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Abstract

Motivated by the connectome datasets acquired from various imaging modalities,

this article focuses on model based clustering of subjects according to the shared re-

lationship of subject-specific networks and covariates. Additionally, it is of interest to

identify network nodes significantly associated with each covariate in each cluster of

subjects. To address these methodological questions, we propose a novel nonparametric

Bayesian mixture modeling framework with an undirected network response and scalar

predictors. The symmetric matrix coefficients corresponding to the scalar predictors

of interest in each mixture component are embedded with low-rankness and group

sparsity within the low-rank structure. While the low-rank structure on the network

coefficients adds parsimony and computational efficiency, the group sparsity within the

low-rank structure enables drawing inference on network nodes and cells significantly
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associated with each scalar predictor. Being a principled Bayesian framework allows

precise characterization of uncertainty in identifying significant network nodes in each

cluster.Theoretically, we establish convergence of the posterior predictive density from

the proposed model to the true data generating density at a rate very close to the finite

dimensional optimal rate of n−1/2. Empirical results in various simulation scenarios

illustrate substantial inferential gains of the proposed framework in comparison with

competitors. Analysis of a brain connectome data with the proposed model reveals

interesting insights into the brain regions of interest (ROIs) significantly related to

creative achievement in each cluster of subjects.

Keywords: Bayesian mixture modeling, Brain connectome data, Network clustering, Network

node selection, Spike and slab prior.

1 Introduction

In recent years, network data is regularly encountered in disciplines as diverse as neuro-

science, genetics, finance and economics. Statistical models involving networks are particu-

larly challenging, especially due to the need for flexible formulations to account for the topo-

logical structure of the network. This article is motivated by applications where undirected

networks along with scalar variables are available for multiple subjects. More specifically, we

focus on a brain connectome data obtained using a diffusion weighted magnetic resonance

imaging (DWI) technique. Using data from DWI, a human brain can be segmented into

different functional regions of interest (ROIs), simultaneously estimating the number of fiber

bundles connecting any two regions. Fiber connections in a human brain can be viewed as

constituting an undirected network expressed in the form of a symmetric matrix, with row

and column indices of the matrix corresponding to the regions of interest (ROIs) and the

(j1, j2)th cell representing the estimated number of fibre bundles connecting the j1th and

j2th ROIs. Along with brain networks, information on a measure of creative achievement,

as well as behavioral variables like age and sex, are available for each subject in the dataset

of interest.

The dataset offers interesting opportunities to characterize the relationship between brain

networks and brain related phenotypes for subjects included in the analysis. Motivated
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by such neuro-scientific applications, we undertake modeling endeavor primarily aimed at

achieving the following inferential objectives simultaneously. First, we intend to cluster sub-

jects into groups, with members in each group sharing the same relationship between the

undirected network response and scalar covariates. Additionally, inferential interest lies in

identifying nodes and edges in the network significantly impacted by each predictor of inter-

est in each cluster. In the context of the brain connectome application, the latter objective

amounts to drawing inference on brain regions of interest (ROIs) and interconnections be-

tween them significantly associated with creative achievement in each cluster. Moreover, the

objective also lies in achieving these inferential goals with parsimony in the fitted model and

computational efficiency in the model fitting process.

We propose a novel nonparametric Bayesian modeling approach to achieve the afore-

mentioned inferential objectives simultaneously. To be more specific, a Dirichlet process

(DP) mixture of network response regression models is employed to the data, which leads

to clustering of subjects into groups signifying differential relationships between the network

response and scalar predictors. Further, the network valued coefficients corresponding to

the predictors of interest in each mixture component are assumed to have a low-rank for

parsimony and computational efficiency. We additionally impose a node-wise sparsity struc-

ture using a Bayesian spike-and-slab variable selection prior for identifying network nodes

significantly associated with the predictors. The Bayesian framework helps in characterizing

the uncertainty related to clustering as well as the uncertainty associated with identifying

important network nodes in each group. Our framework does not involve any expensive ma-

trix manipulation and allows parallelization for efficient computation with a large number

of network nodes.

An important contribution of this article is proving the near optimal contraction rate

for the predictive density of the mixture of network regression models. The literature on

the theory of posterior contraction rates for high dimensional linear and generalized linear

regression models have observed significant development in the last decade (Castillo et al.,

2012; Belitser and Nurushev, 2015; Jeong and Ghosal, 2020). Similarly, there is a well

developed literature on the posterior contraction rate for Gaussian and non-Gaussian mixture

models in both supervised and unsupervised settings (Genovese et al., 2000; Ghosal et al.,
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2007; Choi, 2008). In contrast, to the best of our knowledge, there is no theoretical literature

on the posterior contraction rates for the mixture of network regression models. This article

lays down sufficient conditions on the number of network nodes, ranks of network coefficients

and the number of fitted mixture components as a function of the sample size to obtain a

near optimal convergence rate for the posterior predictive density of the proposed mixture

of network regression models. On a related note, a few recent articles invest in studying

posterior contraction properties of linear regressions and generalized linear models involving

high dimensional tensor response and predictors (Guhaniyogi, 2017; Guhaniyogi et al., 2018;

Guha and Guhaniyogi, 2020), though none of them consider mixture of regression models

involving network response. We establish the novelty of our proposal in the light of the

existing literature discussed below.

Rather than focusing on multiple network observations collected over different individ-

uals, an overwhelming literature with network data aims at understanding the topological

structure of a single network. Some notable examples in this direction include exponential

random graph models (Frank and Strauss, 1986), social space models (Hoff et al., 2002; Hoff,

2005, 2009) including random dot product graph (RDPG) models (Young and Scheinerman,

2007) and stochastic block models (Nowicki and Snijders, 2001). In the context of develop-

ing a regression/classification model with a network response, one possibility is to extract a

few summary measures from the network to reshape the network object into a multivariate

response (e.g., see Bullmore and Sporns, 2009 and references therein). The success of this

approach is highly dependent on the choice of summary measures. Furthermore, this kind

of approach cannot identify the impact of specific nodes on the predictor, which is of clear

interest in our setting. A more closely related article (Wang et al., 2017) exploits the rela-

tional nature of the network response, though it does not offer clusters of subjects and is not

designed to detect network nodes significantly related to a scalar predictor. On a related

note, there is an emerging literature on supervised stochastic block models (Kim and Levina,

2019; Pavlović et al., 2020) focusing on clustering nodes of the network into groups, which is

scientifically/metjodologically a different problem than our focus of clustering subjects into

groups.

Viewing networks as symmetric tensors, our inferential problem can also be formulated
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under a tensor response regression framework with a symmetric tensor response and scalar

predictors. While an overwhelming literature on tensor response regression does not enforce

any symmetry constraint on the tensor response (Guhaniyogi et al., 2017, 2018; Spencer

et al., 2020), there are recent efforts (Sun and Li, 2017; Guha and Guhaniyogi, 2020) to

devise new classes of models which are equipped to incorporate a symmetry constraint for

the tensor response in the modeling framework. However, these approaches are based on

two assumptions both of which may appear to be restrictive for a variety of neuro-scientific

applications. First, the variance of the response for all tensor cells are free of the predictors.

Second, the same set of network nodes influence the regression function in a similar manner

for every individual.

While our framework treats the network as a response, a few recent approaches (Guha

and Rodriguez, 2018; Relión et al., 2019) treat the network as a predictor to predict a scalar

response. This difference in the modeling approach leads to a different focus and interpre-

tation. Network predictor regression focuses on understanding the change in a biological

outcome as the network image varies, while the network response regression aims to study

the change in the network as the predictors such as the creativity levels, age and sex vary.

In a sense, their difference is comparable to that between multi-response regression and

multi-predictor regression in the classical vector-valued regression context. Also, our frame-

work bypasses the need to invert any high dimensional matrix to draw Bayesian inference,

thereby adding substantial computational gain over Guha and Rodriguez (2018). Such a

computational advantage is crucial, especially in the analysis of networks with moderately

large to a large number of nodes, when computation in Guha and Rodriguez (2018) may

become severely prohibitive. Moreover, Guha and Rodriguez (2018) tacitly assume that the

same set of network nodes influence the regression function in a similar manner for every

individual.

In fact the earlier literature in neuroscience provides substantial evidence of differences

in the relationship between brain connectivity networks with phenotypic traits for different

groups of individuals (Saad et al., 2012; Meskaldji et al., 2013, 2015). However, flexible

statistical methods for identifying such subgroups and ascertaining subgroup differences have

somewhat lagged behind the increasingly routine collection of such data. One possibility
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is to reshape the network as high dimensional multivariate vector and employ a mixture

of multivariate regression models. This idea can make use of the literature on mixtures

of supervised parametric and semi-parametric linear and generalized linear models with

continuous, binary and categorical responses and predictors (Müller et al., 1996; Shahbaba

and Neal, 2009; Dunson et al., 2007; Duan et al., 2007; Rodŕıguez et al., 2009; Amewou-

Atisso et al., 2003; Hannah et al., 2011; DeYoreo and Kottas, 2018). These approaches are

less suitable to our problem of interest since they ignore the network topology in the process

of model building and do not allow drawing inference on network nodes. In this context,

it is also possible to invoke the literature on clustering of matrices or higher order tensor

objects into multiple groups (Huang et al., 2009; Lee et al., 2010; Chi and Lange, 2015; Chi

et al., 2017; Li et al., 2014; Cao et al., 2013; Wu et al., 2016; Sun and Li, 2017), though

this literature is more pertinent to unsupervised clustering of networks, as opposed to our

interest in the supervised clustering of undirected networks.

The rest of the article progresses as following. Section 6 provides a brief description of the

brain connectome data and the inferential objectives. Sections 2 and 4 describe the model

development and posterior computation, respectively. Empirical investigation of the model

with simulation studies and the brain connectome data analysis are presented in Sections 5

and 6.1, respectively. Finally, Section 7 concludes the paper with an eye towards future

work.

2 Supervised Clustering of Undirected Networks: Model

and Prior Formulation

2.1 Notations and Framework

For i = 1, ..., n, let Y i ∈ Y ∈ Rp×p denote the weighted undirected network response with

p nodes, xi = (xi1, ..., xim)′ be m predictors of interest and zi = (zi1, ..., zil)
′ be l auxiliary

predictors corresponding to the ith individual. Mathematically, this amounts to Y i being

a p × p matrix, with the (j1, j2)-th entry of Y i denoted by yi,(j1,j2) ∈ R. In this paper, we

focus on networks that contain no self relationship, i.e., yi,(j1,j2) ≡ 0 when j1 = j2, and are

undirected (yi,(j1,j2) = yi,(j2,j1)). We assume that the relationship between the predictor vector
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of interest xi and the response varies in every cell (j1, j2). In contrast, an auxiliary predictor

explains the response in every cell identically. Since Y i is symmetric with 0 diagonal entries,

it suffices to build a probabilistic generative mechanism for the upper triangular vector, or

the vector of edges for the undirected network given by, yi = (yi,j : 1 ≤ j1 < j2 ≤ p)′ of

dimension q = p(p−1)
2

. This is a common practice in the undirected relational data modeling

(Hoff, 2005). Moreover, working with yi is fundamentally different from the exercise of

ordinary reshaping Y i for model fitting, since every element yi,j of yi keeps a tab on the cell

index j = (j1, j2) of the entry (i.e., position of the entry in the matrix), which will be crucial

in the modeling development described below.

2.2 Model Development and Prior Distributions

To develop a sufficiently flexible relationship between yi and predictors xi and zi, we

propose to model the conditional distribution of yi |xi, zi, σ2, denoted by f(yi|xi, zi, σ2) as

a mixture model given by,

f(yi|xi, zi, σ2) =

∫
Nq

(
yi|1qγ0 + 1q

l∑
s=1

γszis +
m∑
s=1

βsxis, σ
2Iq

)
dG(β1, ..,βm, γ0, γ1, .., γl),

(1)

where 1q denotes a q−dimensional vector with each entry as 1, γ0 is the intercept and

γ1, ..., γl ∈ R are coefficients corresponding to the auxiliary predictors. Here, Nq(·, ·) stands

for a q−variate normal distribution and the q−dimensional parameter βs is envisioned as

the upper triangular vector of a p × p symmetric matrix Bs = ((Bs,j)), s = 1, ..., l, i.e.,

βs = (Bs,j : 1 ≤ j1 < j2 ≤ p)′. Equation (1) can be seen as a mixture of undirected

network response regression models with the mixing distribution given by G(·). Note that(1)

is markedly different from building an ordinary mixture of linear regression models with

reshaped network response Y i and scalar predictors. While such an approach would have

lost information on the nodes each edge is connected to, Bs,j coefficients in our modeling

framework (1) allows us to draw inference on network nodes significantly related to the

predictors. We further elaborate this point as this section progresses.

The random probability measure G(·) is taken to be a discrete distribution of the form
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G =
∑H

h=1 ωhδ∆∗h , with atoms ∆∗h = (β∗1,h, ..,β
∗
m,h, γ

∗
0,h, γ

∗
1,h, .., γ

∗
l,h) ∼ G0. Here, G0 is the

base measure and δ∆∗h corresponds to the Dirac-delta function at ∆∗h. Such a specification

contains a broad class of species sampling priors, including the Dirichlet process (DP) prior

and the Pitman-Yor process prior through the popular stick breaking construction (Sethura-

man, 1994). In this work, we adopt the stick breaking construction to jointly model cluster

inclusion probabilities. More precisely, for h = 1, ..., H − 1, and α > 0,

ω1 = v∗1, ω2 = v∗2(1− v∗1), .., ωH−1 = v∗H−1

H−2∏
h=1

(1− v∗h), ωH =
H−1∏
h=1

(1− v∗h), v∗h ∼ Beta(1, α),

(2)

where H is an upper bound on the number of clusters. As H →∞, this choice leads to the

classical Dirichlet process prior (Ishwaran and James, 2002). The parameter α is crucial in

determining the number of clusters and it is assigned a Gamma(aα, bα) prior distribution.

From (1) and the discrete prior on G imposed by the stick breaking construction, the

conditional distribution of yi can be written as

f(yi|xi, zi, σ2) =
H∑
h=1

ωhNq(yi|1qγ∗0,h + 1q

l∑
s=1

γ∗s,hzis +
m∑
s=1

β∗s,hxis, σ
2Iq). (3)

Note that the mixture components signify different relationships between the network re-

sponse and scalar predictors in H different clusters. Introducing a cluster index ci ∈ {1, .., H}

corresponding to the individual i, we obtain yi|xi, zi, ci, σ2 ∼ Nq(yi|1qγ∗0,ci+1q
∑l

s=1 γ
∗
s,ci
zis+∑m

s=1 β
∗
s,ci
xis, σ

2Iq), with P (ci = h) = ωh, for h = 1, ..., H. This conditional independence

structure, given the cluster indices of the individuals, facilitates computation, while still

allowing a flexible dependence structure among the different components marginally. Ad-

ditionally, inference on cluster indices determine the number of clusters and constitution of

each cluster.

Next, we turn into identifying network nodes in different clusters significantly associated

with predictors of interest. For this purpose, we first introduce a low-rank structure of the
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coefficient B∗s,h corresponding to the sth predictor of interest in the hth cluster as

B∗s,h,j =
R∑
r=1

λs,h,ru
(r)
s,h,j1

u
(r)
s,h,j2

, h = 1, ..., H; s = 1, ..,m, 1 ≤ j1 < j2 ≤ p. (4)

Here us,h,k = (u
(1)
s,h,k, ..., u

(R)
s,h,k)

′ ∈ RR, for k = 1, ..., p, is a collection of R-dimensional h-

th mixture specific latent variables, one for each node and each predictor of interest, such

that us,h,k corresponds to node k and predictor xs in the h-th mixture component. Here,

λs,h,r ∈ {−1, 0, 1} determines if the rth summand in (4) is relevant in model fitting in the hth

mixture component. Setting U s,h as a p×R matrix with the k-th row as us,h,k (k = 1, ..., p),

and Λs,h a R × R diagonal matrix with the r-th diagonal entry as λs,h,r, (4) represents a

low-rank decomposition of the symmetric matrix coefficient B∗s,h = U s,hΛs,hU
′
s,h, which is

able to approximate any matrix to an arbitrary level of accuracy for appropriate choices of R.

Since the choice of R is arbitrary, allowing λs,h,r to be 0 protects the model from over-fitting.

we can interpret the latent vectors us,h,1, . . . ,us,h,p as the positions of the nodes in a latent

space, with the strength of the association B∗s,h being controlled by the inner product or

the angular distance between the vectors. We expect the matrix of coefficients B∗s,h (which

itself can be regarded as describing a weighted network) to exhibit transitivity effects, i.e.,

we expect that if the interactions between regions j1 and j2 and between regions j2 and j3

both are influentially related to the sth predictor of interest, the interaction between regions

j1 and j3 is likely to be influential as well (e.g., see Li et al., 2013). The structure proposed in

(4) is commonly used to model social and biological networks because of its ability to capture

these transitive effects. The assumed low-rank structure on B∗1,h, ...,B
∗
m,h additionally offers

parsimony by reducing the number of estimable parameters from mHq to mHRp, typically

with R� p.

Depending on the structure of Λs,h, the node specific latent variables us,h,k’s may become

unidentifiable. For example, when Λs,h = IR, B∗s,h = U s,hΛs,hU
′
s,h = U s,hOΛs,h(U s,hO)′,

for any orthogonal matrix O. While this implies that the posterior inference on us,h,k’s

(without any constraint imposed on us,h,k’s) may not be always meaningful, our focus is on

the event {us,h,k = 0} for each k, which remains identifiable (since 0-valued latent vectors

are invariant under orthogonal transformation) and is critical to drawing inference on the
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nodes related to the s-th predictor of interest, as we describe next. In fact, to infer on the

network nodes significantly related to the predictors of interest in each cluster, we assign a

spike-and-slab prior on node specific latent variables as below

us,h,k ∼

 N(0,M s,h), if ξs,h,k = 1

δ0, if ξs,h,k = 0
, ξs,h,k ∼ Ber(ζs,h), M s,h ∼ IW (ν, I), ζs,h ∼ Beta(a, b).

(5)

Here M s,h is a covariance matrix of order R × R. The parameter ζs,h corresponds to the

probability of the nonzero mixture component in (5). Importantly, ξs,h,k = 0 implies that

the kth network node in the response is not related to the sth predictor in the hth cluster

of subjects. The parameters γ∗0,h, γ
∗
1,h, ..., γ

∗
l,h are assigned standard normal distributions. In

order to learn which summands in (4) are informative, we assign a hierarchical prior

λs,h,r ∼


0, w.p. πs,h,r,1,

1, w.p. πs,h,r,2,

−1, w.p. πs,h,r,3,

(πs,h,r,1, πs,h,r,2, πs,h,r,2) ∼ Dirichlet(rη, 1, 1), η > 1.

The choice of hyper-parameters of the beta distribution is crucial. In particular, note

that E[δλs,h,r∈{−1,1}] = 2/(2 + rη) → 0 as r → ∞ and that
∑R

r=1 var(δλs,h,r∈{−1,1}) =∑R
r=1[

2(rη+1)
(rη+2)2(rη+3)

+ 2(rη+1)
(rη+3)(rη+4)

] <∞ as R→∞. The first property provides (weak) identifi-

ability of the different latent dimensions, while the second ensures that limR→∞ var(Reff ) <

∞. The error variance σ2 is assigned a IG(aσ, bσ) prior. With the construction specified as

above, the form of the base measure G0 can be expressed as G0(∆
∗
h|σ2) =

∏l
s=0G0,1(γ

∗
s,h|σ2)∏m

s=1G0,2(β
∗
s,h|σ2), where G0,1(γ

∗
s,h|σ2) = N(0, 1), and G0,2(β

∗
s,h|σ2) is expressed as follows:

G0,2(β
∗
s,h|σ2) =

∫ p∏
k=1

π(us,h,k|ξs,h,k,M s,h, ζs,h)dM s,hdζs,h

R∏
r=1

π(λs,h,r)
R∏
r=1

dλs,h,r

p∏
k=1

π(ξs,h,k)dξs,h,k.

The model and prior specification allow clustering of individuals into a number of groups

less than or equal to H. In each group, the network response and the scalar predictors share

separate regression structures, and thus subjects belonging to different clusters may have
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different sets of network nodes significantly related to the predictors of interest, as desired.

3 Convergence Rate for Predictive Densities

This section presents posterior convergence properties of the proposed network response

mixture model (NRMM). We adopt the framework outlined in Jiang et al. (2007), with some

important differences. While Jiang et al. (2007) studies the convergence rate of the posterior

predictive distribution with a scalar response and a high dimensional vector predictor without

considering any mixture of distribution, we focus on mixture of densities involving a network

response and a vector predictor. The novel model development and the prior structure

described in Section 2 of the main article present theoretical challenges which are unique

and very different from Jiang et al. (2007).

Let fT (Y |x) be the true conditional density of Y given x and f(Y |x) be the random

predictive density for which we obtain a posterior. Define an integrated Hellinger distance

between fT and f as DH(f, fT ) =
√∫ ∫

(
√
f(Y |x)−

√
fT (Y |x))2νY (dY )νx(dx), where νx

is the unknown probability measure for x and νY is the dominating measure for f and fT .

We focus on showing EfTΠ[DH(f, fT ) > εn|{Y i,xi}ni=1] < κn, for large n, for some sequences

εn, κn converging to 0 as n→∞, where Π(A|{Y i,xi}ni=1) is the posterior probability of the

set A. The result implies that the posterior probability outside a shrinking neighborhood

around the true predictive density fT converges to 0 as n → ∞. In particular, we seek to

establish a convergence rate εn of order close to the parametric optimal rate of n−1/2 upto a

log(n) factor.

3.1 Framework and Main Results

In what follows, we assume m = 1 predictor of interest (hence get rid of the subscript s

for all parameters) and no auxiliary predictor for simplifying calculations, though the results

assume straightforward extension to cases where m > 1 and l > 1. Without loss of generality,

the predictor x satisfies |xi| < 1 for all i. Let pn denote the number of nodes and Rn denote

the dimension of the node specific latent variables in presence of sample size n. We assume

that pn and Rn are both non-decreasing functions of n, with Rn < pn for all large n. Denote

J = {j : 1 ≤ j1 < j2 ≤ pn} as the set of all indices. Hence, the number of elements in J ,
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given by qn = pn(pn− 1)/2, also naturally becomes a function of n. This paradigm attempts

to capture the fact that qn grows with n, and a higher rank CP decomposition of B can be

estimated more precisely in presence of a larger sample size n. We also add the subscript

n to Bh and uh,k to denote them by Bn,h and un,h,k. The true density and the predictive

density of the fitted model assume the form of Gaussian mixture distributions with the same

number of mixture components as given below,

f(Y |x) =
Hn∑
h=1

ωh
∏
j∈J

fj(Yj |x,Bn,h,j), fj(Yj |x) =
1√
2π

exp{−(Yj −Bn,h,jx)2/2}

fT (Y |x) =

∫ ∏
j∈J

fj(Yj|x,BT,n,j)dGT (BT,n,j), GT =
Hn∑
h=1

ωh,T δBT,n,h,j . (6)

To show the theoretical results, we make a number of simplifications to our model setting

as dicussed in the next paragraph. We emphasize that our analysis on posterior contraction

rate of can be extended without such simplifications, though it will require substantially

more algebraic manipulations.

Similar to eachBn,h, the true tensor coefficientsBT,n,h (having the jth cell as BT,n,h,j , j ∈

J ) also assumes symmetric matrix decomposition with rankRn, i.e., BT,n,h,j =
∑Rn

r=1 u
(r)
T,n,h,j1

u
(r)
T,n,h,j2

,

for j ∈ J . Although this is a somewhat restrictive assumption, it has been frequently

employed in earlier theoretical literature on tensor regressions for simplifying calculations

(Guhaniyogi et al., 2017, 2018). With Bn,h having the same rank with BT,n,h, no rank

selection is necessary in our framework. Thus, we assume λr = 1 for all r. Additionally,

we assume that the fitted mixture weights (ω1, ..., ωHn) follows a Dirichlet distribution in

model fitting for simplifying calculations, though with little extra algebra, our results can

be extended to the setting where ωh’s assume a stick breaking representation. Finally, we

set Mh = I for all h for simplifying calculations.

For two sequences cn and dn, let cn ≺ dn signifies cn/dn → 0 as n → ∞. With these

notations, we state the following theorem, the proof of which can be found in the Appendix

A.

Theorem 3.1 For a sequence εn satisfying 0 < εn < 1 and nε2n →∞ and sequences Cn and

Dn, let the following conditions hold
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(i) HnRnpn log(pn) ≺ nε2n

(ii) HnRnpn log(1/ε2n) ≺ nε2n

(iii) (1− Φ(Cn)) ≤ e−4nε
2
n, for all large n

(iv) HnRnpn log(Cn) ≺ nε2n

(v) lim supn→∞
∑pn

k=1 ||uT,n,h,k|| < ∞, where uT,n,h,k = (u
(1)
T,n,h,k, ..., u

(Rn)
T,n,h,k)

′, for all h =

1, ..., Hn.

Then, lim
n→∞

PfT

[
Π{DH(f, fT ) > 4εn|{Y i, xi}ni=1} < 2e−nε

2
n

]
= 1.

The assumptions in Theorem 3.1 lead to the following convergence rate result for the pre-

dictive density of the fitted model.

Corollary 3.2 Assume pn grows at a rate slower than nθ, θ < 1 (i.e. pn ≤ C∗1n
θ), the tensor

rank Rn grows at a much slower rate of (log n)k1 for some k1 (i.e. Rn ≤ C∗2(log n)k1) and the

number of fitted mixture components Hn also grows at a much slower rate of (log n)k2 for some

k2 (i.e. Hn ≤ C∗3(log n)k2). Choose Cn such that nµ1 ≤ Cn ≤ nµ2, for some µ1, µ2 satisfying

θ/2 < µ1 < µ2. Then, the convergence rate εn can be taken as εn ∼ n−(1−θ)/2(log n)(k1+k2)/2+2.

It is evident that the convergence rate is a function of how the number of tensor nodes,

the rank of the true tensor (same as the rank of the fitted tensor) and the number of fitted

mixture components grow with n. Intuitively, pn should grow at a much faster rate than Rn,

and both should be bounded by an appropriate function of n to achieve a good convergence

rate. Finally, it is worth noting that for any value of k1 and k2, (log n)(k1+k2)/2+1 ≺ nθ/2.

Thus the convergence rate εn ∼ n−1/2+θ which is close to the “finite dimensional” optimal

rate of n−1/2 when θ is very close to 0.

4 Posterior Computations

While fitting our proposed mixture model, we adopt a moderately large choice of H. Note

that, according to Rousseau and Mengersen (2011), a similar choice of prior as ours is effective

in the deletion of redundant mixture components not needed to characterize the data. If H is

chosen to be too small, then none of the clusters will be unoccupied, and the analysis should
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be repeated for a larger H. Since all parameters except α have full conditional posterior

distributions lying in standard families of distributions, Gibbs sampling with Metropolis is

implemented to empirically estimate posterior distributions. Details of the Markov chain

Monte Carlo algorithm are presented in Appendix B. We have implemented our code in R

(without using any C++, Fortran or Python interface) on a cluster computing environment

with three interactive analysis servers, 56 cores each with the Dell PE R820: 4x Intel Xeon

Sandy Bridge E5-4640 processor, 16GB RAM and 1TB SATA hard drive.

Indicators to assess clustering performance. To assess inference from the proposed

mixture model, we look at (i) the point estimate of clustering denoted by ĉ, (ii) a heatmap

of the posterior probability of any two samples belonging to the same cluster, P (ci = cj|y)

(which provides a measure of the uncertainty associated with the clustering), and (iii) a his-

togram of the posterior distribution of the number of identified clusters. The point estimate

ĉ is obtained by minimizing (using iterative componentwise optimization) the expected loss

function discussed in Lau and Green (2007),

F (ĉ) =
n∑
i=1

n∑
j=i+1

1(ĉi = ĉj)

[
o2

o1 + o2
− P (ci = cj|y)

]
, (7)

where the ratio o1/o2 controls the relative loss of incorrectly clustering or separating a pair

of samples. In our illustrations we set o1/o2 = 1.

5 Simulation Studies

This section studies the relative performance of our proposed network response mixture

model (NRMM) vis-a-vis its competitors. To study all competitors under various data

generation schemes, we simulate the response yi depending on the predictors xi and zi from

the finite mixture model given by

yi|xi, zi ∼
H0∑
h=1

ωh,0N(1γ∗0,h,0 + 1
l∑

s=1

γ∗s,h,0zis +
m∑
s=1

β∗s,h,0xis, σ
2
0Iq), (8)

where β∗s,h,0, h = 1, ..., H0 are mixture specific coefficients for xis. The parameter γ∗0,h,0 is

the hth mixture specific intercept and γ∗1,h,0, ..., γ
∗
l,h,0 are the hth mixture specific coefficients
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corresponding to zi1, ..., zil, respectively. We set m = 1 and l = 2 for the simulations, which

mimics the real data application scenario. Since m = 1, the subscript s will be omitted

from variables related to the predictor of interest hereon. The predictors xi , zi1 and zi2 are

simulated i.i.d. from N(0,1).

To simulate the coefficients β∗h,0, we draw p latent variables uh,k,0, each of dimension Rg,

from a mixture distribution given by

uh,k,0 ∼ π0NRg(uh,m,g, u
2
h,v,gIRg) + (1− π0)δ0; k ∈ {1, ..., p}, (9)

where NRg(uh,m,g, u
2
h,v,g) represents an Rg-variate normal distribution with mean vector

uh,m,g and covariance matrix u2h,v,gIRg . (1 − π0) is the probability of any uh,k,0 being zero

in the truth, h = 1, ..., H0, and is referred to as the network node sparsity. We consider nine

simulation cases as following:

Cases 1-7: In Cases 1-7, we assume β∗h,0 is the upper triangular vector of a symmetric

matrix B∗h,0, i.e., β∗h,0 = (B∗h,0,j : j1 < j2)
′. The j = (j1, j2)th element (j1 < j2) of B∗h,0

corresponding to the h-th mixture component is constructed using a low-rank approach

B∗h,0,j = u′h,j1,0uh,j2,0, accounting for the interaction between the j1th and j2th network

nodes, for all h = 1, ..., H0. The 7 different cases are obtained by varying the number of true

mixture components (H0), number of network nodes (p), sample size (n), true dimension

of latent variables (Rg), fitted dimension of latent variables (R) and network node sparsity

(1− π0), as summarized in Table 1.

Case 8: In Case 8, we consider H0 = 2, ω1,0 = 0.4, ω3,0 = 0.6, and β∗1,0 and β∗2,0 are simu-

lated using two different strategies as following:

Simulating β∗1,0: The j = (j1, j2)th element (j1 < j2) of B∗1,0 is constructed using a low-rank

approach B∗1,0,j = u′1,j1,0u1,j2,0, where the sparsity (1− π0) in generating the latent variables

is set at 0.6.

Simulating β∗2,0: Randomly set (1− π0) = 0.6 proportion of elements in β∗2,0 to be zero, rest

are simulated from N(0, 1).

Case 9: Case 9 uses an identical construct as described in Case 8, except that (1 − π0) is

set at 0.3.
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Table 1: Table presents specifications of Cases 1-7 in the simulation study. The parameter H0

refers to the true number of mixture components in the Bayesian network response mixture
model (NRMM). Different cases also present various combinations of the number of network
nodes p, sample size n, network node sparsity (1− π0), true (Rg) and fitted dimensions (R)
of the node specific latent variables.

Cases p n Rg R (1− π0) H0

1 30 100 2 5 0.6 3
2 30 100 2 5 0.3 3
3 30 100 3 5 0.6 4
4 80 100 2 5 0.6 3
5 80 100 2 5 0.3 3
6 80 100 3 5 0.6 2
7 30 100 2 5 0.6 1

The intercept γ∗s,h,0, h = 1, ..., H0, s = 1, 2 in each mixture component is drawn from

N(−2, 2), while σ2
0 is fixed at 0.5.

In all cases, each component of the mean vector uh,m,g is randomly generated to lie

between (−2, 2) and the standard deviation uh,v,g is set randomly at a number between 0.3

and 2.

Notably, Cases 1-7 represent the true model being included in the class of fitted models.

In contrast, Cases 8 and 9 show departure of the true model from the fitted models. In

particular, the last two cases include specifications where the network coefficient in a cluster

is full rank, where as the fitted model assumes a low-rank structure for network coefficients

in all the clusters. This will allow assessing performance of our approach under model mis-

specification.

5.1 Choice of Hyper-parameters

All simulation studies and the real data analysis are presented with the hyper-parameters

chosen as a = 1, b = 1, aσ = 1, bσ = 1 and ν = 20. The choice of aσ = bσ = 1 ensures that

the prior on σ2 is sufficiently flat with an infinite mean. The choice of a = b = 1 leads to a-

priori uniform distribution on the number of network nodes related to each predictor in each

cluster. Setting ν = 20 implies that the prior distribution of Mh is concentrated around a

scaled identity matrix. Since the model is invariant to rotations of the latent positions uh,k,

the prior on uh,k’s should ideally be invariant under rotation. CenteringMh around a matrix
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that is proportional to the identity satisfies such a requirement. Finally, we choose aα, bα

following Escobar and West (1995) such that the mean number of clusters is approximately

2.5 a priori. Since in most applications of the mixture model the true number of clusters

is small, our choice of aα and bα present a reasonable prior belief. Moderately perturbing

hyper-parameters yields practically identical inference, as described in Section 5.5.

5.2 Competitors and Metrics of Evaluation

NRMM is fitted in all simulations with H = 15 mixture components. As a competitor

to our model, we employ the network response regression (NRR), which is essentially our

proposed framework with only one mixture component, i.e., H = 1. Thus NRR assumes

(a) the same set of network nodes is significantly related to the predictors of interest for

every individual, and, (b) normality for the distribution of each cell in the network response.

Comparison with NRR will highlight any relative advantages of NRMM when these assump-

tions do not hold true. Additionally, we compare our approach with a frequentist higher

order low-rank regression (HOLRR) method (Rabusseau and Kadri, 2016) popularly used in

machine learning.

The competitors are assessed based on their ability to estimate the true regression mean

function E0[yi|xi, zi] =
∑H0

h=1 ωh,0

(
1qγ

∗
0,h,0 + 1q

∑l
s=1 γ

∗
s,h,0zis +

∑m
s=1 β

∗
s,h,0xis

)
. In particu-

lar, we compute the mean squared error (MSE) of estimating the true regression mean func-

tion over all data points, given by 1
nq

∑n
i=1 ||E0[yi|xi, zi]− ̂E[yi|xi, zi]||2, where ̂E[yi|xi, zi]

denotes the posterior mean of the regression function from a competing method. While MSE

offers an evaluation of the point estimation by competitors, the uncertainty in estimating

the true regression mean function is measured using the coverage and length of 95% credible

intervals obtained from NRMM and NRR. We do not report coverage and length of 95%

credible intervals from HOLRR since they are not readily available.

In addition to reporting the posterior distribution of the number of clusters and the

uncertainty associated with clustering through P (ci = cj|y), we also evaluate the ability of

the models to identify clusters using the Adjusted Rand Index (ARI) (Hubert and Arabie,

1985) of the posterior cluster configurations with respect to the known cluster configuration.

The ARI evaluates the agreement in cluster assignment between two cluster configurations.
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It ranges between −1 and 1, with larger values indicating more agreement between cluster

configurations.

5.3 Simulation results

All model parameters show excellent convergence with fairly uncorrelated post burn-in

samples to draw posterior inference. To demonstrate this, we present the effective sample

size (ESS) corresponding to 10000 post burn-in samples from NRMM for all simulation

examples (see Table 2). Trace-plots for MCMC chains for a few representative parameters

are presented in Appendix B. Table 2 and Figure 1 provide insights into the estimates of

the cluster structure and associated uncertainty by displaying the discrepancy between the

true and estimated number of clusters and heat maps of posterior probabilities of pairs of

subjects belonging to the same cluster. To facilitate visualization in Figure 1, subjects are

ordered according to their true cluster configurations in the heatmap. In all cases, the model

successfully recovers the true cluster structure, with little uncertainty associated with the

estimator. The most challenging cases among all are cases 8 and 9, which correspond to

model mis-specification. Even with model mis-specification, there is a minor deterioration in

the performance, with ARI dropping to around 0.93 in case 8 and 0.95 in case 9. It appears

from Figure 1 that the clustering performance improves nominally with decreasing sparsity

of β∗h,0, the impact of sparsity being a little more prominent under model mis-specification

(compare cases 8 and 9). The uncertainty in clustering for a few individuals also appears to

be higher in case 7, where the true data generating model sets H0 = 1.

The posterior distributions of the number of identified clusters are also presented in the

form of barplots in Figure 2. Consistent with the story presented so far, the posterior distri-

bution of the number of clusters appears to concentrate around the true number of clusters

H0 in all cases except case 8, where the model mildly overestimates the number of clusters.

Notably, case 8 corresponds to model mis-specification with a higher node sparsity parame-

ter (1 − π0). As the node sparsity parameter (1 − π0) decreases, the posterior distribution

of the number of clusters concentrates around H0 even under model mis-specification (case

9). The results also reveal a somewhat bi-modal structure of the posterior distribution of

the number of clusters under cases 3 (with H0 = 4) and 7 (with H0 = 1). Importantly, out
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of H assigned clusters, most are not populated in each case, justifying the choice of H = 15

in each case.

Table 2 presents mean squared errors (MSE) for estimating the regression mean func-

tion under each of the competitors. Further, coverage and average length of 95% credible

intervals are provided to assess the uncertainty quantification from NRMM and NRR. A few

interesting observations emerge from Table 2. Comparing cases 1 and 2 (and also comparing

cases 4 and 5), it turns out that NRMM yields marginally lower MSE with increased values

of the sparsity parameter (1− π0). Results from cases 8 and 9 present a similar trend, even

under model mis-specification. Also, keeping n fixed and increasing p moderately does not

have any significant impact on MSE. Increasing the number of true mixture components H0

has an adverse effect on the performance of NRMM, which becomes evident by comparing

results from case 3 with cases 1 and 2. Additionally, in most cases, NRMM shows higher

coverage levels, often close to nominal coverage, compared to NRR. The less than nominal

coverage in cases 8 and 9 can be attributed to model mis-specification, whereas the under-

coverage in case 3 could be due to the larger number of mixture components, which presents

obstacles to model estimation. Note that under case 7, only one mixture component is used

to simulate the data, and so the data favors NRR over NRMM. Consequently, NRR yields

considerably smaller MSE and close to nominal coverage in this case. Under all other cases

with H0 > 1, NRR demonstrates inferior performance to NRMM with a higher MSE and

considerable under-coverage of the mean function. HOLRR offers a higher MSE compared

to NRMM under all simulation scenarios.

Note that inference on each cluster is not readily available from the mixture model due

to the clusters being not identifiable. Thus, to draw inference on which network nodes are

influential in each cluster, we fix the cluster membership indicator ci for the ith sample at ĉi

(the estimated cluster indicator) and run the model once more without updating the cluster

membership indicator ci at any MCMC iteration. With the clusters remaining fixed in every

iteration, it is possible to draw inference on the influential network nodes in each cluster. In

particular, the kth node is deemed influential for the hth cluster, if the empirically estimated

posterior probability of the event {uh,k 6= 0} exceeds 0.5. As demonstrated in Figures 1

and 2, for cases 1-7, our proposed model correctly identifies each cluster in every simulation,
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(a) Case 1,H0 = 3 (b) Case 2,H0 = 3 (c) Case 3,H0 = 4

(d) Case 4,H0 = 3 (e) Case 5,H0 = 3 (f) Case 6,H0 = 2

(g) Case 7,H0 = 1 (h) Case 8,H0 = 2 (i) Case 9,H0 = 2

Figure 1: Plots showing uncertainty in estimating clusters in simulation cases 1-9. Boldfaced
horizontal and vertical lines indicate the true clustering.
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(a) Case 1,H0 = 3 (b) Case 2,H0 = 3 (c) Case 3,H0 = 4

(d) Case 4,H0 = 3 (e) Case 5,H0 = 3 (f) Case 6,H0 = 2

(g) Case 7,H0 = 1 (h) Case 8,H0 = 2 (i) Case 9,H0 = 2

Figure 2: Plots showing the posterior distribution of the number of clusters in the simulation
cases 1-9.
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Table 2: The first column presents Effective sample size for NRMM corresponding to the
10000 post burn-in iterations to assess the convergence of the MCMC sampler for NRMM.
Second column presents ARI values to assess the clustering accuracy of NRMM. The next two
columns present True Positive Rates (TPR) and False Positive Rates (FPR) in identifying
network nodes related to the predictor of interest in NRMM. Mean Squared Error (MSE)
for NRMM, NRR and HOLRR are presented for cases 1-9. The lowest MSE in each case is
boldfaced. Coverage and length of 95% credible interval are provided for NRMM and NRR
only, since the corresponding values for HOLRR are not readily available.

NRMM Competitors
Case ESS ARI TPR FPR NRMM NRR HOLRR

MSE 0.02 0.40 0.08
1 8006 0.99 0.87 0.08 Coverage of 95% CI 0.89 0.02 –

Length of 95% CI 0.54 0.22 –
MSE 0.03 0.94 0.14

2 7985 0.99 0.90 0.05 Coverage of 95% CI 0.96 0.05 –
Length of 95% CI 0.58 0.44 –

MSE 0.14 0.32 0.44
3 7942 0.98 0.71 0.00 Coverage of 95% CI 0.69 0.29 –

Length of 95% CI 0.64 0.39 –
MSE 0.01 0.07 0.09

4 7235 0.99 0.95 0.02 Coverage of 95% CI 0.99 0.15 –
Length of 95% CI 0.47 0.15 –

MSE 0.04 0.06 0.11
5 7451 0.99 0.93 0.02 Coverage of 95% CI 0.93 0.44 –

Length of 95% CI 0.55 0.34 –
MSE 0.05 0.30 0.17

6 7324 0.99 1.00 0.00 Coverage of 95% CI 0.99 0.10 –
Length of 95% CI 0.61 0.28 –

MSE 0.12 0.008 0.40
7 8106 0.97 0.92 0.00 Coverage of 95% CI 0.86 0.97 –

Length of 95% CI 0.37 0.07 –
MSE 0.10 1.30 0.13

8 8195 0.93 – – Coverage of 95% CI 0.84 0.07 –
Length of 95% CI 0.51 0.36 –

MSE 0.17 0.54 0.19
9 7839 0.95 – – Coverage of 95% CI 0.74 0.09 –

Length of 95% CI 0.70 0.39 –
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Table 3: Computation time (in seconds) per MCMC iteration of the NRMM model with
H = 15 mixture components.

V 20 40 80 160 200 250
N = 50 0.17 0.32 1.08 3.63 5.97 7.63
N = 100 0.26 0.43 1.14 4.10 6.41 13.40
N = 150 0.40 0.72 1.70 6.08 9.49 16.31

and hence inference on influential network nodes in each cluster as mentioned above can be

directly compared to the truly influential nodes in each cluster for these simulation cases

(i.e., under no model mis-specification). In this regard, Table 2 presents the True Positive

Rates (TPR)= TP
TP+FP and False Positive Rates (FPR)= FP

TN+FP of identifying influential

network nodes over all clusters, where TP, FP and TN denote the total number of true

positives, false positives and true negatives, respectively. The results indicate high TPR and

low FPR in all cases, except in case 3, which shows a comparatively lower TPR than the

rest, but still a very low FPR. This observation may be attributed to a higher number of

true clusters, where the model detects some influential nodes as uninfluential, resulting in

decrease of TPR. Overall, the simulation studies indicate good performance of NRMM.

5.4 Computational complexity and time

The Gibbs sampler for model estimation does not involve any expensive matrix inversion

or multiplication, leading to fast computation. Further, the Gibbs sampler can be suitably

parallelized since the updates of us,h,k can be performed over different processors in parallel.

The computation time (in seconds) per MCMC iteration for NRMM model is provided in

Table 3. The entries in the table are recorded assuming H = 15 mixture components are

fitted to the data.

5.5 Sensitivity Analysis

To check sensitivity of inference to the choice of hyper-parameters, we consider a repre-

sentative case (case 2) and re-analyze the same simulated data with different combinations

of hyper-parameters. In particular, we consider three different hyper-parameter settings

for case 2 and compare the inference with the results on case 2 presented earlier. The

three combinations are given by, (i) a = 1, b = 5, ν = 20; (ii) a = 5, b = 1, ν = 20; (iii)
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Table 4: ARI, MSE, coverage of 95% CI and length of 95% CI for NRMM under case 2 with
different hyper-parameter combinations are provided.

Combinations (i) a = 1, b = 5, ν = 20 (ii) a = 5, b = 1, ν = 20 (iii) a = 1, b = 1, ν = 50
ARI 0.99 0.99 0.99
MSE 0.08 0.03 0.05

Coverage of 95% CI 0.93 0.96 0.95
Length of 95% CI 0.61 0.57 0.50

a = 1, b = 1, ν = 50. Notice that (i) presents a low prior mean of 0.2 for each ξh,k encour-

aging less number of activated nodes a priori, whereas (ii) presents higher prior mean of 5

for ξh,k which encourages higher number of activated nodes. (iii) presents variation of the

hyperparameter ν in the Inverse-Wishart distribution of Mh. Table 4 shows the posterior

mean of ARI in case 2 under the three different hyper-parameter settings. We addition-

ally present MSE, coverage and length of 95% credible intervals for these hyper-parameter

combinations and compare these results with the result presented for case 2 in Table 2. Of

all the parameters, only variations in a and b seem to have an effect in the inferences, but

this effect is found to be very small. More specifically, when the prior mean of number of

activated nodes is small (combination (i)), MSE is found to be little higher than what is

presented in Table 2 under case 2. Similarly, the coverage is found to be little lower and

length little higher as compared to case 2 in Table 2. In contrast, combinations (ii) and

(iii) yield practically identical results when compared with case 2 in Table 2. The clustering

accuracy is found to be unaffected by the perturbation in hyper-parameters, with all three

combinations resulting in the similar value of ARI. The results are also found to be not

sensitive at all with the moderate perturbation of hyper-parameters aσ and bσ.

6 Brain Connectome Dataset with the Creative Achieve-

ment Questionnaire (CAQ)

Our dataset of interest consists of brain connectome information of several subjects

collected using a brain imaging technique called Diffusion Weighted Magnetic Resonance

Imaging (DWI). It is openly available in the repository named Templeton 114 at https:

//neurodata.io/mri. Note that DWI is a magnetic resonance imaging technique that mea-
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sures the restricted diffusion of water in tissues in order to produce neural tract images which

are then pre-processed using the NDMG pre-processing pipeline (Kiar et al., 2016; Kiar et al.,

2017a; Kiar et al., 2017b). In the context of DWI, the human brain is divided according to

the Desikan atlas (Desikan et al., 2006) that identifies 34 cortical regions of interest (ROIs)

in each of the left and right hemispheres of the human brain, implying 68 cortical ROIs in all.

These 68 ROIs are contained in 6 lobes each in the left and the right hemispheres, namely

the temporal, frontal, occipital, parietal, insula and cingulate lobes.

Using DWI, a brain network for each subject is constructed as a symmetric matrix with

row and column indices corresponding to different ROIs, and entries corresponding to the

estimated number of ‘fibers’ connecting pairs of brain regions. Thus, for each subject, rep-

resenting the brain network, is a symmetric matrix of dimension 68× 68, with the (j1, j2)th

off-diagonal entry being the estimated number of fibers connecting the j1th and the j2th

brain ROIs and diagonal entries set to zero. For each subject, information on creativity as

measured by the Creative Achievement Questionnaire (CAQ) is also available, which we treat

as a feature of interest. Creative achievement can be perceived as the aggregate of creative

products of an individual during his/her lifetime (Carson et al., 2005). CAQ, in particular, is

a self-reported measure of creative achievement that assesses achievement across ten domains

of creativity. To obtain the CAQ, each subject is given a questionnaire to complete, which

is then used to form a comprehensive measure of creative productivity across ten domains,

including visual arts, music, creative writing, dance, drama, architecture, humor, scientific

discovery, invention and culinary arts. As a measure of creativity, CAQ has been recognized

in the literature to be both reliable and valid (Jung et al., 2010). Along with the brain

network information and CAQ, age and sex are also available and are treated as auxiliary

features for n = 73 subjects in our dataset of interest. While there are earlier literature

suggesting effect of age on brain connectivity Baum et al. (2017), all subjects in our dataset

belong to the age group of 18-29 years with very little variation, which prompted us to ignore

ROI specific age effects. We also found in the analysis in Section 6.1 that the age effects are

closely insignificant in almost all the clusters, which further justifies our argument.

The main objective of the data analysis lies in supervised clustering of brain networks

from 73 subjects. The Bayesian mixture model of network objects proposed in this article
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(a) QQ Plot: Cell 1
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(b) QQ Plot: Cell 2
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(c) QQ Plot: Cell 3

Figure 3: QQ-plot of residuals corresponding to the linear regressions fitted on three repre-
sentative cells (edges in the brain network) with n = 73 subjects of the CAQ dataset.

achieves clustering of subjects into different groups, each group having a different regres-

sion relationship of the brain connectome on CAQ, age and sex. The model offers inference

on influential network nodes related to CAQ in different clusters, allowing for the scientific

understanding of the relationship between creativity and the brain connectome with char-

acterization of uncertainty in different groups/clusters of subjects. As a byproduct to our

clustering exercise using the network mixture model, the normality assumption on the errors

of the network response matrix is automatically relaxed. This deemed appropriate for this

dataset, since after fitting linear regression models independently on each cell of the network

response matrix with CAQ, age and sex as predictors, we observe visible non-normality in

the standardized residuals (refer to the QQ plots of the standardized residuals for three

representative cells in Figure 3).

6.1 Findings from CAQ Brain Connectome Data

This section reports analysis of the CAQ brain connectome dataset described in Section

6. We fit NRMM with H = 20, with the same set of hyper-parameters used in the simulation

studies. NRMM, when applied to the CAQ dataset, identifies 7 clusters with 25, 13, 6, 6,

7, 8 and 8 subjects included in the clusters, respectively. Similar to simulation studies, the

uncertainty in clustering is measured by the posterior probability of pairs of subjects lying in

the same cluster, which is displayed through a heatmap in Figure 4(a). The figure indicates

three distinct cluster assignments, with a somewhat higher degree of uncertainty among the

pairs lying outside these three clusters. The posterior distribution of the number of clusters
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(a) Uncertainty in Clustering (b) Posterior Dist. of no. of Clusters

Figure 4: CAQ Data: Figure 4(a) shows the uncertainty in estimating the clusters. Figure
4(b) shows the barplot corresponding to the posterior distribution of the estimated number
of clusters. The inference is presented for H = 20.

(see Figure 4(b)) demonstrates some bimodality with modes at 6 and 7. Importantly, there is

no posterior probability of having more than 9 clusters, suggesting thatH = 20 is appropriate

for this analysis.

In the absence of any ground truth, we compare performances of NRMM and NRR

with respect to the Posterior Predictive Loss Criterion statistic (Gelfand and Ghosh, 1998),

which is calculated as D = G + P , such that a model corresponding to a lower value of D

is preferred. The G values, representing a measure of model fit, turn out to be 98163.8 and

101738.7 for NRMM and NRR, respectively. The P values, indicative of model complexity,

are 101722 and 101489.2 for NRMM and NRR, respectively. Thus, the overall model fitting

statistic D shows a better performance of NRMM compared to NRR. HOLRR, being a

frequentist method, is not included in this comparison. We also compute leave-one-out of

sample mean squared prediction error (MSPE) for the three competitors and they turned

out to be 0.64, 0.73, 0.71 for NRMM, NRR and HOLRR, respectively.

Similar to the simulation studies, we supply the model with the estimated cluster indica-

tors and run it again to draw further inference on the influential nodes in the seven clusters.

Notably, Cluster 3 includes individuals who are all male. Hence analysis of Cluster 3 does

not include gender as a variable. To assess the model fit in each cluster, we calculate the

mean squared prediction error (MSPE), average coverage of 95% predictive intervals and
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Table 5: MSPE, average coverage of 95% predictive intervals and average length of 95%
predictive intervals for the seven clusters are provided.

Cluster size 25 13 6 6 7 8 8
MSE 0.66 0.43 0.28 0.92 0.64 0.83 0.54

Coverage of 95% CI 0.95 0.97 0.97 0.94 0.95 0.94 0.96
Length of 95% CI 3.02 3.02 3.03 3.03 3.04 3.03 3.02

average length of 95% predictive intervals averaged over all cells of the network response

matrix and all subjects in a cluster. Table 5 depicts satisfactory point prediction along

with an excellent characterization of predictive uncertainty. Referring to the high degree of

non-normality in the error distributions discussed in Section 6, it is instructive to see if the

mixture modeling framework justifies normality assumption on the error distribution in each

cluster. To check this, cell by cell Kolmogorov-Smirnov test are conducted by comparing

the discrepancy between the posterior mean of residuals and the normal distribution. Out

of 2278 network matrix cells in each cluster, residuals in 51%, 62%, 18%, 96%, 91%, 89% and

97% cells in clusters 1 − 7 respectively show statistically significant normality. Therefore,

the normality assumption on the errors in each cluster is reasonable except for Cluster 3.

Figure 5 displays posterior densities of the age coefficients for all seven clusters. Except

for Cluster 2, all other age coefficients turn out to be significant. Digging a bit deeper, we

found that Cluster 2 shows significantly lower variability in the ages of the subjects included

compared to the other clusters, which explains age coefficient being statistically insignificant

in this cluster. Also, except for Cluster 5, the poster mean of age coefficients are found to

be negative in all other clusters, implying a negative association between creativity and age.

Similarly, in all six clusters where gender is added as a variable, it is found to be significantly

affecting the creativity (see Figure 6).

To assess which nodes are related to creativity (as measured by CAQ) in each cluster,

we run the analysis in each cluster 10 times and report the nodes which have posterior

probability of being active is greater than 0.5 for at least five of the replications. Figure 7

records the 10, 40, 30, 37, 41, 49 and 15 ROIs significantly related to CAQ for the 7 clusters

of individuals. A considerable proportion of ROIs detected in each cluster are part of the

frontal, cingulate and temporal lobes in both hemispheres. This finding concurs with results

presented previously in the literature. The frontal lobe has been scientifically associated
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Figure 5: Plots of age coefficient in each cluster. 95% posterior credible intervals are shown
through the space between the two dotted lines.
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Figure 6: Plots of sex coefficient in each cluster. 95% posterior credible intervals are shown
through the space between the two dotted lines.
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with divergent thinking, problem solving ability, spontaneity, memory, language, judgement,

impulse control and social behavior (Stuss et al., 1985; Razumnikova, 2007; Miller and Milner,

1985; Kolb and Milner, 1981). Finkelstein et al., 1991 also report de novo artistic expression

to be associated with the frontal and temporal regions.

7 Conclusion and Future Work

This article is motivated by the need to develop a flexible relationship between the brain

network and creativity, as measured by CAQ, from subjects in a brain connectome dataset.

Viewing the brain image for each subject as an undirected network, we propose a novel

Bayesian mixture of regression models with a network response and scalar predictors. Our

proposed framework clusters subjects into groups, with individuals in the same group sharing

an identical relationship between the network response and scalar predictors. A spike-and-

slab variable selection prior is assigned on the network node specific latent variables in each

mixture component to deliver inference on influential network nodes significantly related

to a specific predictor of interest. Empirical investigations with simulation studies validate

our network response mixture modeling (NRMM) framework and yield superior inference

over relevant competitors. The NRMM framework, when applied to a real brain connec-

tome dataset, finds clusters of individuals sharing similar relationships between their brain

networks and creativity, identifying brain ROIs significantly related to creativity in each

cluster.

As part of future work, we envision investigating the performance of our model with a

more flexible non-local prior structure on the node specific latent variables. We also plan to

extend our framework with each mixture component fitting a generalized linear model with

a symmetric network/tensor response and scalar predictors.

A Appendix

Lemma A.1 Let uT,n,h,k = (u
(1)
T,n,h,k, ..., u

(Rn)
T,n,h,k)

T and γn,h,j , j ∈ J be the only positive root

of the equation

x(x+ ||uT,n,h,j2||) + x||uT,n,h,j1|| = δn. (10)
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Figure 7: CAQ Data: Plots a 68 × 7 matrix with the rows and columns corresponding to
the ROIs and clusters, respectively. A green cell in the (k, h)th entry of the matrix implies
that the kth ROI in the hth cluster is not significantly related to creativity. Prefix ‘lh-’ and
‘rh-’ in the ROI names on the y-axis denote their positions in the left and right hemispheres
of the brain, respectively. The ROI names are color-coded according to the lobes they belong
to. From bottom to top the group of ROIs under the same color correspond to temporal,
cingulate, frontal, occipital, parietal and insula lobes.
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Assume γn,h = minj∈J γn,h,j. Then, Π(||Bn,h −BT,n,h||∞ ≤ δn) ≥ Π(||un,h,k − uT,n,h,k|| ≤

γn,h, k = 1, .., pn), h = 1, ..., Hn.

Proof For j ∈ J ,

|Bn,h,j − BT,n,h,j| = |
Rn∑
r=1

u
(r)
n,h,j1

u
(r)
n,h,j2

−
Rn∑
r=1

u
(r)
T,n,h,j1

u
(r)
T,n,h,j2

| = |
Rn∑
r=1

(u
(r)
n,h,j1

− u(r)T,n,h,j1)u
(r)
n,h,j2
| +

|
Rn∑
r=1

(u
(r)
n,h,j2

−u(r)T,n,h,j2)u
(r)
T,n,h,j1

| ≤ ||un,h,j1 −uT,n,h,j1||||un,h,j2||+ ||un,h,j2 −uT,n,h,j2||||uT,n,h,j1||

If ||un,h,k − uT,n,h,k|| ≤ γn,h, k = 1, .., pn, the above inequality implies that |Bn,h,j −

BT,n,h,j| ≤ γn,h(γn,h + ||uT,n,h,j2||) + γn,h||uT,n,h,j1|| ≤ δn.

Thus Π(||Bn,h −BT,n,h||∞ ≤ δn) ≥ Π(||un,h,k − uT,n,h,k|| ≤ γn,h, k = 1, .., pn).

Lemma A.2 With γn,h and uT,n,h,k defined as in Lemma A.1, for all h = 1, ..., Hn,

Π(||Bn,h −BT,n,h||∞ ≤ δn) ≥ e−
∑pn
k=1 ||uT,n,h,k||

2/2

(
1√
2π

)Rnpn Rnpn
Rnpn + 1

(
2γn,h
Rn

)Rnpn
e−pnγ

2
n,h/Rn .

Proof For h = 1, ..., Hn,

Π(||Bn,h −BT,n,h||∞ ≤ δn) ≥ Π(||un,h,k − uT,n,h,k|| ≤ γn,h, k = 1, .., pn)

≥ E [Π(||un,h,k − uT,n,h,k|| ≤ γn,h, k = 1, .., pn|ξ)]

≥ E

[
pn∏
k=1

{
e−||uT,n,h,k||

2/2Π(||un,h,k|| ≤ γn,h|ξ)
}]

= e−
∑pn
k=1 ||uT,n,h,k||

2/2E

[
pn∏
k=1

Π(||un,h,k|| ≤ γn,h|ξ)

]
, (11)

where the first inequality follows from Lemma A.1 and the second inequality follows from

the Anderson’s Lemma. We will now make use of the fact that
∫ a
−a e

−x2/2dx ≥ e−a
2
2a to

conclude

Π(||un,h,k|| ≤ γn,h|ξ) ≥
Rn∏
r=1

Π(|u(r)n,h,k| ≤
γn,h
Rn

|ξ) =
Rn∏
r=1

(
(1− ξ) +

(
ξ√
2π

)∫ γn,h/Rn

−γn,h/Rn
e−x

2/2

)

≥
Rn∏
r=1

(
(1− ξ) +

(
ξ√
2π

)
e−γ

2
n,h/R

2
n

2γn,h
Rn

)
≥
[
(1− ξ) +

ξ√
2π
e−γ

2
n,h/R

2
n

2γn,h
Rn

]Rn
.

33



pn∏
k=1

Π(||un,h,k|| ≤ γn,h) ≥ E

[
(1− ξ) +

ξ√
2π

exp

(
−
γ2n,h
R2
n

)
2γn,h
Rn

]Rnpn

= E

[
Rnpn∑
h1=0

(
Rnpn
h1

)
(1− ξ)h1

(
ξ√
2π

)Rnpn−h1 (2γn,h
Rn

)Rnpn−h1
exp(−

(Rnpn − h1)γ2n,h
R2
n

)

]

≥
(

1√
2π

)Rnpn Rnpn∑
h1=0

(
Rnpn
h1

)
Beta(Rnpn − h1 + 1, h1 + 1)

(
2γn,h
Rn

)Rnpn−h1
exp

(
−

(Rnpn − h1)γ2n,h
R2
n

)

≥
(

1√
2π

)Rnpn Rnpn∑
h1=0

(Rnpn)!

h1!(Rnpn − h1)!
h1!(Rnpn − h1)!

(Rnpn + 1)!

(
2γn,h
Rn

)Rnpn−h1
exp

(
−

(Rnpn − h1)γ2n,h
R2
n

)

≥
(

1√
2π

)Rnpn Rnpn
Rnpn + 1

(
2γn,h
Rn

)Rnpn
exp

(
−
pnγ

2
n,h

Rn

)
.

Thus,

Π(||Bn,h−BT,n,h||∞ ≤ δn) ≥ exp
(
−

∑pn
k=1 ||ũT,n,h,k||

2

2

)(
1√
2π

)Rnpn
Rnpn
Rnpn+1

(
2γn,h
Rn

)Rnpn
exp

(
−pnγ2n,h

Rn

)
Lemma A.3 Let x∗ be a real positive root of the equation P (x) = xD + aD−1x

D−1 + · · · +

a1x− a0 = 0 with a0 > 0, a1, ..., aD−1 > 0. Then 1
x∗
≤ 1 + a1

a0
.

Proof Using a change of variable x1 = 1
x
, we have xD1 − a1

a0
xD−11 −· · ·− aD−1

a0
x− 1

a0
= 0. Since

this is a monic polynomial with 1
x∗

as one of its positive real roots, by Lagrange-Maclaurin

theorem 1
x∗
≤ 1 + a1

a0
.

Proof of Theorem 3.1

Proof Define,

D0(f, fT ) =

∫ ∫
fT (Y |x) log(fT (Y |x)/f(Y |x))νY (dY )νx(dx),

where f and fT are as defined in (6). LetMn be the sequence of sets of probability densities

and Fn(εn,Mn) be the minimum number of Hellinger balls of radius εn needed to coverMn.

Invoking Proposition 1 in Jiang et al. (2007), it suffices to show that the following conditions

hold for sufficiently large n to prove Theorem 3.1:

(a) logFn(εn,Mn) ≤ nε2n, (b) Π(Mc
n) ≤ e−2nε

2
n , (c) For small enough r1, r2 > 0, ∃Nr1,r2 such

that for all n ≥ Nr1,r2 , Π[f : D0(f, fT ) ≤ r1ε
2
n/4] ≥ e−r2nε

2
n .
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Proof of condition (b): Define a sieve of probability densities Mn, given by

Mn =

{
f (Hn) =

Hn∑
h=1

ωhf(Y |x,Bn,h), Bn,h =
Rn∑
r=1

u
(r)
n,h ◦ u

(r)
n,h, |u

(r)
n,h,s| ≤ Cn, r = 1, ..., Rn, s = 1, .., pn

}
,

(12)

where
∑Hn

h=1 ωh = 1, Hn →∞, n→∞. Then for all large n,

Π(Mc
n) = Π(∪Hnh=1 ∪

pn
s=1 ∪Rnr=1{|u

(r)
n,h,s| > Cn}) ≤ HnRnpnΠ(|u(r)n,h,s| > Cn) = 2HnRnpn(1− Φ(Cn))

≤ e−2nε
2
n ,

where the last inequality follows by assumptions (i) and (iii).

Proof of condition (a): Define,

Mn,h =

{
f(Y |x,Bn,h) : Bn,h =

Rn∑
r=1

u
(r)
n,h ◦ u

(r)
n,h, |u

(r)
n,h,s| ≤ Cn, r = 1, ..., Rn, s = 1, .., pn

}
,

for h = 1, ..., Hn. By Theorem 2 of Genovese et al. (2000),

Fn(εn,Mn) ≤ Hn(2πe)Hn/2(3/εn)Hn−1
Hn∏
h=1

Fn(εn/3,Mn,h).

Let us consider balls of the form (u
(r)
n,h,s−ρ, u

(r)
n,h,s+ρ)pn,Rns,r=1 with their centers |u(r)n,h,s| ≤ Cn,

i.e., the densities f defined through parameters u
(r)
n,h,s’s belonging to Mn,h. There are at

most F (ρ) = (Cn/ρ + 1)Rnpn such balls needed to cover the parameter space {u(r)n,h,s : s =

1, .., pn; r = 1, .., Rn, |u(r)n,h,s| ≤ Cn}.

Let f̃ be any density in Mn,h, where B̃n,h,j =
∑Rn

r=1 v
(r)
n,h,j1

v
(r)
n,h,j2

, with |v(r)n,h,s| ≤ Cn for

all h = 1, ..., Hn, r = 1, .., Rn. There exists a density f ∈ Mn,h represented by parameters
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u
(r)
n,h,s’s such that v

(r)
n,h,s ∈ (u

(r)
n,h,s − ρ, u

(r)
n,h,s + ρ) for every r, s and h. Note that,

DH(f, f̃) ≤
{
D0(f, f̃)

}1/2

=

{∑
j∈J

D0(fj , f̃j)

}1/2

=

{∑
j∈J

(αn,h,j − α̃n,h,j)2/2

}1/2

≤

{∑
j∈J

(Bn,h,j − B̃n,h,j)
2/2

}1/2

,

where αn,h,j = xBn,h,j and α̃n,h,j = xB̃n,h,j . Now note that,

|Bn,h,j − B̃n,h,j| = |
Rn∑
r=1

u
(r)
n,h,j1

u
(r)
n,h,j2

−
Rn∑
r=1

v
(r)
n,h,j1

v
(r)
n,h,j2
|

≤
Rn∑
r=1

{
|u(r)n,h,j1 − v

(r)
n,h,j1
||u(r)n,h,j1|+ |v

(r)
n,h,j1
||u(r)n,h,j2 − v

(r)
n,h,j2
|
}
≤ 2RnρCn.

Hence,

DH(f, f̃) ≤

{∑
j∈J

D0(fj , f̃j)

}1/2

≤ {qnρ2R2
nC

2
n}1/2 = ρRnCnq

1/2
n .

Choosing ρ = εn/(3q
1/2
n RnCn), one gets DH(f, f̃) ≤ εn/3. Hence

logFn(εn,Mn) ≤ log(Hn) +Hn log(2πe)/2 + (Hn − 1) log(3/εn) +
Hn∑
h=1

logFn(εn/3,Mn,h)

≤ log(Hn) +Hn log(2πe)/2 + (Hn − 1) log(3/εn) +Hn logF(ρ)

≤ log(Hn) +Hn log(2πe)/2 + (Hn − 1) log(3/εn) +HnRnpn log
(
1 + 3q1/2n RnC

2
n/ε

2
n

)
≤ log(Hn) +Hn log(2πe)/2 + (Hn − 1) log(3/εn) +HnRnpn log(6q1/2n /ε2n) +HnRnpn log(RnC

2
n)

≤ log(Hn) +Hn log(2πe)/2 + (Hn − 1) log(3/εn) +HnRnpn log(6pn) +HnRnpn log(1/ε2n)+

HnRnpn log(RnC
2
n)

≤ nε2n, for large n, by assumptions (i), (ii) and (iv).

Proof of condition (c): Since f and fT have the same number of mixture components, by

the chain rule of entropy, D0(f, fT ) ≤
∑Hn

h=1 {ωh,TD0(f(·|x,Bn,h), fT (·|x,BT,n,h)) +D0(ω,ωT )}.
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Note that D0(f(·|x,Bn,h), fT (·|x,BT,n,h)) =
∑
j∈J Ex [D0(f(·|x,Bn,h,j), fT (·|x,BT,n,h,j))] ≤∑

j∈J (Bn,h,j−BT,n,h,j)
2/2, where the last inequality follows by considering that both f(·|x,Bn,h,j)

and fT (·|x,Bn,h,j) are Gaussian densities. Let δn = εn/(2
√
qn), and define

Un,1 = ∩Hnh=1 {Bn,h : Bn,h,j ∈ (BT,n,h,j − δn, BT,n,h,j + δn),∀ j ∈ J }

Un,2 =

{
(ω1, ..., ωHn) :

Hn∑
h=1

|ωh − ωh,T | ≤ εn/2

}
, Un = Un,1 ∩ Un,2. (13)

Under Un, D0(f, fT ) ≤ ε2n/4 for all large n.

Now Π({f : D0(f, fT ) ≤ ε2n/4}) ≥ Π(Un) = Π(Un,1)Π(Un,2). By Lemma A.2, − log Π(Un,1) =

− log Π({Bn,h : Bn,h,j ∈ (BT,n,h,j−δn, BT,n,h,j+δn),∀j ∈ J }) = − log Π(||Bn,h−BT,n,h||∞ ≤

δn, h = 1, ..., Hn) ≤
∑Hn

h=1

∑pn
k=1 ||uT,n,h,k||2/2+(RnHnpn/2) log(2π)+Hn log(1+(1/(Rnpn)))+

HnRnpn log(Rn) +
∑Hn

h=1Rnpn log(1/γn,h) +
∑Hn

h=1 pnγ
2
n,h/Rn.

Since ||uT,n,h,k|| ≥ 0,
∑pn

k=1 ||uT,n,h,k||2 ≤ (
∑pn

k=1 ||uT,n,h,k||)2 is bounded for large n,

by assumption (v). By assumption (i), HnRnpn log(Rn) ≺ nε2n (hence HnRnpn ≺ nε2n).

Notet that γn,h,j =
−(||uT,n,h,j1 ||+||uT,n,h,j1 ||)+

√
(||uT,n,h,j1 ||+||uT,n,h,j1 ||)

2+4δn

2
≤
√
δn, since δn > 0.

This implies
∑Hn

h=1 pnγ
2
n,h/Rn ≺ nε2n, for all large n, by assumption (i). Using Lemma A.1

and A.3, 1/γn,h ≤ (
∑pn

k=1 ||uT,n,h,k||)2/δn + 1. If m0 = lim supn→∞
∑pn

k=1 ||uT,n,h,k||, then∑Hn
h=1Rnpn log(1/γn,h) ≤ RnpnHn log(m2

0/δn) = 2RnpnHn log(m0) + RnpnHn
2

log(qn) + RnpnHn
2

log(1/ε2n) ≤ 2RnpnHn log(m0) + RnpnHn log(pn) + RnpnHn
2

log(1/ε2n) ≺ nε2n, by assumptions

(i) and (ii). Also, − log(Π(
∑Hn

h=1 |ωh − ωh,T | ≤ εn/2)) ≺ Hn log(2/εn) ≺ nε2n, by Lemma A.2

of ?.

All the aforementioned calculations yield − log Π(||Bn,h−BT,n,h||∞ ≤ δn) ≤ r2nε
2
n/4, for

any r2 > 0 and all large n, which implies Π({f : D0(f, fT ) ≤ ε2n/4}) ≥ e−r2nε
2
n/4 for all large

n. This concludes the proof.

B Posterior full conditionals

Let Ih = {i : ci = h}, nh denote the cardinality of Ih, and yh = (yi : ci = h)T , h =

1, ..., H. Further assume Jk = {j ∈ J : js1 = k, for some s1}. The full conditionals are in

closed form and hence allow a Gibbs sampling procedure to sample posteriors. They are

listed as the following:
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� γ∗0,h|− ∼ N

[∑
i∈Ih

1T (yi−
∑m
s=1 β

∗
s,hxis−1

∑l
s=1 γ

∗
s,hzis)/σ

2

(nhq)/σ2+1
, 1
(nhq)/σ2+1

]
, h = 1, ..., H.

� γ∗s,h|− ∼ N

(∑
i∈Ih

z2is1
T (yi−

∑m
h2=1 β

∗
h2,h

xih2−1
∑l
h2=1,h2 6=s

γ∗h2,h
zih2 )/σ

2+aβ/bβ

q
∑
i∈Ih

z2is/σ
2+1/bβ

, 1
q
∑
i∈Ih

z2is/σ
2+1/bβ

)
,

s = 1, ..., l; h = 1, ..., H.

� σ2|− ∼ IG(aσ + (nq)/2, bσ +
∑H

h=1

∑
i∈Ih ||yi −

∑m
s=1 β

∗
s,hxis − 1

∑l
s=1 γ

∗
s,hzis||2/2)

� M s,h|− ∼ IW
[
(S +

∑
k:us,h,k 6=0 us,h,kus,h,k

T ), (ν + {#k : us,h,k 6= 0})
]

� πs,h,r|− ∼ Beta[(1 + λs,h,r), (r
η + 1− λs,h,r)]

� λs,h,r|− ∼ Ber(ps,h,r), where ps,h,r =
πs,h,rJ(Λs,h)(λs,h,r=1)

πs,h,rJ(Λs,h)(λs,h,r=1)+(1−πs,h,r)J(Λs,h)(λs,h,r=0)

and J(Λs,h) =
∏

i∈Ih N(yi|γ∗0,h1 +
∑m

s=1 β
∗
s,hxis + 1

∑l
s=1 γ

∗
s,hzis, σ

2I). J(Λs,h)(λs,h,r=1)

denotes J(Λs,h) evaluated at λs,h,r = 1. Here Λs,h is the collection of {λs,h,r : r =

1, ..., R}.

� us,h,k|− ∼ wus,h,k δ0(us,h,k) + (1 − wus,h,k) N(us,h,k|mus,h,k ,Σus,h,k), where U s,h,Jk =

[UT
1,s,h,Jk : · · · : UT

nh,s,h,Jk ]
T , UT

i,s,h,Jk has rows

(xisλs,h,1
∏D

s1=1,js1 6=k
u
(1)
s,h,js1

, ..., xisλs,h,R
∏D

s1=1,js1 6=k
u
(R)
s,h,js1

). Further assume ỹsi,j = yi,j−

γ∗0,h−
∑l

h1=1 γ
∗
h1,h

zih1 −
∑m

h2=1,h2 6=s βh2,h,jxih2 , ỹ
s
i,Jk is a vector of collections of ỹsi,j over

j ∈ Jk and ỹsJk is a vector consisting of ỹsi,Jk over i ∈ Ih. Also,

Σus,h,k =
(
UT
s,h,JkU s,h,Jk/σ

2 +M−1
s,h

)−1
, mus,h,k = Σus,h,kU

T
s,h,Jk ỹ

s
Jk/σ

2

wus,h,k =
(1− ζs,h)N(ỹsJk |0, σ

2I)

(1− ζs,h)N(ỹsJk |0, σ2I) + πN(ỹsJk |0, σ2I +U s,h,JkM s,hU
T
s,h,Jk)

� ξs,h,k|− ∼ Ber(1− wus,h,k)

� ζs,h|− ∼ Beta(
∑p

k=1 ξs,h,k + 1,
∑p

k=1(1− ξs,h,k) + 1).

� P (ci = h | −) =
ωhN(yi|γ∗0,h1+

∑m
s=1 β

∗
s,hxis+1

∑l
s=1 γ

∗
s,hzis,σ

2I)∑H
d′=1 ωd′N(yi|γ∗0,d′1+

∑m
s=1 β

∗
s,d′xis+1

∑l
s=1 γ

∗
s,d′zis,σ

2I)
, for h = 1, .., H.

� v∗l1 | −Beta(1 + #{i : ci = l1}, α +
∑H

ss=l1+1 #{i : ci = ss}), l1 = 1, ..., H − 1,

ω1 = v∗1, ω2 = v∗2(1− v∗1), .., ωH−1 = v∗H−1
∏H−2

l1=1 (1− v∗l1), ωH =
∏H−1

l1=1 (1− v∗l1)

� Parameter α is updated using a Metropolis-Hastings algorithm.
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Pavlović, D. M., Guillaume, B. R., Towlson, E. K., Kuek, N. M., Afyouni, S., Vértes,
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