 hl(x)θl, with basis func-275

tions hi(x) = (hi1(x), . . . , hiL(x)) and unknown regression parameters θi = (θi1, . . . , θiL). An276

important aspect of this approach is the definition of the prior for the model parameters. This277

consists of the product of a standard objective prior is for the mean and variance parameters278

(Gu and Berger, 2016),279

(3.8) πR(θ1, . . . ,θny , σ
2
1, . . . , σ

2
ny

) ∝ 1∏ny

i=1 σ
2
i

280

and a jointly robust (JR) prior applied to the correlation parameters γ. This prior was281

introduced in Gu (2018) and is called jointly robust because is cannot be written as the282

product of marginal priors and its robust in marginal posterior mode estimation.283

First consider reparameterizing to the inverse range parameters βj = 1/γj , j = 1, . . . , p.284

Then the JR prior is defined as285

(3.9) πJR(β1, ..., βp) = C0

( p∑
l=1

Clβl

)α
exp

{
− b
( p∑
l=1

Clβl

)}
,286

where C0 =
(p−1)!ba+p

∏p
l=1 Cl

Γ(a+p) , a > −(p + 1), b > 0 and Cl > 0 are parameters. We use the287

default values for these parameters; a = 0.2, b = n−1/p(a+ p). The default values for Cl are288

not clearly given in the documentation. As we will discuss in Section 5, this prior facilitates289

the form of variable importance provided by the package.290

The posterior distribution resulting from this model formulation is marginally optimized291

to obtain parameter estimates.292

9

This manuscript is for review purposes only.



3.5. Linear Model (LM). For a baseline comparison, we include a simple linear model293

on the EOF basis coefficients w(x) with the form294

(3.10) w(x) =

p∑
i=1

βixi + ε, ε ∼ N(0, σ2)295

where β = (β1, . . . , βp) are unknown regression coefficients which we determine using the296

function ”lm()” from base R (R Core Team, 2020).297

4. Comparison Study. This section presents assessment of the four different emulators298

on the basis of out-of-sample predictive accuracy and computational feasibility. Predictive299

accuracy is assessed using scores including root-mean-squared error (RMSE), energy score, and300

coverage. RMSE assesses the mean prediction, whereas the energy score and coverage assess301

the uncertainty associated with predictions. We will organize our comparison of predictive302

accuracy into two Subsections, one for assessing the accuracy of the mean, and the other303

considering estimates to be used in uncertainty quantification. Our results will show that in304

these metrics Gaussian Process based emulators (SEPIA and RobustGaSP) produce better305

mean predictions, however they appear less accurate in their predicted uncertainty.306

We would like to be able to train our models with as few storms as needed for accuracy,307

while minimizing computation time and leaving more examples in the model test set. To308

examine the impact of training set size for each emulator we consider seven different training309

sets; 50, 100, 500, 1000, 1750, 2500, and 3636 storms. 3636 was chosen as the largest training310

set size because it is the largest number that permits a testing set size of 10% of the training311

set (364 testing storms). The largest training set was sampled randomly from the full 4000312

storm ensemble, and subsequent training sets sampled randomly from this set of 3,636. While313

randomly subsampling a space-filling design is not optimal, the same selection is used for each314

emulator, affording fair comparison.315

Our comparison study involves training each of the four emulators on each of the seven316

training sets, and computing all prediction metrics on the testing set. All models are tested317

on the same 364 storms. This allows estimation of the impact of training set size, and com-318

parison of performance both within and between these training set sizes. Computation time319

is compared across training set sizes revealing the scaling properties of each algorithm. Our320

results underline an important and well known fact that Gaussian Process, while providing321

exceptional predictive power, becomes prohibitive with large data-sets. This is evident in that322

we were only able to fit SEPIA and RobustGaSP with a maximum of 1000 and 500 training323

storms respectively. We will discuss this further in Section 4.3.324

BASS, BART, and SEPIA all make use of MCMC for parameter estimation. For each325

model we have chosen to collect 10,000 MCMC samples, and discard the first 9000 to eliminate326

transient state (so-called “burn-in”). Because of the size of the spatial field, we thin the327

remaining samples down to 50, driven by memory constraints on our computational resources.328
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To fully appreciate the memory challenge, recall that our testing set is 364 storms. To generate329

predictions using all 1000 posterior samples requires a double precision matrix of size (364 ×330

3,500,000 × 1000), which requires 10 terabytes of storage. We are limited on our platforms to331

a more modest 500 gigabyte matrix resulting from the use of 50 samples. This is one of the332

many challenges involving an application dataset of this size. We appreciate that given the333

relatively small number of initial samples (10,000) and even smaller number retained samples334

(50), there may be questions regarding the convergence and mixing of our initial chains, and335

of how well the 50 samples represent the posterior distributions. These software packages do336

not provide methods to quantify convergence or mixing, and it is infeasible for us (and in337

general practice) to tackle this problem for each combination of emulator, training set, and338

EOFs. The results should be viewed with the understanding that poor convergence/mixing339

and issues due to small sample set are potentially present in predictive metrics of accuracy340

and coverage. For a practitioner interested in assessing MCMC convergence, they may want341

to pursue a thorough analysis of chains which we do not consider here. For those who require342

this analysis, we would have to recommend reducing the computation by further reduction of343

the spatial data to make investigation tractable.344

The following Subsection will present results for a variety of predictive metrics which can345

be used to compare the models.346

4.1. Predictive Accuracy: Mean. In this section we will access the accuracy of mean347

predictions from each emulator. For MCMC based models, this is the mean over our 50348

posterior predictive samples and for RobustGaSP, the mean is returned to us by the package.349

Our assessment will consider RMSE, mean absolute error (MAE), and our own loss function350

designed specifically for flood risk analysis.351

Figure 2a shows boxplots of RMSE for each emulation method and for each training set352

size at which they were run. Samples in each correspond to the 364 test storms dataset.353

As expected, RMSE is generally decreasing with training set size. The plots show diminish-354

ing returns, with a reasonable conclusion that a training set size greater than 1000 runs is355

unnecessary to achieve best performance in RMSE. Additionally, the figures show that that356

methods utilizing Gaussian process, SEPIA and RobustGaSP, tend to have the lowest RMSE357

at each training set size. Furthermore, they produce comparable RMSE to BASS trained on358

the full 3,636 storms. BASS and BART produce fairly similar results, lagging behind SEPIA359

and RobustGaSP, with BASS slightly outperforming BART. The results for MAE are very360

similar to RMSE and are reported in the supplementary material.361

In Section 2 we noted that a flooding threshold of four feet is of special interest. This362

number has real implications in that many power stations are fortified to withstand this level363

of flood water. 1 Therefore, it is desirable for an emulator to correctly predict flood level above364

1Different flood impact thresholds can be found in the literature. The four foot threshold is driven by our
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(b) Intervention Accuracy

Figure 2: Predictive metrics for mean predictions by training set size.

four feet, a domain-relevant criterion for evaluation. We will evaluate this with standard em-365

ulation methods, rather than creating an emulator to satisfy the application-specific loss. To366

assess these emulators with respect to this feature, we consider the percentage of predictions367

that correctly indicate that an intervention is needed, which we call the intervention accuracy.368

To compute this metric for the mean prediction, we consider all cells in which the true SLOSH369

output is greater than four feet, and determine the percentage of cells in which the prediction370

is also greater than four feet. Figure 2b shows boxplots of our results where distributions are371

over the 364 testing storms. We see that SEPIA and RobustGaSP performance is better than372

BASS, BART, and the linear model at every training set size. Additionally, RobustGaSP with373

only 500 training storms is able to achieve indistinguishable performance to BASS with the374

full training set. SEPIA achieves a comparable performance with 1000 training storms. This375

is further evidence that GP-based methods are able to provide better mean predictions with376

less training data. This metric is especially interesting when viewed from a risk-management377

perspective; With SEPIA and RobustGaSP, we are less likely to miss an important interven-378

application context of US infrastructure planning, and is indicative of threshold-based evaluation of emulators.
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tion. There are a number of near zero values in Figure 2b which we found to be associated379

with storms for which an especially low number of locations reached the four foot threshold.380

One reason why this may result in low intervention accuracy is the smoothing associated with381

prediction. Fewer locations above the four foot threshold likely means those locations reside382

in smaller clusters which are more likely to be under-predicted due to smoothing effects.383

4.2. Predictive Accuracy: Uncertainty. This section presents the results of predictive384

metrics which take uncertainty into consideration: coverage probability, energy score, and385

interval score.386

4.2.1. Coverage. As all our emulators provide confidence intervals we are interested as-387

sessing in their level of coverage. In Figure 3a we present coverage probability distributions388

for a 95% interval over the 364 testing storms. Using the dashed red line at 0.95, we can see389

that the linear model, SEPIA, and RobustGaSP all consistently over-cover. BART tends to390

over-cover with small training sets and under-cover with larger training sets. BASS does the391

opposite, but seems to be consistently closest to the true 95% coverage. We will now extend392

our assessment of coverage by comparing the models using a score proposed in Gneiting and393

Raftery (2007), the interval score.394

The interval score for confidence level α is defined as395

(4.1) Sintα (l, u;x) = (u− l) +
2

α
(l − x)1{x < l}+

2

α
(x− u)1{x > u}.396

Where l, u are the lower and upper bounds of the 1− α confidence interval, and x is the true397

data value. This is a negative oriented score that is minimized at the width of the interval.398

The score then increases proportional to α if the true data value is outside the interval. This399

score provides more insight than coverage probability by consciously favoring models with the400

smallest possible intervals that still contain the data. In Figure 3b we present interval score401

distributions over the 364 testing storms where each storms score is an average over scores for402

each cell. BASS appears to be quite superior to the other emulators, while the linear model403

performs poorly in comparison. For small training sets, BART seems to do almost as poorly404

as the linear model, only catching up to SEPIA at 1000 training storms.405

4.2.2. Energy Score. The energy score, a multivariate extension of the Continuous Rank406

Probability Score (CRPS) is proposed in Gneiting and Raftery (2007). This score takes407

into account not only the predictive accuracy of each sample from the posterior predictive408

distribution, but also the level of uncertainty in the distribution. For this reason, the CRPS409

and energy score have gained interest in recent literature as a model ranking mechanism410

(Heaton et al. (2018), Möller et al. (2013), Muniain and Ziel (2020)). With m draws from the411

posterior predictive distribution, Ỹ = {Ỹ1, Ỹ1, ..., Ỹm}, we compute the energy score as412

(4.2) es(Y, Ỹ ) =
1

m

m∑
j=1

||Ỹ − Y || − 1

2m2

m∑
j=1

m∑
k=1

||Ỹj − Ỹk||,413
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(a) Coverage probability, 95% interval.
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(b) Interval scores for 95% confidence level.

Figure 3: Coverage Metrics

where Y is the true response.414

Results from Subsection 4.1 indicate that Gaussian Process models might be superior in415

terms of mean predictions. Interestingly, the energy score, which uses predictive samples416

rather than the mean tends to favor the tree and spline based models over the GP based417

models. So, while GP’s may provide very good mean predictions, results from this section418

indicate that they may not provide competitive uncertainty quantification to BASS.419

4.3. Computational Feasibility. Computation time is an important aspect of any com-420

parison of emulators especially on large data sets where some methods are simply not feasible.421

All of our models were built on a Los Alamos compute cluster 1.5TB node with 96 cores, 2422

Xeon Platinum 8260 CPUs @ 2.40GHz, and 192GB of Dynamic RAM with the exception of423

RobustGaSP at 500 training storms and SEPIA at 1000 training storms, which were run on424

a similar but 3.4GHz node due to limits on clock run-time.425

As expected, the baseline linear model is extremely fast and scales well but as shown above426

performs poorly. We can see that BASS remains relatively fast and scales well over the range427

of training set sizes, requiring a modest 1 minute of computation time to fit the full training428
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Figure 4: Energy score by training set size

set of 3,636 storms. BART scales similarly, requiring about 5.5 minutes for the full training429

set.430

SEPIA and RobustGaSP scale relatively poorly. Both methods make use of Gaussian431

process which is inherently O(n3) scaling, so these methods quickly become infeasible. Ro-432

bustGaSP is the slowest of the four emulators, perhaps not surprising given the scope of the433

optimization problem it is addressing, on the native response space.434

Parallel MCMC chain approaches may be able reduce execution time for SEPIA by a435

fixed factor admitting somewhat larger problems, but will not change the inherent scaling.436

Fortunately for RobustGaSP and SEPIA, in this application we showed that 3,636 training437

storms is not necessary to achieve near optimal predictive performance. We have seen that438

RMSE for surge height, flood area, and flood volume all reach best performance with around439

1000 training storms.440

4.4. Application Specific Metrics. We also considered application-specific flooding and441

risk analysis related metrics which can be found in the supplementary materials. Specifically,442

we looked at predictions for the area and volume of catastrophic flooding, where area is defined443

as the number of land cells with greater than four feet of flood water, and volume is defined444

as the total water depth summed over all catastrophically flooded locations. We did not445

find our results to add a significant amount of information regarding the emulator methods446
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Figure 5: Model fit time

directly to our already rich comparison. To illustrate our point, we provide one example here447

in Figure 6 which shows the log RMSE for flood volume predictions. This shows little contrast448

to the information in Figure 2a. Additional results are available to the interested reader in449

the supplement.450

There is also a description in the supplementary materials of an asymmetric loss function451

that we created to penalize emulators more heavily for under-prediction. This is of interest452

as a tunable metric that can express risk-aversion of decision-makers, especially surrounding453

the four foot threshold that results in power station damage. We applied this loss function to454

mean predictions and again found the results have no significant difference for the purposes455

of comparative evaluation, when compared to RMSE.456

5. Variable Importance. Variable importance for computer models (often referred to as457

sensitivity analysis) consists of determining which inputs have the greatest (least) effect on458

the response. Validated emulators are useful for sensitivity analysis and variable importance459

calculations, as these operations typically require extensive evaluation of the response. Global460

sensitivity analysis consists of quantifying the percentage of the variability in the response461

due to each input, or combination of inputs, and is done through functional analysis of vari-462

ance (ANOVA) (Gu, 2018). More specifically, practitioners often use Sobol indices computed463

using draws from the emulator posterior predictive distribution (Sobol, 2001). An additional,464
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Figure 6: Flood volume log RMSE

very desirable property of Sobol indices is that different uncertainty distributions on the465

model inputs can be considered, and sensitivities can be compared across these distributional466

assumptions. This is very applicable to our case study as hurricane impacts are location467

specific, and there is no broad consensus on their spatial distributions (and the associated468

distributions in parameters).469

SEPIA and BASS have built in functionality to compute Sobol indices, BART and Robust-470

GaSP do not. Methods for computing Sobol indices have been generalized in the R package471

“sensitivity” (Iooss and Pujol, 2021), so in principle sensitivity indices is available through472

extensions of the packages. However, the Sobol analysis requires many predictions from the473

emulator at various input settings, compounded by distribution samples, which would entail474

considerable computation. For this reason, we will instead compare the variable importance475

metrics that RobustGaSP and BART provide natively, rather than using those emulators to476

obtain Monte Carlo based Sobol indices.477

The variable importance measures significantly differ in their implications and presenta-478

tion. This section is not a direct comparison of like quantities as above, but rather a presen-479

tation and qualitative comparison of the different information available from the methods to480

the user.481
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Figure 7: Bass Sobol indices, selected main and interaction effects.

5.1. BASS. BASS includes a closed-form technique for obtaining Sobol indices, facilitated482

by the underlying model form. The right four plots in Figure 7 show main effect Sobol indices483

colored by the square root of the explained variance. We can see that sea level rise explains484

most of the variation in the emulator and that velocity is most important at the northern485

opening to the bay, with a significant effect all along the northern coast.486

We can also get sensitivity indices for interaction effects, shown in the left two plots487

of Figure 7. We see that interactions between sea level rise and minimum pressure play488

an important role in the furthest inland flooding. Our goal here is not to analyze these489

sensitivities, but rather to demonstrate the information provided by the Sobol decomposition.490

These results were generated using simple uniform priors over the input parameters.491

5.2. SEPIA. SEPIA also has built in functionality for computing Sobol indices which492

provides sensitivities for the original response, not just the basis coefficients. Unfortunately,493

we found data of this size infeasible in the current implementation.494

5.3. BART. BART offers a unique form of variable importance (and hence, sensitivity495

analysis) by keeping track of the number of times each input variable is included in the496

regression trees. For every posterior predictive sample, we calculate the percentage of trees497

containing each input variable. This gives a distribution of percentages over posterior draws.498
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The drawback is that information is only available for individual models corresponding to a499

single basis coefficient and we cannot simply aggregate over components to get sensitivity for500

the original response.501

Figure 8a shows these distributions for the third PC and we notice that heading (theta),502

velocity (v), and latitude (lat) appear to be the most important inputs. This plot is more503

informative when combined with a visualization of the principal component as seen in Figure504

8b. Now we can see that these inputs explain variability mostly near the northern coast505

between 39 and 40 degrees latitude. Combining information from these figures gives us an506

idea of the locations in space where certain inputs are having an important effect. We show507

PC3 rather than another PC simply because it shows interesting structure and provides a508

good example of the results that are available from BART.509
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Figure 8: BART variable importance

5.4. RobustGaSP. RobustGaSP determines if an input is believed to be inert, or contrib-510

utes little to response variability. Inertness is decided through the estimated range parameters511

γ̂. This is really more of a variable selection technique introduced in (Linkletter et al., 2006),512

but can be considered a form of variable importance or sensitivity analysis. If γl is inert,513

γ̂l → ∞ and has little effect response variability (Gu, 2018). The JR prior we described in514

Section 3.4 is required for this to work. The key is that this prior, unlike the reference prior,515
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makes sure the marginal posterior for γ > 0 even if some γ̂l →∞. To decide whether a γ̂l is516

sufficiently large to consider the associated input inert, we consider the normalized inverse517

(5.1) P̂l =
Clβ̂l∑px
i=1Ciβ̂i

518

where β̂l = 1/γ̂l and Cl is a normalization constant to account for the different scales of the519

inputs (Gu, 2018). We can then set a threshold (default of 0.1) below which an input is520

determined to be inert. Table 1 shows the results for our RobustGaSP model trained on 500521

storms. We see that none of the inputs are found to be inert.522

Table 1: Estimated normalized inverse range parameters

sea level rise heading velocity min pressure latitude

0.58 2.50 1.15 0.34 0.43

Albeit far less informative from a sensitivity analysis point of view than a Sobol decom-523

position, this is valuable information which comes for free as a byproduct of the model fit.524

6. Discussion. Computer model emulation is most beneficial when applied to a simulator525

that is expensive to run. The SLOSH simulator is expensive enough to require emulation for526

analysis, but is not overly expensive; SLOSH’s relative speed is what allowed us to generate a527

generous ensemble of 4000 runs making a training set size study possible. The insight gained528

from this study can provide guidance for studies with more complex storm surge simulators529

like ADCIRC (Luettich and Westerink, 2015), which incorporates more physics, as well as530

modeling at greater resolution. As a final note about SLOSH, it was created by the National531

Weather Service and has thus proven to be the simulator of choice for analysis by government532

agencies. Given that SLOSH is so widely used, this comparison may be interesting to a wide533

audience of not only statisticians, but applied scientists exploring uncertainty quantification534

methods.535

Figures 2a and 2b indicate that, for our case study, GP based models produced the most536

accurate mean predictions. This however comes at a significant computational cost as seen537

in Figure 5. Additionally we see evidence that our GP based models do not perform as well538

as BASS in terms of uncertainty quantification in Figures 3a, 3b. Therefore, we recommend539

SEPIA or RobustGaSP when the size of the ensemble is relatively small with correspondingly540

tractable computational time, and when uncertainty quantification is not the over-riding em-541

phasis. For most users, efficiency is likely to be very important and for these users we recom-542

mend BASS. BASS tends to outperform BART in our predictive metrics such as energy score,543

coverage probability, and interval score and it is relatively computationally tractable. Addi-544

tionally BASS supplies intuitive variable importance analysis through Sobol indices, relevant545
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for this application.546

In future work we would like to confront some of the questions and limitations that arose547

during this study. One of which is the outliers seen in all scores. It is clear that some storms are548

performing very poorly for our predictive metrics, and although we examined some of these,549

it is not clear whether or how these are systematic in the emulation application. An extension550

of this work could examine whether these storms have particular features, for example a551

particular region of the parameter space, and if outliers are consistent across methods. Another552

limitation that comes with data of this size is the storing of large matrices, which led us553

to use a relatively small number of posterior predictive samples. We would like to further554

investigate whether each model has sufficiently converged. For SEPIA, BASS, and BART this555

means analysis and diagnostics of the MCMC performance to ensure samples represent the556

model posterior distributions, and for RobustGaSP running the optimization with a number557

of different parameter initializations to ensure that we have not converged to a local mode. As558

discussed, these analyses come with heavy computational burden and time that would likely559

not be available in a typical applied analysis. Finally, in Section 4 we discussed the possibility560

of reducing the area of particular interest to the application context of power grid impacts,561

which would admit an effectively larger analysis within computational limitations.562
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