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Atmospheric rivers (ARs) are elongated regions of water vapor in the at-
mosphere that play a key role in global water cycles, particularly in western
US precipitation. The primary component of many AR detection schemes is
the thresholding of the integrated water vapor transport (IVT) magnitude at
a single quantile over time. Utilizing a recently developed family of para-
metric distributions for quantile regression, this paper develops a flexible dy-
namic quantile linear model (exDQLM) which enables versatile, structured,
and informative estimation of the IVT quantile threshold. A simulation study
illustrates our exDQLM to be more robust than the standard Bayesian para-
metric quantile regression approach for non-standard distributions, perform-
ing better in both quantile estimation and predictive accuracy. In addition to
a Markov chain Monte Carlo (MCMC) algorithm, we develop an efficient
importance sampling variational Bayes (ISVB) algorithm for fast approxi-
mate Bayesian inference which is found to produce comparable results to the
MCMC in a fraction of the computation time. Further, we develop a transfer
function extension to our exDQLM as a method for quantifying non-linear re-
lationships between a quantile of a climatological response and an input. The
utility of our transfer function exDQLM is demonstrated in capturing both
the immediate and lagged effects of El Niño Southern Oscillation Longitude
Index on the estimation of the 0.85 quantile IVT.

1. Introduction. Motivated by the need to describe and quantify atmospheric rivers
(ARs) in global climate and weather models, several techniques have been developed with
the objective of detecting ARs (Rutz, Steenburgh and Ralph, 2014; Backes et al., 2015). To
this end, an effective approach is to focus on the Integrated water vapor transport (IVT), a
vector representing the total amount of water vapor being transported in an atmospheric col-
umn. This is increasingly used in the study of ARs because of its direct relationship with
orographically induced precipitation (Neiman et al., 2009). One study in particular by Guan
and Waliser (2015) presents a method for detection of ARs based on characteristics of the
IVT magnitude. A key component of this and many other AR detection schemes is the thresh-
olding of IVT magnitude at a specified quantile, specifically the 0.85 quantile in Guan and
Waliser (2015). A sensitivity study found their AR detection scheme to be sensitive to the IVT
threshold, thus accurate estimation of IVT quantile is crucial. However, the current approach
for calculating the 0.85 quantile is unstructured, invariant from year to year, and incapable of
including relevant climatological information. Motivated by the problem of modeling time-
varying IVT thresholds in a way that provides richer quantitative information, we consider a
class of models to describe the dynamics of a specific quantile of a time series. This prompts
us to present several methodological and computational contributions for dynamic quantile
modeling, and, more generally, non-Gaussian time-varying models.

Keywords and phrases: Dynamic quantile regression, asymmetric Laplace, variational Bayes, atmospheric
river.
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The first contribution of this paper is a novel model referred to as the extended dynamic
quantile linear model (exDQLM). Our exDQLM utilizes a recently developed family of para-
metric error distributions for quantile regression, the extended asymmetric Laplace distribu-
tion (exAL; Yan and Kottas, 2017). In the Bayesian setting, parametric quantile regression
models are almost exclusively based on the asymmetric Laplace (AL) distribution, a special
case of the exAL. However the AL is known to have several drawbacks, which we discuss in
detail in Section 2.1. For example, the skewness of the distribution as well as the location of
the mode are fully dictated by the choice of the fixed quantile. More flexible error distribu-
tions for a single quantile have been considered extensively in the Bayesian non-parametric
literature. The median regression case has been considered in the semi-parametric setting by
Walker and Mallick (1999), Kottas and Gelfand (2001) and Hanson and Johnson (2002), with
general quantile regression seen in Kottas and Krnjajić (2009) and Reich, Bondell and Wang
(2009). Fully non-parametric nonlinear modeling of quantile regression functions is seen in
Taddy and Kottas (2010) and Kottas and Krnjajić (2009), with simultaneous analysis of dif-
ferent quantiles seen in Reich and Smith (2013) and Tokdar et al. (2012). The literature on
parametric approaches that lead to flexible quantile regression models is much less extensive.
Wichitaksorn, Choy and Gerlach (2014) presents a new class of skew distributions with the
AL as a special case, however the skewness remains fully determined by the fixed quantile.
Zhu and Zinde-Walsh (2009) and Zhu and Galbraith (2011) present a four parameter family
of asymmetric exponential power distributions for a fixed quantile, however, the mode of the
distribution remains fixed at the quantile of interest. The exAL presented in Yan and Kottas
(2017) overcomes these shortcomings in the current parametric methods. A detailed discus-
sion of the properties of the exAL can be found Section 2.1. Our methods generalize the
utility of the exAL to the time series setting and allow for time-varying quantile inference.

The second contribution of this paper is our importance sampling variational Bayes (ISVB)
algorithm for fast, flexible inference of a time-varying quantile. Current methods for quan-
tile regression with time-evolving parameters in both the parametric and semi-parametric
approaches are almost exclusively based on the AL likelihood and check loss function, re-
spectively (Gonçalves, Migon and Bastos, 2017; Bernardi et al., 2016; Paraschiv, Bunn and
Westgaard, 2016; Koenker and Xiao, 2006). Nonparametric approaches are even more lim-
ited in the time series setting as defining likelihood functions for quantile-function-valued
data is a non-trivial task (Chen et al., 2017). Further, a majority of these approaches, both
parametric and non-parametric, are computationally expensive. This has prompted the devel-
opment of efficient estimation algorithms. Although these alternative algorithms are faster
computationally, many compromise the true underlying estimation problem in their original
models. Our ISVB algorithm relieves the computational burden while preserving the under-
lying model structure, thus not compromising the interpretability of the resulting estimated
quantile.

The final contribution of this paper is the development of a transfer function exDQLM as a
method for quantifying associations that account for the cumulative effect of a time-varying
input on a quantile of a response variable, e.g., a given climatological response. Most studies
associating climate indices to specific atmospheric phenomena focus on simple linear associ-
ations, when in reality the relationships are much more complex. Numerous climate indices
have been extensively studied as potential sources of predictability for precipitation and ARs.
A few examples include the Arctic Oscillation (AO) index (Guan et al., 2013), the “Pineapple
Express" (PE) index (Weller, Cooley and Sain, 2012), the Madden-Julian Oscillation (MJO)
(Guan et al., 2012), the Niño3.4 index (Tziperman et al., 1998), as well as the recently devel-
oped El Niño Southern Oscillation (ENSO) Longitude Index (ELI; Williams and Patricola,
2018). In this paper, we demonstrate the practical utility of our transfer function exDQLM in
capturing both immediate and lagged effects of ELI on the 0.85 quantile IVT magnitude.
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The remainder of this paper is organized as follows. In Section 2, we begin with back-
ground on the exAL distribution and develop our exDQLM. We present a Markov chain
Monte Carlo (MCMC) algorithm for posterior inference. We also discuss the computational
challenges associated to posterior inference within this modeling framework, and provide an
efficient ISVB algorithm that addresses such challenges. In Section 3, we present the results
from a simulation study to compare the performance of the exDQLM with the dynamic quan-
tile linear model (DQLM) introduced in Gonçalves, Migon and Bastos (2017), a special case
of the exDQLM when the exAL is reduced to the AL. The results of the ISVB algorithm com-
pared to the MCMC algorithm for the synthetic data are also included in Section 3. In Section
4, we develop our transfer function exDQLM with details on MCMC and ISVB algorithm
augmentations for this new model. Section 5 demonstrates the utility of the transfer function
exDQLM in capturing the non-linear effects of ELI on the 0.85 quantile of IVT magnitude
in Santa Cruz, California. Lastly, Section 6 concludes with a final remarks and discussion of
future work.

2. A flexible dynamic quantile linear model.

2.1. Background. As mentioned previously, Bayesian parametric quantile regression
models are almost exclusively based around the asymmetric Laplace (AL) likelihood,

(1) ALp(y|µ,σ) =
p(1− p)

σ
exp

{
−ρp(y− µ)

σ

}
where ρp(u) = u[p − I(u < 0)] is the check loss function and I(·) denotes the indicator
function. σ > 0 is a scale parameter, p ∈ (0,1) is a skewness parameter typically fixed to
be the quantile of interest, and the mode µ is the corresponding value of that p-th quantile.
More explicitly,

∫ µ
−∞ALp(y|µ,σ)dy = p. A model for quantile regression can be developed

by allowing µ to be a function of covariates x, such as µ = xTβp which yields a linear
quantile regression structure. For a time-evolving yt, a time-evolving mode µt = F′tθ

p
t yields

a dynamic linear regression structure where Ft is the regression vector of the covariates
corresponding to the parameter vector θpt at time t. In quantile regression, the parameter
vectors are dependent on the fixed quantile p, however for notational simplicity we will omit
the superscript p going forward.

The AL was first used for Bayesian quantile regression by Yu and Moyeed (2001) and
Tsionas (2003). Kotz, Kozubowski and Podgorski (2001) presents several representations of
the AL, one of which is a location-scale mixture which easily facilitates posterior simulation
(Kozumi and Kobayashi, 2011). That is,

(2) ALp(y|µ,σ) =

∫
R+

N(y|µ+A(p)v,σB(p)v)Exp(v|σ)dv

where A(p) = 1−2p
p(1−p) , B(p) = 2

p(1−p) and Exp(v|σ) denotes the exponential distribution with
mean σ. Although the representation enables closed form posterior conditional distributions,
the AL is known to have several limitations. Most notably, the skewness and quantile are fully
dictated by choice of p, thus for a fixed quantile the skewness of the distribution is fully de-
termined. In particular, when p= 0.5 the distribution is symmetric. Further, for any quantile,
the mode of the distribution occurs at µ resulting in rigid tails for extreme percentiles.

To address the shortcomings of the AL parametrically, Yan and Kottas (2017) develop an
extension of the AL which overcomes the restrictive aspects of the distribution. The new
family of error distributions is constructed from an extension of the location-scale mixture
representation of the AL in Equation (2). More specifically, replacing the Gaussian kernel in
the mixture with a skew-normal distribution introduces an additional skewness parameter γ.
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When γ = 0, the model reduces to the AL. The skew-normal density can also be written as
a location normal mixture with mixing distribution given by the standard normal truncated
to the positive real numbers, facilitating posterior simulation (Henze, 1986). Thus, the full
mixture representation of the proposed family of error densities, exAL(y|µ,σ, γ), is

(3)
∫ ∫

R+×R+

N(y|µ+C(p, γ)σ|γ|s+A(p)v,σB(p)v)Exp(v|σ)N+(s|0,1)dvds

where N+(s|0,1) denotes a normal distribution truncated to the positive reals with mean
0 and variance 1. Note that in this parameterization µ no longer corresponds to the p-th
quantile of the distribution. To preserve the ability to fix the quantile of interest, which we
will now denote to as p0, Yan and Kottas (2017) defines the previously fixed parameter p such
that p = p(p0, γ) = I(γ < 0) + {[p0 − I(γ < 0)]/g(γ)} where g(γ) = 2Φ(−|γ|)exp(γ2/2)
and Φ(·) denotes the standard normal CDF. The parameter γ has bounded support over the
interval (L,U) where L is the negative root of g(γ) = 1 − p0 and U is the positive root
of g(γ) = p0. Further, A(p) and B(p) are functions of p as defined in Equation (2) and
C(p, γ) = [I(γ > 0) − p]−1. Thus, by construction µ corresponds to the fixed quantile p0
such that

∫ µ
−∞ exAL(y|µ,σ, γ)dy = p0.

FIG 1. Density functions of exALp0(y|γ,µ,σ) defined in Equation (3) with µ= 0, σ = 1 and different values of γ
for fixed quantiles p0 = 0.05, 0.5, and 0.85. The black solid line corresponds to the AL density, which is a special
case when γ = 0.

Figure 1 illustrates the flexibility induced by the additional skewness parameter γ for fixed
quantiles p0 = 0.05, 0.5, and 0.85. Recall γ has bounded support on the interval (L,U)
which is dependent on γ, thus γ = 0 is the only skewness parameter which appears in all
fixed quantiles of Figure 1. It can be seen that, when the median is fixed, γ enables both
left and right skewness. The additional parameter controls the tail behavior allowing both
heavier and lighter tails than the AL. Flexibility is also seen in the mode, which is no longer
fixed at µ. Thus, the exAL is substantially more versatile than the AL while the hierarchical
mixture representation preserves straight-forward posterior inference, making it a robust error
distribution for our dynamic quantile model. For closed form representation as well as other
properties of the new family of error distributions, see Yan and Kottas (2017). Note also
that Yan and Kottas (2017) refers to the extension as the generalized asymmetric Laplace
distribution, however we will refer to the distribution as the extended AL (exAL) to avoid
confusion with the generalized asymmetric Laplace distribution defined in Kotz, Kozubowski
and Podgorski (2001).
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2.2. The exDQLM. Consider a set of time-evolving responses, yt, for times t= 1, . . . , T .
For each t, a general dynamic model can be defined by

Observation equation: yt = F′tθt + εt(4)

System Equation: θt = Gtθt−1 +ωt.(5)

Here Ft is the q × 1 regression vector of the covariates corresponding to the q × 1 regres-
sion parameter vector θt at time t, and Gt is the q-dimensional evolution matrix defining the
structure of the parameter vector evolution in time. We propose a extended dynamic quantile
linear model (exDQLM) for inference of a single p0-th quantile by specifying the observa-
tional errors of a dynamic linear model to be distributed from the exAL, which we denote
exALp0 . That is, εt in Equation (4) are distributed independently from the exAL with quantile
p0 fixed such that

∫ 0
−∞ exALp0(εt|0, σ, γ) = p0. Utilizing a Gaussian time-evolving structure

on the system error vector, i.e. ωt ∼ N(0,Wt) where Wt is the evolution variance matrix,
our exDQLM model can be written

yt|θt, γ, σ ∼ exALp0(F
′
tθt, σ, γ)(6)

θt|θt−1,Wt ∼N(Gtθt−1,Wt)(7)

where the normal distribution according to which θt evolves is q-variate. The mixture rep-
resentation of the exAL in Equation (3) can be exploited to rewrite the exDQLM as the
following hierarchical model for t= 1, . . . , T :

yt|θt, σ, γ, vt, st ∼N(yt|F′tθt +C(p, γ)σ|γ|st +A(p)vt, σB(p)vt)(8)

vt, st|σ ∼ Exp(vt|σ)N+(st|0,1)(9)

θt|θt−1,Wt ∼N(Gtθt−1,Wt).(10)

Here, A(p), B(p), C(p, γ) are the functions of p and γ defined with Equation (3). A q-variate
prior θ0 ∼ N(m0,C0) is used at the initial stage. It is possible to place an inverse Wishart
prior on the evolution covariance matrix Wt, however for our analyses we utilize discount
factors, which we discuss in Section 2.6. Yan and Kottas (2017) suggest a inverse-gamma
prior for σ denoted IG(aσ, bσ) and uniform prior for γ over the interval (L,U) denoted
Uni(L,U). Further discussion of the prior selection and posterior inference of σ and γ can
be found in Section 2.7.

2.3. Markov chain Monte Carlo algorithm. The construction of the exAL through a
structured mixture of normal distributions facilitates Bayesian posterior simulation using
Markov Chain Monte Carlo (MCMC) with a Metropolis-Hastings (MH) step for the skew-
ness parameter γ. Conditional on the latent variables v = {v1, . . . , vT } and s = {s1, . . . , sT },
scale parameter σ and skewness parameter γ, the dynamic regression coefficients can be
sampled using a forward filtering backwards sampling (FFBS) algorithm (Carter and Kohn,
1994; Frühwirth-Schnatter, 1994). Full details of our FFBS can be found in the Appendix.
MCMC posterior simulation is summarized in Algorithm 1.

Note that if a point mass prior at zero is used for skewness parameter γ, the model simpli-
fies to the DQLM with fixed quantile p = p0. The DQLM models the p-th quantile alterna-
tively by specifying the observational errors εt in Equation (4) to be distributed independently
from an AL (Gonçalves, Migon and Bastos, 2017). Similar to the exDQLM, a mixture repre-
sentation can be exploited to rewrite the DQLM a hierarchical model to facilitate a MCMC
algorithm for posterior inference. Such algorithm will follow very closely Algorithm 1 with
a few changes: the posterior of σ reduces to an inverse gamma and all terms with skewness
γ will simplify to 0. We compare the exDQLM with this special case in Section 3.
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Algorithm 1: exDQLM MCMC

Initialize σ(0), γ(0),v(0), s(0),θ(0)1:T ;
for i = 0, . . . , I-1 do

1. Sample σ(i+1)|θ(i)1:T ,v
(i), s(i), γ(i) from a generalized inverse Gaussian, denoted GIG(λσ , χσ ,ψσ) where

λσ =−(aσ + 1.5T ), χσ = 2bσ + 2

T∑
t=1

v
(i)
t +

T∑
t=1

(yt −F′tθ
(i)
t −A(p)

(i)v
(i)
t )2

B(p)(i)v
(i)
t

,

ψσ =

T∑
t=1

(C(p)(i)|γ(i)|s(i)t )2

B(p)(i)v
(i)
t

.

2. Sample γ(i+1)|θ(i)t ,v(i), s(i), σ(i) using a Metropolis-Hastings step with a Gaussian random walk proposal
on the logit scale.

3. for t=1,. . . ,T do
Sample v(i+1)

t |θ(i)t , s
(i)
t , σ(i), γ(i) ∼GIG(λvt , χvt ,ψvt) where λvt = 1/2,

χvt =
(yt −F′tθ

(i)
t − σC(p)(i)|γ(i)|s(i)t ))2

σ(i)B(p)(i)
, ψvt =

2

σ(i)
+

A(p)(i)
2

σ(i)B(p)(i)
.

end
4. for t=1,. . . ,T do

Sample s(i)t |θ
(i)
t , v

(i)
t , σ(i), γ(i) ∼N+(µst , σ

2
st), where

σ2st =

 C(p)(i)
2
γ(i)

2

σ(i)B(p)(i)v
(i)
t

+ 1

−1 ,

µst = σ2st

C(p)(i)|γ(i)|(yt −F′tθ
(i)
t −A(p)

(i)v
(i)
t )

B(p)(i)v
(i)
t

 .
end

5. for t=1,. . . ,T do
Sample θt|v(i), s(i), γ(i), σ(i) via FFBS. The forward part of the FFBS algorithm uses the

forecast distribution p(yt|Dt−1) = N(ft,Qt) where Dt−1 = {y1, . . . , yt−1},

ft =F′tat +C(p)(i)σ(i)|γ(i)|s(i)t +A(p)(i)v
(i)
t , Qt =F′tRtFt + σ(i)B(p)(i)v

(i)
t .

end

end

2.4. Importance sampling variational Bayes algorithm. The addition of two latent pa-
rameters per observation in the hierarchical representation of the exDQLM makes model
selection intractable even for shorter time series and the run-time of MCMC algorithm less
than ideal for longer time series data. For example, a daily IVT magnitude time series at a
single location from 1979 through 2015 consists of 13505 time points. With this many time
points, running the proposed MCMC implies a significant computational burden and makes
any model selection infeasible. We found many of the standard methods for fast inference
of a non-Gaussian state space model (i.e., an expectation maximization algorithm, or state-
space augmentation scheme) were unable to provide accurate inference or compromised the
ability to fix the quantile of interest due to the complex structure of our exDQLM. In an ef-
fort to relieve the computational burden induced by the MCMC algorithm while preserving
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the underlying parameter estimation problem, we present an efficient importance sampling
variational Bayes (ISVB) algorithm.

Variational Bayes (VB) is an optimization method for fast, approximate posterior infer-
ence (Ostwald et al., 2014). Let ξ = {θ1:T , σ, γ,v, s} denote the set of all parameters in the
exDQLM. Within the VB framework, we approximate the posterior distribution f(ξ|y1:T )
with an arbitrary variational distribution r(ξ) which minimizes the Kullback-Leibler (KL) di-
vergence (Kullback and Leibler, 1951) and equivalently maximizes the evidence lower bound
(ELBO). For a full review of the VB approach, see Ostwald et al. (2014).

A common choice for the family of variational distributions over which we optimize the
ELBO is a factorization over different sets of variables known as a mean-field approximation
(Beal, 2003). In our particular model, we factorize as follows

(11) r(ξ) = r(θ1:T )r(σ,γ)r(v)r(s).

Note, this reflects an assumption of stochastic independence between sets of variables. It has
been shown that for each component of the factorization, the ELBO is maximized by the
following

(12) r(ξc)∝ exp

{∫
log f(y1:T ,ξ−c)r(ξ−c)dξ−c

}
where ξc denotes the set of variables in the component being maximized and ξ−c the vari-
ables not in that component of the partition (Tuckerman, 2010).

To implement this VB approach, we initialize the partitioned variational distributions seen
in Equation (11) and iteratively maximize the ELBO using Equation (12) until convergence.
For the exDQLM, the variational distribution updates at each iteration are recognizable,
closed-form distributions with the exception of r(σ,γ). Therefore, we propose to approxi-
mate the update of r(σ,γ) at each iteration using importance sampling (IS). ISVB posterior
inference for the exDQLM is summarized in Algorithm 2. For simplicity, we will use the
following short-hand notation where ξc and ξ−c are as defined in Equation (12)

〈g(ξc)〉=
∫

log g(ξc)r(ξ−c)dξ−c.

The resulting closed form integrals as well as complete details of the Forward Filtering Back-
wards Smoothing (FFBSm) and IS algorithms used to update the variational distributions can
be found in the Appendix.

2.5. Comparison criteria. To evaluate the quantile inference and predictive performance
of the exDQLM, we define several measures for comparison. Consider first the setting in
which we know the true p0 quantile, µtruet , for all t. To measure the fit of the quantile esti-
mates, we compute the 95% credible interval (CrI) for the mean check loss (MCL),∑

t

ρp0(µ
true
t −F′tθ̃t)/T,(13)

where θ̃t is a sample from the posterior distribution.
To evaluate the predictive ability of the exDQLM, we consider the Gelfand and Ghosh

(1998) posterior predictive loss criterion (pplc) with check loss function ρp0 . Given the pos-
terior replicate distribution of yt, p(y

rep
t |DT ),

pplc =
∑
t

E[ρp0(y
obs
t − y

rep
t )|DT ](14)

where DT = {y1, . . . , yT }.
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Algorithm 2: exDQLM ISVB
Set k = 0 and initialize r0(st), r

0(vt), r
0(θt) and r0(σ,γ);

while convergence has not been achieved do
1. for t=1,. . . ,T do

Update r(k+1)(vt) = GIG(λ
(k+1)
vt , χ

(k+1)
vt ,ψ

(k+1)
vt ) where λvt = 1/2

χvt =

〈
1

σB(p)

〉(k)
(y2t − 2yt〈F′tθt〉

(k) + 〈(F′tθt)
2〉(k))

− 2〈st〉(k+1)
〈
C(p)|γ|
B(p)

〉(k)
(yt − 〈F′tθt〉

(k))

+ 〈s2t 〉
(k+1)

〈
C(p)2σ|γ|2

B(p)

〉(k)

ψvt = 2

〈
1

σ

〉(k)
+

〈
A(p)2

σB(p)

〉(k)

.

end
2. for t=1,. . . ,T do

Update r(k+1)(st) = N+(µ
(k+1)
st , σ2st

(k+1)
), where

σ2
(k+1)

st =

〈C(p)2σγ2

B(p)

〉(k)〈
1

vt

〉(k)
+ 1

−1

µ
(k+1)
st = σ2st

[
(yt − 〈F′tθt〉

(k))

〈
1

vt

〉(k)〈C(p)|γ|
B(p)

〉(k)
−
〈
C(p)|γ|A(p))

B(p)

〉(k)
]
.

end
3. for t=1,. . . ,T do

Update the smoothed distribution r(k+1)(θt) = N(ms
t ,C

s
t ) using a FFBSm algorithm with

forecast distribution r(k+1)(yt|Dt−1) = N(ft,Qt) where Dt−1 = {y1, . . . , yt−1},

ft =F′tat +

[〈
C(p)|γ|
B(p)

〉(k)
〈st〉(k+1) +

〈
A(p)

σB(p)

〉(k)/〈 1

vt

〉(k+1)
]/〈 1

σB(p)

〉(k)

Qt =F′tRtFt +

[〈
1

vt

〉(k+1)〈 1

σB(p)

〉(k)
]−1

.

end
4. Update r(k+1)(σ,γ) using IS with proposal distributions t(L,U)(0,1) and t(0,∞)(mσ , vσ) for γ and σ,

respectively, where mσ and vσ denote the mean and variance of the prior distribution on σ. Further details of
this IS step can be found in the Appendix.

5. Set k = k+ 1.

end

Lastly, as in Huerta, Jiang and Tanner (2003) and Prado, Molina and Huerta (2006) we
use the one-step-ahead predictive distribution function introduced by Rosenblatt (1952) as a
model diagnostic tool. If we define ξ−θ1:T

= {v, s, σ, γ}, this distribution is given by

ut = Φ(yt|Dt−1,ξ−θ1:T
) = Pr(Yt ≤ yt|Dt−1,ξ−θ1:T

).(15)
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Here ut defines an independent sequence which is uniformly distributed on the interval (0,1)
(Rosenblatt, 1952). Conditional on ξ−θ1:T

, the predictive distribution of yt is normally dis-
tributed with mean ft and variance Qt seen in Algorithms 1 and 2, thus ut = Φ(yt|ft,Qt)
where Φ denotes the normal CDF. We can obtain a point estimate for ut conditionally on a
posterior summary of ξ−θ1:T

from the MCMC or ISVB posterior samples. A diagnosis of
the model performance can be done through the correlation of the estimated sequence {ût}
and their distribution shape. More specifically, transforming the values with a standard nor-
mal inverse CDF allows for examination of the distribution shape with a normal QQ-plot.
To quantify the divergence from the standard normal distribution, we consider the KL di-
vergence KL(h,φ) =

∫∞
−∞ h(x) log h(x)

φ(x)dx. We estimate the integrals using the numerically
approximated densities of our transformed sample, which we denote h, and the standard nor-
mal density, φ.

2.6. Discount factor selection. A standard approach which allows us to specify the time-
evolving covariance matrices Wt is the use of discount factors. (West and Harrison, 2006).
Selection of discount factors is typically done by optimizing some model checking criterion.
This criterion-based selection approach requires posterior inference for each set of discount
factors which can become computationally expensive very quickly especially for large T .
The ISVB algorithm makes this criterion-based selection approach computationally feasi-
ble. We propose selecting the discount factor, or combination of discount factors (see West
and Harrison, 2006 for details on component discounting), that minimize the KL divergence
calculated from the one-step-ahead predictive distribution functions ut estimated using the
MAP estimates of ξ−θ1:T

from the ISVB algorithm, as discussed in Section 2.5. Fixing the
discount factors within each quantile ensures consistent signal-to-noise ratios between differ-
ing models and algorithms.

2.7. Comments on prior selection and inference of σ and γ. We find that using a proper
prior distribution on the skewness parameter γ facilitates reliable posterior inference by alle-
viating some of the inferential problems known to arise when utilizing the skew-normal fam-
ily (Liseo and Loperfido, 2006). To this end, we implement a weakly informative Student-t
distribution truncated to the interval (L,U) as the prior for γ, i.e. γ ∼ t(L,U)(0,1) with 1
degree of freedom, in contrast to the flat prior suggest by Yan and Kottas (2017). Further,
interaction between the parameters σ and γ can complicate posterior inference, particularly
for extreme quantiles. Joint sampling of σ and γ with a random-walk MH step facilitates
mixing and convergence within the MCMC algorithm.

The interaction between σ and γ is also prevalent within the ISVB algorithm, which com-
monly results in the variational distributions getting stuck in local optima. To facilitate fast
posterior estimation with the ISVB algorithm, we place a point-mass prior on σ at the poste-
rior mode of σ estimated from the DQLM. That is, for any fixed quantile of interest p0, we
set the prior on σ to be δσ̂p0γ=0

(σ) where δ denotes the Dirac delta function and σ̂p0γ=0 is the
posterior mode of σ under the DQLM for the p0 quantile. Although this results in different
posterior summaries for the skewness parameter γ from the ISVB algorithm than the MCMC
algorithm, the posterior error distributions and modes (and therefore quantile estimates) are
comparable.

3. Simulation study. We present results from a simulation study to compare the added
flexibility of the exDQLM to the special case of the DQLM and the standard DLM for three
different quantiles; 0.05, 0.50 and 0.85. For the underlying data-generating distributions, we
consider three scenarios with different types of tail behavior and skewness.
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FIG 2. Simulation study datasets. From left to right are the data simulated from the Stochastic Volatility (SV)
model, exDQLM, and generalized DLM (gDLM) described in Section 3.

Dataset 1: Stochastic Volatility. Stochastic Volatility (SV) models are commonly used to
analyze returns (Kastner, 2016). These models are stochastic processes in which the log-
variance is randomly distributed and follow an autoregressive structure. The SV model for
t= 1, . . . ,1000, where yt denotes the return at time t, can be written as follows,

yt|xt ∼N(0, xt)(16)

logxt| logxt−1, µ,φ,σ ∼N(µ+ φ{logxt−1 − µ}, σ2)(17)

logx0|µ,φ,σ ∼N(µ,σ2/(1− φ))(18)

Under SV models, posterior inference of the return distributions requires simulation of a
latent time-varying process which can sometimes be difficult. To explore the posterior per-
formance of our exDQLM with respect to this more complexly structured data, we generate
time series of length 1000 from a SV model using the stochvol package in Rwith the level
(µ), persistence (φ), and volatility (σ) of the log-variance to be 0, 0.95 and 0.5, respectively.
We will utilize the exDQLM to model the p0 = 0.05,0.5, and 0.85 posterior quantiles with a
first-order polynomial evolution structure,

yt ∼ exALp0(θt, σ, γ)

θt ∼N(θt−1,Wt).

Dataset 2: exDQLM. Next, we consider synthetic data from an exDQLM, for t =
1, . . . ,1000,

yt ∼ exAL0.85(F
′θt, σ, γ)

θt ∼N2(Gθt−1,W).

With a slight abuse of notation, here F′θt denotes the p0 = 0.85 quantile of the synthetic
dataset at time t. The components F and G are specified with a second-order polynomial
trend (West and Harrison, 2006),

F = (1,0)′, G =

[
1 1
0 1

]
with

W =

[
0.01 0.001
0.001 0.001

]
,
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σ = 1, and skewness parameter γ =−2.5 causing the mode to be below the p0 = 0.85 quan-
tile for all t. We model each quantile with the same second-order polynomial evolutionary
structure.

Dataset 3: Generalized DLM. For a dataset with extreme observations, we generate data
from a non-Gaussian DLM (West and Harrison, 2006), for t= 1, . . . ,1000,

yt ∼ Cauchy(F′θt, τ
2)

θt ∼N4(Gθt−1,W).

Again, with a slight abuse of notation, here F′θt denotes the mean of the synthetic dataset at
time t. The components F and G are specified with a second-order polynomial and Fourier
form represented seasonality at frequency ω = 2π/75 (West and Harrison, 2006),

F = (1,0,1,0)′, G = block-diag
{[

1 1
0 1

]
,

[
cos(ω) sin(ω)
− sin(ω) cos(ω)

]}
with τ2 = 4 and evolution covariance

W = block-diag
{[

0.05 0.01
0.01 0.001

]
,

[
2 0
0 2

]}
.

Again, we model the quantiles with the same trend and seasonal evolution structure.

3.1. Results. For all models, we set conjugate prior θ0 ∼N(m0,C0) and priors for σ and
γ as discussed in Section 2.7. Table 1 reports the posterior results, with bold text indicating
the model supported by the comparison criteria detailed in Section 2.5.

Overall, the exDQLM out-performs the standard DLM and DQLM. The exDQLM is fa-
vored with a lower MCL for all cases in which the true quantile is known with two exceptions
where the MCL of the exDQLM is comparable to the MCL of the DQLM; the medians of
the Stochastic Volatility and generalized DLM, both symmetric datasets. The one-step-ahead
predictions assessed using the KL divergence also overwhelmingly favor the exDQLM for all
quantiles except 0.5 of the symmetric datasets, in which the exDQLM is again comparable
to the DQLM. Similarly, the Gelfand and Ghosh pplc favors the exDQLM for all extreme
quantiles (0.05 and 0.85), and again is comparable to the DQLM for the median in the two
cases for which the data is symmetric.This parallel between the DQLM and exDQLM for the
median of the symmetric datasets is unsurprising, as the exAL reduces to the AL at the 0.5
quantile in the case when the distribution is symmetric. However, we find the pplc for the
0.5 quantile of the exDQLM dataset is also comparable between all three models and even
slightly favors the DLM. The exAL distribution used to generate the dataset (seen in Figure
1) is only slightly left-skewed around the median with thin tails, therefore it is not unreason-
able a normal observational distribution is able to produce equitable predictive results. With
this exception, the exDQLM outperforms the other models in all cases for which the under-
lying distribution is skewed or the quantile of interest does not align with the mode. Figure
3 supports these findings where it can be seen, due to the rigidity of their observational error
distributions, the estimated dynamic quantiles of the DLM and DQLM are more affected by
extreme observations than the exDQLM particularly for extreme quantiles (i.e. 0.05). These
results highlight the two main advantages of our exDQLM for parametric quantile inference
on non-Gaussian dynamic models; robust estimation of any dynamic quantile and superior
predictive accuracy for non-standard distributions.

The assessment criteria also illustrate the comparable accuracy of the ISVB exDQLM
algorithm to the MCMC exDQLM, but with a fraction of the computational time (see Table
1). Both algorithms were implemented in the R programming language on a computer with
a 2.5 GHz Intel Core i5 processor. The point-mass prior on parameter σ results in different
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Model γ σ MCL KL pplc time
Stochastic Volatility (δ = 0.92,0.99,0.87 for p0 = 0.05,0.50,0.85, respectively)
p0 = 0.05
DLM — — — 3.464 839.7 0.1
DQLM — 0.178 (0.17,0.19) — 3.943 2012.6 19.6
exDQLM/MCMC 4.358 (3.96,4.77) 0.303 (0.29,0.32) — 3.641 697.5 46.2
exDQLM/ISVB 6.980 (6.93,7.03) 0.178 (fixed) — 3.911 774.3 4.1
p0 = 0.50
DLM — — 0.035 3.586 852.6 0.1
DQLM — 0.486 (0.46,0.52) 0.011 3.484 749.7 21.3
exDQLM/MCMC 0.037 (-0.03,0.09) 0.487 (0.46,0.52) 0.012 3.498 757.4 48.7
exDQLM/ISVB 0.017 (-0.02,0.05) 0.486 (fixed) 0.012 3.524 769.6 0.8
p0 = 0.85
DLM — — — 3.679 829.5 0.1
DQLM — 0.299 (0.28,0.32) — 3.979 1133.3 19.5
exDQLM/MCMC -1.384 (-1.53,-1.18) 0.401 (0.376,0.423) — 3.667 740.6 43.9
exDQLM/ISVB -2.610 (-2.65,-2.57) 0.299 (fixed) — 3.652 785.5 2.1
exDQLM (trend δ = 0.93 for all p0)
p0 = 0.05
DLM — — — 4.496 2282.7 0.1
DQLM — 0.456 (0.43,0.48) — 3.968 4276.3 18.6
exDQLM/MCMC 5.139 (4.75,5.52) 0.854 (0.81,0.94) — 3.910 1692.6 46.2
exDQLM/ISVB 8.058 (8.02,8.09) 0.456 (fixed) — 4.076 1799.9 4.6
p0 = 0.50
DLM — — — 4.169 2287.6 0.1
DQLM — 1.584 (1.49,1.68) — 3.578 2343.8 19.0
exDQLM/MCMC 0.362 (0.27,0.48) 1.377 (1.20,1.53) — 3.548 2328.8 45.9
exDQLM/ISVB 0.25 (0.21,0.28) 1.584 (fixed) — 3.674 2345.0 0.7
p0 = 0.85
DLM — — 0.214 4.384 2283.3 0.1
DQLM — 0.871 (0.82,0.93) 0.252 3.939 2963.1 18.9
exDQLM/MCMC -2.514 (-2.72,-2.39) 0.967 (0.87,1.03) 0.195 3.831 1489.7 46.2
exDQLM/ISVB -2.68 (-2.71,-2.65) 0.871 (fixed) 0.211 3.835 1510.2 0.7
Generalized DLM (trend δ = 0.98, seasonality δ = 0.95 for all p0)
p0 = 0.05
DLM — — 1.830 5.323 84242.3 0.1
DQLM — 3.164 (2.98,3.37) 1.410 3.729 45607.3 19.0
exDQLM/MCMC 3.469 (3.23,3.76) 3.492 (3.35,3.71) 0.472 3.603 10747.9 45.0
exDQLM/ISVB 1.534 (1.45,1.62) 3.164 (fixed) 1.046 3.609 19189.5 2.4
p0 = 0.50
DLM — — 2.723 5.401 84316.5 0.1
DQLM — 4.536 (4.26,4.84) 1.204 3.635 7400.3 18.9
exDQLM/MCMC 0.112 (0.06,0.18) 4.465 (4.21,4.71) 1.203 3.581 7278.6 45.5
exDQLM/ISVB 0.095 (0.06,0.13) 4.536 (fixed) 1.240 3.514 7616.1 0.7
p0 = 0.85
DLM — — 4.518 5.339 84347.7 0.1
DQLM — 3.149 (2.95,3.36) 0.979 3.531 13454.3 18.6
exDQLM/MCMC -1.139 (-1.24,-1.02) 3.703 (3.478,3.926) 0.823 3.516 8873.2 45.1
exDQLM/ISVB -0.497 (-0.57,-0.42) 3.149 (fixed) 0.828 3.491 9836.2 1.1

TABLE 1
Posterior summaries for γ and σ (where applicable): mean (95% CrI). Mean check loss of the MAP dynamic

quantile. KL divergences of the one-step-ahead distributions. Posterior predictive loss criterion (pplc) under the
check loss function. Computation run-time (min).
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DLM DQLM exDQLM

FIG 3. MCMC results. Posterior distributions of dynamic quantiles p0 = 0.05,0.5,0.85. exDQLM estimates
in blue, DQLM in red, and DLM in orange. Dotted lines indicate the 95% CrI from the smoothed posterior
distributions and solid lines indicate posterior mean estimates. Due to the scale of the gDLM data, we focus on
time periods which highlight the similarities and/or differences of the models at the three different quantiles.

posterior summaries for γ from the MCMC and ISVB algorithms, as discussed in Section 2.7
and seen in Table 1. However, the approximated posterior quantiles from the ISVB algorithm
are almost entirely contained with the MCMC posterior 95% credible intervals (CrIs), as seen
in Figure 4.

4. Transfer Function exDQLM. Quantifying the relationship between a climatological
response and input at various quantiles is a non-trival task. In the mean-centric setting, trans-
fer functions are a simple way to incorporate variables which measure the combined effect
of current and past inputs or regression effects (West and Harrison, 2006). To capture both
the immediate and lagged effects of a climatological variable, we expand the use of trans-
fer functions to the dynamic quantile regression setting with the development of a transfer
function extension to our exDQLM.
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exDQLM/MCMC exDQLM/ISVB

FIG 4. ISVB and MCMC comparison results. Posterior distributions of dynamic quantiles p0 = 0.05,0.5,0.85.
MCMC exDQLM estimates in blue, ISVB exDQLM estimates in purple. Dotted lines indicate the 95% CrI from
the smoothed posterior distributions and solid lines indicate posterior mean estimates. Due to the scale of the
gDLM data, we focus on period of only 100 time points and omit the median estimates for visual clarity.

For time t= 1, . . . , T and a single regression effect, Xt, a transfer function exDQLM with
exponential decay is as follows:

yt|θt, γ, σ ∼ exALp0(F
′
tθt + ζt, σ, γ)(19)

θt|θt−1,Wt ∼N(Gtθt−1,Wt)(20)

ζt|ζt−1,ψt−1, ωt ∼N(λζt−1 +Xtψt−1, ωt)(21)

ψt|ψt−1, νt ∼N(ψt−1, νt).(22)

Here ζt captures the effect of the current and past regression effects, as seen in Equation (21).
The parameter ψt determines the immediate effect Xt has on the quantile. Alternatively the
parameter λ is a quantity in the unit interval which represents the memory of the regression
effect up to time t. This effect decays at an exponential rate, reducing by a factor of λ at every
time step. To see this more explicitly we can derive the transfer function effect k steps ahead,
that is:

ζt+k = λkζt +

k∑
r=0

λk−rψt+r−1Xt+r + ∂ζt+k.(23)

Thus, the effect of Xt on the quantile at time t + k is λkψt−1Xt. This effect is negligible
when λk|ψt−1Xt| ≤ ε for small ε. Using this we can derive a series, kt, representing a lower
bound for the number of time steps until the effect of Xt is less than or equal to a fixed ε.
That is, for t= 1, . . . , T

kt ≥
log(ε)− log(|ψt−1Xt|)

log(λ)
.(24)

To complete the model, conjugate priors are available for the additional transfer function
parameters; normal conjugate priors for ζ0 ∼ N(mζ0 ,Cζ0) and ψ0 ∼ N(mψ0

,Cψ0
), and a

conjugate normal truncated to the unit interval prior for λ∼N(0,1)(mλ, vλ).

4.1. MCMC and ISVB Algorithm Augmentations. This transfer function exDQLM can
equivalently be rewritten in the form of a standard exDQLM

yt|γ,θt, σ ∼ exALp0(F̃
′
tθ̃t, σ, γ)(25)

θ̃t|θ̃t−1,W̃t ∼N(G̃tθ̃t−1,W̃t)(26)
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where F̃′t = (F′t,1,0), θ̃
′
t = (θ′t, ζt,ψt), G̃t = blockdiag

{
Gt,

(
λ Xt
0 1

)}
, and

W̃t = blockdiag
{
Wt,

(
ωt 0
0 νt

)}
.

Using this representation, the exDQLM MCMC Algorithm 1 can easily be augmented
to incorporate the transfer function structure as follows: (1) Replace all {Ft,θt,Gt,Wt}
with {F̃t, θ̃t, G̃t,W̃t}, where G̃t will be conditional on λ(i); (2) For each iteration i, add an
additional step to sample λ(i+1)|ζ(i+1),ψ(i+1) ∼N(0,1)(µλ, σ

2
λ) with

σ2λ = [

T∑
t=1

ζ
(i+1)2
t−1
ωt

+
1

vλ
]−1,

µλ = σ2λ[

T∑
t=1

ζ
(i+1)
t−1 (ζ

(i+1)
t −ψ(i+1)

t Xt)

ωt
+

1

vλ
].

Augmenting the ISVB algorithm is not as straight-forward. The random parameter λ
within the evolution matrix G̃t compromises our ability to update the state parameter vari-
ational distributions within the FFBS while using discount factors to specify W̃t. To pre-
serve the ability to utilize discount factors, we propose optimizing the parameter λ with
respect to the KL divergence of the one-step-ahead predictive distribution functions as dis-
cussed in Sections 2.5 and 2.6. For optimal λ, say λ̃, the ISVB algorithm can be augmented
to incorporate the transfer function structure by simply replacing all {Ft,θt,Gt,Wt} with
{F̃t, θ̃t, G̃t,W̃t} where G̃t = blockdiag

{
Gt,

(
λ̃ Xt
0 1

)}
.

5. Estimating the 0.85 quantile IVT threshold. The primary dataset used to calculate
IVT in the study by Guan and Waliser (2015) is the European Centre for Medium-Range
Weather Forecasts (ECMWF) Interim reanalysis (ERA-Interim). ERA-Interim produces 6-
hourly atmospheric fields at a 1.5◦ × 1.5◦ spatial resolution beginning in 1979 and is con-
tinuously updated (Berrisford et al., 2011; Dee et al., 2011). At each time and location, IVT
is derived from observational products of humidity and windspeed, resulting in a large (over
both time and space) dataset. The method presented in Guan and Waliser (2015) for detection
of ARs from the calculated IVT is as follows. For each of the 12 months, the 0.85 quantile
IVT is calculated over all time steps during the 5 month windows centered on that month
over the period from 1997 to 2014 at a specific location. Comparison to the estimated 0.85
quantile in combination with a minimum threshold is used to isolate regions of enhanced IVT
as possible ARs. Criteria are then applied to the length and width of these regions, resulting
in a defined set of ARs. Finally, the coastal location intersecting with an AR at which the IVT
magnitude is highest is defined as the cell in which the AR makes landfall. For more details
on the full AR detection algorithm, see Guan and Waliser (2015). The top panel of Figure 5
illustrates the average daily IVT magnitude in Santa Cruz, CA, of which we examine the 0.85
quantile in this analysis. For illustration, the times at which ARs detected to make landfall at
that location and in the neighboring coastal locations are illustrated in the middle panels of
Figure 5 for two time periods; years 1982 to 1985 in which CA saw an exceptional amount
of rain, and years 2012 to 2015 which were exceptionally dry for CA.

Although many climate indices other than ELI have been studied as potential sources
of predictability for ARs, initial examination of several indices with our transfer function
exDQLM did not demonstrate significant associations. Therefore in this analysis, we focus
solely on the association between IVT and ELI. ELI is a single metric which captures the
spatial diversity of ENSO, created utilizing the monthly ECMWF twentieth century reanal-
ysis (ERA-20C). In particular, ELI is the average longitude at which tropical Pacific deep
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FIG 5. Top panel: Average daily IVT magnitude in the grid cell containing Santa Cruz, CA. The blue vertical lines
enclose a time period in which CA saw an exceptional amount of rain. The red vertical lines encloses as time
period in which CA was exceptionally dry. Middle panel: A closer look at the two time periods highlighted in the
top panel. Years 1982 to 1985 illustrate a time period which saw an exceptional amount of rain. Years 2012 to
2015 illustrate a period which was exceptionally dry. ARs detected by the scheme proposed in Guan and Waliser
(2015) in the Santa Cruz grid cell are indicated with dark green points. ARs detected in neighboring coastal grid
cells are indicated with light green points. Bottom panel: ELI anomalies resulting from the de-seasonalization of
the interpolated ELI. The dashed, orange horizontal line is at zero, for reference.

convection occurs at a given month. For further details on the development ELI and the re-
lationship of ELI with precipitation see Williams and Patricola (2018) and Patricola et al.
(2020), respectively. The monthly ELI dataset is available online beginning in 1854 and is
frequently updated (Williams and Patricola, 2018). For our analysis, we interpolate the ELI
to the daily time scale and de-seasonalize the time series by removing the smoothed posterior
mean estimates from a standard DLM with constant trend, annual and semi-annual compo-
nents. De-seasonalizing in this way ensures the variability in the 0.85 quantile described by
the ELI component of our model is not an artifact of the seasonality in the original ELI time
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series. This de-seasonalization results in a time series of ELI anomalies, also seen in Figure
5, which we use as the input in our analysis of the 0.85 quantile of the IVT magnitude.

FIG 6. Top panel: In purple, M1 MAP 0.85 quantile threshold of the average daily IVT magnitude in Santa Cruz,
CA. The blue vertical lines enclose a period in which CA saw an exceptional amount of rain. The red vertical
lines encloses a period in which CA was exceptionally dry. Bottom panels: Years 1982 to 1985 (left, exceptional
amount of rain) and years 2012 to 2015 (right, exceptionally dry). The MAP 0.85 quantile from M1 and M0 are
seen in purple and green, respectively.

5.1. IVT analysis. We fit two separate models to estimate the 0.85 quantile of the IVT
magnitude. The first, M0, is a simplified version of the second, M1. The simplified M0 in-
cludes only a baseline level and seasonal effects without any input from the ELI time series.
Alternatively, M1 includes the ELI input utilizing our transfer function exDQLM. Our analy-
sis will focus on the results ofM1, only highlighting features ofM0 for comparison purposes.

The state parameters for the baseline component and the seasonal components in both
models are denoted by ηt, (baseline) and α(1)

1,t , α
(1)
2,t , α

(2)
1,t and α(2)

2,t (seasonal). We describe
the baseline component in the model, ηt, with a first-order polynomial structure

(27) ηt = ηt−1 +ωηt , ωηt ∼N(0,Wη
t ) .

A second-order polynomial component was also considered but found to be not significant.
Here the system evolution error vectors ωηt , are assumed to be independent over time. We
include seasonal components α(l)

1,t for harmonics l = 1,2 for a period of 365 days. We found
only the annual (l= 1) and semi-annual (l= 2) harmonics to be significant, and model them
using Fourier form seasonal components (West and Harrison, 2006) as follows for l= 1,2,

(28)

(
α
(l)
1,t

α
(l)
2,t

)
=

(
cos( 2π

365 l) sin( 2π
365 l)

− sin( 2π
365 l) cos( 2π

365 l)

)(
α
(l)
1,t−1
α
(l)
2,t−1

)
+ωα,lt , ωα,lt ∼N2(0,W

α,l
t ) .
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FIG 7. Top panel: Effects of ELI captured by the transfer function component, ζt. Bottom panel: Instantaneous
effects of ELI, ψt. In both panels, dark grey lines indicate the MAP estimates. 95% CrI are indicated by the grey
shaded regions. Dashed horizontal orange lines are at zero, for reference. Blue vertical lines enclose years 1982
to 1985 in which CA saw an exceptional amount of rain. Red vertical lines enclose 2012 to 2015 in which CA was
exceptionally dry.

We denote the lth seasonal evolution matrix Gα,l =
(

cos( 2π

365
l) sin( 2π

365
l)

− sin( 2π

365
l) cos( 2π

365
l)

)
. Again, it is as-

sumed that ωα,lt are independent over time, as well as independent of ωηt for t = 1, . . . , T .
Using superposition the resulting state vector θt, F′, G and Wt in Equations (19)-
(22) are defined, respectively, as θt = (ηt, α

(1)
1,t , α

(1)
2,t , α

(2)
1,t , α

(2)
2,t )
′, F′ = (1,1,0,1,0), G =

blockdiag(1,Gα,1,Gα,2), and Wt = blockdiag(Wη
t ,W

α,1
t ,Wα,2

t ).
We choose to model the baseline and seasonal components in both models as non-time-

varying, thus any variation in the 0.85 quantile from year to year will solely be attributed to
the effects of the ELI as input to our transfer function model. This is easily done utilizing
component discounting to specify Wt with discount factor values of 1 (West and Harrison,
2006), which also preserves our ability to update the state parameter using FFBSm. Note,
under this modeling choice the baseline and seasonal parameters in the state vector are non-
time-varying, thus we omit their subscripts t going forward.

In addition to the baseline and seasonal components, in M1 we utilize the exponentially
decaying transfer function exDQLM as specified in Equations (19)-(22) to capture both the
immediate and lagged effects of ELI on the 0.85 quantile. We complete the models with
conjugate priors, where applicable; θ0 ∼ N(m0,C0) with m0 = 0 and C0 = 100Iq , ζ0 ∼
N(mζ0 ,Cζ0) and ψ0 ∼ N(mψ0

,Cψ0
) with mζ0 = mψ0

= 0 and Cζ0 = Cψ0
= 10, and γ ∼

t(−5.137,0.213)(0,1) with 1 degree of freedom. The parameter σ is fixed at σ̂0.85γ=0, as discussed
in Section 2.7. Lastly, in M1, the parameter λ as well as the discount factors for the evolution
of ζt and ψt, δζ and δψ respectively, are optimized using the KL divergence of the one-step-
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M0 M1

(δζ , δψ) — (0.96,0.97)
λ̃ — 0.37

σ̂0.85γ=0 22.02 21.27
γ -0.75 (-0.77,-0.73) -0.68 (-0.70,-0.65)
η 128.33 (127.63,129.04) 121.65 (120.13,122.79)
A1 22.27 (21.52,23.26) 20.46 (19.03,22.02)
P1 -0.23 (-0.28,-0.19) -0.12 (-0.20,-0.05)
A2 7.89 (6.93,8.75) 8.02 (6.74,9.19)
P2 1.30 (1.19,1.44) 1.20 (1.04,1.32)

pplc 784445.6 767292.5
KL 1.566 0.839

run-time 2.43 3.31

TABLE 2
IVT analysis results for M0 and M1. Optimal δζ , δψ , and λ̃, as discussed in Section 2.7. Values of σ̂0.85γ=0 used

in the priors on scale parameter σ, also discussed in Section 2.7. Posterior summaries (format: mean (95% CrI))
for skewness parameter γ, baseline η, annual amplitude A1, annual phase P1, semi-annual amplitude A2, and

semi-annual phase P2. pplc: Posterior predictive loss criterion under the check loss function. KL:
Kullback-Liebler divergences of the one-step-ahead distributions. Run-time: ISVB run-times in minutes.

FIG 8. 60-step-ahead quantile forecast beginning November 2, 2015 through December 31, 2015. From M1: The
solid magenta line indicates the forecast means and the dashed magenta indicate the 95% CrI of the forecasted
0.85 quantile. Also included are the filtered means and 95% CrI up to November 2, 2015 in purple solid and
dashed lines, respectively. From M0: The solid light green line indicates the forecast means and the solid dark
green line indicates the filtered means. The IVT magnitude data is seen in grey.

ahead predictive distribution functions as discussed in Section 4.1. Optimal λ, δζ , δψ can be
found in Table 2, as well as σ̂0.85γ=0.
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We apply our ISVB algorithm to estimate the 0.85 quantile of the daily IVT magnitude
in Santa Cruz, CA from 1979 to 2016. For this time series of length 13505 the ISVB com-
putation times are under four minutes for both models; exact times can be found in Table
2. Figure 6 illustrates the MAP 0.85 quantile of M1 for the entire time period, as well as
the MAP estimates from both models for the two time periods, 1982 through 1985 and 2012
through 2015, in which CA saw drastically different amounts of precipitation. It can be seen
that the M1 quantile is generally higher than the M0 quantile when CA experienced an ex-
ceptional amount of rain, with the opposite true when CA was exceptionally dry. Further, we
note the ARs detected to make landfall near Santa Cruz, CA by Guan and Waliser (2015) are
entirely above the estimated thresholds in both time periods.

From the posterior estimates of the annual and semi-annual harmonic components

of the models we compute the amplitude and phase, Al =
√

(αl1)
2 + (αl2)

2 and Pl =

arctan (−αl2/αl1) respectively. Posterior summaries of these as well as the baseline parame-
ter, η, can be found in Table 2. It can be seen the baseline and annual amplitude of M0 are
significantly larger than those of M1. Further, the annual phase of M0 is significantly smaller
than that of M1. Alternatively, the semi-annual harmonic components are indistinct between
the two models. This suggests there is a substantial amount of variability in the 0.85 quantile
that can be associated with the ELI time series specifically on the annual time scale, with the
distinction less clear at the semi-annual scale.

The amount of variability in the 0.85 quantile attributed to the effects of ELI captured with
transfer function component in M1, ζt, are seen in Figure 7. The effects of ELI are overall
significant and are dramatically more pronounced between 1982 and 1985 than between 2012
and 2015. In particular, a majority of the effects between 1982 and 1985 (in which CA re-
ceived heavy precipitation) are distinctly positive whereas the effects between 2012 to 2015
(when drought was severe) are negative or not significant. The instantaneous effects of ELI
at time t, ψt, also exhibit very different behavior in the two time periods, seen in Figure 7.
Upon computing the series kt from Equation (24) for ε = 1e−3 (not pictured), we find the
lagged effects of ELI persist for around 8.5 days, on average.

To assess the predictive value added by the transfer function component capturing the
effects of ELI in M1, we compare the pplc and KL divergence of the one-step-ahead forecast
distributions forM1 to those ofM0, seen in Table 2.M1 is favored with smaller values of both
model comparison criterion, suggesting the inclusion of ELI improves both the predictive and
forecasting power of M1. To further examine the information added by ELI, we can examine
the k-step-ahead quantile forecast distributions. That is, for each time t the k-step-ahead
future marginal distribution of the quantile is

(29) F̃′t+kθ̃t+k|y1, . . . , yt ∼N(F̃′t+kat(k), F̃′t+kRt(k)F̃t+k)

where at(k) = G̃t+kat(k − 1), Rt(k) = G̃t+kRt(k − 1)G̃′t+k + W̃t+k, at(0) = mt, and
Rt(0) = Ct, with mt and Ct denoting the filtered mean and covariance of θ̃t, respectively.
The posterior means and 95% CrIs of these distributions for 60-steps-ahead can be seen in
Figure 8. The MAP quantile forecast of M1, which takes the ELI into consideration, suggests
the 0.85 quantile will be slightly higher than the seasonal average projected by M0.

6. Conclusion. Motivated by the need for versatile estimation of a single quantile over
time, we have presented several methodological and computational contributions for dynamic
quantile modeling. Our exDQLM has two main advantages; the model facilitates more flexi-
bility in the estimation of the quantile than standard Bayesian parametric quantile regression
approaches, and relevant features such as seasonality or structured long-term variability are
easily included in the evolution structure of the quantile. Further, the development of our effi-
cient ISVB algorithm facilitates fast posterior inference, making our methodology accessible
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even in applications with very long time series data. Finally in contrast to current schemes,
our transfer function exDQLM develops a straight-forward method for quantifying non-linear
relationships between a response and input at a specified quantile. Our methodology is im-
mediately beneficial not only in climatological applications such as AR detection detailed in
this work, but more generally in any application with non-Gaussian time-varying models.

We illustrated the utility of our methods in the analysis of the IVT magnitude 0.85 quantile
threshold in Santa Cruz, CA; an analysis made possible by our ISVB algorithm. In contrast
to many current thresholding approaches, estimating the 0.85 quantile with our model pro-
vides rich inference about the structure of the time series and thus enhances the tools for
characterization of ARs. The results demonstrated not only a significant annual and semi-
annual seasonal structure in the quantile, but also a significant non-linear relationship with
the climate index ELI captured by the transfer function component of our model. Through
several model checking criteria, we were able to show the inclusion of ELI in the model
was advantageous both in forecast and predictive accuracy. We saw the effects of ELI on the
0.85 quantile varied substantially between two time periods which experienced drastically
different amounts of precipitation; results that are relevant to understanding the roll of IVT
magnitude and ARs in the global water cycle and regional weather.

We consider only univariate dynamic quantile modeling in this work. However, multivari-
ate and spatial interaction between the IVT magnitudes at various locations motivate exten-
sions of our exDQLM to these settings. Non-time-varying multivariate and spatial quantile
regression has been considered, non-parametrically (Reich, Fuentes and Dunson, 2011) and
parametrically (Lum et al., 2012). Some work has been done in the spatio-temporal setting,
both parametric (Neelon et al., 2015) and semi-paramteric (Reich, 2012), however again, the
parametric approaches are exclusively based on the AL. Our more flexible methodology nat-
urally scales to the multivariate and spatial time-varying settings, making this the clear next
step in our work.

APPENDIX

A.1. MCMC Forward Filtering Backwards Sampling. Let Dt = {y1, . . . , yt}. To
simplify the notation, we leave out conditional parameters v, s, γ, σ. For t= 1, . . . , T , sample
θt|DT = θt|DT ,v, s, γ, σ using the following FFBS updates:

• Forward filtering, for t= 1, . . . , T compute:
– Prior p(θt|Dt−1): Given θt−1|Dt−1 ∼N(mt−1,Ct−1),

p(θt|Dt−1) =

∫
N(θt|Gtθt−1,Wt)N(θt−1|mt−1,Ct−1)dθt−1.

Thus, p(θt|Dt−1) = N(at,Rt), with at = Gtmt−1 and Rt = GT
t Ct−1Gt +Wt.

– Forecast p(yt|Dt−1): Given θt|Dt−1 ∼N(at,Rt),

p(yt|Dt−1) =

∫
N(yt|F′tθt +C(p)σ|γ|st +A(p)vt, σB(p)vt)N(θt|at,Rt)dθt.

Thus, p(yt|Dt−1) = N(ft, qt), with ft = F′tat + C(p)σ|γ|st + A(p)vt and qt =
F′tRtFt + σB(p)vt.

– Posterior p(θt|Dt): Given the prior and forecast distributions, the joint distribution can
be written [

θt
yt

∣∣Dt−1
]
∼Np+1

([ at
ft

]
,
[ Rt RtFt
F′
tRt qt

])
.

The conditional distribution of the multivariate normal p(θt|Dt) = N(mt,Ct) with
mt = at +RtFt(yt − ft)/qt and Ct = Rt −RtFtF

′
tRt/qt
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• Backwards sampling, p(θt|DT ):
– For T , sample θT |DT ∼N(mT ,CT ).
– For t= T − 1, . . . ,1, sample θt|DT ∼N(ms

t ,C
s
t ) with ms

t = mt +CtG
′
tR
−1
t+1(θt+1−

at+1) and Cs
t = Ct −CtG

′
tR
−1
t+1GtCt.

A.2. ISVB Forward Filtering Backwards Smoothing. Similarly, we can update
r(k+1)(θt) = N(ms

t ,C
s
t ) using FFBSm as follows.

• Forward filter, for t= 1, . . . , T :
– Prior: r(k+1)(θt|Dt−1) = N(at,Rt), with at = Gtmt−1 and Rt = GT

t Ct−1Gt +Wt.
– Forecast: r(k+1)(yt|Dt−1) = N(ft,Qt), with

ft = F′tat +

[〈
C(p)|γ|
B(p)

〉(k)

〈st〉(k+1) +

〈
A(p)

σB(p)

〉(k)/〈 1

vt

〉(k+1)
]/〈 1

σB(p)

〉(k)

Qt = F′tRtFt +

[〈
1

vt

〉(k+1)〈 1

σB(p)

〉(k)
]−1

.
– Posterior: r(k+1)(θt|Dt) = N(mt,Ct), with mt = at + RtFt(yt − ft)/Qt and Ct =

Rt −RtFtF
′
tRt/Qt

• Backward smoother:
– For T , r(k+1)(θT |DT ) = N(ms

T = mT ,C
s
T = CT )

– For t= T − 1, . . . ,1, r(k+1)(θt|DT ) = N(ms
t ,C

s
t ) with ms

t = mt + Bt(mt+1 − at+1)
and Cs

t = Ct +Bt(C
s
t+1 −Rt+1)B

′
t, where Bt = CtG

′
tR
−1
t+1

A.3. ISVB Importance Sampling. The variational distribution r(k+1)(σ,γ) can be
computed up to a proportionality constant,

r(k+1)(σ,γ)∝f0(γ)f0(σ)σ1.5T exp
{
−
∑
〈ut〉(k+1)/σ

− 1

2

∑[ 1

σB(p)

〈
1

vt

〉(k+1)

(y2t − 2yt〈F′tθt〉(k+1) + 〈(F′tθt)2〉(k+1))

− 2(
C(p)|γ|
B(p)

〈
1

vt

〉(k+1)

〈st〉(k+1) +
A(p)

σB(p)
)(yt − 〈F′tθt〉(k+1))

+ 2
C(p)|γ|A(p)

B(p)
〈st〉(k+1) +

C(p)2σ|γ|2

B(p)
〈s2t 〉(k+1)

〈
1

vt

〉(k+1)

+
A(p)2

σB(p)
〈vt〉(k+1)

]}
where f0(σ) and f0(γ) denote the prior distributions of σ and γ, respectively. Therefore, we
can update r(k+1)(σ,γ) with importance sampling as follows:

• For n in 1, ...,N , sample (σn, γn) ∼ l(σ,γ) where l(σ,γ) denotes the chosen proposal
distribution.

• Compute the weights

w(σn, γn) =
r(k+1)(σn, γn)

l(σn, γn)
(30)

The variational distribution r(k+1)(σ,γ) can be approximated by

r(k+1)(σ,γ)≈
∑N

n=1w(σn, γn)δ(σn,γn)(σ,γ)∑N
n=1w(σn, γn)

.(31)
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Similarly, for any function h(σ,γ),

E[h(σ,γ)]≈
∑N

n=1 h(σn, γn)w(σn, γn)∑N
n=1w(σn, γn)

.(32)

A.4. ISVB Closed Form Integrals. For notational simplicity, we omit the superscript
indicating the VB iteration.

If r(st) = N+(µst , σ
2
st), φ(·) is the probability density function of the standard normal

distribution, and Φ(·) is its cumulative distribution function, then

〈st〉= µst + σst
φ(µst/σst)

Φ(µst/σst)
(33)

〈s2t 〉= µ2st + σ2st + µstσst
φ(µst/σst)

Φ(µst/σst)
(34)

If r(vt) = GIG(λvt , χvt ,ψvt) and Kλ(·) is a modified Bessel Function of the second kind
with order λ, then

〈vt〉=
√
χvtKλvt+1(

√
χvtψvt)√

ψvtKλvt
(
√
χvtψvt)

(35)

〈
1

vt

〉
=

√
ψvtKλvt+1(

√
χvtψvt)

√
χvtKλvt

(
√
χvtψvt)

− 2λvt
χvt

(36)

If r(θt) = N(ms
t ,C

s
t ), then

〈F′tθt〉= F′tm
s
t(37)

〈(F′tθt)2〉= F′tC
s
tFt + (F′tm

s
t )

2(38)

Lastly, if r(σ,γ) is approximated with IS according to Equation (31), the following expec-
tations can be approximated using Equation (32);〈
C(p)2σ|γ|2

B(p)

〉
,

〈
1

σ

〉
,

〈
C(p)|γ|
B(p)

〉
,

〈
C(p)|γ|A(p)

B(p)

〉
,

〈
1

σB(p)

〉
,

〈
A(p)

σB(p)

〉
, and

〈
A(p)2

σB(p)

〉
.

Supplemental Material. The R code of Algorithms 1 and 2, as well as the Santa Cruz
IVT and ELI time series data used to estimate the 0.85 quantile IVT thresholds in Section 5
are available in the Supplemental Material.
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