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Abstract. We propose a three-step divide-and-conquer strategy for fitting
Bayesian spatial process regression models that scales to massive data
sets. We partition the data into a large number of subsets, apply a readily
available Bayesian spatial process model in parallel on all the subset, and
optimally combine the posterior distributions estimated across all the sub-
sets into a pseudo posterior distribution that conditions on the entire data.
The combined pseudo posterior distribution replaces the full data posterior
distribution for predicting the responses at arbitrary locations and for in-
ference on the model parameters and spatial surface. Based on distributed
Bayesian inference, our approach is called “Distributed Kriging” (DISK)
and offers significant advantages in massive data applications where the
full data are stored across multiple machines. We show theoretically that
the Bayes L2-risk of the DISK posterior distribution achieves the near op-
timal convergence rate in estimating the true spatial surface with various
types of covariance functions and provide upper bounds for the number of
subsets for achieving these convergence rates. The model-free feature of
DISK is demonstrated by scaling posterior computations in spatial process
models with a stationary full-rank and a nonstationary low-rank Gaussian
process (GP) prior. A variety of simulations and a geostatistical analysis
of the Pacific Ocean sea surface temperature data validate our theoretical
results.
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1.1 Overview of the DISK Framework

A fundamental challenge in geostatistics is the analysis of massive spatially-
referenced data. Such data sets provide scientists with an unprecedented oppor-
tunity to hypothesize and test complex theories, see for example Gelfand et al.
(2010), Cressie and Wikle (2011), Banerjee et al. (2014). This has led to the
development of complex and flexible hierarchical GP-based models that are com-
putationally intractable for a large number of spatial locations, denoted as n,
due to the O(n3) computational cost and the O(n2) storage cost. We develop
a three-step general distributed Bayesian approach, called Distributed Kriging
(DISK), for boosting the scalability of any state-of-the-art spatial process model
based on GP prior or its variants to multiple folds using the divide-and-conquer
technique.

There is an extensive literature on scalable Gaussian process (GP)-based mod-
eling of massive spatial data due to its great practical importance (Heaton et al.,
2019). We provide a brief overview of basic ideas, deferring detailed comparisons
of the existing literature with DISK to Section 1.2. A common idea in GP-based
modeling is to seek dimension-reduction by endowing the spatial covariance ma-
trix either with a low-rank or a sparse structure. Low-rank structures represent
a spatial surface using a small number of a priori chosen basis functions such
that the posterior computations scale in the cubic order to the number of cho-
sen basis functions (rather than the number of spatial locations), resulting in
reduced storage and computational costs. Sparse structured models assume that
the spatial correlation between two distantly located observations is nearly zero.
If the assumption is true, then little information is lost by assuming indepen-
dence between data at distant locations. Another approach introduces sparsity
in the inverse covariance matrix using conditional independence assumptions or
composite likelihoods. Some variants of dimension-reduction methods partition
the spatial domain into sub-regions containing fewer spatial locations. Each of
these sub-regions is modeled using a GP which are then hierarchically combined
by borrowing information across the sub-regions.

The proposed DISK framework does not belong to any of these classes of meth-
ods, but it enhances the scalability of any of these methods by embedding each
within the three-step DISK framework. The outline of the DISK framework is as
follows. First, the n spatial locations are divided into k subsets such that each
subset has representative data samples from all regions of the spatial domain
with the jth subset containing mj data samples. Second, posterior computations
are implemented in parallel on the k subsets using any chosen spatial process
model after raising the model likelihood to a power of n/mj in the jth sub-
set. The pseudo posterior distribution obtained using the modified likelihood is
called the “subset pseudo posterior distribution”. Since jth subset pseudo poste-
rior distribution conditions on (mj/n)-fraction of the full data, the modification
of the likelihood by raising it to the power of n/mj ensures that variance of each
subset pseudo posterior is of the same order (as a function of n) as that of the
full data posterior distribution. Third, the k subset pseudo posterior distribu-
tions are combined into a single pseudo probability distribution, called the DISK
pseudo posterior (henceforth, DISK posterior), that conditions on the full data
and replaces the computationally expensive full data posterior distribution for
prediction and inference.
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Our novel contributions to the growing literature on distributed Bayesian in-
ference are two-fold. Computationally, the main innovations are in the second and
third steps because the literature on general sampling and combination schemes
is sparse in process-based modeling of spatial data using the divide-and-conquer
technique. The DISK framework delivers principled Bayesian inference with pa-
rameter estimation, surface interpolation, and prediction without any restrictive
data- or model-specific assumptions, such as the independence between data sub-
sets or independence between blocks of parameters. Theoretically, we provide
guarantees on the accuracy of performance in estimating the true spatial surface
using the DISK posterior as a function of n, k, and analytic properties of the true
spatial surface. We show that when k is controlled to increase in some proper or-
der of n, the Bayes L2-risk of the DISK posterior achieves near minimax optimal
convergence rates under different types of covariance functions.

We illustrate the application of DISK for enhancing the scalability of a low-
rank GP prior with a nonstationary covariance function called the modified pre-
dictive process (MPP) prior (Finley et al., 2009). The prior is commonly used for
estimating nonstationary surfaces in large spatial data. MPP constructs a low-
rank approximation of covariance matrix for the generating distribution of the
spatial surface to reduce computation time, but if the rank is moderately large,
then MPP struggles to provide accurate inference in a manageable time even
for 104 observations. Our numerical results presented later establish that if suf-
ficient computational resources are available, then DISK with MPP prior scales
to 106 observations without compromising on either computational efficiency or
accuracy in inference and prediction. An interesting empirical observation is that
under a fixed computation budget the accuracy of MPP prior in detecting local
surface features is enhanced by embedding it within the DISK framework in the
sense that we are able to increase the spatial resolution. We expect this conclusion
to hold for all of the popular structured GP priors.

1.2 DISK and Existing Methods for GP Modeling of Massive Spatial Data

The DISK framework does not compete with existing methods for analyz-
ing massive spatial data, but aims to boost their scalability using the divide-
and-conquer technique. With this in mind, we compare DISK with existing ap-
proaches for GP-based spatial modeling based on variants of dimension-reduction
technique and refer to Heaton et al. (2019) for a more comprehensive review. Low-
rank structures on the spatial covariance matrix are the most widely used tool for
computationally efficient spatial computation. They represent the spatial surface
using r apriori chosen basis functions with associated computational complexity
of O(nr2+r3) (Cressie and Johannesson, 2008, Banerjee et al., 2008, Finley et al.,
2009, Guhaniyogi et al., 2011, Banerjee et al., 2010, Sang and Huang, 2012, Wikle,
2010); however, with a small (r/n)-ratio, scientists have observed shortcomings
in many of the above methods for approximating GPs such as the propensity to
oversmooth the data (Stein, 2014, Simpson et al., 2012). DISK offers a solution
to this problem. If mj � n, then (r/mj)-ratio is relatively large on the subsets,
yielding accurate and computationally efficient inference using subset posteriors.
Our theoretical results guarantee that the DISK posterior has better accuracy
than any subset posterior, which can potentially outperform the full data pos-
terior estimated using the same prior. Our simulations empirically confirm this
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claim for the MPP prior.
A specific form of sparse structure uses compactly supported covariance func-

tions to create sparse spatial covariance matrices that approximate the full co-
variance matrix (Kaufman et al., 2008, Furrer et al., 2006, Daley et al., 2015,
Bevilacqua et al., 2020). Covariance tapering still requires expensive determinant
evaluation of the massive covariance matrix, and the choice of the taper range
can be difficult for spatial data over irregularly spaced locations (Anderes et al.,
2013). An alternative approach is to introduce sparsity in the inverse covariance
(precision) matrix of the GP likelihoods using products of lower dimensional con-
ditional distributions (Vecchia, 1988, Rue et al., 2009, Stein et al., 2004), or via
composite likelihoods (Eidsvik et al., 2014, Bai et al., 2012, Bevilacqua and Gae-
tan, 2015). Composite likelihood based approaches essentially assume a block
diagonal structure in the covariance matrix of data likelihood, whereas no such
restrictive assumption is imposed on the DISK approach (Varin et al., 2011); see
Section 3.3 for more discussion. Extending these ideas, recent approaches intro-
duce sparsity in the inverse covariance (precision) matrix of process realizations
and hence enable “kriging” at arbitrary locations (Datta et al., 2016, Guinness,
2018, Finley et al., 2019a). In related literature on computer experiments, local-
ized approximations of GP models are proposed; see, for example, Gramacy and
Apley (2015), Gramacy and Haaland (2016). DISK relaxes the trade-off between
computation time and the accuracy in modeling a spatial surface. In current prac-
tice, approximation methods are used with the intent to make the computations
feasible at the expense of accuracy; however, these methods can be embedded
under the DISK framework to scale the computations while simultaneously re-
ducing the degree of approximation required, which is demonstrated empirically
in the sequel.

The remaining variants of dimension-reduction methods combine the benefits
of low-rank and sparse structure covariance functions. Examples include non-
stationary models (Banerjee et al., 2014) and multi-level and multi-resolution
models (Gelfand et al., 2007, Nychka et al., 2015, Katzfuss, 2017, Katzfuss and
Guinness, 2021a, Guhaniyogi and Sanso, 2017). Multi-resolution models are in
general difficult to implement, lack large sample theoretical guarantees, and may
become less amenable to various modification to suit different applications. Unlike
these approaches, DISK makes no independence assumptions across subregions
to accomplish predictions at new locations on a spatial surface and can fit a
multi-resolution model in each subset for enhancing its scalability. There are ap-
proximations proposed based on viewing a GP with Matérn covariance as the
solution to the corresponding stochastic partial differential equation (Lindgren
et al., 2011, Bolin and Lindgren, 2013), including a recent extension Bolin and
Wallin (2020) to multivariate non-Gaussian models with marginal Matérn covari-
ance functions. But this approach is only applicable to covariance functions of
Matérn type and may not be applicable in scaling GP with low-rank kernels.

1.3 DISK and Divide-and-Conquer Bayes

The class of divide-and-conquer Bayesian methods, of which DISK is a mem-
ber, divide the data into a large number of subsets, obtain draws of parameters
or predictions in parallel on the subsets, and combine the subset draws by some
mechanism that approximates the inference conditional on the full data. These
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methods were first proposed in machine learning, including the notable methods
of Consensus Monte Carlo (Scott et al., 2016), the Weierstrass sampler (Wang
and Dunson, 2013), the semiparametric density product (Neiswanger et al., 2014),
the median posterior (Minsker et al., 2014) and the Wasserstein posterior (Sri-
vastava et al., 2015). Most of these methods are developed only for indepen-
dent data. Recently, divide-and-conquer Bayes has been applied to a variety of
statistical problems in both modeling and computation, such as density estima-
tion (Su, 2020), modeling of multivariate binary data (Mehrotra et al., 2021),
sequential Monte Carlo (Lindsten et al., 2017), random partition trees (Wang
et al., 2015), clustering and feature allocation (Ni et al., 2020), etc. For Gaus-
sian process models, Zhang and Williamson (2019) proposes to combine subset
GP fits via an importance sampled mixture-of-experts model. Theoretical results
on divide-and-conquer GP inference have been developed recently in Cheng and
Shang (2017), Szabo and van Zanten (2019), Shang et al. (2019). Nevertheless,
most of these works on divide-and-conquer GP have mainly focused on univariate
domains for nonparametric regression and have not considered the GP models
used in spatial applications such as Matérn covariance functions on a multivariate
spatial domain.

On the spatial front, Barbian and Assunção (2017) propose combining point
estimates of spatial parameters obtained from different subsamples, but they do
not provide combined inference on the spatial processes or predictions. Simi-
larly, Heaton et al. (2017) partition the spatial domain and assume independence
between the data in different partitions. Although computationally attractive,
assuming independence across subdomains may trigger loss in predictive uncer-
tainty as demonstrated in Heaton et al. (2019). In a similar effort to the DISK
posterior, Guhaniyogi and Banerjee (2018, 2019) propose drawing subset infer-
ences and combine the posterior distributions in subsets using the idea of “meta-
posterior”. This approach has an added advantage over that of Heaton et al.
(2017) in that it does not assume independence across data blocks and enables
prediction with accurate characterization of uncertainty (Heaton et al., 2019);
however, it produces desirable inference only when a stationary GP model is fit-
ted in each subset and is not accurate in estimation of the spatial surface when
nonstationary low-rank models (e.g. MPP) are fitted in each subset. This limits
the applicability of the meta-posterior. Also, Guhaniyogi and Banerjee (2018) do
not offer any theoretical guidance on choosing the number of subsets for optimal
inference on the spatial surface. In comparison, the proposed DISK approach
fills both these gaps by providing a general Bayesian framework addressing the
theoretical aspects, the computational efficiency of posterior computations, and
massive spatial data applications with complex nonparametric models.

The DISK framework builds on the recent works that combine the subset pos-
terior distributions through their geometric centers, such as the mean or the
median, and guarantee wide applicability under general assumptions (Minsker
et al., 2014, Srivastava et al., 2015, Li et al., 2017, Minsker et al., 2017, Savitsky
and Srivastava, 2018, Srivastava et al., 2018, Minsker et al., 2019). A major lim-
itation of the current distributed approaches is that the theory and practice is
limited to parametric models. By contrast, the DISK framework is tuned for accu-
rate and computationally efficient posterior inference in nonparametric Bayesian
models based on GP priors. In particular, we develop (a) a new approach to mod-
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ify the likelihood for computing the subset posterior distribution of an unknown
function, an infinite-dimensional parameter, (b) generalizations of existing algo-
rithms for a full-rank and a low-rank GP prior to general MCMC samples from
a subset distribution with modified likelihood, and (c) theoretical guarantees on
the convergence rate of the DISK posterior to the true function, and guidance
on choosing k depending on the covariance function and n, such that the DISK
posterior maintains near minimax optimal performance as n tends to infinity.

The remainder of the manuscript evolves as follows. In Section 2, we outline a
Bayesian hierarchical mixed model framework that incorporates models based on
both the full-rank and the low-rank GP priors. Our DISK approach will work with
posterior MCMC samples from such models. Section 3 develops the framework
for DISK, discusses how to compute the DISK posterior distribution, and offers
theoretical insights into the DISK for general GPs and their approximations. A
detailed simulation study followed by an analysis of the Pacific ocean sea surface
temperature data are illustrated in Section 4 to justify the use of DISK for real
data. Finally, Section 5 discusses what DISK achieves, and proposes a number
of future directions to explore. The supplementary material provides technical
proofs of all theorems and corollaries, the derivation of DISK sampling algorithms,
and additional simulation results.

2. BAYESIAN INFERENCE IN GP-BASED SPATIAL MODELS

Consider the univariate spatial regression model for the data observed at lo-
cation s in a compact domain D,

y(s) = x(s)T β+w(s) + ε(s),(1)

where y(s) and x(s) are the response and a p × 1 predictor vector respectively
at s, β is a p × 1 predictor coefficient, w(s) is the value of an unknown spatial
function w(·) at s, and ε(s) is the value of a white-noise process ε(·) at s, which is
independent of w(·). The Bayesian implementation of the model in (1) custom-
arily assumes (a) that β apriori follows N(µβ, Σβ) and (b) that w(·) and ε(·)
apriori follow mean 0 GPs with covariance functions Cα(s1, s2) and Dα(s1, s2)
that model cov{w(s1), w(s2)} and cov{ε(s1), ε(s2)}, respectively, where α are
the process parameters indexing the two families of covariance functions and
s1, s2 ∈ D; therefore, the model parameters are ΩΩΩ = {α,β}. The training data
consists of predictors and responses observed at n spatial locations, denoted as
S = {s1, . . . , sn}.

Standard Markov chain Monte Carlo (MCMC) algorithms exist for perform-
ing posterior inference on ΩΩΩ and the values of w(·) at a given set of locations
S∗ = {s∗1, . . . , s∗l }, where S∗ ∩S = ∅, and for predicting y(s∗) for any s∗ ∈ S∗
(Banerjee et al., 2014). Given S, the prior assumptions on w(·) and ε(·) im-
ply that wT = {w(s1), . . . , w(sn)} and εT = {ε(s1), . . . , ε(sn)} are independent
and follow N {0,C(α)} and N {0,D(α)}, respectively, with the (i, j)th entries
of C(α) and D(α) are Cα(si, sj) and Dα(si, sj), respectively. The hierarchy in
(1) is completed by assuming that α apriori follows a distribution with density
π(α). The MCMC algorithm for sampling ΩΩΩ, w∗T = {w(s∗1), . . . , w(s∗l )}, and
y∗T = {y(s∗1), . . . , y(s∗l )} cycle through the following three steps until sufficient
MCMC samples are drawn post convergence:
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1. Integrate over w in (1) and

(a) sample β given y,X,α from N(mβ,Vβ), where

Vβ =
{

XT V(α)−1 X + Σ−1
β

}−1
, mβ = Vβ

{
XT V(α)−1 y + Σ−1

β µβ

}
,

(2)

where X = [x(s1) : · · · : x(sn)]T is the n× p matrix of predictors, with
p < n, and V(α) = C(α) + D(α); and

(b) sample α given y,X,β using the Metropolis-Hastings algorithm with
a normal random walk proposal.

2. Sample w∗ given y,X,α,β from N(m∗,V∗), where

V∗ = C∗,∗(α)−C∗(α) V(α)−1 C∗(α)T , m∗ = C∗(α) V(α)−1(y−Xβ),

(3)

C∗(α) and C∗,∗(α) are l×n and l× l matrices, respectively, and the (i, j)th
entries of C∗,∗(α) and C∗(α) are Cα(s∗i , s

∗
j ) and Cα(s∗i , sj), respectively.

3. Sample y∗ given α,β,w∗ from N {X∗ β+ w∗,D(α)}, where X∗T = [x(s∗1) :
· · · : x(s∗l )].

Many Bayesian spatial models can be formulated in terms of (1) by assuming
different forms of Cα(s1, s2) and Dα(s1, s2); see Banerjee et al. (2014) and sup-
plementary material for details on the MCMC algorithm. Irrespective of the form
of D(α), if no additional assumptions are made on the structure of C(α), then
the three steps require O(n3) flops in computation and O(n2) memory units in
storage in every MCMC iteration. Spatial models with this form of posterior
computations are based on a full-rank GP prior. In practice, if n ≥ 104, then
posterior computations in a model based on a full-rank GP prior are infeasible
due to numerical issues in matrix inversions involving an unstructured C(α).

There are methods which either impose a low-rank structure or a sparse struc-
ture on C(α) to address this computational issue (Banerjee et al., 2014). Methods
with a low-rank structure on C(α) expresses C(α) in terms of r � n basis func-
tions (with r = O(

√
n) is desirable for accurate inference), in turn inducing a

low-rank GP prior. Again, a class of sparse structure uses compactly supported
covariance functions to create C(α) with overwhelming zero entries (Kaufman
et al., 2008, Furrer et al., 2006), where as another variety of sparse structure
imposes a Markov random field model on the joint distribution of y (Vecchia,
1988, Rue et al., 2009, Stein et al., 2004) or w (Datta et al., 2016, Guinness,
2018). We use the MPP prior as a representative example of this broad class

of computationally efficient methods. Let S(0) = {s(0)
1 , ..., s

(0)
r } be a set of r lo-

cations, known as the “knots,” which may or may not intersect with S. Let

c(s,S(0)) = {Cα(s, s
(0)
1 ), . . . , Cα(s, s

(0)
r )}T be an r × 1 vector and C(S(0)) be an

r×r matrix whose (i, j)th entry is Cα(s
(0)
i , s

(0)
j ). Using c(s1,S(0)), . . . , c(sn,S(0))

and C(S(0)), define the diagonal matrix δ = diag{δ(s1), . . . , δ(sn)} with δ(si) =
Cα(si, si) − cT (si,S(0)) C(S(0))−1 c(si,S(0)), i = 1, . . . , n. Let 1(a = b) = 1 if
a = b and 0 otherwise. Then, MPP is a GP with covariance function

C̃α(s1, s2) = cT (s1,S(0)) C(S(0))−1 c(s2,S(0)) + δ(s1) 1(s1 = s2),(4)
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where s1, s2 ∈ D, C̃α(s1, s2) depends on the covariance function of the parent
GP and the selected r knots, which define C(S(0)), cT (s1,S(0)), and cT (s2,S(0)).
We have used a ˜ in (4) to distinguish the covariance function of a low-rank
GP prior from that of its parent full-rank GP. If C̃(α) is a matrix with (i, j)th
entry C̃α(si, sj), then the posterior computations using MPP, a low-rank GP
prior, replace C(α) by C̃(α) in the steps 1(a), 1(b), and 2. The (low) rank r
structure imposed by C(S(0)) implies that C̃(α)−1 computation requires O(nr2)
flops using the Woodbury formula (Harville, 1997); however, massive spatial data
require that r = O(

√
n), leading to the computational inefficiency of low-rank

methods. The next section develops our DISK framework, which uses the divide-
and-conquer technique to scale the posterior computations using full-rank and
low-rank GP priors.

3. DISTRIBUTED BAYESIAN KRIGING

3.1 First step: partitioning of spatial locations

We partition the n spatial locations into k non-overlapping subsets. The value
of k depends on the chosen covariance function used in the spatial model, and
it is set to be large enough to ensure computationally efficient posterior compu-
tations on any subset. The default partitioning scheme is to randomly allocate
the locations into k possibly non-overlapping subsets (referred to as the random
partitioning scheme hereon) to ensure that each subset has representative data
samples from all subregions of the domain.

Let Sj = {sj1, . . . , sjmj} denote the set of mj spatial locations in subset j
(j = 1, . . . , k). Cocenptually, a spatial location can belong to multiple subsets,
though for this work we have assumed disjoint subsets, so that

∑k
j=1mj = n and

∪kj=1Sj = S, where sji = si′ for some si′ ∈ S and for every i = 1, . . . ,mj and
j = 1, . . . , k. Denote the data in the jth partition as {yj ,Xj} (j = 1, . . . , k), where

yj = {y(sj1), . . . , y(sjmj )}T is a mj × 1 vector and Xj = [x(sj1) : · · · : x(sjmj )]
T

is a mj × p matrix of predictors corresponding to the spatial locations in Sj with
p < mj . In modern grid or cluster computing environments, all the machines in
the network have similar computational power, so the performance of DISK is
optimized by choosing similar values of m1, . . . ,mk.

One can choose more sophisticated partitioning schemes than random parti-
tioning. For example, it is possible to cluster the data based on centroid clustering
(Knorr-Held and Raßer, 2000) or hierarchical clustering based on spatial gradi-
ents (Anderson et al., 2014, Heaton et al., 2017), and then construct subsets
such that each subsets contains representative data samples from each cluster.
Detailed exploration later shows that even random partitioning leads to desirable
inference in the various simulation settings and in the sea surface data example,
hence inferential improvement with any other sophisticated partitioning should
be marginal in these examples. Perhaps more sophisticated blocking methods may
provide further improvement in the cases where spatial locations are drawn based
on specific designs; for example, sophisticated partitioning schemes have inferen-
tial benefits when a sub-domain shows substantial local behavior compared to the
others (Guhaniyogi and Sanso, 2017), or sampled locations are chosen based on
a specific survey design. Since they are atypical examples in the spatial context,
we will pursue them elsewhere in greater detail.



DISTRIBUTED KRIGING 9

The univariate spatial regression models using either a full-rank or a low-rank
GP prior for the data observed at any location sji ∈ Sj ⊂ D is given by

y(sji) = x(sji)
T β+w(sji) + ε(sji), i = 1, . . . ,mj .(5)

Let wT
j = {w(sj1), . . . , w(sjmj )} and εTj = {ε(sj1), . . . , ε(sjmj )} be the realiza-

tions of GP w(·) and white-noise process ε(·), respectively, in the jth subset.
After marginalizing over wj in the GP-based model for the jth subset, the
likelihood of ΩΩΩ = {α,β} is given by `j(ΩΩΩ) = N{yj | Xj β,Vj(α)}, where

Vj(α) = Cj(α) + Dj(α) and Vj(α) = C̃j(α) + Dj(α) for full-rank and low-
rank GP priors, respectively, and Cj(α), C̃j(α),Dj(α) are obtained by extend-
ing the definitions of C(α), C̃(α),D(α) to the jth subset. In a model based
on full-rank or low-rank GP prior, the likelihood of wj given yj , Xj , and ΩΩΩ is
`j(wj) = N{yj −Xj β | wj ,Dj(α)}. The likelihoods in `j(ΩΩΩ) and `j(wj) are
used to define the posterior distributions for β,α,w∗, y∗ (w∗ and y∗ have al-
ready been defined in the second paragraph of Section 2) based on a full-rank
or a low-rank GP prior in subset j and are called jth subset pseudo posterior
distributions.

3.2 Second step: sampling from subset pseudo posterior distributions

We define subset pseudo posterior distributions by modifying the likelihoods in
`j(ΩΩΩ) and `j(wj). More precisely, the density of the jth subset pseudo posterior
distribution of ΩΩΩ is given by

πmj (ΩΩΩ | yj) =
{`j(ΩΩΩ)}n/mjπ(ΩΩΩ)∫
{`j(ΩΩΩ)}n/mjπ(ΩΩΩ)dΩΩΩ

,(6)

where we assume that
∫
{`j(ΩΩΩ)}n/mjπ(ΩΩΩ)dΩΩΩ <∞, and the subscript ‘mj ’ denotes

that the density conditions on mj data samples in the jth subset. The modifi-
cation of likelihood to yield the subset pseudo posterior density in (6) is called
stochastic approximation (Minsker et al., 2014). Raising the likelihood to the
power of n/mj is equivalent to replicating every y(sji) n/mj times (i = 1, . . . ,mj),
so stochastic approximation accounts for the fact that the jth subset pseudo pos-
terior distribution conditions on a (mj/n)-fraction of the full data and ensures
that its variance is of the same order (as a function of n) as that of the full
data posterior distribution. Unlike parametric models, stochastic approximation
in spatial regression models has not been studied previously in the literature. We
address this gap next.

With the proposed stochastic approximation in (6), the full conditional den-
sities of jth subset pseudo posterior distributions for prediction and inference
follow from their full data counterparts. The jth full conditional densities of β
and α in the GP-based models are

πmj (β | yj ,α) =
{`j(ΩΩΩ)}n/mjπ(β)∫
{`j(ΩΩΩ)}n/mjπ(β)dβ

, πmj (α | yj ,β) =
{`j(ΩΩΩ)}n/mjπ(α)∫
{`j(ΩΩΩ)}n/mjπ(α)dα

,

(7)

where π(β) = N(µβ,Σβ), π(α) is the prior density of α, and we assume that∫
{`j(ΩΩΩ)}n/mjπ(β)dβ and

∫
{`j(ΩΩΩ)}n/mjπ(α)dα respectively are finite. The jth
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full conditional densities of y∗ and w∗ are calculated after modifying the likeli-
hood of wj using stochastic approximation. Given yj , Xj , and ΩΩΩ, straightforward
calculation yields that the jth subset pseudo posterior predictive density of w∗

is πmj (w
∗ | yj ,ΩΩΩ) = N(w∗ |mj∗,Vj∗), with

Vj∗ = C∗,∗(α)−C∗j(α) Vj(α)−1 C∗j(α)T , mj∗ = C∗j(α) Vj(α)−1(yj −Xj β),

(8)

where Vj(α) = Cj(α)+(n/mj)
−1 Dj(α) and Vj(α) = C̃j(α)+(n/mj)

−1 Dj(α)
for full-rank and low-rank GP priors, respectively, and C∗,∗(α),C∗j(α) are l× l,
l×mj matrices obtained by extending the definition in (3) to subset j for full-rank
and low-rank GP priors with covariance functions Cα(·, ·) and C̃α(·, ·), respec-
tively. We note that the stochastic approximation exponent, n/mj , scales Dj(α)
in Vj(α) so that the uncertainty in subset and full data posterior distributions
are of the same order (as a function of n). The jth subset pseudo posterior pre-
dictive density of y∗ given the MCMC samples of w∗ and ΩΩΩ in the jth subset
is N{y∗ | X∗ β+ w∗,Dj(α)}. We employ the same three-step sampling algo-
rithm, as earlier introduced, specialized to subset j (j = 1, . . . , k), sampling
{β,α,y∗,w∗} in each subset across multiple MCMC iterations; see supplemen-
tary material for detailed derivations of subset pseudo posterior sampling algo-
rithms in the full-rank and low-rank GP priors. The computational complexity
of jth subset pseudo posterior computations follows from their full data coun-
terparts if we replace n by mj . Specifically, the computational complexities for
sampling a subset pseudo posterior distribution are O(m3) and O(mr2) flops per
iteration if the model in (5) uses a full-rank or a low-rank GP prior, respectively,
where m = maxjmj . Performing subset pseudo posterior computations in parallel
across k servers also alleviates the need to store large covariance matrices.

In order to simplify nomenclature, we will hereon refer to subset pseudo pos-
terior as subset posterior. The combination of subset posteriors outlined below is
more widely applicable compared to other divide-and-conquer type approaches as
it is free of model- or data-specific assumptions, such as independence of samples
in training data, except that every subset posterior distribution has a density and
has finite second moments.

3.3 Third step: combination of subset posterior distributions

The combination step relies on the notion of Wasserstein barycenter, as used
in some related scalable Bayes literature for independent data (Srivastava et al.,
2015). We first provide some background on this topic. Let (Θ, ρ) be a complete
separable metric space and P(Θ) be the space of all probability measures on Θ.
The Wasserstein space of order 2 is a set of probability distributions defined as
P2(Θ) = {µ ∈ P(Θ) :

∫
Θ ρ

2(θ, θ0)µ(dθ) < ∞}, where θ0 ∈ Θ is arbitrary and
P2(Θ) does not depend on the choice of θ0. The Wasserstein distance of order
2, denoted as W2, is a metric on P2(Θ). Let µ, ν be two probability measures
in P2(Θ) and Π(µ, ν) be the set of all probability measures on Θ × Θ with
marginals µ and ν, then W2 distance between µ and ν is defined as W2(µ, ν) =
{ inf
π∈Π(µ,ν)

∫
Θ×Θ ρ

2(x, y) dπ(x, y)}1/2. Let ν1, . . . , νk ∈ P2(Θ), then the Wasserstein
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barycenter of ν1, . . . , νk is defined as

ν = argmin
ν∈P2(Θ)

1

k

k∑
j=1

W 2
2 (ν, νj).(9)

It is known that ν exists and is unique (Agueh and Carlier, 2011).
In the DISK framework, for any parameter of interest θ, either a scalar or a

vector, the DISK posterior is defined to be the Wasserstein barycenter of the k
subset posterior distributions of θ. Here, θ can be taken as β, α, w∗, y∗, their
individual components, or any functionals of these parameters. In other words,
for our DISK approach, ν1, . . . , νk in (9) are taken as the k subset posterior dis-
tributions of θ. Hence the DISK posterior, mathematically computed from the
Wasserstein barycenter ν in (9), provides a general notion of obtaining the mean
of k possibly dependent subset posterior distributions. For Bayesian inference, the
exact subset posteriors of θ (ν1, . . . , νk in (9)) are analytically intractable in gen-
eral, but they can be well approximated by the subset posterior MCMC samples
of θ, and we can conveniently estimate the empirical version of the Wasserstein
barycenter ν by efficiently solving a sparse linear program as described in (Cuturi
and Doucet, 2014, Srivastava et al., 2015, Staib et al., 2017). It has been shown
that for independent data, the Wasserstein barycenter is a preferable choice to
several other combination methods (Li et al., 2017, Srivastava et al., 2018); for
example, directly averaging over many subset posterior densities with different
means can usually result in an undesirable multimodal pseudo posterior distribu-
tion, but the Wasserstein barycenter does not have this problem and can recover a
unimodal posterior; see, for example, Figure 1 in Srivastava et al. (2018). Besides,
it does not rely on the asymptotic normality of the subset posterior distributions
as in other approches, such as consensus Monte Carlo (Scott et al., 2016).

If θ represents a one-dimensional functional of interest (a functional of β, α,
w∗, or y∗), then the DISK posterior of θ can be easily obtained by averaging
empirical subset posterior quantiles (Li et al., 2017). This is because the W2

distance between two univariate distributions is the same as the L2 distance
between their quantile functions (Lemma 8.2 of Bickel and Freedman 1981). In
particular, let ν and νj be the full posterior and jth subset posterior distribution
of θ, and ν be the Wasserstein barycenter of ν1, . . . , νk as in (9). For any q ∈ (0, 1),
let ν̂qj be the qth empirical quantile of νj based on the MCMC samples from νj ,

and ν̂
q

be the qth quantile of the empirical version of ν. Then, ν̂
q

can be computed
as

ν̂
q

=
1

k

k∑
j=1

ν̂qj , q = ξ, 2ξ, . . . , 1− ξ,(10)

where ξ is the grid-size of the quantiles (Li et al., 2017). If the ξ-grid is fine enough
in (10), then the parameter MCMC samples from the marginal DISK distribution
are obtained by inverting the empirical distribution function supported on the
quantile estimates.

The choice of the grid size is mainly determined by the Monte Carlo approxi-
mation error of each subset posterior. In general, the Monte Carlo approximation
error to subset posteriors can be measured in terms of the size of MCMC sam-
ples (say T ). This error is evaluated by taking T to infinity and differs from the
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statistical error, where n tends to infinity. For the divide-and-conquer Bayes for
models with i.i.d. data, Theorem 3 in the supplementary material of Li et al.
(2017) has shown that the Monte Carlo error is usually in some polynomial order
of T such as O(T−1/2) and O(T−1/4) depending on the distance measure and
is independent of the statistical error defined in terms of n. Following this intu-
ition, in application, we usually draw at least 104 MCMC samples for each subset
posterior and use all of them to construct the quantiles.

In practice, the primary interest often lies in the marginal distributions of
model parameters and predicted values; that is, the posterior distribution of some
one-dimensional functional θ; therefore, the univariate Wasserstein barycenter
obtained by averaging quantiles in (10) accomplishes this with great generality
and convenient implementation. For this reason, in the following sections, we
only focus on the case where θ is one-dimensional and use (10) to compute the
DISK posterior through its empirical quantiles. Nonetheless, we emphasize that
the DISK posterior for a multivariate θ can still be efficiently computed using
the sparse linear program for Wasserstein barycenters as described in Cuturi
and Doucet (2014), Srivastava et al. (2015), Staib et al. (2017); however, these
methods are computationally more expensive and do not lead any notable im-
provement over the univariate quantile combination in (10) as revealed by our
simulation experiments in Section 4.

A key feature of the DISK combination scheme is that given the subset poste-
rior MCMC samples, the combination step is agnostic to the choice of a model.
Specifically, given MCMC samples from the k subset posterior distributions, (10)
remains the same for models based on a full-rank GP prior, a low-rank GP prior,
such as MPP, or any other model described in Section 1.2. Since the averaging
over k subsets takes O(k) flops and k < n, the total time for computing the em-
pirical quantile estimates of the DISK posterior in inference or prediction requires
O(k) + O(m3) and O(k) + O(rm2) flops in models based on full-rank and low-
rank GP priors, respectively. Assuming that we have abundant computational
resources, k is chosen large enough so that O(m3) computations are feasible.
This would enable applications of the DISK framework in models based on both
full-rank and low-rank GP priors in massive n settings.

Our second step in the DISK framework resembles some existing methods
based on the composite likelihood (Varin et al., 2011). For example, Chandler
and Bate (2007) and Ribatet et al. (2012) assume weigh- exponentiated pseudo
likelihood contribution for data units to extent that each weight represents mul-
tiple units in a population. In the context of geostatistical modeling with GP or
its variants, for computational efficiency, the pseudo likelihood will naturally be
based on independence of data blocks at some level. To make up for the incorrect
asymptotic distribution of the posterior distribution due to the incorrect indepen-
dence assumption, they propose a number of adjustments in the composite log
likelihood (e.g., the margin adjustment and the curvature adjustment). Similar
to these approaches, the likelihood adjustment in each subset for the second step
of the DISK approach is also born out of consideration to scale the asymptotic
variance of subset posteriors to the same order as the asymptotic variance of
the full posterior; however, unlike these composite likelihood approaches, DISK
approach does not assume any restrictive structure (e.g., block independence) in
the data likelihood. In fact, there is no guarantee that the induced data likelihood
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that leads to the DISK pseudo posterior assumes any block independence form.
Moreover, Savitsky and Srivastava (2018) represents an example of embedding a
composite likelihood in a divide and conquer setup that computes the Wasserstein
Barycenter. Likewise, we believe that most of these “flexible” composite likeli-
hoods can be used in extensions of DISK for subset sampling in models where
the true likelihood is unavailable or expensive to compute.

3.4 Bayes L2-risk of DISK: bias-variance decomposition and convergence
rates

In the divide-and-conquer Bayesian setup, it is already known that when the
data are independent and identically distributed (i.i.d.), the combined posterior
distribution using the Wasserstein barycenter of subset posteriors approximates
the full data posterior distribution at a near optimal parametric rate, under cer-
tain conditions as n, k,m1, . . . ,mk →∞ (Li et al., 2017, Srivastava et al., 2018);
however, in models based on spatial process, data are not i.i.d. and inference on
the infinite dimensional true spatial surface is of primary importance. Few formal
theoretical results are available in this nonparametric divide-and-conquer Bayes
setup. A notable exception is the recent paper (Szabo and van Zanten, 2019),
which shows that combination using Wasserstein barycenter has optimal Bayes
risk and adapts to the smoothness of w0(·), the true but unknown w(·), in the
Gaussian white noise model. The Gaussian white noise model is a special case of
(1) with additional smoothness assumptions on w0(·).

We investigate the theoretical properties of the DISK predictive posterior of the
mean surface x(·)T β+w(·). For ease of presentation, we assume that m1 = · · · =
mk = m, and we will assume that k = n/m. Determining the appropriate order
for k in terms of n is one of the key issues for all divide-and-conquer statistical
methods. Our theory below reveals that the number of subsets k cannot increase
too fast with n, or equivalently, the subset size m cannot be too small, mainly
because a small subset size m will result in larger random errors in the estimation
from subset posterior distributions.

We formally explain the model setup for our theory development. Suppose
that the data generation process follows the model (1) with the true parameter
value ΩΩΩ0 = (α0,β0) and the true spatial surface w0(·). We focus on the Bayes
L2-risk of the DISK predictive posterior for the mean function in (1); that is,
x(s∗)T β+w(s∗) for any testing location s∗ ∈ S. To ease the complexity of our
theory, we first present two theorems below for the simplified model

y(si) = w(si) + ε(si), ε(si) ∼ N
(
0, τ2

)
,

w(·) ∼ GP{0, λ−1
n Cα(·, ·)}, i = 1, . . . , n.(11)

Compared to the spatial model (1), the model (11) does not contain the regression
term x(s)T β; however, our theory includes this regression term later by modi-
fying the covariance function; see Corollary 3.3 below. The tuning parameter λn
is a user-chosen deterministic sequence that depends on n. In real applications,
one can simply set λn = 1, but one can also choose λn such that the posterior
convergence rate becomes minimax optimal; see Theorem 3.2 below and the dis-
cussions therein. Our theoretical setup is a general one that subsumes GP priors
with Matérn covariance functions (Stein, 2012) and the wide class of low-rank
GP priors.
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We introduce some definitions used in stating the results in this section. Let
α0 be the true kernel parameter. Let Ps be a design distribution of s over D,
L2(Ps) be the L2 space under Ps, the inner product in L2(Ps) is defined as
〈f, g〉L2(Ps) = EPs(fg) for any f, g ∈ L2(Ps). For any f ∈ L2(Ps) and s ∈ D,
define the linear operator (Tα0f)(s) =

∫
D Cα0(s, s′)f(s′)dPs(s

′). According to
the Mercer’s theorem, there exists an orthonormal basis {ϕi(s)}∞i=1 in L2(Ps),
such that Cα0(s, s′) =

∑∞
i=1 µiϕi(s)ϕi(s

′), where µ1 ≥ µ2 ≥ . . . ≥ 0 are the
eigenvalues and {ϕi(s)}∞i=1 are the eigenfunctions of Tα0 . The trace of the kernel
Cα0 is defined as tr(Cα0) =

∑∞
i=1 µi. Any f ∈ L2(Ps) has the series expansion

f(s) =
∑∞

i=1 θiϕi(s), where θi = 〈f, ϕi〉L2(Ps). The reproducing kernel Hilbert
space (RKHS) H attached to Cα0 is the space of all functions f ∈ L2(Ps) such
that the H-norm ‖f‖H =

∑∞
i=1 θ

2
i /µi < ∞. The RKHS H is the completion of

the linear space of functions defined as
∑I

i=1 aiCα0(si, ·), where I is a positive
integer, si ∈ D, and ai ∈ R (i = 1, . . . , I); see van der Vaart and van Zanten
(2008) for more details on RKHS.

We impose the following assumptions.

A.1 (Sampling) The locations S = {s1, . . . , sn} and s∗ are independently drawn
from the same sampling distribution Ps. S1, . . . ,Sk is a random disjoint
partition of S, each with size m = n/k.

A.2 (True model) The true function w0 is an element of the RKHS H attached to
the kernel Cα0 . At a generic location s, the observation is y(s) = w0(s)+ε(s),
where ε(s) is a homogeneous white noise process with the true variance
τ2

0 <∞.
A.3 (Trace class kernel) tr(Cα0) <∞.
A.4 (Moment condition) There are positive constants ρ and q > 4 such that

EPs{ϕ
2q
i (s)} ≤ ρ2q for every i ∈ N.

The random partition assumption A.1 guarantees that each individual subset
Sj (j = 1, . . . , k) is a random sample from Ps. In general, the RKHS H can
be a smaller space relative to the support of the GP prior. While we use w0 ∈
H in Assumption A.2 mainly for technical simplicity, this assumption can be
possibly relaxed by considering sieves with increasing H-norms, in the same vein
as Assumption B′ and Theorem 2 in Zhang et al. (2015). We expect that similar
convergence rate results to our Theorems 3.1 and 3.2 can be shown for much
larger classes of functions than H; see the additional posterior convergence theory
in Section 2 of supplementary material. Furthermore, A.2 only requires that the
true unknown error distribution to have a finite variance. Although we fit the
data using the normal error in model (11), we allow this error distribution to be
misspecified as our theory below does not require the true error distribution to
be exactly normal; therefore, our posterior convergence rate results also hold for
heavy-tailed errors such as t4, which are more general than van der Vaart and van
Zanten (2011) whose techniques fully depend on the normal error assumption. In
Assumption A.3, tr(Cα) measures the size of the covariance function and imposes
conditions on the regularity of functions that DISK can learn. Assumption A.4
on the eigenfunctions controls the error in approximating Cα0(s, s′) by a finite
sum, similar to Assumption A in Zhang et al. (2015).

We first consider the case where both the error variance τ2 and the kernel
parameter α are fixed and known, similar to van der Vaart and van Zanten (2011).
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We will then extend our convergence rate results to the case where τ2 and α are
unknown and assigned priors with compact supports in the later Corollary 3.4.

A.5 (Fixed parameters) The parameters α and τ2 are fixed at their true values
α = α0 and τ2 = τ2

0 .

We begin by examining the Bayes L2-risk of the DISK posterior for estimating
w0 in (11). Let w(s∗) be a random variable that follows the DISK posterior for
estimating w0(s∗). Let Es∗ , ES , and Ey,w(s∗)|S,s∗ respectively be the expectations
with respect to the distributions of s∗, S, and {y, w(s∗)} given S, s∗. Given the
random partition assumption in A.1, each individual subset Sj (j = 1, . . . , k) is
a random sample from Ps. By A.5, we can drop the subscript “0” in α0 and τ2

0 .
Then, w(s∗) given y,S, s∗ has the density N(m, v), where

m =
1

k

k∑
j=1

cTj,∗(Cj,j + τ2λn
k I)−1 yj ,

v1/2 =
1

k

k∑
j=1

v
1/2
j , vj = λ−1

n

{
c∗,∗ − cTj,∗(Cj,j + τ2λn

k I)−1 cj,∗

}
,(12)

c∗,∗ = cov{w(s∗), w(s∗)}, and cTj,∗ = [cov{w(sj1), w(s∗)}, . . . , cov{w(sjm), w(s∗)}].
The Bayes L2-risk of DISK in estimating w0 is Es∗ ES Ey,w(s∗)| S,s∗{w(s∗)−w0(s∗)}2.
This risk can be used to quantify how quickly the DISK posterior concentrates
around the unknown true surface w0(·) as the total sample size n increases to
infinity. When the parameters τ2 and α are fixed and known, it is straightforward
to show (see the proof of Theorem 3.1 in the Supplementary Material) that this
Bayes L2-risk can be decomposed into the squared bias, the variance of subset
posterior means, and the variance of DISK posterior terms as

bias2 = Es∗ ES{cT∗ (kL +τ2λn I)−1 w0−w0(s∗)}2,
varmean = τ2 Es∗ ES

{
cT∗ (kL +τ2λn I)−2 c∗

}
,

varDISK = Es∗ ES{v(s∗)},(13)

where v(s∗) = Ey|S [var{w(s∗) | y}], cT∗ = (cT1,∗, . . . , c
T
k,∗), w0j = {w0(sj1), . . . , w0(sjk)}

for j = 1, . . . , k, wT
0 = (w01, . . . ,w0k), and L is a block-diagonal matrix with

C1,1, . . . ,Ck,k along the diagonal. The next theorem provides theoretical upper
bounds for each of the three terms in (13).

Theorem 3.1 If Assumptions A.1–A.5 hold, then

Bayes L2 risk = Es∗ ES Ey,w(s∗)| S,s∗{w(s∗)− w0(s∗)}2

= bias2 + varmean + varDISK,

bias2 ≤ 8τ2λn
n
‖w0‖2H + ‖w0‖2H inf

d∈N

[
8n

τ2λn
ρ4 tr(Cα) tr(Cdα)

+ µ1R(m,n, d, q)

]
,

varmean ≤
(

2n

kλn
+

4‖w0‖2H
k

)
inf
d∈N

[
µd+1 +

12n

τ2λn
ρ4 tr(Cα) tr(Cdα)
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+R(m,n, d, q)

]
+

12τ2λn
kn

‖w0‖2H + 12
τ2

n
γ

(
τ2λn
n

)
,

varDISK ≤ 3
τ2

n
γ

(
τ2λn
n

)
+ inf
d∈N

[{
4n

τ2λ2
n

tr(Cα) +
1

λn

}
tr(Cdα)

+ λ−1
n tr(Cα)R(m,n, d, q)

]
,(14)

where N is the set of all positive integers, A is a global positive constant that does
not depend on any of the quantities here, and

b(m, d, q) = max

(√
max(q, log d),

max(q, log d)

m1/2−1/q

)
,

R(m,n, d, q) =

{
Aρ2b(m, d, q)γ(τ2λn/n)√

m

}q
,

γ(a) =

∞∑
i=1

µi
µi + a

for any a > 0, tr(Cdα) =

∞∑
i=d+1

µi.

These upper bounds are similar to the bounds obtained in Theorem 1 of Zhang
et al. (2015) for the frequentist divide-and-conquer estimator in kernel ridge re-
gression. Although the upper bounds in (14) appear very complicated and involve

many terms, the dominant term among them is τ2

n γ
(
τ2λn
n

)
, where the function

γ(·) is related to the “effective dimensionality” of the covariance function Cα

(Zhang, 2005). This term determines how fast the Bayes L2-risk converges to zero,
as long as k is chosen to be some proper order of n such that all the other terms

in the upper bounds of (14) can be made negligible compared to τ2

n γ
(
τ2λn
n

)
. In

particular, the term R(m,n, d, q) that quantifies the random error and appears
in the infimums in all three upper bounds of (14) generally decreases with m

and increases with k; therefore, to ensure the dominance of τ2

n γ
(
τ2λn
n

)
, k cannot

increase too fast with n; see Theorem 3.2 below.
In contrast to the frequentist literature such as Zhang et al. (2015), a significant

difference in our Theorem 3.1 is that our risk bounds involve two different variance
terms. While our analysis naturally introduces the variance term varDISK that
corresponds to the variance of the DISK posterior distribution, any frequentist
kernel regression method only finds a point estimate of w0 and thus does not
include this variance term. As a by-product of the proof of Theorem 3.1, the
upper bound for varDISK can be used to show that the integrated predictive
variance of GP decreases to zero as the subset sample size m → ∞ for various
types of covariance functions. A related work by Gratiet and Garnier (2015)
studies the asymptotic behavior for the mean squared error of GP, but requires
the error variance τ2 to increase with the sample size n, which prevents their GP
predictive variance from converging to zero.

Each of the three upper bounds in Theorem 3.1 can be made close to zero as n
increases to∞ and k is chosen to grow at an appropriate rate depending on n. The
next theorem finds the appropriate order for k in terms of n, such that the DISK
posterior achieves nearly minimax optimal rates in its Bayes L2-risk (14), for three
types of commonly used covariance functions, (i) degenerate covariance functions,
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(ii) covariance functions with exponentially decaying eigenvalues, and (iii) covari-
ance functions with polynomially decaying eigenvalues. The covariance function
Cα is a degenerate kernel of rank d∗ if there is some constant positive integer d∗

such that µ1 ≥ µ2 ≥ . . . ≥ µd∗ > 0 and µd∗+1 = µd∗+2 = . . . = µ∞ = 0. The co-
variance functions in subset of regressors approximation (Quiñonero-Candela and
Rasmussen, 2005) and predictive process (Banerjee et al., 2008) are degenerate
with their ranks equaling the number of “inducing points” and knots, respectively.
The squared exponential kernel is very popular in machine learning. Its RKHS
belongs to the class of RKHSs of kernels with exponentially decaying eigenvalues.
Similarly, the class of RKHSs of kernels with polynomially decaying eigenvalues
includes the Sobolev spaces with different orders of smoothness and the RKHS
of the Matérn kernel. This kernel is most relevant for spatial applications, but we
provide the other two results for a more general audience.

Theorem 3.2 If Assumptions A.1–A.5 hold, then as n→∞,

(i) if Cα is a degenerate kernel of rank d∗, λn = 1, and k ≤ cn
q−4
q−2 /(log n)

2q
q−2

for some constant c > 0, then the Bayes L2-risk of DISK posterior satisfies
Es∗ ES Ey,w(s∗)| S,s∗{w(s∗)− w0(s∗)}2 = O

(
n−1

)
;

(ii) if µi ≤ c1µ exp (−c2µi
κ) for some constants c1µ > 0, c2µ > 0, κ > 0 and all

i ∈ N, λn = 1, and for some constant c > 0, k ≤ cn
q−4
q−2 /(log n)

2(qκ+q−1)
κ(q−2) , then

the Bayes L2-risk of DISK posterior satisfies Es∗ ES Ey,w(s∗)| S,s∗{w(s∗) −
w0(s∗)}2 = O

{
(log n)1/κ/n

}
;

(iii) if µi ≤ cµi
−2η for some constants cµ > 0, η > q−1

q−4 and all i ∈ N, λn = 1,

and for some constant c > 0, k ≤ cn
(q−4)η−(q−1)

(q−2)η /(log n)
2q
q−2 , then the Bayes

L2-risk of DISK posterior satisfies Es∗ ES Ey,w(s∗)| S,s∗{w(s∗)− w0(s∗)}2 =

O
(
n
− 2η−1

2η

)
; and

(iv) if µi ≤ cµi
−2η for some constants cµ > 0, η > q−1

q−4 and all i ∈ N, λn =

c1n
1/(2η+1), and k ≤ c2n

(2η−1)q−8η
(q−2)(2η+1) /(log n)

2q
q−2 for some positive constants

c1, c2, then the Bayes L2-risk of DISK posterior satisfies

Es∗ ES Ey,w(s∗)| S,s∗{w(s∗)− w0(s∗)}2 = O
(
n
− 2η

2η+1

)
.

The rate of decay of the L2-risks in (i) and (ii) with κ = 2 are known to be min-
imax optimal (Raskutti et al., 2012, Yang et al., 2017). For spatial applications,
the polynomially decaying eigenvalues in (iii) and (iv) are of major interest. For
example, consider the Matérn covariance function

Cσ2,φ,ν(s, s′) = σ2 21−ν

Γ(ν)

(
φ‖ s− s′ ‖

)ν Kν (φ‖ s− s′ ‖
)
,(15)

where s, s′ ∈ D ⊆ Rd, σ2 > 0, φ > 0, α = (σ2, φ), ν ≥ d/2 is known, Γ(·) is the
gamma function, and Kν(·) is the modified Bessel function of the second kind.
Then, Santin and Schaback (2016, Theorem 6) have shown that when D is a
compact domain in Rd, the eigenvalues of Cσ2,φ,ν decays as µi ≤ cµi

−2ν/d for all
i ∈ N. Furthermore, when Ps is the uniform distribution over a compact domain
D, the trigonometric series are usually the eigenfunctions of any stationary kernel
on D (Yang and Pati, 2017); therefore, one can take q = +∞ in A.4 since the
trigonometric series are absolutely bounded with infinitely many moments. As a
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result, (iii) and (iv) of Theorem 3.2 can be applied to the Matérn kernel in (15)
with η = ν/d.

The rate O
(
n−

2ν−d
2ν

)
for the Bayes L2-risk in (iii) is not minimax optimal for

estimating w0 ∈ H (as assumed in A.1), whereas the faster rate O
(
n−

2ν
2ν+d

)
in

(iv) is minimax optimal. This is because (iv) has used the additional optimal
tuning parameter λn = c1n

ν/(2ν+d), while setting λn = 1 is sub-optimal in this
case. The use of a tuning parameter to achieve optimal convergence is common
in Gaussian process regression and kernel ridge regression (Yang et al., 2017,
Zhang et al., 2015). Although van der Vaart and van Zanten (2011) has shown
the minimax optimal posterior convergence rates for the Matérn kernel without
using tuning parameters, their proof is only valid when the true error distribution
of ε(s) is exactly normal. In comparison, our Assumption A.1 only requires that
ε(s) has a finite variance without the normality assumption, which works in the
more general case when the model (11) is misspecified in the error distribution.

For the conditions on k, in the case when q = +∞, the upper bounds on
k in (i), (ii), (iii), and (iv) reduce to k = O{n/(log n)2}, k = O{n/(log n)2/κ},
k = O{n

η−1
η /(log n)2}, and k = O{n

2η−1
2η+1 /(log n)2}, respectively. The convergence

rate results in Theorem 3.2 hold as long as k does not grow too fast with n.
We can generalize the results in Theorems 3.1 and 3.2 to the model (1). Besides

Assumptions A.1–A.4, we further make the following assumption on x(·) and the
prior on β:

B.1 All p components of x(·) are non-random functions in S. The prior on β is
N(µβ,Σβ) and it is independent of the prior on w(·), which is GP{0, Cα(·, ·)}.

By the normality and joint independence in Assumption B.1, it is straightforward
to show that the mean function x(s)T β+w(s) has a GP prior GP{x(·)T µβ, Čα(·, ·)},
where the modified covariance function Čα is given by

Čα(s1, s2) = cov
{
x(s1)T β+w(s1), x(s2)T β+w(s2)

}
= x(s1)T Σβ x(s2) + Cα(s1, s2),(16)

for any s1, s2 ∈ S. With this modified covariance function, we have the following
corollary:

Corollary 3.3 If Assumption B.1 holds, Assumptions A.1–A.5 also hold with all
Cα replaced by Čα defined in (16), and µβ = 0, then the conclusions of Theorems
3.1 and 3.2 hold for the Bayes L2-risk of the mean surface x(·)T β+w(·) in the
model (1).

We can also generalize the convergence rates of Bayes L2-risk in Theorem 3.2
to allow the τ2 parameter to have a prior distribution, if the covariance function
is parameterized in a different way and is scaled by τ2. We modify the GP prior
on w(·) in (11) to the following

y(si) = w(si) + ε(si), ε(si) ∼ N
(
0, τ2

)
,

w(·) ∼ GP{0, λ−1
n τ2Cα(·, ·)};(17)

that is, Cα is scaled with τ2, the same as the error variance. This has also
been used in the practice of GP estimation before. We maintain the same eigen-
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decomposition of the kernel Cα0(·, ·) and the Assumptions A.3 and A.4 as before.
We assume that α is still fixed at its truth α0, but now impose a prior on τ2.

A.5′ (Prior) For each of the k subsets, τ2 is assigned a prior with a compact
support in (0, τ2] for some finite constant τ2 > 0.

Let Eτ2|y and Ew(s∗)|τ2,y,s∗ be the expectations of {τ2
j : j = 1, . . . , k} given y,

and w(s∗) given y, {τ2
j : j = 1, . . . , k}, and s∗, respectively, where τ2

j is drawn

from the posterior of τ2 given yj from the jth subset posterior. Then the Bayes
L2-risk of the DISK posterior for w(·) can be written as

Es∗ ES Ey | S Eτ2|y Ew(s∗)|y,τ2,s∗ {w(s∗)− w0(s∗)}2 .(18)

Then, we have the following corollary when a prior distribution is assigned on τ2.

Corollary 3.4 If Assumptions A.1 – A.4 and A.5′ hold, then all the convergence
rates in the four cases of Theorem 3.2 still hold true for the Bayes L2-risk given
in (18).

4. EXPERIMENTS

4.1 Simulation setup

We compare DISK with popularly used existing appproaches based on the per-
formance in learning the process parameters, interpolating the unobserved spatial
surface, and predicting the response at new locations. This section presents two
simulation studies and one real data analysis. The first simulation (Simulation 1 )
generates the data from a spatial linear model, where the spatial process is simu-
lated from a GP with an exponential covariance function, leading to a fairly rough
(nowhere differentiable) spatial surface. Following Gramacy and Apley (2015), we
use an analytic function with local features to simulate the data in the second
simulation (Simulation 2 ). The number of locations in the two simulations is
moderately large with n = 10, 000. Our real data analysis is based on a large
data subset of sea surface temperature data with n = 1, 000, 000 locations. For
the two simulations and in the real data analysis, the response at (n+ l) locations
is modeled as

y(si) = β0 + x(si)β1 + w(si) + εi, εi ∼ N(0, τ2), si ∈ D ⊂ R2,(19)

for i = 1, . . . , n + l, where D is the spatial domain, y(si), x(si), w(si), and εi
are the response, covariate, spatial process, and idiosyncratic error values at the
location si, β0 is the intercept, β1 models the covariate effect, and l is the number
of new locations where surface interpolation and prediction are sought.

We present the performance of the three-step DISK framework with the mod-
ified predictive process (MPP) prior on w(·) in each subset using the algorithm
outlined in Section 3.3. We also present performance of a number of Bayesian
and non-Bayesian spatial models in the three simulations: (i) Integrated nested
Laplace approximation (INLA) using the INLA package in R (Illian et al., 2012);
(ii) LatticeKrig (Nychka et al., 2015) using the LatticeKrig package in R with
3 resolutions (Nychka et al., 2016); (iii) modified predictive process (MPP) using
the spBayes package in R with the full data; (iv) nearest neighbor Gaussian pro-
cess (NNGP) using the spNNGP package in R with the number of nearest neighbors
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m set to be 10, 20, and 30 (Datta et al., 2016); (v) locally approximated Gaus-
sian process (laGP) using the laGP package in R (Gramacy and Apley, 2015); (vi)
Vecchia’s approximation using the GPvecchia package in R with the number of
nearest neighbors m set to be 10, 20, and 30 (Katzfuss and Guinness, 2021b); (vii)
Fisher Scoring of Vecchia’s Approximation using the GpGp (Guinness, 2019).

In fitting (i), (ii), (iv), (v), (vi), (vii), we assume an exponential correlation in
the random field given by cov{w(s), w(s′)} = σ2e−φ‖ s− s′ ‖, s, s′ ∈ D. For DISK
with MPP and for (iii), the MPP prior on w(·) is fitted with rank r = 200, 400 in
Simulations 1, 2 and with r = 400, 600 in the real data analysis, where r knots
are selected randomly from D. For Bayesian model fitting, we apply a flat prior
on (β0, β1), a IG(2, 0.1) prior on τ2, an IG(2, 2) prior on σ2 and a uniform prior
on φ, where IG(a, b) is the Inverse-Gamma distribution with mean b/(a− 1) and
variance b/{(a− 1)2(a− 2)} for a > 2.

All methods produce results in Simulations 1 and 2, but all competing methods
except laGP fail due to numerical issues in the real data analysis. We use NNGP
and Vecchia’s approximations as the benchmarks for estimation of the spatial
surface and predictions at the new locations. While the GpGp and GPvecchia

packages are not designed for Bayesian inference, we have included them due to
their popularity for fitting the model in (19) using Vecchia-type approximation.
We emphasize that these non-distributed methods are not competitors of DISK.
Instead, they can be potentially embedded in the second step of the DISK frame-
work for improved performance because the DISK is not model specific. More
importantly, among methods (i)-(vii), MPP is not considered to be the state-
of-the-art, hence it would be instructive to investigate how competitive DISK
becomes when state-of-the-art non-distributed methods are used instead of MPP.

For all our simulations, DISK combines the subset marginal posteriors by aver-
aging their quantiles, as described in Section 3.3, and we set ξ = 10−4 in Equation
(10). We use Consensu Monte Carlo (CMC; Scott et al. (2016)), Double Parallel
Monte Carlo (DPMC; Xue and Liang (2019)), and Wasserstein Posterior (WASP;
Srivastava et al. (2015)) as representative competitors for model-free subset pos-
terior aggregation to highlight the advantages of DISK. Similar to DISK, these
three approaches also operate in three steps. In steps 1 and 2, the MPP-based
model in (5) is fitted on every subset for CMC, DPMC, and WASP. Third, the
draws of the parameter, spatial surface, and predictions from all the subsets are
combined. Identical priors, covariance functions, ranks, and knots are used for
the non-distributed process models and their distributed counterparts for a fair
comparison. DISK shows better or similar performance as its distributed com-
petitors in all simulations, so we have included these results in the supplementary
materials. While stage 3 of DISK combines subset posteriors of univariate param-
eters, DPMC and WASP aggregate subset posteriors of multivariate parameters;
therefore, similar performances of DISK, DPMC, and WASP in the supplemen-
tary materials shows that combining subset posteriors of univariate parameters
does not lead to any significant loss in inference or predictions.

Any distributed method has two important choices: (A) the value of k and
(B) the construction of subsets. Regarding (A), Theorem 3.2 provides an upper
bound for k as n → ∞, which cannot be used to choose k when n is finite;
therefore, we choose k in our experiments based on two broad guidelines: (a)
available computational resources and (b) the subset size is sufficient to draw
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reliable inference on the spatial surface with data subsets. To assess (b), we plot
the histograms or density estimates of subset posterior draws of representative
parameters and see if they are very far from each other. If so, this means that the
data subsets are not representative of the full data and the subset posteriors fail
to provide a noisy approximation of the full data posterior, resulting in inaccu-
racy of the DISK posterior. Empirically, we also propose computing the pairwise
Wasserstein or total variation distance between the subset posterior distributions
of representative parameters. If the average of these distances is much larger
than the average distance between the DISK and subset posterior distributions,
then the DISK pseudo posterior provides a poor approximation performance of
the full data posterior. Assuming that the fitted model can reasonably capture
variation of the data, these checks would imply that one has to fit DISK with
a smaller value of k. While both these strategies are heuristics, they provide a
broad guideline for choosing k.

Regarding (B), we present performance of the distributed approaches when
data subsets are constructed (a) under a random partitioning scheme and (b) un-
der a grid partitioning scheme. Random partitioning scheme randomly partitions
the data into subsets. In contrast, grid partitioning scheme partitions the domain
into a number of sub-domains and creates each subset with representative sam-
ples from each sub-domain. All tables in the main article and in supplementary
material show results from both partitioning schemes.

All experiments are run on an Oracle Grid Engine cluster with 2.6GHz 16 core
compute nodes. The non-distributed methods (INLA, LatticeKrig, MPP, NNGP,
laGP, GPvecchia, and GpGp) and the distributed methods (DISK, DPMC, MK,
and WASP) are allotted memory resources of 64GB and 16GB, respectively. Every
MCMC sampling algorithm runs for 10,000 iterations, out of which the first 5,000
MCMC samples are discarded as burn-in MCMC samples and the rest of the chain
is thinned by collecting every fifth MCMC sample. Convergence of the chains
to their stationary distributions is confirmed using trace plots. We also refer
to Section 5 of the supplementary material that presents comparison between
effective sample size of model parameters averaged over all subsets to the effective
sample size of model parameters from the full data posterior in simulations. All
the interpolated spatial surfaces are obtained using the MBA package in R.

We compare the quality of prediction and estimation of spatial surface at
predictive locations S∗ = {s∗1, . . . , s∗l }. If w(s∗i′) and y(s∗i′) are the value of the
spatial surface and response at s∗i′ ∈ S

∗, then the estimation and prediction
errors are defined as

Est Err2 =
1

l

l∑
i′=1

{ŵ(s∗i′)− w(s∗i′)}2, Pred Err2 =
1

l

l∑
i′=1

{ŷ(s∗i′)− y(s∗i′)}2,(20)

where ŵ(s∗i′) and ŷ(s∗i′) denote the point estimates of w(s∗i′) and y(s∗i′) obtained
using any distributed or non-distributed methods. For sampling-based methods,
we set ŵ(s∗i′) and ŷ(s∗i′) to be the medians of posterior MCMC samples for w(s∗i′)
and y(s∗i′), respectively, for i′ = 1, . . . , l. We also estimate the point-wise 95%
credible or confidence intervals (CIs) of w(s∗i′) and predictive intervals (PIs) of
y(s∗i′) for every si′ ∈ S∗ and compare the CI and PI coverages and lengths for
every method. Finally, we compare the performance of all the methods for param-
eter estimation using the posterior medians or point estimates and the 95% CIs.
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Posterior medians are reported instead of posterior means as point estimators
since they are easily estimated for the DISK posterior following equation (10).

4.2 Simulation 1: Spatial Linear Model Based On GP

Table 1
The errors in estimating the parameters β = (β0, β1), σ2, φ, τ2 in Simulation 1. The parameter
estimates for the Bayesian methods β̂ = (β̂0, β̂1), σ̂2, φ̂, τ̂2 are defined as the posterior medians

of their respective MCMC samples and their true values are β0 = (1, 2), σ2
0 = 1, φ0 = 4 and

τ20 = 0.1. The entries in the table are averaged across 10 simulation replications.

‖β̂ − β0 ‖ |σ̂2 − σ2
0 | |φ̂− φ0| |τ̂2 − τ20 |

INLA 0.21 - - -
LaGP 0.08 - - -

NNGP (m = 10) 0.11 0.07 0.37 0.00
NNGP (m = 20) 0.12 0.09 0.51 0.00
NNGP (m = 30) 0.11 0.11 0.58 0.00

LatticeKrig 0.11 0.09 1.59 0.06
GpGp 0.08 0.11 0.64 0.01

Vecchia (m = 10) 0.10 0.11 0.51 0.01
Vecchia (m = 20) 0.10 0.10 0.55 0.01
Vecchia (m = 30) 0.10 0.38 1.13 0.01

MPP (r = 200) 0.35 0.23 1.98 0.17
MPP (r = 400) 0.19 0.09 1.88 0.07

Random Partitioning
DISK (r = 200, k = 10) 0.09 0.11 0.64 0.01
DISK (r = 400, k = 10) 0.09 0.11 0.64 0.01
DISK (r = 200, k = 20) 0.10 0.12 0.66 0.02
DISK (r = 400, k = 20) 0.10 0.12 0.66 0.02

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.09 0.12 0.62 0.01
DISK (r = 400, k = 10) 0.09 0.12 0.62 0.01
DISK (r = 200, k = 20) 0.10 0.12 0.63 0.01
DISK (r = 400, k = 20) 0.10 0.12 0.64 0.01

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Nearest Neighbor GP
Truth
NNGP (m = 10)
NNGP (m = 20)
NNGP (m = 30)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Low−Rank GP
Truth
MPP (r = 200)
MPP (r = 400)
DISK (r = 200, k = 10)
DISK (r = 400, k = 10)
DISK (r = 200, k = 20)
DISK (r = 400, k = 20)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Vecchia−Type GP
Truth
GpGp
GPvecchia (m = 10)
GPvecchia (m = 20)
GPvecchia (m = 30)

Fig 1: Estimated covariance function using three types of GP priors on the spatial
surface. The true covariance function is cov{w(si), w(sj)} = exp(−4‖ si− sj ‖2).

Our first simulation generates data using the spatial linear model in (19).
We set D = [−2, 2] × [−2, 2] ⊂ R2, n = 10, 000, l = 500 and uniformly draw
(n + l) spatial locations si = (si1, si2) in D (i = 1, . . . , n + l). The spatial
surface w(·) at the (n + l) locations, {w(s1), . . . , w(sn+l)}, is simulated from
GP(0,σ2 exp{−φ‖ s− s′ ‖)}, where s, s′ ∈ D, φ = 4, and σ2 = 1. The covari-
ance function ensures the generated spatial surface is continuous everywhere but
differentiable nowhere, which is a more familiar simulation scenario in the spa-
tial context. Setting β0 = 1, β1 = 2, and τ2 = 0.1, we simulate the responses
at (n+ l) locations using (19). The three-step DISK framework is applied using
the low-rank MPP priors with k = 10 and k = 20. The average subset sizes for
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Table 2
The estimates of parameters β = (β0, β1), σ2, φ, τ2 and their 95% marginal credible intervals

(CIs) in Simulation 1. The parameter estimates for the Bayesian methods β̂ = (β̂0, β̂1), σ̂2, φ̂,
τ̂2 are defined as the posterior medians of their respective MCMC samples. The parameter

estimates and upper and lower quantiles of 95% CIs are averaged over 10 simulation
replications; ‘-’ indicates that the uncertainty estimates are not provided by the software or the

competitor.

β0 β1 σ2 φ τ2

Truth 1.00 2.00 1.00 4.00 0.10
Parameter Estimates

INLA 1.00 2.00 - - -
laGP 1.01 2.00 - - -

NNGP (m = 10) 1.02 2.00 0.99 4.00 0.10
NNGP (m = 20) 0.98 2.00 0.94 4.30 0.10
NNGP (m = 30) 0.99 2.00 0.94 4.34 0.10

LatticeKrig 1.01 2.00 0.93 2.42 0.16
GpGp 0.99 2.00 0.92 4.43 0.11

Vecchia (m = 10) 0.99 2.00 0.94 3.93 0.09
Vecchia (m = 20) 0.99 2.00 0.95 3.93 0.09
Vecchia (m = 30) 1.00 2.00 1.10 3.68 0.09

MPP (r = 200) 1.26 2.00 0.77 2.02 0.27
MPP (r = 400) 1.08 2.00 0.99 2.14 0.17

DISK (r = 200, k = 10) 1.00 2.00 0.92 4.35 0.11
DISK (r = 400, k = 10) 1.00 2.00 0.92 4.35 0.11
DISK (r = 200, k = 20) 1.00 2.00 0.91 4.38 0.11
DISK (r = 400, k = 20) 1.00 2.00 0.91 4.38 0.11

95% Credible Intervals
INLA (0.26, 1.73) (1.98, 2.02) - - -
laGP (0.99, 1.03) (1.98, 2.02) - - -

NNGP (m = 10) (0.87, 1.15) (1.99, 2.01) (0.86, 1.24) (3.15, 4.70) (0.09, 0.11)
NNGP (m = 20) (0.85, 1.13) (1.99, 2.01) (0.82, 1.14) (3.46, 4.95) (0.09, 0.11)
NNGP (m = 30) (0.86, 1.12) (1.99, 2.01) (0.81, 1.11) (3.62, 5.03) (0.09, 0.11)

LatticeKrig - - - - -
GpGp (0.75, 1.23) (1.99, 2.01) - - -

Vecchia (m = 10) - - - - -
Vecchia (m = 20) - - - - -
Vecchia (m = 30) - - - - -

MPP (r = 200) (1.06, 1.26) (1.98, 2.00) (0.70, 0.85) (2.01, 2.07) (0.24, 0.30)
MPP (r = 400) (0.76, 1.08) (1.99, 2.00) (0.91, 1.08) (2.07, 2.26) (0.15, 0.19)

DISK (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.69) (0.09, 0.12)
DISK (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.69) (0.09, 0.12)
DISK (r = 200, k = 20) (0.94, 1.06) (1.98, 2.01) (0.86, 0.96) (4.07, 4.67) (0.09, 0.13)
DISK (r = 400, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.07, 4.68) (0.09, 0.13)

k = 10 and k = 20 are 1000 and 500, respectively. We replicate this simulation
ten times.

DISK with MPP prior, NNGP, and GPvecchia have similar performance in
parameter estimation (Tables 1 and 2). The parameter estimates obtained using
DISK are very close to their true values and the estimation errors are very similar
to those of NNGP and non-Bayesian methods based on the Vecchia approxima-
tion, including GpGp and GPvecchia. The 95% credible intervals of β0, β1, τ

2 in
DISK cover the true values and their lower and upper quantiles are very sim-
ilar to those of NNGP. DISK underestimates σ2 and overestimates φ slightly.
Both results are the impacts of parent MPP prior, which also shows less accurate
estimation of the posterior distribution of σ2 and φ for the two choices of the
number of knots r. More importantly, the impacts the choice of r on parameter
estimation are less severe in DISK compared to that in its parent MPP prior.
The CIs are not available from GPvecchia, LatticeKrig and laGP, so that the
cells corresponding these methods are kept blank in Table 2.



24 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

Table 3
Inference on the values of spatial surface and response at the locations in S∗ in Simulation 1.
The estimation and prediction errors are defined in (20) and coverage and credible intervals
are calculated pointwise for the locations in S∗. The entries in the table are averaged over 10
simulation replications; ‘-’ indicates that the estimates are not provided by the software or the

competitor.

Est Err Pred Err 95% CI Coverage 95% CI Length
GP Y GP Y GP Y

INLA - 0.90 - 0.80 - 0.17
laGP 0.20 0.28 0.98 0.95 2.06 1.04

NNGP (m = 10) 0.38 0.47 0.93 0.95 1.39 1.84
NNGP (m = 20) 0.38 0.47 0.93 0.95 1.38 1.81
NNGP (m = 30) 0.38 0.47 0.92 0.95 1.37 1.82

LatticeKrig 0.38 0.47 - 0.73 - 1.08
GpGp - 0.47 - - - -

Vecchia (m = 10) - 0.47 - 0.87 - 1.43
Vecchia (m = 20) - 0.47 - 0.86 - 1.41
Vecchia (m = 30) - 0.47 - 0.86 - 1.41

MPP (r = 200) 0.73 0.59 0.93 0.95 3.05 3.02
MPP (r = 400) 0.43 0.47 0.96 0.95 2.76 2.67

Random Partitioning
DISK (r = 200, k = 10) 0.55 0.64 0.97 0.97 3.20 3.45
DISK (r = 400, k = 10) 0.42 0.51 0.97 0.97 2.88 3.15
DISK (r = 200, k = 20) 0.58 0.67 0.97 0.97 3.25 3.51
DISK (r = 400, k = 20) 0.46 0.55 0.97 0.97 2.98 3.25

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.75 0.80 0.97 0.97 3.45 3.45
DISK (r = 400, k = 10) 0.65 0.72 0.97 0.97 3.15 3.15
DISK (r = 200, k = 20) 0.76 0.82 0.97 0.97 3.51 3.51
DISK (r = 400, k = 20) 0.68 0.74 0.97 0.97 3.26 3.26

Despite the discrepancy in parameter estimates, the correlation function esti-
mates obtained using the DISK posterior are very close to those obtained using
NNGP and GPvecchia (Figure 1). Similar to the observations of Sang and Huang
(2012), there is considerable discrepancy between the estimated and true corre-
lation functions when the MPP prior is used. On the other hand, for the same
choices of r as its parent MPP prior, DISK’s estimate of the correlation function
is much closer to the truth and is insensitive to the choice of k = 10, 20. DISK
estimates are similar to those obtained using methods based on the Vecchia-
type approximation, except when the number of nearest neighbor is 30 and the
GPvecchia-based estimate of the correlation function has a significant positive
bias.

The predictive performance of DISK is very similar to that of NNGP, but
differences exist in inference on the spatial surface (Table 3). NNGP, MPP, and
DISK have at least nominal predictive coverage, but the PIs of NNGP have
smaller lengths for every choice of nearest neighbor. The PI coverage values and
lengths of MPP and DISK are similar and stable for the different choices of r and
k. On the contrary, PIs in GPvecchia have the smallest length and their coverage
values are smaller than the nominal value for all the three choices of nearest
neighbor. Focusing on spatial surface interpolation, the estimation error of DISK
is smaller than that of MPP for both choices of r when k = 10 and is slightly
larger when k = 20 and r = 400. Similarly, MPP’s coverage of the spatial surface
is smaller than the nominal value when r = 200, but DISK shows better coverage
than its parent MPP prior for both choices of k. Consequently, the lengths of
DISK’s credible intervals are slightly larger than those obtained using its parent
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MPP prior. The estimation errors and lengths of credible intervals of NNGP are
smaller than that of DISK, but its coverage of the spatial surface is smaller than
the nominal values for all the three choices of nearest neighbors. On the other
hand, the spatial surface coverage of DISK CIs are greater than the nominal value
for all choices of r and k.

In summary, the DISK is competitive with NNGP and GPvecchhia in inference
on the spatial surface and predictions, respectively. laGP is the only competing
method that yields comprehensively better inferential and predictive performance
DISK, but it is not designed to provide estimates for the σ2, φ, and τ2. LatticeKrig
has a very similar point estimation, but inferor uncertainty quantification com-
pared to GpGp and GPvecchia. INLA underperforms in surface interpolation
and prediction. Our supplementary material shows that DISK offers superior or
competitive performance over its distributed competitors and that stochastic ap-
proximation does not impact the mixing of the Markov chains on the subsets.
One of the main conclusions of our numerical results is that DISK performs sig-
nificantly better than its parent MPP prior for all the choices of k and smaller
values of r. When r increases for a fixed n, the performance gap between DISK
and its parent MPP narrows. The model free nature of the DISK also allows us
to fit a nearest neighbor approach, including NNGP, on each subset to improve
inference and expedite computations by multiple folds. Finally, the results show
that a more sophisticated grid partitioning scheme does not lead to any better pa-
rameteric and predictive inference than the simpler random partitioning scheme.
We conclude that DISK is a promising alternative for scalable Bayesian inference
on the spatial surface and more generally in spatial linear models.

4.3 Simulation 2: Spatial Linear Model Based On Analytic Spatial Surface

Table 4
The errors in estimating the parameters β, τ2 in Simulation 2. The parameter estimates for the

Bayesian methods β̂, τ̂2 are defined as the posterior medians of their respective MCMC
samples and β0 = 1 and τ20 = 0.01. The entries in the table are averaged across 10 simulation

replications.

‖β̂ − β0‖ |τ̂2 − τ20 |
INLA 0.18 -
LaGP - -

NNGP (m = 10) 0.84 0.03
NNGP (m = 20) 0.84 0.03
NNGP (m = 30) 0.84 0.03

LatticeKrig - 0.01
GpGp 0.31 0.39

Vecchia (m = 10) 0.85 0.01
Vecchia (m = 20) 0.85 0.01
Vecchia (m = 30) 0.85 0.01

MPP (r = 200) 0.75 0.05
MPP (r = 400) 0.48 0.04

Random Partitioning
DISK (r = 200, k = 10) 0.18 0.04
DISK (r = 400, k = 10) 0.13 0.04
DISK (r = 200, k = 20) 0.18 0.04
DISK (r = 400, k = 20) 0.13 0.04

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.03 0.09
DISK (r = 400, k = 10) 0.03 0.09
DISK (r = 200, k = 20) 0.02 0.09
DISK (r = 400, k = 20) 0.02 0.09
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Table 5
The estimates of parameters β, σ2, φ, τ2 and their 95% marginal credible intervals (CIs) in

Simulation 2. The parameter estimates for the Bayesian methods β̂, σ̂2, φ̂, τ̂2 are defined as
the posterior medians of their respective MCMC samples. The parameter estimates and upper
and lower quantiles of 95% CIs are averaged over 10 simulation replications; ‘-’ indicates that

the uncertainty estimates are not provided by the software or the competitor.

β σ2 φ τ2

Truth 1.00 - - 0.01
Parameter Estimates

INLA 0.82 - - -
laGP - - - -

NNGP (m = 10) 0.2897 0.1933 0.1075 0.0091
NNGP (m = 20) 0.3002 0.1660 0.1059 0.0092
NNGP (m = 30) 0.2892 0.1557 0.1058 0.0093

LatticeKrig - - 0.0842 0.0099
GpGp 1.0346 0.0669 0.2643 0.1620

Vecchia (m = 10) 0.2792 0.4063 0.7796 0.0099
Vecchia (m = 20) 0.2792 0.2904 0.9479 0.0099
Vecchia (m = 30) 0.2792 0.2746 0.9587 0.0099

MPP (r = 200) 1.5634 0.1535 0.1185 0.0077
MPP (r = 400) 1.2333 0.1586 0.1200 0.0080

DISK (r = 200, k = 10) 1.0322 0.2133 0.1196 0.0087
DISK (r = 400, k = 10) 0.9830 0.2185 0.1402 0.0082
DISK (r = 200, k = 20) 1.0328 0.2133 0.1194 0.0087
DISK (r = 400, k = 20) 0.9822 0.2185 0.1402 0.0082

95% Credible Intervals
INLA (0.53, 1.21) - - -
laGP - - - -

NNGP (m = 10) (0.2678, 0.3143) (0.1568, 0.2223) (0.1010, 0.1339) (0.0088, 0.0094)
NNGP (m = 20) (0.2801, 0.3226) (0.1361, 0.1906) (0.1009, 0.1279) (0.0089, 0.0095)
NNGP (m = 30) (0.2660, 0.3103) (0.1293, 0.1794) (0.1009, 0.1284) (0.0090, 0.0095)

LatticeKrig - - - -
GpGp (0.7090, 1.3601) - - -

Vecchia (m = 10) - - - -
Vecchia (m = 20) - - - -
Vecchia (m = 30) - - - -

MPP (r = 200) (0.9931, 2.1464) (0.1307, 0.1760) (0.1104, 0.1327) (0.0073, 0.0081)
MPP (r = 400) (0.6130, 1.8412) (0.1269, 0.1876) (0.1096, 0.1480) (0.0076, 0.0084)

DISK (r = 200, k = 10) (0.7961, 1.2722) (0.1783, 0.2418) (0.1088, 0.1439) (0.0084, 0.0091)
DISK (r = 400, k = 10) (0.8180, 1.1582) (0.1743, 0.2589) (0.1192, 0.1773) (0.0079, 0.0086)
DISK (r = 200, k = 20) (0.7987, 1.2719) (0.1781, 0.2417) (0.1087, 0.1434) (0.0084, 0.0091)
DISK (r = 400, k = 20) (0.8172, 1.1568) (0.1721, 0.2588) (0.1190, 0.1806) (0.0079, 0.0086)

Our second simulation generates data by setting w(·) in (19) to be an analytic
function. For any s ∈ [−2, 2], define the function f0(s) = e−(s−1)2 + e−0.8(s+1)2 −
0.05 sin{8(s + 0.1)} and set w(si) = −f0(si1)f0(si2). Although the function w(·)
simulated in this way is theoretically infinitely smooth, the response surface sim-
ulated from (19) exhibits complex local behavior, which is challenging to capture
using spatial process-based models as we demonstrate later. We set β0 = 1,
β1 = 0, and τ2 = 0.01, use the same values of the spatial domain, k, and r as
used in the previous simulation, and replicate this simulation 10 times.

The parameter estimation results in this simulation are similar to those in
Simulation 1 with one important exception in inference on β0 (Tables 4 and 5). All
the methods except GpGp show excellent performance in estimating τ2; however,
NNGP, GPvecchia, and MPP prior estimate β0 with a significant bias. DISK’s
95% credible intervals of β0 have better coverage properties than those of NNGP.
Unlike our observation in the previous section, all the methods underestimate τ2

slightly, and the 95% credible intervals of NNGP, MPP prior, and DISK fail to
cover the true value. Similar to the previous simulation results, DISK results are
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Table 6
Inference on the values of spatial surface and response at the locations in S∗ in Simulation 2.
The estimation and prediction errors are defined in (20) and coverage and credible intervals
are calculated pointwise for the locations in S∗. The entries in the table are averaged over 10
simulation replications; ‘-’ indicates that the estimates are not provided by the software or the

competitor.

Est Err Pred Err 95% CI Coverage 95% CI Length
GP Y GP Y GP Y

INLA - 0.1552 - 0.0755 - 0.0268
laGP 0.0004 0.0103 1.0000 0.9456 0.3890 0.3902

NNGP (m = 10) 0.5058 0.0104 0.0000 0.9439 0.1496 0.3949
NNGP (m = 20) 0.4908 0.0103 0.0000 0.9456 0.1392 0.3938
NNGP (m = 30) 0.5103 0.0103 0.0000 0.9479 0.1388 0.3969

LatticeKrig 0.0002 0.0101 0.9867 0.9463 - 0.3901
GpGp - 0.0103 - - - -

Vecchia (m = 10) - 0.0106 - 0.3559 - 0.0951
Vecchia (m = 20) - 0.0103 - 0.2815 - 0.0728
Vecchia (m = 30) - 0.0102 - 0.2612 - 0.0674

MPP (r = 200) 0.3732 0.0105 0.0000 0.9498 0.4061 0.4061
MPP (r = 400) 0.0623 0.0102 0.2946 0.9477 0.3976 0.3976

Random Partitioning
DISK (r = 200, k = 10) 0.0017 0.1035 1.0000 0.9696 0.5388 0.4449
DISK (r = 400, k = 10) 0.0009 0.1026 1.0000 0.9724 0.4477 0.4578
DISK (r = 200, k = 20) 0.0015 0.1041 1.0000 0.9646 0.5211 0.4248
DISK (r = 400, k = 20) 0.0007 0.1031 1.0000 0.9672 0.4253 0.4359

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.0394 0.1036 1.0000 0.9660 0.4452 0.4452
DISK (r = 400, k = 10) 0.0368 0.1028 1.0000 0.9594 0.4249 0.4249
DISK (r = 200, k = 20) 0.0304 0.1040 1.0000 0.9700 0.4590 0.4590
DISK (r = 400, k = 20) 0.0268 0.1030 1.0000 0.9642 0.4371 0.4371

insensitive to the choice of k and perform better than its parent MPP prior for
both choices of r.

The predictive and inferential performance of DISK in this simulation are also
very similar to those in Simulation 1. The prediction error, PI coverage, and PI
length of all the methods except GPvecchia are fairly similar and are close to
the nominal value. The PI length of GPvecchia is the smallest, but its coverage
values are critically low for all choices of nearest neighbor; that is, GPvecchia
has a relatively inferior performance for estimating spatial surfaces that are not
simulated from a GP. Unlike our previous simulation, DISK outperforms both
MPP and NNGP priors in inference on the spatial surface (Table 6). The PI
coverage values of DISK are a little higher than those of NNGP and MPP priors
while the PI lengths of DISK are very close to those of MPP and NNGP priors.
A noticeable feature of our comparison is that DISK improves the performance of
its parent MPP prior when r = 200. In this case, the CI coverage values of DISK
for both choices of k are greater the nominal value, whereas the parent MPP
prior has fails to cover the spatial surface. Intuitively, for most competitors in
this simulation the estimation of fixed and random effects are mixed up, whereas
the overall mean effect is estimated correctly by all competitors.

In summary, the DISK performs better than NNGP and GPvecchhia in infer-
ence on the spatial surface and predictions, respectively, in Simulation 2. Similar
to Simulation 1, INLA still underperforms in surface interpolation and prediction,
and laGP maintains its superior predictive and inferential performance, especially
because it is tuned for inference in such analytic surfaces with many local features
(Gramacy and Apley, 2015). Unlike in Simulation 1, LatticeKrig also offers ex-
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cellent performance. We still observe that DISK is able to improve the predictive
and inferential performance of its parent MPP prior for both choices of r and
is insensitive to the choice of k. Furthermore, Simulation 2 also reinforces our
finding from Simulation 1 that the grid based partitioning does not improve in-
ference over the simple random partitioning of the data. We conclude that DISK
is a promising tool for prediction and inferential even when the spatial surface is
not simulated from a GP.

4.4 Real data analysis: Sea Surface Temperature data

A description of the evolution and dynamics of the SST is a key component
of the study of the earth’s climate. SST data (in centigrade) from ocean sam-
ples have been collected by voluntary observing ships, buoys, and military and
scientific cruises for decades. During the last 20 years or so, the SST database
has been complemented by regular streams of remotely sensed observations from
satellite orbiting the earth. A careful quantification of variability of SST data is
important for climatological research, which includes determining the formation
of sea breezes and sea fog and calibrating measurements from weather satellites
(Di Lorenzo et al., 2008). A number of articles have appeared to address this
issue in recent years; see Berliner et al. (2000), Lemos and Sansó (2009), Wikle
and Holan (2011).

We consider the problem of capturing the spatial trend and characterizing the
uncertainties in the SST in the west coast of mainland U.S.A., Canada, and Alaska
between 40◦–65◦ north latitudes and 100◦–180◦ west longitudes. The data is ob-
tained from NODC World Ocean Database (https://www.nodc.noaa.gov/OC5/
WOD/pr_wod.html) and the entire data corresponds to sea surface temperature
measured by remote sensing satellites on 16th August 2016. All data locations
are distinct and there is no time replicate; therefore, we we can practically ignore
the temporal variation of sea surface temperature for our analysis. After screen-
ing the data for quality control, we choose a random subset of about 1, 000, 800
spatial observations over the selected domain. From the selected observations, we
randomly select 106 observations as training data and the remaining observations
are used to compare the performance of DISK and its competitors. We replicate
this setup ten times. The selected domain is large enough to allow considerable
spatial variation in SST from north to south and provides an important first step
in extending these models for analyzing global-scale SST database.

The SST data in the selected domain shows a clear decreasing trend in SST
with increasing latitude (Figure 2). Based on this observation, we add latitude as
a linear predictor in the univariate spatial regression model (19) to explain the
long-range directional variability in the SST. To fit DISK, we set k = 300, which
results in subsets of approximately 3300 locations. Since each subset has larger
sample size than the simulation studies, we iincrease the number of knots in each
subset for model fitting and use MPP priors with 400 and 600 knots, respectively,
in each subset. All the non-distributed DISK competitors except laGP fail to
produce results due to numerical issues. Specifically, GPvecchia and GpGp fail
after 8 and 21 iterations with an error in vecchia Linv function, INLA fails with
an error in GMRFLib factorise sparse matrix TAUCS function, spNNGP fails
an error in the dpotrf function, and MPP fails from memory bottlenecks. Due
to the lack of ground truth for estimating w(s∗), we compare the DISK and laGP

https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html
https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html
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in terms of their inference on ΩΩΩ and prediction of y(s∗) for s∗ ∈ S∗ in terms of
MSPE and the length and coverage of 95% posterior PIs.

DISK provides inference on the covariance function, including credible inter-
vals for σ2, φ, and τ2, which are unavailable in laGP. The 50%, 2.5%, and 97.5%
quantiles of the posterior distributions for ΩΩΩ, w(s∗) and y(s∗) for every s∗ ∈ S∗
are used for estimation and uncertainty quantification. We observe significantly
higher estimation of spatial variability than non-spatial variability from DISK
indicating local spatial variation in SST. Importantly, the point estimate of β1

is negative and its 95% CI does not include zero, which confirms that SST de-
creases as latitude increases. For every s∗ ∈ S∗, laGP’s and DISK’s estimates
of w(s∗) and y(s∗) agree closely (Figures 2 and 3 and Table 7). The pointwise
predictive coverages of laGP and DISK match their nominal levels; however, the
95% posterior PIs of DISK are wider than those of laGP because DISK accounts
for uncertainty due to the error term and unknown parameters (Figure 2 and
Table 7). As a whole, SST data analysis reinforces our findings on DISK as a
computationally efficient, flexible, and fully Bayesian inferential tool.

Table 7
Parametric inference and prediction in SST data. DISK uses MPP-based modeling with

r = 400, 600 on k = 300 subsets. For parametric inference posterior medians are provided along
with The 95% credible intervals (CIs) in the parentheses, where available. Similarly mean

squared prediction errors (MSPEs) along with length and coverage of 95% predictive intervals
(PIs) are presented, where available. The upper and lower quantiles of 95% CIs and PIs are

averaged over 10 simulation replications; ‘-’ indicates that the parameter estimate or prediction
is not provided by the software or the competitor

β0 β1 σ2 φ τ2

Parameter Estimate
laGP 32.98 -0.37 - - -
DISK 32.33 -0.32 11.82 0.04 0.18

(r = 400, k = 300)
DISK 32.33 -0.32 11.85 0.04 0.18

(r = 600, k = 300)
95% Credible Interval

laGP - - - - -
DISK (31.72, 32.93) (-0.33, -0.31) (11.24, 12.43) (0.0373, 0.0412) (0.18, 0.19)

(r = 400, k = 300)
DISK (31.72, 32.93) (-0.33, -0.31) (11.25, 12.45) (0.0372, 0.0413) (0.18, 0.19)

(r = 600, k = 300)
Predictions

MSPE 95% PI 95% PI
Coverage Length

laGP 0.24 0.95 1.35
DISK 0.43 0.95 2.65

(r = 400, k = 300)
DISK 0.36 0.95 2.34

(r = 600, k = 300)

5. DISCUSSION

This article presents a novel distributed Bayesian approach for kriging with
massive data using the divide-and-conquer technique. We provide explicit upper
bound on the number of subsets k depending on the analytic properties of the
spatial surface, so that the Bayes L2-risk of the DISK posterior is nearly minimax
optimal. We have confirmed this empirically via simulated and real data analyses,
where DISK compares well with state-of-the-art methods. Additional empirical
and theoretical results in the supplementary material shed light on the posterior
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Fig 2: Predication of sea surface temperatures at the locations in S∗. Negative
longitude means degree west from Greenwich. DISK uses MPP-based modeling
with r = 400, 600 on k = 300 subsets and laGP uses the ‘nn’ method. The 2.5%,
50%, and 97.5% quantile surfaces, respectively, represent pointwise quantiles of
the posterior distribution for y(s∗) for every s∗ ∈ S∗.

convergence rate of the DISK posterior and its empirical performance relative to
its distributed competitors.

The simplicity and generality of the DISK framework enable scaling of any
spatial model. For example, recent applications have confirmed that the NNGP
prior requires modifications if scalability is desired for even a few millions of loca-
tions (Finley et al., 2019b). In future, we aim to scale ordinary NNGP and other
multiscale approaches to tens of millions of locations with the DISK framework.
Another important future work is to extend the DISK framework for scalable
modeling of multiple correlated outcomes observed over massive number of loca-
tions.

This article focuses on developing the DISK framework for spatial modeling
due to the motivating applications from massive geostatistical data. The DISK
framework, however, is applicable to any mixed effects model where the random
effects are assigned a GP prior, which includes Bayesian nonparametric regression
using GP prior. We plan to explore more general applications in the future with
high dimensional covariates.
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Fig 3: Interpolated spatial surface w at the locations in S∗. Negative longitude
means degree west from Greenwich. DISK uses MPP-based modeling with r =
400, 600 on k = 300 subsets and laGP uses the ‘nn’ method. The 2.5%, 50%,
and 97.5% quantile surfaces, respectively, represent pointwise quantiles of the
posterior distribution for w(s∗) for every s∗ ∈ S∗.
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