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Abstract

This article investigates statistical convergence rates for predictive densities of

a novel Bayesian generalized linear model (GLM) framework with a scalar re-

sponse and a symmetric tensor predictor with labeled “nodes.” GLM frame-

works involving a symmetric tensor predictor and a scalar response may ap-

pear in a variety of real life applications, including diffusion weighted magnetic

resonance imaging (DWI) and functional magnetic resonance imaging (fMRI),

among others. This article specifically focuses on a class of such models where

the over-arching goal is to identify nodes and cells of the symmetric tensor in-

fluential in predicting the response. We establish a near optimal convergence

rate for the posterior predictive density from the proposed model to the true

density, depending on how the number of tensor nodes grows with the sample

size. Moreover, we show that the method has adaptivity to the unknown rank

of the true tensor, i.e., the near optimal rate is achieved even if the rank of the

true tensor coefficient is not known a priori.
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1. Introduction

Of late, scientific applications often involve predictors having a multidimen-

sional array or tensor structure, which are higher order analogues to vectors

and matrices. Analogous to the rows and columns of a matrix, various axes of a

tensor are known as tensor modes and the indices of a tensor mode are often re-5

ferred to as “tensor nodes.” Entries in a tensor are known as “tensor cells.” This

article considers symmetric tensors, which are invariant upon interchanging the

modes. We specifically focus on developing a regression relationship between a

scalar response and a symmetric tensor predictor, with the ability of identifying

tensor nodes influential in predicting the response. One major application of10

such modeling framework appears in brain connectome data, where the goal is

to predict a brain related phenotype from the brain connectome network of sub-

jects, with an emphasis of drawing inference on brain regions of interests(ROIs)

related to the phenotype [1].

In developing a modeling approach to address our problem of interest, one15

can possibly proceed to vectorize the symmetric tensor response and regress it

on the predictors, leading to a high dimensional vector regression problem [2, 3].

This approach is able to make use of the expanding literature on Bayesian high

dimensional regression [4, 5] but appears to be less than adequate to achieve all

of our inferential goals simultaneously for a few reasons. First, the ordinary high20

dimensional regression framework assumes the coefficients corresponding to the

tensor cells to be exchangeable, although, intuitively, the coefficients related

to the same tensor node should be correlated a priori. Second, the strategy of

reshaping a symmetric tensor into a vector leads to a massive dimensional vector

predictor with applications often involving a limited number of samples. From25

an inferential point of view, Bayesian high-dimensional regression frameworks

may be statistically inefficient when the number of predictors far exceeds the

sample size [6]. More importantly, identification of important tensor nodes is

not one of the inferential objectives of these approaches. Recent developments

on tensor regression [7, 8] provide a solution to the problem by exploiting the30
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tensor structure of the predictor in the model and prior development. However,

these approaches do not generally take into account the symmetry constraint in

the tensor predictor, tend to focus mainly on prediction, and are not specifically

designed to detect important nodes impacting the response.

A recent approach to address all the inferential objectives mentioned above is35

outlined in [1] in the context of symmetric predictor matrices. More specifically,

[1] develop a novel shrinkage prior on the symmetric matrix coefficients by com-

bining ideas from low-rank matrix factorization and the Bayesian shrinkage prior

literature. The structure offers parsimony by allowing identification of impor-

tant tensor node specific coefficient vectors using a spike-and-slab prior on them.40

The framework exhibits good empirical performance with precise predictive in-

ference as well as accurate identification of important tensor nodes. Moreover,

the proposed prior allows auto tuning of all the hyperparameters with Markov

chain Monte Carlo chains showing reasonably rapid mixing. While [1] provide

the methodological and empirical motivations regarding the prior construction,45

rigorous theoretical understanding of Bayesian symmetric tensor regressions is

yet to be established. Furthermore, the modeling framework is introduced and

tested under a linear regression framework with normally distributed response

variables.

The primary focus of this article is to extend the network regression idea50

of [1] to a generalized linear modeling framework with a scalar response and

a symmetric tensor predictor, and develop optimal posterior contraction rate

for the proposed framework. Specifically, we adopt a low-rank structure for the

symmetric tensor predictor coefficient and assign a spike-and-slab prior on node

specific latent vectors within the low-rank structure to determine the tensor55

nodes significantly related to the scalar response a posteriori. Our main con-

tribution is in developing conditions on the ranks and magnitudes of the true

tensor coefficients and the number of tensor nodes for the near optimal learn-

ing of the proposed GLM. Note that several influential articles have emerged

in the last few years detailing conditions for posterior contraction in ordinary60

high dimensional regression models, both with various point-mass priors in the
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many normal-means models [9, 10, 11], and with classes of continuous shrinkage

priors [12, 13]. In contrast, there is a dearth of papers studying posterior con-

traction properties for generalized linear models with tensor predictors in the

Bayesian paradigm. A few recent articles [14, 8] offer conditions for consistency65

or optimal rates for posterior contraction with tensor predictors without the

symmetry constraint, and with a different class of multiway shrinkage priors

[8]. As a result, the theoretical construction in 8 does not find ready extension

to our framework. Additionally, we relax the key assumption in 8 that both

the tensor predictor coefficient generating the data (also referred to as the true70

tensor coefficient) and the fitted tensor coefficient have the same low-rank de-

compositions. In practice, the rank of the true tensor coefficient is never known.

The current article is based upon a more realistic assumption that the rank of

the fitted tensor coefficient is greater than or equal to the rank of the true tensor

coefficient.75

The rest of the article proceeds as follows. Section 2 develops the notations,

defines the GLM framework for the fitted model and the true data generating

model, and details out the prior distributions on the parameters. Section 3

describes the posterior contraction rate results for the predictive distribution.

Finally Section 4 concludes the article with an eye towards future work. Proofs80

of all theoretical results can be found in Appendix A and B.

2. Problem Setting

2.1. Notations

AD−way tensor Γ ∈ ⊗Dl=1RVl is a multidimensional array whose (k1, ..., kD)th

cell is denoted by Γ(k1,...,kD), 1 ≤ k1 ≤ V1,...,1 ≤ kD ≤ VD. When D = 2,85

a tensor corresponds to a matrix. This article mainly focuses on symmet-

ric tensors with dummy diagonal entries (set at 0 for definiteness) ensuring

V1 = · · · = VD = V and Γ(k1,...,kD) = Γ(P (k1),...,P (kD)), for any permuta-

tion P (·) of {k1, ..., kD} and Γ(k1,...,kD) = 0, if any two of the indices kl and

kl′ are equal. Similar to row and column indices of a matrix, the indices90
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N = {1, 2, ..., V } for symmetric tensors are referred to as tensor nodes. Let

K = {(k1, ..., kD) : 1 ≤ k1 < · · · < kD ≤ V } be a set of indices with cardinality

q = V (V−1)···(V−D+1)
D! . While expressing a symmetric tensor Γ with 0 diagonal

entries, it is enough to specify Γk for k ∈ K. This holds since for any k /∈ K

∃ a permutation P (·) s.t. (P (k1), ..., P (kD)) ∈ K. Then, by the property of95

the symmetric tensor, ΓP (k) = Γk. A symmetric tensor with 0 diagonal en-

tries Γ assumes a rank-1 PARAFAC decomposition if Γk for k ∈ K can be

expressed as Γk = γk1 · · · γkD , for γ = (γ1, ..., γV )′ ∈ RV . A rank R symmet-

ric PARAFAC decomposition expresses Γk as Γk =
∑R
r=1 γ

(r)
k1
· · · γ(r)kD

, where

γ(r) = (γ
(r)
1 , ..., γ

(r)
V )′ ∈ RV . Importantly, for two symmetric tensors A and100

B with zero diagonal entries, the Frobenius inner product between A and B

are given by 〈A,B〉 = D!
∑
k∈K akbk. Finally, ||Γ|| =

√
V1∑
k1=1

· · ·
VD∑
kD=1

Γ2
(k1,...,kD)

and ||Γ||∞ = max
(k1,..,kD)

|Γ(k1,..,kD)| denote the l2 and l∞ norms, respectively, for

a tensor Γ. The l2 and l∞ norms of vectors are defined analogously.

2.2. Modeling Framework105

For i = 1, ..., n, let yi be the scalar response andXi = ((xi,(k1,...,kD)))
V
k1,...,kD=1 ∈

RV×···×V denote the symmetric tensor predictor with 0 diagonal entries. We

assume that the data are generated from the generalized linear model given by

the following density function

g0(yi|Xi) = exp(a(α0)yi + b(α0) + c(yi)), α0 =
∑
k∈K

xi,kΓ0,k, (1)

where Γ0,k corresponds to the k = (k1, ..., kD)-th entry of a symmetric tensor

(with 0 diagonal entries) Γ0, a(h) and b(h) are continuously differentiable func-

tions, with a(h) having a nonzero derivative. This parameterization includes

some popular classes of densities, including binary logit and probit regressions

of y on X, Poisson regression of y on X with count valued response, and nor-

mal regression with known error variance for continuous response y [15]. The

conditional density of yi given Xi fitted to the data is also assumed to belong
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to the same class of generalized linear models, and is given by

g(yi|Xi) = exp(a(α)yi + b(α) + c(yi)), α =
∑
k∈K

xi,kΓk, (2)

where Γk is the k-th entry of Γ, which is a symmetric tensor with 0 diagonal

entries.

Suppose Γ0 and Γ assume symmetric rank-R0 and rank-R PARAFAC de-

compositions, respectively, for R ≥ R0, so that

Γ0,k =

R0∑
r=1

γ
(r)
0,k1
· · · γ(r)0,kD

, Γk =

R∑
r=1

λrγ
(r)
k1
· · · γ(r)kD

, (3)

where γ(r) = (γ
(r)
1 , ..., γ

(r)
V ) and γ

(r)
0 = (γ

(r)
0,1 , ..., γ

(r)
0,V ) ∈ RV for all r = 1, ..., R.

Since the rank of the fitted symmetric tensor coefficient Γ is assumed to be

higher than the rank of the true tensor coefficient Γ0, rank specific binary in-110

clusion variables λr ∈ {0, 1} are added in order to switch-off the contribution of

unnecessary summands. The assumed low-rank decomposition offers parsimony

by reducing the number of estimable parameters from V (V −1) · · · (V −D+1)/D!

to RV , typically with R � V . When D = 2, the formulation assumes fur-

ther simplification. To see this, denote γ̃h = (γ
(1)
h , ...,γ

(R)
h )′, h = 1, ..., V115

and Λ = diag(λ1, .., λR). The k = (k1, k2)th entry of Γ then simplifies as

Γk = γ̃′k1Λγ̃k2 , k ∈ K, which represents a bilinear [16] interaction between γ̃k1

and γ̃k2 . Accordingly, the significance of the kth tensor cell of Γ in explain-

ing the response increases with the similarity in the positions of γ̃k1 and γ̃k2 ,

the similarity being measured by the weighted dot product between these two120

variables in the latent space.

From (3), the hth tensor node of the symmetric tensor predictorX is deemed

to have no impact on the response if γ̃h = 0, h ∈ N . The kth cell is consid-

ered unrelated to the response if Γk = 0. Since Γk = 0 if γ̃kl = 0 for some

kl, the proposed formulation assumes that the contribution of the kth cell of125

the tensor predictor to the response is insignificant if klth node is unrelated to

the response, for some kl. Our modeling framework is pertinent to a variety of

applications, a few of them are presented below.
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Example 1 (Brain Connectome Data): In many neuroscientific applica-130

tions, it is of interest to build a predictive model of a brain related phenotype

(e.g., presence of a neuronal disease) on the connectivity network in a human

brain (referred to as the brain connectome) (for e.g., see 17). To quantify brain

connectivity, important regions of interest (ROI) in the brain are identified and

the number of neurons connecting different ROIs is measured from the brain135

white matter using a brain imaging technique known as diffusion tensor imaging

(DTI). Alternatively, the brain connectome tensor can also be constructed by

computing the correlation of functional magnetic resonance imaging (fMRI) sig-

nals for different pairs of regions after suitably thresholding them to zero below

a certain pre-specified cut-off. The inferential interest here lies in predicting the140

phenotypic response from the brain connectome matrix, as well as identifying

ROIs significantly related to the response. This appears to be a direct applica-

tion of (1), with y andX as the phenotype and the symmetric brain connectome

matrix, respectively, and nodes in the matrix representing the ROIs. [1] ana-

lyze this dataset with a regression framework similar to ours involving a scalar145

response and an undirected network predictor, assuming normally distributed

errors in the regression.

Example 2 (International Trade Data): Developing a regression relation-

ship between world gross domestic product (GDP) and multilateral trade be-150

tween countries is an informative exercise in international trade theory. Analysis

of datasets with such information is important to statistically identify countries

which are major economic drivers of the world, and also to direct significant

world economic policies by international financial institutions [18, 19]. In the

context of (1), the response and predictors would be the world GDP and multi-155

lateral trade relationships (which constitute a symmetric higher order tensor),

respectively. The countries are the tensor nodes to draw inference on. In this

context, it is generally believed that free trade agreements between countries

could benefit the overall economic health of the world. For example, one can
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consider the trilateral free trade agreement between China-Japan-South Korea160

[20], or between the U.S.-Canada-Mexico (referred to as the North Atlantic Free

Trade Agreement or NAFTA) [21]. It is instructive to statistically analyze im-

portant economic outcomes like GDP in relation to such multi-lateral free trade

agreements.

2.3. Prior Structure165

To assess if the hth tensor node is active in predicting the response, we assign

a spike-and-slab mixture prior distribution on γ̃h as

γ̃h ∼ ζhN(0, I) + (1− ζh)δ0, ζh ∼ Ber(∆), ∆ ∼ U(0, 1), (4)

where δ0 is the Dirac-delta function at 0, ∆ corresponds to the probability of

the nonzero mixture component and ζh is a binary indicator set to 0 if γ̃h = 0.

Thus, the posterior distributions of the ζh’s are analyzed to ascertain which

nodes are influential in predicting the response. Notably, (γ̃h, ζh) are i.i.d. over

h given ∆. Finally, to infer on how many ranks are necessary to express Γ,170

the rank specific binary inclusion variables, the λr’s, are assigned a hierarchical

prior, λr|νr
ind.∼ Ber(νr), νr

ind.∼ Beta(1, rη), over r. Choosing η > 1 ensures

increasing shrinkage on λr as r grows. Thus a low-rank solution to Γ is favored

a priori, which helps avoid over-fitting.

Analysis of datasets using the model (2) involving a continuous scalar re-175

sponse and symmetric tensor predictors are available in some recent work [22],

though a rigorous theoretical treatment of such models is missing in the liter-

ature. The overarching goal of this article is to develop theoretical conditions

to draw optimal predictive inference from such models. It will be shown in due

course that the posterior predictive loss (defined in Section 3) of our model de-180

cays at the “near” optimal rate to 0 under fairly mild assumptions. Moreover,

such theoretical results will be obtained for an easily computable posterior with

standard Markov chain Monte Carlo updates for all the parameters.
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3. Convergence Rate Analysis

This article assesses the predictive accuracy of the proposed model g(y|X)

in estimating the true model g0(y|X), following the notion of convergence de-

scribed in 15. Define the Hellinger distance between g and g0 as

dH(g, g0) =

√∫ ∫
(
√
g(y|X)−

√
g0(y|X))2νy(dy)νX(dX),

where νX is the unknown probability measure for X, and νy is the dominating185

measure for g and g0. We focus on showing Eg0Π[dH(g, g0) > εn|{yi,Xi}ni=1] <

ξn, for large n, for some sequences εn, ξn converging to 0 as n → ∞, where

Π(S|{yi,Xi}ni=1) is the posterior probability of the set S. The result implies

that the posterior probability outside of a shrinking neighborhood around the

true predictive density g0 converges to 0 as n → ∞. Specifically, we focus on190

identifying conditions that lead to convergence rate εn of the order of n−1/2

upto a log(n) factor.

3.1. Framework and Main Results

Without loss of generality, the predictor Xi satisfies |xi,k| < 1 for all i and

k ∈ K. In what follows, we add the subscript n to the number of tensor nodes195

Vn, the rank Rn of Γ and rank R0,n of the true symmetric tensor coefficient Γ0.

We assume Vn, Rn and R0,n are all non-decreasing functions of n, with Rn < Vn

and Rn > R0,n for all large n. Hence, the number of elements in K, given by

qn = Vn(Vn − 1)...(Vn −D+ 1)/D!, is a function of n. This paradigm attempts

to capture the fact that qn grows much faster than n, and a higher rank CP200

decomposition of Γ can be estimated more precisely in the presence of a larger

sample size n.

One of the key quantities in proving posterior convergence rate results is

the concentration of the prior distribution. The prior concentration can be

quantified by En(κ), defined, for each κ > 0 by

En(κ) = − log {Π(||Γ− Γ0||∞ ≤ κ)} . (5)
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In order to achieve an optimal rate of convergence for the posterior, one ex-

pects the prior to put considerable mass around Γ0. Since Γ0 is not known, it

is not desirable to have a lot of prior mass around one point or a few points.

Rather, the prior mass should be spread judiciously, taking into account the

wide range of possibilities for Γ0. Prior concentration provides such a quan-

tification of prior mass around the truth. Instead of characterizing the prior

concentration function En(κ), we evaluate the prior concentration conditional

on a set C given by C =
{
λ1 = 1, ..., λR0,n

= 1, λR0,n+1 = 0, ..., λRn = 0
}

, with

Lemma 5.2 in the Appendix A quantifying a lower bound on P (C). The prior

concentration conditional on the set C is given by

En(κ|C) = − log {Π(||Γ− Γ0||∞ ≤ κ|C)} (6)

Lemma 5.3 in Appendix A presents an upper bound on the conditional prior

concentration corresponding to our proposed prior distribution in Section 2.3.

We now state the main theorem involving the contraction of the fitted predictive205

density to the true predictive density.

Theorem 3.1. Define the function H(κ) = 1+κ sup
|w|≤κ

|a′(w)| sup
|w|≤κ

|b′(w)/a′(w)|,

where a′(w) and b′(w) are derivatives of the functions a(w) and b(w) in (1) and

(2), respectively. For a sequence εn satisfying 0 < εn < 1, nε2n → ∞, and

another sequence Cn, let the following conditions hold210

(a) RnVn log(Vn) = o(nε2n)

(b) RnVn log(1/ε2n) = o(nε2n)

(c) RnVn log(H(RnC
D
n V

D
n )) = o(nε2n),

(d) (1− Φ(Cn)) ≤ e−4nε2n , for all large n

(e) lim supn→∞
∑Vn
h=1 ||γ̃0,h|| <∞, where γ̃0,h = (γ

(1)
0,h, ..., γ

(Rn)
0,h )′.215

Then, Eg0Π{dH(g, g0) > 4εn|{Yi, xi}ni=1} < 4e−nε
2
n/2, for all large n.

The following remarks characterize H(κ) and its implications for various regres-

sion settings under GLM.
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Remark 1: For ordinary linear regression with normal errors, H(κ) grows

at most at the order of |κ|2. Thus, assumption (c) becomes equivalent to220

RnVn log(Cn) = o(nε2n), considering assumption (a).

Remark 2: For binary regression with logit or probit links, H(κ) grows at most

linearly with |κ|. Thus, assumption (c) becomes equivalent to RnVn log(Cn) =

o(nε2n), considering assumption (a).

For our theoretical exposition, we will focus on continuous and binary re-225

gression only. Theorem 3.1, together with the functional properties of H(κ)

mentioned, leads to the following result on the convergence rate εn of the pro-

posed model.

Corollary 3.2. Let, lim supn→∞
∑Vn
h=1 ||γ̃0,h|| <∞, where γ̃0,h = (γ

(1)
0,h, ..., γ

(Rn)
0,h )′.

Assume that for some 0 < ξ < 1, Vn ≤ M1n
ξ (for some constant M1 > 0) and230

the tensor rank Rn grows at a much slower rate of (log n)z1 for some z1, i.e.,

Rn ≤ M2(log n)z1 , for some constant M2. Choose Cn such that nφ1 ≤ Cn ≤

nφ2 , satisfying 0 < ξ/2 < φ1 < φ2. Then the convergence rate εn can be ex-

pressed as εn ∼ n−(1−ξ)/2(log n)z1/2+1 for the linear regression model, as well

as the binary regression model with logistic or probit link functions.235

Remark 3: Note that whatever be the value of z1, (log n)z1/2+1 ≤ nξ/2 for all

large n, so that one can achieve a convergence rate of n−(1−2ξ)/2. Depending on

Vn, ξ can be made very small to achieve a rate close to the “finite-dimensional”

rate of n−1/2.

Remark 4: Note that the condition lim supn→∞
∑Vn
h=1 ||γ̃0,h|| <∞ includes as240

a special case the scenario in which only a fixed and finite number of ||γ̃0,h||’s

are nonzero, while also allowing a more realistic setup with many small ||γ̃0,h||,

none of which are exactly zero. The convergence rate also depends on how Vn

and Rn grows with n. In fact, the convergence rate deteriorates as ξ becomes

higher, i.e., the number of tensor nodes grows faster as a function of n.245
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4. Conclusion

This article investigates the convergence rate of the predictive distribution

for generalized linear models involving a scalar response and a symmetric tensor

predictor. Under mild assumptions, we provide a “near optimal” convergence

rate for the predictive distribution of the proposed model. The theoretical250

results proved here allow the number of tensor cells to grow much faster than

the sample size. The near optimal rate is rank adaptive, i.e., it holds even if the

rank of the symmetric tensor coefficient for the true data generating regression

model is unknown. Most importantly, the bound on the predictive accuracy is

achieved for a prior that leads to an easily computable posterior, as observed in255

a few recent articles [1, 23].

Several future directions of research emerge from this article. For example, it

might be of interest to relax assumption (e) in Theorem 3.1 and investigate con-

vergence rate by allowing
∑Vn
h=1 ||γ̃0,h|| to vary slowly as an increasing function

of n. Another interesting future direction constitutes extending this theoretical260

set up to prove the tensor node selection consistency for the proposed model.
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Appendix A

We begin by stating a series of lemmas. Lemma 5.1 provides a bound on

the root of a monic polynomial. Lemma 5.2 quantifies the a lower bound on

P (C) where C is defined in Section 3.1. Finally, Lemma 5.3 presents an upper

bound on the conditional prior concentration corresponding to our proposed270

prior distribution in Section 2.3. All these three lemmas will be crucial to prove

Theorem 3.1.

12



Lemma 5.1. Let J(x) be a monic polynomial given by J(x) = xD+bD−1x
D−1+

· · · + b1x − b0, b0, ..., bD−1 ≥ 0. If x0 is a real positive root of the equation

J(x) = 0, then 1/x0 ≤ 1 + (b1/b0).275

Proof Let z = 1/x. Then J(x) = 0 implies J(1/z) = 0, i.e., zD−(b1/b0)zD−1−

· · ·−(bD−1/b0)z−(1/b0) = 0. Since this is a monic polynomial with 1/x0 as one

of its positive real roots, by the Lagrange-Maclaurin theorem, 1/x0 ≤ 1+(b1/b0).

Lemma 5.2. For λr|νr
ind.∼ Ber(νr) and νr

ind.∼ Beta (1, rη), r = 1, ..., Rn, and

η > 0,

P (C) = P (λ1 = 1, ..., λR0,n
= 1, λR0,n+1 = 0, ..., λRn = 0) ≥

R
η(Rn−R0,n)
0,n

(1 +Rη0,n)Rn
.

Proof P (λr = 1) = E(νr) = 1
1+rη for r = 1, ..., Rn. Then,

P (λ1 = 1, ..., λR0,n
= 1, λR0,n+1 = 0, ..., λRn = 0) =

R0,n∏
r=1

1

(1 + rη)

Rn∏
r=R0,n+1

rη

(1 + rη)

≥ 1

(1 +Rη0,n)R0,n

{
Rη0,n

(1 +Rη0,n)

}Rn−R0,n

=
R
η(Rn−R0,n)
0,n

(1 +Rη0,n)Rn
.

The first inequality follows due to the fact that rη/(1 + rη) is a monotone

increasing function of r and 1/(1 + rη) is a monotone decreasing function of r.280

Lemma 5.3. Let γ̃0,h = (γ
(1)
0,h, ..., γ

(R0,n)
0,h )′ and for k ∈ K, let uk,n be the only

positive root of the equation

x

D∏
s=2

(x+ ||γ̃0,ks ||) + ||γ̃0,k1 ||x
D∏
s=3

(x+ ||γ̃0,ks ||) + · · ·+ x

D−1∏
s=1

||γ̃0,ks || = υn.

(7)

Assume un = mink∈K uk,n. Then,

En(υn|C) ≤
Vn∑
h=1

||γ̃0,h||2/2 +
R0,nVn

2
log (2π) + log

(
R0,nVn + 1

R0,nVn

)
+R0,nVn log (R0,n/(2un))

+ Vnu
2
n/R0,n
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Proof Let J = {Γ : ||Γ− Γ0||∞ ≤ υn}. Under C, for k ∈ K,

|Γk−Γ0,k| = |
R0,n∑
r=1

γ
(r)
k1
· · · γ(r)kD

−
R0,n∑
r=1

γ
(r)
0,k1
· · · γ(r)0,kD

| = |
R0,n∑
r=1

(γ
(r)
k1
−γ(r)0,k1

)
∏D
s=2 γ

(r)
ks
|+

· · ·+ |
R0,n∑
r=1

(γ
(r)
kD
−γ(r)0,kD

)
∏D−1
s=1 γ

(r)
0,ks
| ≤ ||γ̃k1 − γ̃0,k1 ||

∏D
s=2 ||γ̃ks ||+ · · ·+ ||γ̃kD −

γ̃0,kD ||
∏D−1
s=1 ||γ̃0,ks || ≤ ||γ̃k1 − γ̃0,k1 ||

∏D
s=2(||γ̃ks − γ̃0,ks || + ||γ̃0,ks ||) + · · · +

||γ̃kD − γ̃0,kD ||
∏D−1
s=1 ||γ̃0,ks ||.285

If ||γ̃h − γ̃0,h|| ≤ un, h = 1, .., Vn, the above inequality implies that |Γk −

Γ0,k| ≤ un
∏D
s=2(un + ||γ̃0,ks ||) + · · · + un

∏D−1
s=1 ||γ̃0,ks || ≤ υn. Thus Π(||Γ −

Γ0||∞ ≤ υn) ≥ Π(||γ̃h − γ̃0,h|| ≤ un, h = 1, .., Vn). Therefore,

Π(J |C) ≥ Π(||γ̃h − γ̃0,h|| ≤ un, h = 1, .., Vn)

≥ E
[
Π(||γ̃h − γ̃0,h|| ≤ un, h = 1, .., Vn|ζ)

]
≥ E

[
Vn∏
h=1

{
exp

{
−||γ̃0,h||2/2

}
Π(||γ̃h|| ≤ un|ζ)

}]

= exp

{
−

Vn∑
h=1

||γ̃0,h||2/2

}
E

[
Vn∏
h=1

Π(||γ̃h,n|| ≤ un|ζ)

]
, (8)

where the second inequality follows from Anderson Lemma. We will now make

use of the fact that
∫ a
−a e

−x2/2dx ≥ e−a22a to conclude

Π(||γ̃h|| ≤ un|∆) ≥
R0,n∏
r=1

Π(|γ(r)h | ≤ un/R0,n|∆) =

R0,n∏
r=1

(
(1−∆) +

∆√
2π

∫ un/R0,n

−un/R0,n

exp(−x2/2)

)

≥
R0,n∏
r=1

(
(1−∆) +

∆√
2π

exp

(
− u2n
R2

0,n

)(
2un
R0,n

))

≥

[
(1−∆) +

∆√
2π

exp

(
− u2n
R2

0,n

)(
2un
R0,n

)]R0,n

.
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Vn∏
h=1

Π(||γ̃h|| ≤ un) ≥ E

[
(1−∆) +

∆√
2π

exp

(
− u2n
R2

0,n

)(
2un
R0,n

)]R0,nVn

= E

R0,nVn∑
l=0

(
R0,nVn

l

)
(1−∆)l

(
∆√
2π

)R0,nVn−l( 2un
R0,n

)R0,nVn−l

exp

(
−(R0,nVn − l)

u2n
R2

0,n

)
≥
(

1√
2π

)R0,nVn R0,nVn∑
l=0

(
R0,nVn

l

)
Beta(R0,nVn − l + 1, l + 1)

(
2un
R0,n

)R0,nVn−l

exp

(
−(R0,nVn − l)

u2n
R2

0,n

)

≥
(

1√
2π

)R0,nVn R0,nVn∑
l=0

(R0,nVn)!

l!(R0,nVn − l)!
l!(R0,nVn − l)!
(R0,nVn + 1)!

(
2un
R0,n

)R0,nVn−l

exp

(
−(R0,nVn − l)

u2n
R2

0,n

)

≥
(

1√
2π

)R0,nVn R0,nVn
R0,nVn + 1

(
2un
R0,n

)R0,nVn

exp

(
−Vn

u2n
R0,n

)
.

Aggregating all pieces together

Π(||Γ− Γ0||∞ ≤ υn|C) ≥ exp

(
−
∑Vn
h=1 ||γ̃0,h||2

2

)(
1√
2π

)R0,nVn R0,nVn
R0,nVn + 1

(
2un
R0,n

)R0,nVn

exp

(
−Vn

u2n
R0,n

)
.

Appendix B

Proof of Theorem 3.1

To begin, we define a few metrics of discrepancy between g and g0 as below:

d0(g, g0) =

∫ ∫
g0(y|X) log

(
g0(y|X)

g(y|X)

)
νX(dX)νy(dy),

dt(g, g0) = (1/t)

{∫ ∫
g0(y|X)

{
g0(y|X)

g(y|X)

}t
νy(dy)νX(dX)− 1

}
.

For every n, define a set of probability densities given by Pn. Let the minimum

number of Hellinger balls of radius εn required to cover Pn be given by Nεn(Pn).

To prove the theorem, it suffices to show that conditions (i)-(iii) hold for all large

n:290

(i) logNεn(Pn) ≤ nε2n

(ii) Π(Pcn) ≤ exp(−2nε2n)

(iii) For t = 1, Π[g : dt(g, g0) ≤ ε2n/4] ≥ e−nε2n/4,
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using Proposition 1 of 15. Below we show (i)-(iii) for the proposed model.

Proof of condition (i): Define Pn as the set of all densities s.t. at mostmn among295

γ̃1, ..., γ̃Vn are nonzero and each element in a nonzero γ̃h satisfies |γ(r)h | ≤ Cn,

for h = 1, ..., Vn. Let gζ denote a density in Pn expressed with the binary

variables ζ = (ζ1, ..., ζVn)′. With |ζ| =
∑Vn
h=1 ζh, Pn contains densities gζ s.t.

|ζ| ≤ mn. Note that, each gζ ∈ Pn is represented by |ζ| nonzero γ̃h’s with each

component γ
(r)
h , r = 1, ..., Rn of a nonzero γ̃h is bounded between [−Cn, Cn].300

It takes at most
(
1 + Cn

κ

)Rn|ζ|
balls of the form [ξ

(r)
h − κ, ξ

(r)
h + κ] (with their

centers ξ
(r)
h ’s satisfying |ξ(r)h | ≤ Cn) to cover the parameter space of gζ . There

are at most V ln models satisfying |ζ| = l. Hence, the total number of balls to

cover the parameter space of regression functions in Pn is given by N(κ) =∑
l≤mn V

l
n

(
1 + Cn

κ

)Rnl ≤ (mn + 1)
[
Vn
(
1 + Cn

κ

)]Rnmn
.305

Let pζ be any density in Pn, with pζ(y|X) = exp(a(µ)y + b(µ) + c(y)),

µ =
∑
k∈K xkFk, where |ζ| ≤ mn and Fk =

∑Rn
r=1 λrf

(r)
k1
...f

(r)
kD

, with |f (r)h | ≤ Cn
for all h ∈ A, r = 1, .., Rn. There exists a density gζ ∈ Pn given by gζ(y|X) =

exp(a(α)y+b(α)+c(y)), with α =
∑
k∈K xkΓk. Γk =

∑Rn
r=1 λrγ

(r)
k1
...γ

(r)
kD

, where

γ
(r)
h ’s are such that f

(r)
h ∈ (γ

(r)
h − κ, γ

(r)
h + κ) for every r and h.310

Applying Taylor expansion on d0(pζ , gζ) to show that

d0(pζ , gζ) = EX

[{
a′(αµ)

(
− b′(α)
a′(α)

)
+ b′(αµ)

}
(α− µ)

]
, where αµ is an inter-

mediate point between α and µ. Let B = {k ∈ K : ζk1 = 1, .., ζkD = 1}. Now

note that,

|α− µ| = |
∑
k∈B

xi,kΓk −
∑
k∈B

xi,kFk| ≤
∑
k∈B

|Γk − Fk| ≤ mD
n max
k∈B
|Γk − Fk|.

It follows from the above that,

|Γk − Fk| = |
Rn∑
r=1

λrγ
(r)
k1
...γ

(r)
kD
−

Rn∑
r=1

λrf
(r)
k1
...f

(r)
kD
| ≤ |

Rn∑
r=1

γ
(r)
k1
...γ

(r)
kD
−

Rn∑
r=1

f
(r)
k1
...f

(r)
kD
|

≤
Rn∑
r=1

{
|γ(r)k1

− f (r)k1
|
D∏
l=2

|γ(r)kl
|+ |f (r)k1

||γ(r)k2
− f (r)k2

|
D∏
l=3

|γ(r)kl
|+ · · ·+

D−1∏
l=1

|f (r)kl
||γ(r)kD

− f (r)kD
|
}

≤ RnκCD−1n .

Thus, |α − µ| ≤ mD
n RnκC

D−1
n . Similarly, |α|, |µ| (and therefore |αµ|) being
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bounded by RnC
D
n m

D
n . Hence,

dH(pζ , gζ) ≤ {d0(pζ , gζ)}1/2 ≤

{
2 sup
|w|≤RnCDn mDn

|a′(w)| sup
|w|≤RnCDn mDn

∣∣∣∣ b′(w)

a′(w)

∣∣∣∣κRnmD
n C

D−1
n

}1/2

.

Choosing κ =
ε2n

2 sup
|w|≤RnmDn C

D
n

|a′(w)| sup
|w|≤RnmDn C

D
n

∣∣∣ b′(w)

a′(w)

∣∣∣RnmDn CD−1
n

, we obtain dH(gζ , pζ) ≤

εn. Hence

logNεn(Pn) ≤ logN(κ)

≤ log(mn + 1) +Rnmn log(Vn) +Rnmn log

1 +

2 sup
|w|≤RnmDn CDn

|a′(w)| sup
|w|≤RnmDn CDn

∣∣∣ b′(w)
a′(w)

∣∣∣RnmD
n C

D
n

ε2n


≤ log(mn + 1) +Rnmn log(Vn) +Rnmn log(2/ε2n) +Rnmn log(H(Rnm

D
n C

D
n ))

≤ nε2n, for large n, by assumptions (a)-(c).

Proof of condition (ii): Define, A = {h ∈ N : ζh = 1}. Then for all large n,

Π(Pcn) =
∑
|ζ|≤mn

Π(∪h∈A ∪Rnr=1 {|γ
(r)
h | > Cn})Π(ζ)

≤ max
ζ:|ζ|≤mn

Π(∪h∈A ∪Rnr=1 {|γ
(r)
h | > Cn})

≤ RnmnΠ(|γ(r)h | > Cn) = 2Rnmn(1− Φ(Cn))

≤ exp(log(2Rnmn))(1− Φ(Cn)) ≤ exp(−2nε2n), for all large n,

where the last inequality follows from assumptions (a) and (d).

Proof of Condition (iii): Using the mean value theorem, there exists υ

such that dt(g, g0) = EX {g′(υ)(α− α0)}, where g′(·) represents the continu-

ous derivative function of g in the neighborhood of g0. Let τn =
ε2n
8qn

. If for each

k ∈ K, Γk ∈ (Γ0,k − τn,Γ0,k + τn), then

|α− α0| = |
∑
k∈K

xkΓk −
∑
k∈K

xkΓ0,k| ≤
∑
k∈B

|Γk − Γ0,k| ≤ qnτn ≤ ε2n/8,

for large n. Again, |υ| ≤ |α − α0| + |α0| ≤ qnτn + ωn = ε2n/8 + ωn, where

ωn = |α0| = |
∑
k∈K xkΓ0,k| ≤

∑
k∈K |Γ0,k| ≤

∑
k∈K ||γ̃0,k1 || · · · ||γ̃0,kD || ≤
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(
∑Vn
h=1 ||γ̃0,h||)D, which is bounded by assumption (e), for sufficiently large n.315

Hence ||g′(υ)|| is bounded for sufficiently large n. Thus, dt(g, g0) = EX {g(υ)(α− α0)} ≤

C0qnτn ≤ ε2n/4 for large n, for some constant C0.

Let C1 = {Γ : Γk ∈ (Γ0,k − τn,Γ0,k + τn),∀ k ∈ K} and C2 = {λ1 =

1, ..., λR0,n = 1, λR0,n+1 = 0, .., λRn = 0}. This implies that

Π({g : dt(g, g0) ≤ ε2n/4}) ≥ Π(C1 ∩ C2) = Π(C2)Π(C1|C2).

By Lemma 5.2, Π(C2) ≥ 1
(1+Rη0,n)

Rn
R
η(Rn−R0,n)
0,n . By Lemma 5.3, − log Π(C1|C2) =

− log Π(||Γ−Γ0||∞ ≤ τn|C2) ≤
∑Vn
h=1 ||γ̃0,h||2/2 + (R0,nVn/2) log(2π) + log(1 +

(1/(R0,nVn))) +R0,nVn log(R0,n) +R0,nVn log(1/(2un)) + Vnu
2
n/R0,n. Here un320

is the minimum of the root of the equation (7) with υn replaced by τn.

Since ||γ̃0,h|| ≥ 0,
∑Vn
h=1 ||γ̃0,h||2 ≤ (

∑Vn
h=1 ||γ̃0,h||)2 is bounded for large

n, by assumption (e). By assumption (a), R0,nVn log(R0,n) = o(nε2n) (hence

R0,nVn = o(nε2n)). Using the Lagrange-Maclaurin bound on the positive root of

a monic polynomial of degree D, we have un ≤ 1+τ
1/D
n , implying Vnu

2
n/R0,n =325

o(nε2n), for all large n, by assumption (a). Using Lemma 5.1, 1/un ≤ (
∑Vn
h=1 ||γ̃0,h||)D/τn+

1. IfG0 = lim supn→∞
∑Vn
h=1 ||γ̃0,h||, thenRnVn log(1/un) ≤ RnVn log(GD0 /τn+

1) = DRnVn log(G0)+RnVn log(8qn)+RnVn log(1/ε2n) = o(nε2n), where the last

line follows from assumptions (a) and (b).

All the aforementioned calculations yield − log Π(C1 ∩ C2) ≤ nε2n/4, for all330

large n, which implies Π({g : dt(g, g0) ≤ ε2n/4}) ≥ exp(−nε2n/4) for all large n.

This concludes the proof.
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