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This article develops a flexible relationship between a measure of cre-
ative achievement, the Creative Achievement Questionnaire (CAQ), and the
brain network of subjects from a brain connectome dataset obtained using
a diffusion weighted magnetic resonance imaging (DWI) technique. Undi-
rected brain networks are often visualized using symmetric adjacency ma-
trices, with row and column indices of the matrix representing regions of
interest (ROI), and a cell entry signifying the estimated number of fiber bun-
dles connecting the corresponding row and column ROIs. Motivated by ear-
lier studies on the differences in the relationship between brain connectivity
networks and phenotypic traits for different groups of individuals, this arti-
cle aims to cluster individuals according to the shared relationships of their
brain networks and creativity. Additionally, scientific interest lies in identify-
ing ROIs in the human brain significantly associated with creative achieve-
ment in each cluster of subjects. To address these questions, we propose a
novel Bayesian mixture modeling framework with an undirected network re-
sponse and scalar predictors. The symmetric matrix coefficients correspond-
ing to the scalar predictors of interest in each mixture component are em-
bedded with low-rankness and group sparsity within the low-rank structure.
Being a principled Bayesian framework allows us to precisely characterize
the uncertainty in detecting significant network nodes in each cluster. Em-
pirical results in various simulation scenarios illustrate substantial inferential
gains of the proposed framework in comparison with competitors. Analysis
of the brain connectome data with the proposed model reveals interesting in-
sights into the brain regions significantly related to creative achievement in
each cluster of individuals.

1. Introduction. In recent years, network data is regularly encountered in disciplines
as diverse as neuroscience, genetics, finance and economics. Statistical models involving
networks are particularly challenging, especially due to the need for flexible formulations to
account for the topological structure of the network. This article is motivated by applications
where undirected networks along with scalar variables are available for multiple subjects.
More specifically, we focus on a brain connectome data obtained using a diffusion weighted
magnetic resonance imaging (DWI) technique. Using data from DWI, a human brain can be
segmented into different functional regions of interest (ROIs), simultaneously estimating the
number of fiber bundles connecting any two regions. Fiber connections in a human brain
can be viewed as constituting an undirected network expressed in the form of a symmetric
matrix, with row and column indices of the matrix corresponding to the regions of interest
(ROIs) and the (71, 72)th cell representing the estimated number of fibre bundles connecting
the jith and joth ROIs. Along with brain networks, information on a measure of creative
achievement, as well as behavioral variables like age and sex, are available for each subject
in the dataset of interest.

Keywords and phrases: Bayesian mixture modeling, Brain connectome data, Network clustering, Network
node selection, Spike and slab prior


http://www.imstat.org/aoas/
mailto:sg516@duke.edu
mailto:rguhaniy@ucsc.edu

The dataset offers interesting opportunities to characterize the relationship between brain
networks and brain related phenotypes for subjects included in the analysis. In fact, the num-
ber of fibers between ROIs varies across individuals, and perhaps features of the fibre con-
nection networks relate to traits of the individuals, such as their creativity. Motivated by such
neuro-scientific applications, this article develops Bayesian tools to establish a regression
relationship between a network response and scalar predictors. Our modeling endeavor pri-
marily aims at achieving the following inferential objectives simultaneously. First, we intend
to cluster subjects into groups, with members in each group sharing the same relationship
between the undirected network response and scalar covariates. An additional inferential in-
terest lies in identifying nodes in the network significantly impacted by each predictor of
interest in each cluster. In the context of the brain connectome application, the latter objec-
tive amounts to drawing inference on brain regions of interest (ROIs) significantly associated
with creative achievement in each cluster.

Rather than focusing on multiple network observations collected over different individuals,
an overwhelming literature in network data aims at understanding the topological structure
of a single network. Some notable examples in this direction include exponential random
graph models (Frank and Strauss, 1986), social space models (Hoff, Raftery and Handcock,
2002; Hoff, 2005, 2009) including random dot product graph (RDPG) models (Young and
Scheinerman, 2007) and stochastic block models (Nowicki and Snijders, 2001). In the con-
text of developing a regression/classification model with a network response, one possibility
is to extract a few summary measures from the network to reshape the network object into a
multivariate response (e.g., see Bullmore and Sporns, 2009 and references therein). Clearly,
the success of this approach is highly dependent on the choice of summary measures. Fur-
thermore, this kind of approach cannot identify the impact of specific nodes on the predic-
tor, which is of clear interest in our setting. A more closely related article by Wang et al.
(2017) exploits the relational nature of the network response to develop a Bayesian modeling
framework with a network response and scalar predictors. However, it assumes an identical
regression relationship between the network response and scalar predictors for every subject
and is not designed to detect network nodes significantly related to a scalar predictor.

Viewing networks as symmetric tensors, our inferential problem can also be formulated
under a regression framework with a symmetric tensor response and scalar predictors. To
this end, there are recent efforts to build regression models with a tensor response and scalar
predictors (Li and Zhang, 2017; Guhaniyogi, Qamar and Dunson, 2018) without enforcing
any symmetry constraint on the tensor response, and hence are not directly applicable in
our context. More recently, Sun and Li (2017) have devised a new class of models which
are equipped to incorporate a symmetry constraint for the tensor response in the modeling
framework. Their approach adds element-wise sparsity to the tensor coefficient for identify-
ing tensor cells related to the predictors, but does not specifically aim at drawing inference
on influential tensor nodes related to each predictor. A related approach to ours appears in
Guha and Rodriguez (2018), where a regression framework with a scalar response and a net-
work predictor is proposed. While Guha and Rodriguez (2018), as well as related methods in
the literature (Durante et al., 2018; Relién et al., 2019), treat the network as a predictor, we
treat it as the response. This difference in the modeling approach leads to a different focus
and interpretation. Network predictor regression focuses on understanding the change in a
biological outcome as the network image varies, while the network response regression aims
to study the change in the network as the predictors such as the creativity levels, age and sex
vary. In a sense, their difference is comparable to that between multi-response regression and
multi-predictor regression in the classical vector-valued regression context. Also, our frame-
work bypasses the need to invert any high dimensional matrix to draw Bayesian inference,
thereby adding substantial computational gain over Guha and Rodriguez (2018). Such a com-
putational advantage is crucial, especially in the analysis of networks with moderately large
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to a large number of nodes, when computation using the approach of Guha and Rodriguez
(2018) may become quite prohibitive. Moreover, Guha and Rodriguez (2018) tacitly assume
that the same set of network nodes influence the regression function in a similar manner for
every individual. While this assumption may hold true for some applications, it may appear
to be restrictive for a variety of neuro-scientific applications.

In fact, earlier literature in neuroscience provides evidence of differences in the relation-
ship between brain connectivity networks with phenotypic traits for different groups of indi-
viduals (Saad et al., 2012; Meskaldji et al., 2013, 2015). However, flexible statistical methods
for analyzing these differences have somewhat lagged behind the increasingly routine collec-
tion of such data. Existing literature has largely focused on scenarios where the undirected
networks have a similar relationship with the scalar covariates for all individuals, in regres-
sion (Guha and Rodriguez, 2018) as well as classification problems (Durante et al., 2018;
Relién et al., 2019), as opposed to addressing the general problem of developing a flexible re-
lationship between the network response and the corresponding predictors which accounts for
changes in different groups of individuals. Note that while the literature for network classifi-
cation can be extended to ascertain group differences from a sample of symmetric networks,
these methods pre-identify two groups having potentially different relationships between the
network response and the scalar predictors prior to the analysis. Instead, it would be of sci-
entific interest to formulate a modeling framework that is equipped to determine both the
number and constitution of clusters from the data. To this end, one can invoke the literature
on clustering of matrices or higher order tensor objects into multiple groups (Huang, Shen
and Buja, 2009; Lee et al., 2010; Chi and Lange, 2015; Chi, Allen and Baraniuk, 2017; Li
et al., 2014; Cao et al., 2013; Wu, Benson and Gleich, 2016; Sun and Li, 2017), though this
literature is more pertinent to unsupervised clustering of networks, as opposed to our interest
in the supervised clustering of undirected networks.

In this article, we propose a novel nonparametric Bayesian modeling approach to achieve
the aforementioned inferential objectives simultaneously. To be more specific, a Dirichlet
process (DP) mixture model is employed to the data, which leads to clustering of subjects
into groups signifying differential relationships between the network response and scalar
predictors. Further, the network valued coefficients corresponding to the predictors of interest
in each mixture component are assigned a node-wise sparsity structure using a Bayesian
spike-and-slab variable selection prior for identifying network nodes significantly associated
with these predictors. The Bayesian framework helps in characterizing the uncertainty related
to clustering as well as the uncertainty associated with identifying important network nodes
in each group.

The rest of the article progresses as follows. Section 2 provides a brief description of the
brain connectome data and the inferential objectives. Sections 3 and 4 describe the model
development and posterior computation, respectively. Empirical investigations of the model
with simulation studies and the brain connectome data analysis are presented in Sections 5
and 6, respectively. Finally, Section 7 concludes the paper with an eye towards future work.

2. Brain Connectome Dataset with the Creative Achievement Questionnaire (CAQ).
Our dataset of interest consists of brain connectome information of several subjects col-
lected using a brain imaging technique called Diffusion Weighted Magnetic Resonance Imag-
ing (DWI). It is openly available at https://neurodata.io/mri. Note that DWI is
a magnetic resonance imaging technique that measures the restricted diffusion of water in
tissues in order to produce neural tract images which are then pre-processed using the NDMG
pre-processing pipeline (Kiar et al., 2016; Kiar, Gorgolewski and Kleissas, 2017; Kiar et al.,
2017). In the context of DWI, the human brain is divided according to the Desikan atlas (De-
sikan et al., 2006) that identifies 34 cortical regions of interest (ROIs) in each of the left and
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FIG 1. QQ-plot of residuals corresponding to the linear regressions fitted on three representative cells (edges in
the brain network) with n = 73 subjects of the CAQ dataset.

right hemispheres of the human brain, implying 68 cortical ROIs in all. These 68 ROIs are
contained in 6 lobes each in the left and the right hemispheres, namely the temporal, frontal,
occipital, parietal, insula and cingulate lobes.

Using DWI, a brain network for each subject is constructed as a symmetric matrix with
row and column indices corresponding to different ROIs, and entries corresponding to the
estimated number of ‘fibers’ connecting pairs of brain regions. Thus, for each subject, rep-
resenting the brain network, is a symmetric matrix of dimension 68 x 68, with the (j, j2)th
off-diagonal entry being the estimated number of fibers connecting the j;th and the joth brain
ROIs and diagonal entries set to zero. For each subject, information on creativity as measured
by the Creative Achievement Questionnaire (CAQ) is also available, which we treat as a pre-
dictor of interest. Creative achievement can be perceived as the aggregate of creative products
of an individual during his/her lifetime (Carson, Peterson and Higgins, 2005). CAQ, in par-
ticular, is a self-reported measure of creative achievement that assesses achievement across
ten domains of creativity. To obtain the CAQ, each subject is given a questionnaire to com-
plete, which is then used to form a comprehensive measure of creative productivity across
ten domains, including visual arts, music, creative writing, dance, drama, architecture, hu-
mor, scientific discovery, invention and culinary arts. As a measure of creativity, CAQ has
been recognized in the literature to be both reliable and valid (Jung et al., 2010). Along with
the brain network information and CAQ, age and sex are also available as additional covari-
ates for n = 73 subjects in our dataset of interest. All subjects recruited in the study belong
to the age group of 18-29 years.

The main objective of the data analysis lies in supervised clustering of brain networks
from 73 subjects. The Bayesian mixture model of network objects proposed in this article
achieves clustering of subjects into different groups, each group having a different regression
relationship of the brain connectome with CAQ, age and sex. This model offers inference
on influential network nodes related to CAQ in different clusters, allowing for the scientific
understanding of the relationship between creativity and the brain connectome with char-
acterization of uncertainty in different groups/clusters of subjects. In addition, the network
mixture model automatically relaxes the normality assumption on the distribution of the net-
work response matrix cells. This is deemed appropriate for our data application, since after
fitting linear regression models independently for each cell of the network response matrix
with CAQ, age and sex as predictors, we observe non-normality in the standardized residuals
(refer to the QQ plots of the standardized residuals for three representative cells in Figure 1).
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3. Supervised Clustering of Undirected Networks: Model and Prior Formulation.
Fori=1,...,n,let Y; € Y € RP*P denote the weighted network response with p nodes,
x; = (1, ..., Tim) be m predictors of interest and z; = (21, ..., z;;)" be [ auxiliary predic-
tors corresponding to the ith individual. Mathematically, this amounts to Y'; being a p X p
matrix, with the (j1, j2)-th entry of Y'; denoted by y; (;, ;,) € R. In this paper, we focus on
networks that contain no self relationship, i.e., y; ;, j,) =0 when j1 = ja, and are undirected
(Wi, (j1,j2) = Yi,(ja,jr))- In the context of the data described in Section 2, CAQ is the predictor
of interest, whereas age and sex are considered auxiliary predictors.

We assume that the relationship between x; and the response varies in every cell (j1, jo2).
In contrast, an auxiliary predictor explains the response in every cell identically. Since Y'; is
symmetric with 0 diagonal entries, it suffices to build a probabilistic generative mechanism
for the upper triangular vector y,; = (y, e 11 <71 < j2 < p) of dimension g = ( U This
is a common practice in the undirected relational data modeling (Hoff, 2005). Moreover
working with y; is fundamentally different from the exercise of vectorizing the upper triangle
of the matrix Y;, since every element Yij of y, keeps a tab on the cell index j = (j1, j2) of
the entry, which will be crucial in the modeling development described below.

To develop a sufficiently flexible relationship between y; and predictors x; and z;, we
propose to model the conditional distribution of y, | ;, z;,02, denoted by f(y,|z;,zi,0?)
as a mixture model given by,

(1)
f(y’i‘xi7z’i7 /N (yz‘lfyo—i_Zﬁ xl8+127521870 I ) dG(ﬁl'} 718m7707'717' 77l)

s=1 s=1
where 1 denotes a g—dimensional vector with each entry as 1, ~g is the intercept and
Y1,.--,71 € R are coefficients corresponding to the auxiliary predictors. Here, Ny (-, -) stands
for a g—variate normal distribution and the ¢g—dimensional parameter 3, is envisioned as
the upper triangular vector of a p X p symmetric matrix By = ((Bs,j)>’ s=1,..,1,ie.,
B, = (Bs, 'E 1 < 71 < j2 < p). Equation (1) can be seen as a mixture of undirected network
response regression models with the mixing distribution given by G(-).

The random probability measure G(-) is taken to be a discrete distribution of the form
G= Zh lwhéA , with atoms A} = (87 1., 81 s Yo 1o Vi s -+ Vi) ~ Go. Here, Go is
the base measure and 0 Al corresponds to the Dirac-delta function at A’ 5- Such a speci-
fication contains a broad class of species sampling priors, including the Dirichlet process
(DP) prior and the Pitman-Yor process prior through the popular stick breaking construction
(Sethuraman, 1994). In this work, we adopt the stick breaking construction to jointly model
cluster inclusion probabilities. More precisely, for h=1,..., H — 1, and a > 0,

2)
H-1

w1 =0}, wa=0v5(1 —v]),..,wg_1 =VF_, H , Wi = H (1 —wvyp), vy ~ Beta(1,a),
h=1
where H is an upper bound on the number of clusters. As H — oo, this choice leads to the
classical Dirichlet process prior (Ishwaran and James, 2002). The parameter « is crucial in
determining the number of clusters and is assigned a Gamma(aq, by ) prior distribution.
From (1) and the discrete prior on GG imposed by the stick breaking construction, the
conditional distribution of y, can be written as

(3) f(yi|wiazi7 thN yz‘lf}/[)h+Z/65hmls+1zfyshz’b&a I)
s=1 s=1
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Note that the mixture components signify different relationships between the network re-
sponse and scalar predictors in [ different clusters. Introducing a cluster index c¢; €
{1,..,H} corresponding to the individual i, we obtain y,|x;, z;, ¢i,0% ~ Ny(y; 175 ., +
13t zis + S0 BE o, Tis, 0%), with P(c; = h) = wp, for h = 1,..., H. This condi-
tional independence structure, given the cluster indices of the individuals, facilitates compu-
tation, while still allowing a flexible dependence structure among the different components
marginally. Additionally, inference on cluster indices determines the number of clusters and
the constitution of each cluster.

Next, we turn to identifying network nodes in different clusters significantly associated
with the predictors of interest. For this purpose, we first introduce a low-rank structure of the
coefficient B? s, corresponding to the sth predictor of interest in the hth cluster as

(4) sh,J ZAShTushjl {(:})]ﬁh h:l,,H’ 3:17“777@7 1§]1<]2Sp

Here s, 1 = (u S})L s g h) L) € R, for k=1,...,p, is a collection of R-dimensional h-

th mixture spe01ﬁc latent variables, one for each node and each predictor of interest, such
that w p, , corresponds to node k and predictor z, in the h-th mixture component. Here,
As b € {0,1} is the binary inclusion variable determining if the rth summand in (4) is rele-
vant in model fitting in the hth mixture component. Drawing intuition from the random dot
product graph models (Young and Scheinerman, 2007), we can interpret the latent vectors
Ugs h1,---,Uspp as the positions of the nodes in a latent space, with the strength of the as-
sociation th being controlled by the inner product or the angular distance between the
vectors. We expect the matrix of coefficients By ;, (which itself can be regarded as describ-
ing a weighted network) to exhibit transitivity effects, i.e., we expect that if the interactions
between regions j; and j2 and between regions j2 and j3 are both influentially related to the
sth predictor of interest, the interaction between regions j; and j3 is likely to be influential
as well (e.g., see Li et al., 2013). The structure proposed in (4) is commonly used to model
social and biological networks because of its ability to capture these transitive effects. The
assumed low-rank structure on B ’1‘ By Bfn’ ;, additionally offers parsimony by reducing the
number of estimable parameters from mH q to mH Rp, typically with R < p.

To infer on the network nodes significantly related to the predictors of interest in each
cluster, we assign a spike-and-slab prior on node specific latent variables as below

&)

o~ {N w;{(f SIS L G Ber(Can), Mon~ IW (D), G~ Beta(a,b).
Here M, is a covariance matrix of order R x R. The parameter (, j corresponds to the
probability of the nonzero mixture component in (5). Importantly, & ; = 0 implies that the
kth network node in the response is not related to the sth predictor in the Ath cluster of sub-
jects. It needs to be emphasized that the model is invariant to the rotation of latent variables
U p k'S, and hence these latent variables are not directly identifiable. However, our inferential
objective of identifying the set of nodes {k : us 5, , = 0} which are not significantly related to
the sth predictor is achievable since a 0-valued latent vector is invariant under rotation. The
parameters g 5,y p,, -+ 7,5, are assigned standard normal distributions a-priori. We assign
a hierarchical prior s, ~ Ber(ms py), Tsnr ~ Beta(1,77), n > 1, and o2 is assigned
an IG(ae,b,) prior. With the construction specified as above, the form of the base mea-
sure G can be expressed as Go(Aj|0?) = Hizo G0,1(7:7h|02) I, GOQ(,B;,L\JQ), where
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Goq1(v:,l0%) = N(0,1), and Ggyg(,@f;h\oQ) is expressed as follows:

R

p R p
GO,Q(B:,h‘Oz) - / H 7I'<us,h,k) H 71-()‘s,h,r) H d)\s,h,r H dus,h,k-
k=1 r=1 k=1

r=1

The model and prior specification allow clustering of individuals into a number of groups
less than or equal to H. In each group, the network response and the scalar predictors share
separate regression structures, and thus subjects belonging to different clusters may have
different sets of network nodes significantly related to the predictors of interest, as desired.

4. Posterior Computations. While fitting our proposed mixture model, we adopt a
moderately large choice of H. Note that, according to Rousseau and Mengersen (2011),
a similar choice of prior as ours is effective in the deletion of redundant mixture compo-
nents not needed to characterize the data. If H is chosen to be too small, then none of the
clusters will be unoccupied, and the analysis should be repeated for a larger H. Since all
parameters except « have full conditional posterior distributions lying in standard families
of distributions, Gibbs sampling with Metropolis is implemented to empirically estimate the
posterior distributions. Details of the Markov chain Monte Carlo algorithm are presented
in Appendix A. We have implemented our code in R (without using any C++, Fortran or
Python interface) on a cluster computing environment with three interactive analysis servers,
56 cores each with the Dell PE R820: 4x Intel Xeon Sandy Bridge E5-4640 processor, 16GB
RAM and 1TB SATA hard drive.

To assess inference from the proposed mixture model, we look at (i) the point estimate of
cluster membership indices denoted by ¢, (ii) a heatmap of the posterior probability of any
two samples belonging to the same cluster, P(c; = ¢;j|y) (which provides a measure of the
uncertainty associated with the clustering), and (iii) a histogram of the posterior distribution
of the number of identified clusters. The point estimate ¢ is obtained by minimizing (using
iterative componentwise optimization) the expected loss function discussed in Lau and Green
(2007),

© FO=3 Y 16=0) | - Pla=cly)|.

i=1 j=i+1

where the ratio w; /wo controls the relative loss of incorrectly clustering or separating a
pair of samples. In our illustrations we set w; /wg = 1. The posterior inference is based on
10000 suitably thinned samples from the MCMC sampler after a burn-in of 10000 samples.
The time to compute 20000 MCMC iterations with V' = 20 and V' = 50 nodes (both with
H =15 and n = 100) took around 5.31 hours and 20.83 hours, respectively. All simulation
examples and the real data example show very good convergence of the MCMC chain with
fairly uncorrelated post burn-in MCMC iterates. The average effective sample size (ESS) for
coefficients corresponding to the predictors of interest are provided for the simulation studies
and the real data analysis.

5. Simulation Studies. This section studies the relative performance of our proposed
network response mixture model (NRMM) vis-a-vis its competitors. To study all competi-
tors under various data generation schemes, we simulate the response y, depending on the
predictors x; and z; from the finite mixture model given by

H() m l

(7 il zi~ Y wnoNAYGpo+ Y Binotis + 1> Vinozis: 001y,
h=1 s=1 s=1



TABLE 1
Table presents specifications of Cases 1-7 in the simulation study. The parameter Hy refers to the true number of
mixture components in the Bayesian network response mixture model (NRMM). Different cases also present
various combinations of the number of network nodes p, sample size n, network node sparsity (1 — o), true
(Rgy) and fitted dimensions ( R) of the node specific latent variables.

Cases p n Ry, R (1-—m) Ho
1 20 100 2 5 0.6 3
2 20 100 2 5 0.3 3
3 20 100 3 5 0.6 4
4 50 100 2 5 0.6 3
5 50 100 2 5 0.3 3
6 50 100 3 5 0.6 2
7 20 100 2 5 0.6 1

where 35,0, h =1,..., Hy are mixture specific coefficients for x;s. The parameter v,
is the hth mixture specific intercept and 'Yik,h,()’ ey vi no are the hth mixture specific coeffl-
cients corresponding to z;1, ..., 2;1, respectively. We set m = 1 and [ = 2 for the simulations,
which mimics the real data application scenario. Since m = 1, the subscript s will be omitted
from variables related to the predictor of interest hereon. The predictors x; , z;; and z;o are
simulated 1.i.d. from N(0,1).

To simulate the coefficients 52,0’ we draw p latent variables wy, i, o, €each of dimension R,
from a mixture distribution given by

3) Wh ko0 ~ TONR, (Whm,g, Ujr o o) + (1= 70)00; k € {1,....p},

where (1 — mp) is the probability of any w1 o being zero in the truth, h = 1,..., Hy, and is
referred to as the network node sparsity. We consider nine simulation cases as following:

Cases 1-7: In Cases 1-7, we assume 3}, is the upper triangular vector of a symmetric
matrix B}, o, i.e., B}, o= (B;:,o,j : j1 < j2)". The j = (j1,J2)th element (j1 < jo) of Bj
corresponding to the h-th mixture component is constructed using a low-rank approach

Zoj =u), 1.0Wh,j2,05 accounting for the interaction between the jith and joth network

nodes, for all h =1, ..., Hy. The 7 different cases are obtained by varying the number of true
mixture components (Hg), number of network nodes (p), sample size (n), true dimension
of latent variables (I2,), fitted dimension of latent variables (R?) and network node sparsity
(1 —mp), as summarized in Table 1.

Case 8: In Case 8, we consider Hy = 2, w19 = 0.4,w3 0 = 0.6, and 37 ; and 33  are simu-
lated using two different strategies as following:

Simulating (37 o: The j = (j1,j2)th element (j; < j2) of B is constructed using a low-

rank approach Bi" 0§ u’LjhOul,jQ,o, where the sparsity (1 — 7p) in generating the latent

variables is set at 0.6.

Simulating (33 (: Randomly set (1 — 7o) = 0.6 proportion of elements in 33 , to be zero, and
the rest are simulated from N (0,1).

Case 9: Case 9 uses an identical construct as described in Case 8, except that (1 — 7p) is set
at 0.3.

The intercept 'y;" h,0> h=1,...,Hy, s =1,2 in each mixture component is drawn from
N(—2,2), while o is fixed at 0.5.

In all cases, each component of the mean vector wy, ,, 4 is randomly generated to lie be-
tween (—2,2) and the standard deviation uy, ,, 4 is set randomly at a number between 0.3 and
2.

Notably, Cases 1-7 represent the true model being included in the class of fitted models.
In contrast, Cases 8 and 9 show departure of the true model from the fitted models. This will
allow assessment of the performance of our approach under model mis-specification.
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5.1. Choice of Hyper-parameters. All simulation studies and the real data analysis are
presented with the hyper-parameters chosen as a = 1,0 =1,a, = 1,b, =1 and v = 20. The
choice of a, = b, = 1 ensures that the prior on o? is sufficiently flat with an infinite mean.
The choice of a = b = 1 leads to a-priori uniform distribution on the number of network nodes
related to each predictor in each cluster. Setting v = 20 implies that the prior distribution of
M}, is concentrated around a scaled identity matrix. Since the model is invariant to rotations
of the latent positions wy, , the prior on wy ’s should ideally be invariant under rotation.
Centering M j, around a matrix that is proportional to the identity satisfies such a requirement.
Finally, we choose a, b, following Escobar and West (1995) such that the mean number of
clusters is approximately 2.5 a priori. Since in most applications of the mixture model, the
true number of clusters is small, our choice of a, and b, present a reasonable prior belief.
Moderately perturbing hyper-parameters yields practically identical inference, as described
in Section 5.4.

5.2. Competitors and Metrics of Evaluation. NRMM is fitted in all simulations with
H = 15 mixture components. As a competitor to our model, we employ the network response
regression (NRR), which is essentially our proposed framework with only one mixture com-
ponent, i.e., H = 1. Thus NRR assumes (a) the same set of network nodes is significantly
related to the predictors of interest for every individual, and, (b) normality for the distribution
of each cell in the network response. Comparison with NRR will highlight any relative ad-
vantages of NRMM when these assumptions do not hold true. Additionally, we compare our
approach with a frequentist higher order low-rank regression (HOLRR) method (Rabusseau
and Kadri, 2016) popularly used in machine learning.

The competitors are assessed based on their ability to estimate the true regression mean

. H l
function Eoly;|x;, zi] =Y ;2 who (1787,1’0 +1> ., Vi ho%is T P ﬁ:,h,oxis>- In par-
ticular, we compute the mean squared error (MSE) of estimating the true regression mean
12

function over all data points, given by niq Yo | Eolys| i, zi] — E[gﬂa;, z;]||*, where

E [gﬂ:n\l, z;| denotes the posterior mean of the regression function from a competing method.
While MSE offers an evaluation of the point estimation by competitors, the uncertainty in es-
timating the true regression mean function is measured using the coverage and length of 95%
credible intervals obtained from NRMM and NRR. We do not report coverage and length of
95% credible intervals from HOLRR since they are not readily available.

In addition to reporting the posterior distribution of the number of clusters and the un-
certainty associated with clustering through P(c; = c;|y), we also evaluate the ability of
the models to identify clusters using the Adjusted Rand Index (ARI) (Hubert and Arabie,
1985) of the posterior cluster configurations with respect to the known cluster configuration.
The ARI evaluates the agreement in cluster assignment between two cluster configurations.
It ranges between —1 and 1, with larger values indicating more agreement between cluster
configurations.

5.3. Simulation Results. All simulation examples show fairly uncorrelated post burn-in
samples for drawing posterior inference. In fact, the effective sample size for 10000 post
burn-in samples in simulation cases 1 — 9 are found to be 8006, 7985, 7942, 7235, 7451,
7324, 8106, 8195 and 7839, respectively. Table 2 and Figure 2 provide insights into the
estimates of the cluster structure and associated uncertainty by displaying the discrepancy
between the true and estimated number of clusters and heat maps of posterior probabilities
of pairs of subjects belonging to the same cluster. To facilitate visualization in Figure 2,
subjects are ordered according to their true cluster configurations in the heatmap. In all cases,
the model successfully recovers the true cluster structure, with little uncertainty associated
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TABLE 2
The second column presents ARI values to assess the clustering accuracy of NRMM. The next two columns
present True Positive Rates (TPR) and False Positive Rates (FPR) in identifying network nodes related to the
predictor of interest in NRMM. Mean Squared Error (MSE) for NRMM, NRR and HOLRR are presented for
cases 1-9. The lowest MSE in each case is boldfaced. Coverage and length of 95% credible interval are provided
for NRMM and NRR only, since the corresponding values for HOLRR are not readily available.

NRMM Competitors
Case | ARI | TPR | FPR NRMM | NRR | HOLRR
MSE 0.02 0.40 0.08
1 0.99 | 0.87 | 0.08 | Coverage of 95% CI 0.89 0.02 -
Length of 95% CI 0.54 0.22 -
MSE 0.03 0.94 0.14
2 0.99 | 0.90 | 0.05 | Coverage of 95% CI 0.96 0.05 -
Length of 95% CI 0.58 0.44 -
MSE 0.14 0.32 0.44
3 098 | 0.71 | 0.00 | Coverage of 95% CI 0.69 0.29 -
Length of 95% CI 0.64 0.39 -
MSE 0.01 0.07 0.09
4 0.99 | 0.95 | 0.02 | Coverage of 95% CI 0.99 0.15 -
Length of 95% CI 0.47 0.15 -
MSE 0.04 0.06 0.11
5 0.99 | 0.93 | 0.02 | Coverage of 95% CI 0.93 0.44 -
Length of 95% CI 0.55 0.34 -
MSE 0.05 0.30 0.17
6 0.99 | 1.00 | 0.00 | Coverage of 95% CI 0.99 0.10 -
Length of 95% CI 0.61 0.28 -
MSE 0.12 0.008 0.40
7 0.97 | 092 | 0.00 | Coverage of 95% CI 0.86 0.97 -
Length of 95% CI 0.37 0.07 -
MSE 0.10 1.30 0.13
8 0.93 - - Coverage of 95% CI 0.84 0.07 -
Length of 95% CI 0.51 0.36 -
MSE 0.17 0.54 0.19
9 0.95 - - Coverage of 95% CI 0.74 0.09 -
Length of 95% CI 0.70 0.39 -

with the estimator. The most challenging cases among all are cases 8 and 9, which correspond
to model mis-specification. Even with model mis-specification, there is a minor deterioration
in the performance, with ARI dropping to around 0.93 in case 8 and 0.95 in case 9. It appears
from Figure 2 that the clustering performance improves nominally with decreasing sparsity
of ﬁ%, the impact of sparsity being a little more prominent under model mis-specification
(compare cases 8 and 9). The uncertainty in clustering for a few individuals also appears to
be higher in case 7, where the true data generating model sets Hy = 1.

The posterior distributions of the number of identified clusters are also presented in the
form of barplots in Figure 3. Consistent with the story presented so far, the posterior distri-
bution of the number of clusters appears to concentrate around the true number of clusters
Hy in all cases except case 8, where the model overestimates the number of clusters. No-
tably, case 8 corresponds to model mis-specification with a higher node sparsity parameter
(1 — ). As the node sparsity parameter (1 — ) decreases, the posterior distribution of the
number of clusters concentrates around Hg even under model mis-specification (case 9). The
results also reveal a somewhat bi-modal structure of the posterior distribution of the number
of clusters under cases 3 (with Hy = 4) and 7 (with Hy = 1). Importantly, out of H assigned
clusters, most are not populated in each case, justifying the choice of H = 15 in each case.

Table 2 presents mean squared errors (MSE) for estimating the regression mean function
under each of the competitors. Further, coverage and average length of 95% credible intervals
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FIG 2. Plots showing uncertainty in estimating clusters in simulation cases 1-9. Boldfaced horizontal and vertical
lines indicate the true clustering.

are provided to assess the uncertainty quantification from NRMM and NRR. A few interest-
ing observations emerge from Table 2. Comparing cases 1 and 2 (and also comparing cases
4 and 5), it turns out that NRMM yields marginally lower MSE with increased values of
the sparsity parameter (1 — 7). Results from cases 8 and 9 present a similar trend, even
under model mis-specification. Also, keeping n fixed and increasing p moderately does not
have any significant impact on MSE. Increasing the number of true mixture components Hy
has an adverse effect on the performance of NRMM, which becomes evident by comparing
results from case 3 with cases 1 and 2. Additionally, in most cases, NRMM shows higher
coverage levels, often close to nominal coverage, compared to NRR. The less than nominal
coverage in cases 8 and 9 can be attributed to model mis-specification, whereas the under-
coverage in case 3 could be due to the larger number of mixture components, which presents
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FIG 3. Plots showing the posterior distribution of the number of clusters in simulation cases 1-9.

obstacles to model estimation. Note that under case 7, only one mixture component is used
to simulate the data, and so the data favors NRR over NRMM. Consequently, NRR yields
considerably smaller MSE and close to nominal coverage in this case. Under all other cases
with Hy > 1, NRR demonstrates inferior performance to NRMM with a higher MSE and
considerable under-coverage of the mean function. HOLRR offers a higher MSE compared
to NRMM under all simulation scenarios.

Note that inference on each cluster is not readily available from the mixture model due
to the clusters being not identifiable. Thus, to draw inference on which network nodes are
influential in each cluster, we fix the cluster membership indicator c¢; for the ith sample at ¢;
(the estimated cluster indicator) and run the model once more without updating the cluster
membership indicator ¢; at any MCMC iteration. With the clusters remaining fixed in every
iteration, it is possible to draw inference on the influential network nodes in each cluster. In
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TABLE 3
ARI, MSE, coverage of 95% CI and length of 95% CI for NRMM under Case 2 with different hyper-parameter
combinations are provided.

Combinations (\)a=1,b=5,r=20 (it)a=5b=1v=20 (iii)a=1,b=1,v=>50
ARI 0.99 0.99 0.99
MSE 0.08 0.03 0.05
Coverage of 95% CI 0.93 0.96 0.95
Length of 95% CI 0.61 0.57 0.50

particular, the kth node is deemed influential for the hth cluster, if the empirically estimated
posterior probability of the event {wy, 1, # 0} exceeds 0.5. As demonstrated in Figures 2 and
3, for cases 1-7, our proposed model correctly identifies each cluster in every simulation, and
hence inference on influential network nodes in each cluster as mentioned above can be di-
rectly compared to the truly influential nodes in each cluster for these simulation cases (i.e.,
under no model mis-specification). In this regard, Table 2 presents the True Positive Rates
(TPR) and False Positive Rates (FPR) of identifying influential network nodes over all clus-
ters. The results indicate high TPR and low FPR in all cases, except in case 3, which shows
a comparatively lower TPR than the rest, but still a very low FPR. This observation may be
attributed to a higher number of true clusters, where the model detects some influential nodes
as uninfluential, resulting in decrease of TPR. Overall, the simulation studies indicate good
performance of NRMM.

5.4. Sensitivity Analysis. To check the sensitivity of inference to the choice of hyper-
parameters, we consider a representative case (case 2) and re-analyze the same simulated data
with different combinations of hyper-parameters. In particular, we consider three different
hyper-parameter settings for case 2 and compare the inference with the results on case 2
presented earlier. The three combinations are given by, (i) a = 1,b = 5,v = 20; (ii) a =
5,b=1,v=20; (iii)) a = 1,b =1, = 50. Notice that (i) presents a low prior mean of 0.2 for
each £, ; encouraging less number of activated nodes a-priori, whereas (ii) presents a higher
prior mean of 5 for £}, j, which encourages a higher number of activated nodes. Additionally,
(iii) presents a variation of the hyperparameter v in the Inverse-Wishart distribution of M.
Table 3 shows the posterior mean of ARI in case 2 under the three different hyper-parameter
settings. We additionally present MSE, coverage and length of 95% credible intervals for
these hyper-parameter combinations and compare these results with the result presented for
case 2 in Table 2. Of all the parameters, only variations in a and b seem to have an effect in the
inferences, but this effect is found to be very small. More specifically, when the prior mean
of the number of activated nodes is small (combination (i)), MSE is found to be a little higher
than what is presented in Table 2 under case 2. Similarly, the coverage is found to be a little
lower and length a little higher as compared to case 2 in Table 2. In contrast, combinations (ii)
and (iii) yield practically identical results when compared to case 2 in Table 2. The clustering
accuracy is found to be unaffected by the perturbation in hyper-parameters, with all three
combinations resulting in similar values of ARI. The results are also found not to be sensitive
at all to moderate perturbation of hyper-parameters a, and b,.

6. Findings from CAQ Brain Connectome Data. This section reports the analysis of
the CAQ brain connectome dataset described in Section 2. We fit NRMM with H = 20, with
the same set of hyper-parameters used in the simulation studies. NRMM, when applied to
the CAQ dataset, identifies 7 clusters with 25, 13, 6, 6, 7, 8 and 8 subjects included in the
clusters, respectively. Similar to simulation studies, the uncertainty in clustering is measured
by the posterior probability of pairs of subjects lying in the same cluster, which is displayed
through a heatmap in Figure 4(a). The figure indicates three distinct cluster assignments, with
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F1G 4. CAQ Data: Figure 4(a) shows the uncertainty in estimating the clusters. Figure 4(b) shows the barplot
corresponding to the posterior distribution of the estimated number of clusters. The inference is presented for
H =20.

TABLE 4
MSPE, average coverage of 95% predictive intervals and average length of 95% predictive intervals for the
seven clusters are provided.

Cluster size 25 13 6 6 7 8 8
MSE 066 043 028 092 0.64 0.83 054
Coverage of 95% CI 095 097 097 094 095 094 0.96
Length of 95% CI 3.02 302 3.03 303 304 303 3.02

a somewhat higher degree of uncertainty among the pairs lying outside these three clusters.
The posterior distribution of the number of clusters (see Figure 4(b)) demonstrates some
bimodality with modes at 6 and 7. Importantly, there is no posterior probability of having
more than 9 clusters, suggesting that H = 20 is appropriate for this analysis.

In the absence of any ground truth, we compare performances of NRMM and NRR with re-
spect to the Posterior Predictive Loss Criterion statistic (Gelfand and Ghosh, 1998), which is
calculated as D = G+ P, such that a model corresponding to a lower value of D is preferred.
The G values, representing a measure of model fit, turn out to be 98163.8 and 101738.7 for
NRMM and NRR, respectively. The P values, indicative of model complexity, are 101722
and 101489.2 for NRMM and NRR, respectively. Thus, the overall model fitting statistic
D shows a better performance of NRMM compared to NRR. HOLRR, being a frequentist
method, is not included in this comparison. The effective sample size averaged over all cells
of the network matrix coefficient of interest turns out to be 8270, indicating fairly uncorre-
lated post burn-in samples.

Similar to the simulation studies, we supply the model with the estimated cluster indica-
tors and run it again to draw further inference on the influential nodes in the seven clusters.
Notably, Cluster 3 includes individuals who are all male. Hence analysis of Cluster 3 does
not include gender as a variable. To assess the model fit in each cluster, we calculate the mean
squared prediction error (MSPE), average coverage of 95% predictive intervals and average
length of 95% predictive intervals averaged over all cells of the network response matrix
and all subjects in a cluster. Table 4 depicts satisfactory point prediction along with very
good characterization of predictive uncertainty. Referring to the presence of non-normality
in the error distributions discussed in Section 2, it is instructive to see if the mixture mod-
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FIG 5. Plots of age coefficient in each cluster. The 95% posterior credible interval is denoted by the interval
between the two dotted lines.

eling framework justifies the normality assumption on the error distribution in each cluster.
To check this, cell-by-cell Kolmogorov-Smirnov tests are conducted by comparing the dis-
crepancy between the posterior mean of residuals and the normal distribution. Out of 2278
network matrix cells in each cluster, residuals in 51%, 62%, 18%, 96%, 91%, 89% and 97%
cells in clusters 1 — 7, respectively, show statistically significant normality. Therefore, the
normality assumption on the errors in each cluster is reasonable except for Cluster 3.

Figure 5 displays posterior densities of the age coefficients for all seven clusters. Except
Cluster 2, all other age coefficients turn out to be significant. Digging a bit deeper, we find that
Cluster 2 shows significantly lower variability in the ages of the subjects included compared
to the other clusters, which explains the age coefficient being statistically insignificant in this
cluster. Also, except Cluster 5, the posterior means of age coefficients are found to be negative
in all other clusters, implying a negative association between creativity and age. Similarly, in
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all six clusters where gender is added as a variable, it is found to be significantly affecting
the creativity (see Figure 6).

To assess which nodes are related to creativity (as measured by CAQ) in each cluster, we
run the analysis in each cluster 10 times and report the nodes which have a posterior probabil-
ity of being active greater than 0.5 for at least five of the replications. Figure 7 records the 10,
40, 30, 37, 41, 49 and 15 ROISs significantly related to CAQ for the 7 clusters of individuals. A
considerable proportion of ROIs detected in each cluster are part of the frontal, cingulate and
temporal lobes in both hemispheres. This finding concurs with results presented previously
in the literature. The frontal lobe has been scientifically associated with divergent thinking,
problem solving ability, spontaneity, memory, language, judgement, impulse control and so-
cial behavior (Stuss et al., 1985; Razumnikova, 2007; Miller and Milner, 1985; Kolb and
Milner, 1981). Finkelstein, Vardi and Hod, 1991 also report de novo artistic expression to be
associated with the frontal and temporal regions.

7. Conclusion and Future Work. This article is motivated by the need to develop a
flexible relationship between the brain network and creativity, as measured by CAQ, from
subjects in a brain connectome dataset. Viewing the brain image for each subject as an undi-
rected network, we propose a novel Bayesian mixture of regression models with a network
response and scalar predictors. Our proposed framework clusters subjects into groups, with
individuals in the same group sharing an identical relationship between the network response
and scalar predictors. A spike-and-slab variable selection prior is assigned on the network
node specific latent variables in each mixture component to deliver inference on influential
network nodes significantly related to a specific predictor of interest. Empirical investigations
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with simulation studies validate our network response mixture modeling (NRMM) frame-
work and yield superior inference over relevant competitors. The NRMM framework, when
applied to a real brain connectome dataset, finds clusters of individuals sharing similar re-
lationships between their brain networks and creativity, identifying brain ROIs significantly
related to creativity in each cluster.

As part of future work, we envision investigating the performance of our model with a
more flexible non-local prior structure on the node specific latent variables. We also plan to
extend our framework with each mixture component fitting a generalized linear model with
a symmetric network/tensor response and scalar predictors.

APPENDIX A: POSTERIOR FULL CONDITIONALS

Let 7y, = {i : ¢; = h}, nj, denote the cardinality of Z, and y, = (y;:ci=h)", h =
1,..., H. Further assume J, = {j € J : js, = k,for some s; }. The full conditionals are in
closed form and hence allow a Gibbs sampling procedure to sample posteriors. They are
listed as the following:

Z’ieIh 1T(ylle”:1 :,;Lmisflzizl ’Y:,hzis)/OIQ 1
(nng)/o?+1 > (nng)/o®+1 |°

. 7§7h\—~N h=1,..,H.
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