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Abstract

For many applications pertaining to neuroimaging, social science, international re-

lations, chemometrics, genomics and molecular-omics, datasets often involve variables

which are best represented in the form of a multi-dimensional array or tensor, which

extends the familiar two-way data matrix into higher dimensions. Rather than vec-

torizing tensor-valued variables prior to analysis which results in loss of inference, new

methods have emerged developing regression relationships between variables with ei-

ther tensor-valued response(s) or predictor(s). Bayesian approaches, in particular, have

shown great promise in applications pertaining to tensor regressions. A remarkable fea-

ture of fully Bayesian approaches is that they allow flexible modeling of tensor-valued

parameters in the regressions involving tensor variables and naturally offer characteri-

zation of uncertainty in the parametric and predictive inferences. This paper provides

a review of some relevant Bayesian models on tensor regressions developed in recent

years. We divide methods according to the objective of the analysis. We begin with

tensor regression approaches with a scalar response and a tensor-valued covariate, dis-

cuss both parametric and nonparametric modeling options and applications in this

framework. We then address the problem of making inference with a tensor response

and a vector of covariates, with applications including task related brain activation

and connectivity studies. Finally, we offer discussion on Bayesian models involving a

tensor response and a tensor covariate. Discussion of each model is accompanied by

available results on its posterior contraction properties, laying out restrictions on key

model parameters (such as the tensor dimensions) to draw accurate posterior inference.
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Introduction

Of late, scientific applications in a variety of disciplines encounter datasets where one

or more variables are multidimensional arrays or tensors, which are higher dimensional

analogues of two dimensional matrices. For example, tensor objects are encountered in

molecular-omics profiling with high dimensional data involving multiple subjects, tissues,

fluids or time points within a single study [26]. Similarly, in functional magnetic resonance

imaging (fMRI) or electroencephalogram (EEG) data, multidimensional arrays are common

with different dimensions signifying time points, brain regions or frequencies [12]. Again,

there can be time varying tensor valued objects in international relational data with dimen-

sions signifying countries, time points, and diplomatic actions [25]. Scientific objective in

such applications often pertains to developing regression relationships with either a tensor-

valued response or a predictor.

A few early approaches consider reshaping tensor variables to high dimensional vectors

before employing them to regression analysis [67]. Reshaping tensors introduces massive

dimensional unstructured vectors in the regression framework. Applying ordinary Bayesian

variable selection (see stat05788) or shrinkage priors on coefficients of high dimensional

predictors causes computational havoc. Additionally, this may result in loss of spatial infor-

mation in the tensor cells. An alternative approach within the regression framework envisions

tensor variables as high dimensional functional variables to take into account the spatial in-

formation in them. Several penalized functional regression approaches have emerged in the

last decade or so, mainly with functional predictors [20, 48, 68, 30, 16, 14, 61, 49], though

many of them may face computational issues with large tensors due to incorporating ex-

pensive cross validation procedures for choosing the tuning parameters. Other important

approaches include two stage procedures which first conduct a dimension reduction step

with a tensor variable, and then fit a model using lower dimensional summaries of the tensor

variable (fit) [7]. Similar to the reshaping approach, two stage approaches may also lose

inference due to somewhat ignoring the inherent spatial information in the tensor variables.
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Rather than summarizing the tensor objects in one way or another, novel approaches have

appeared to directly incorporate a tensor valued response or predictor in regression frame-

works, mostly in the frequentist paradigm. To this end, [68] propose a generalized linear

model framework involving a scalar response and a tensor predictor in which the tensor pre-

dictor coefficient is assumed to have a low-rank Cannonical Parallel Factor (CP/PARAFAC)

decomposition [33], which is a higher dimensional analogue to factor modeling in two dimen-

sions, formally introduced later. [39] extend the framework to incorporate a more general

Tucker decomposition of the tensor regression parameter. Both these models allow for the

incorporation of sparsity-inducing regularization for the tensor parameter. Various exten-

sions of such tensor regression frameworks have appeared to address relevant practical issues.

For example, a more efficient estimation algorithm of the tensor parameter is proposed in

[63], while [60] propose regularization using the total variation penalty on the tensor pa-

rameters and argue for it as a more suitable option when the tensor predictor is a piecewise

smooth image with jumps and edges. There is also some literature on regressions with a

tensor response and scalar predictors. For example, [44] consider an approach with a tensor

response and scalar predictors. While they assume a low-rank structure on the tensor coef-

ficient, no sparsity is enforced on the tensor coefficient. [38] propose an alternative strategy

following the literature on envelope-based regression models [11], that utilizes a generalized

sparsity principle to exploit the redundant information in the tensor response, by seeking

linear combinations of the response that are irrelevant to the regression. In the same vein,

[55] develop an approach that assumes low-rank decomposition of the tensor coefficient and

imposes element-wise sparsity on individual cells of the tensor coefficient, thus offering vari-

able selection in the tensor response regression paradigm. In the frequentist literature of

tensor on tensor regression, [46] offer theoretical results under convex regularization with

the tensor nuclear norm, though computation of tensor nuclear norm is NP-hard [55, 13].

In comparison, there is a limited Bayesian literature on tensor regressions. Bayesian

frameworks in tensor regressions have shown great promise in effective modeling of tensor

valued parameters with careful construction of priors that naturally induces sparsity within

and across tensor margins and provides model based estimation of tuning parameters. In

addition, the need for valid measures of uncertainty on parameter (predictive) estimates is
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crucial, especially in settings with low or moderate sample sizes, which naturally motivates

a Bayesian approach. This article provides a review of the most relevant Bayesian modeling

approaches to tensor regression, which have mostly appeared in the last few years. We

divide the article into a few sections according to the modeling objective. We begin with

the review of tensor regression approaches with a scalar response and a tensor covariate.

Such settings are typically useful in neuroimaging studies which usually record resting state

fMRI and brain related phenotype data over a number of subjects. The main objective of

such studies pertains to understanding relationships between different brain regions with the

phenotype of interest. We discuss the parametric tensor linear model under this setting,

provide an overview of novel multiway structured shrinkage priors specifically developed to

draw inference, and then extend our discussion to the class of Bayesian non-parametric tensor

regression models. Theoretical results laying out conditions for posterior consistency have

also found brief mention in this section.

Another important area of Bayesian tensor regression pertains to regression settings with

a tensor response and either a vector or a tensor valued predictor. An application of a tensor

response with a vector predictor is found in task related brain activation studies. In a typical

task-related fMRI experiment, the brain is scanned at small intervals while a subject per-

forms a series of tasks [32, 31, 62, 66, 64]. The objective is to identify brain regions activated

by an external stimulus. The Bayesian tensor response regression framework having brain

scans as the tensor response with task-related predictors directly fits into drawing inference

in single- and multi-subject brain activation studies. The review discusses tensor response

regression models and the development of shrinkage priors on tensor parameters to draw effi-

cient posterior inference. We extend the discussion on Bayesian tensor response regression to

Bayesian mixed effect tensor response regression models which find an important application

in the joint estimation of brain activation and connectivity for multi-subject studies. Con-

nectivity signifies the interaction between brain regions to assess how information is shared

across brain regions. We focus upon functional connectivity that seeks to determine brain

regions with similar neuronal activity. We will additionally offer a brief discussion on some

important theoretical developments in these models laying out sufficient conditions on the

tensor dimensions, sparsity, and magnitudes of cell entries to achieve optimal estimation of
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tensor coefficients.

As part of the review, we briefly mention some of the recent literature on Bayesian

tensor-on-tensor regression. This regression framework is directly motivated by a plethora of

important application, including temporal modeling of international relational data [25], the

prediction of fMRI from EEG data [12] and the prediction of gene expression across multiple

tissues from other genomic variables. We begin by reviewing tensor on tensor regression

models which assume that the response and predictor tensors have the same number of

modes. We also discuss a more general framework that allows response and predictor tensors

to have different number of modes [41]. Finally, we briefly review extensions of tensor on

tensor regressions with a time varying tensor response. While the review draws motivations

for various approaches mainly from neuro-scientific applications, the methods reviewed in this

article lend themselves to the analysis of datasets emerging from various other applications.

Figure 1 shows an outline of our review.

Figure 1: Outline of the Bayesian methods for tensor regressions reviewed in this article.
Methods are divided according to the objectives of the analysis.

Notations

We begin by introducing essential notations related to tensors which will appear re-

peatedly in different sections. A tensor B ∈ ⊗Dd=1Rpd , referred to as a D-way tensor or

D-mode tensor, is a multidimensional array whose (v1, ..., vD)th cell is denoted by B(v1,...,vD),

1 ≤ v1 ≤ p1,...,1 ≤ vD ≤ pD. When D = 2, a tensor corresponds to a matrix. A D-

way outer product between vectors bd = (bd,1, . . . , bd,pd)′, 1 ≤ d ≤ D, is a p1 × · · · × pD
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(a) CP/PARAFAC decomposition

(b) Tucker decomposition

Figure 2: Visualization of CP/PARAFAC decomposition of rank-R and Tucker decomposi-
tion of ranks R1, R2, R3 for a three dimensional tensor B.

tensor denoted by B = b1 ◦ b2 ◦ · · · ◦ bD with the entry in the (v1, .., vD)th cell given by

B(v1,...,vD) =
∏D

d=1 bd,vd . Define a vec(B) operator as one that stacks elements of this tensor

into a column vector of length
∏D

d=1 pd. From the definition of outer products, it is easy to

see that vec(b1 ◦ b2 ◦ · · · ◦ bD) = bD ⊗ · · · ⊗ b1. As a higher order generalization of matrix

singular value decomposition, the Tucker decomposition of a D-way tensor B ∈ ⊗Dd=1Rpd is

often considered. The Tucker decomposition [57, 33] can be expressed as

B =

R1∑
r1=1

R2∑
r2=1

· · ·
RD∑
rD=1

λr1,...,rDb
(r1)
1 ◦ b(r2)2 ◦ · · · ◦ b(rD)

D , (1)

where b
(rd)
d is a pd dimensional vector, 1 ≤ d ≤ D, often referred to as the tensor margins

and Λ = (λr1,...,rD)R1,...,RD
r1,...,rD=1, referred to as the core tensor. If one considers {b(rd)d ; 1 ≤ rd ≤

Rd, 1 ≤ d ≤ D} as “factor loadings” and λr1,...,rD to be the corresponding coefficients, then

the Tucker decomposition may be thought of as a multiway analogue to factor modeling.

A rank-R CP/PARAFAC decomposition emerges as a special case of Tucker decomposition

(1) when R1 = R2 = · · · = RD = R and λr1,...,rD = λrI(r1 = r2 = · · · = rD = r) [22, 33].

Figure 2 provides a pictorial view of PARAFAC and Tucker decompositions for D = 3.

A mode-d fiber of a D-way tensor is obtained by fixing all dimensions of a tensor except

the d-th one. For example, in a matrix (equivalently a 2-way tensor), a column is a mode-1

6



fiber and a row is a mode-2 fiber. A d-th mode vector product of a D-way tensor B and

vector a ∈ Rpd , denoted by B×̄da, is a tensor of the order of p1×· · ·×pd−1×pd+1×· · ·×pD,

whose elements are the inner product of each mode-d fiber of B with a. The Tucker product

[57] between a D-way tensor A of dimensions p1 × · · · × pD and matrices B1, B2,..,BD of

dimensions m1 × p1,...,mD × pD respectively, denoted by A × {B1, ...,BD}, is defined as a

tensor C such that vec(C) = (BD⊗ · · ·⊗B1)vec(A). The Tucker product essentially maps

a p1 × · · · × pD tensor to a m1 × · · · ×mD tensor. For D = 2, it follows that C = B1AB
′
2.

For two tensors A and B of dimensions p1 × · · · × pD1 ×m1 × · · · ×mD3 and m1 × · · · ×

mD3× q1×· · ·× qD2 respectively, the contracted product between the two tensors is a tensor

of dimension p1× · · · × pD1 × q1× · · · × qD2 , whose (v1, ..., vD1 , u1, ..., uD2)th element is given

by
∑m1

i1=1 · · ·
∑mD3

iD3
=1A(v1,...,vD1

,i1,..,iD3
)B(i1,..,iD3

,u1,...,uD2
). Finally, we use || · || and || · ||∞ to

denote the L2 and L∞ norms, respectively, for both vectors and higher order tensors.

1 Bayesian Tensor on Scalar Regression Model

1.1 Parametric Bayesian Tensor on Scalar Regression Model

Neuroscientific studies often involve 3-dimensional resting state fMRI scans, along with

age, gender and other behavioral variables and brain related phenotypes for a number of

subjects [40, 34]. The phenotypes of interest can be continuous, binary (e.g., presence or

absence of a neuronal disease) or categorical (e.g., different levels of a specific disorder).

In these applications, the inferential interest lies in predicting the brain related phenotype

based on the fMRI scan (treated as a tensor object) as well as from behavioral variables.

Further, it is of specific interest to identify the regions in the brain (alternatively, the cells

in the tensor predictor) that are predictive of the response. Let y ∈ Y denotes a response

variable, with z ∈ X ⊂ Rp and X ∈ ⊗Dd=1Rpd being the scalar and tensor predictors,

respectively. Depending on the nature of the response (continuous, binary, categorical or

count), a generalized tensor regression model is proposed in these contexts as below

E[y|X, z] = g−1y (µ+ z′γ + 〈X,B〉), 〈X,B〉 = vec(X)′vec(B), (2)
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where gy(·) is an appropriate link function, γ is a p × 1 coefficient for scalar predictors

and B ∈ ⊗Dd=1Rpd is the tensor coefficient corresponding to the measured tensor predictor

X. [19] consider the tensor linear regression model with gy(·) as the identity link function,

whereas [6] discuss binary tensor regression model with zero-inflated logit link.

Without imposing any additional structure on the coefficient tensor B, its estimation

involves
∏D

d=1 pd parameters. To reduce the number of free parameters, a rank-R PARAFAC

decomposed structure is commonly adopted for B [68, 19]. Under the assumed rank-R

PARAFAC decomposition for B, model (2) requires estimating R
∑D

d=1 pd as opposed to∏D
d=1 pd parameters for the unstructuredB. To appreciate the extent of dimension reduction

offered by the PARAFAC decomposition, notice that with a tensor predictor of dimension

30× 30× 30, the unstructured B requires estimating 27000 parameters, whereas the rank-R

PARAFAC structure involves only 90R free parameters. In many applications, R ∼ 5 − 15

seems sufficient, the number of free parameters ranges between a couple of hundreds to

couples of thousands. As pointed out by [19], such a reduction in the number of parameters

facilitates computationally efficient estimation of B. However, the imposed decomposition

induces a nonlinear relationship between tensor margins and cell entries in B. In particular,

the v = (v1, ..., vD)th cell entry of B is given by B(v1,...,vD) =
∑R

r=1

∏D
d=1 b

(r)
d,vd

. As one is

interested in identifying geometric sub-regions of the tensor in which coefficients are not

close to zero, with the remaining elements being very close to zero, one wonders whether

such a dramatic dimension reduction retains sufficient flexibility. We will return to this

question in due course with sufficient theoretical justification.

Although the tensor coefficient B is identifiable, [19] comments on non-identifiability of

tensor margins b
(r)
d , d = 1, .., D, r = 1, ..., R. Constructing a prior distribution on the tensor

margins after adding necessary identifiability restrictions turns out to be inefficient. Instead,

[19] propose a new class of prior distributions on tensor margins to draw efficient posterior

inference on B (rather than on tensor margins) ignoring any identifiability constraints, and

observe rapid convergence for the tensor parameter B. To elaborate, the multiway Dirichlet

generalized double Pareto (M-DGDP) prior introduced in [19] induces two types of shrinkage

in estimating B. Shrinkage across ranks (or summands in the PARAFAC decomposition)

takes place in an exchangeable way, with global scale τ ∼ Ga(aτ , bτ ) adjusted in each rank
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as τr = φrτ for r = 1, . . . , R, where Φ = (φ1, . . . , φR) ∼ Dirichlet(α1, . . . , αR) encourages

shrinkage towards lower ranks in the assumed PARAFAC decomposition. In addition,W dr =

diag(wdr,1, . . . , wdr,pd), d = 1, . . . , D and r = 1, . . . , R are margin-specific scale parameters

for each component. The hierarchical margin-level prior is given by

b
(r)
d ∼ N

(
0, (φrτ)W dr

)
, wdr,vd ∼ Exp(λ2dr/2), λdr ∼ Ga(aλ, bλ). (3)

Collapsing over element-specific scales, notice that b
(r)
d,vd
|λdr, φr, τ

iid∼ DE(λdr/
√
φrτ), 1 ≤ vd ≤

pd. Further, integrating over λdr, b
(r)
d,vd
|φr, τ can be shown to induce a Generalized Double

Pareto shrinkage prior on the individual margin coefficients, which in turn is a Bayesian

analogue to an adaptive LASSO penalty [3] (see stat07543.pub2) and imparts shrinkage

on tensor margins. Flexibility in estimating {b(r)d ; 1 ≤ d ≤ D} is accommodated by modeling

within-margin heterogeneity via element-specific scaling wdr,vd . Common rate parameter λdr

shares information between margin elements, encouraging shrinkage at the local scale. The

prior achieves shrinkage across ranks as well as within a margin, and hence is coined as a

multiway shrinkage prior. Figure 3 shows a pictorial depiction of the prior. The choice of

hyper-parameters α1, ..., αR, aτ , bτ crucial to impose adequate tail behavior of B a apriori

(see [19] for more details). Later, [6] prove that the imposed prior on B(v1,..,vD) has a thicker

tail than the ordinary Bayesian LASSO [43] shrinkage prior. Advantage of the M-DGDP

prior is that the posterior full conditionals of most parameters are in closed forms, leading

to simple Gibbs sampling updates and rapid convergence [19].

An important question posed earlier is that if the dimension reduction step using the

low-rank factorization and subsequent prior structure on tensor margins limit flexibility

in estimating the tensor parameter B. To this end, [19] offer theoretical results proving

consistency of the proposed model in estimating the regression function. The consistency

of Bayesian models and estimators are determined using the notion of posterior consistency

[15, 2, 4]. Let f(y|X,B) denotes the density of y, and assume that the true data generating

model also belongs to the class of tensor regression models with density given by f(y|X,B0).
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(a) M-DGDP prior shrinkage across ranks

(b) M-DGDP prior shrinkage within a rank

Figure 3: Multiway Dirichlet Generalized Double Pareto (M-DGDP) prior imposes exchange-
able shrinkage across ranks for the model to opt for a lower rank structure of B. Within
every rank, the elements in the tensor margin are assigned shrinkage priors for adequate
estimation of B.
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Define a Kullback-Leibler (KL) neighborhood around the true tensor B0 as

Bn =

{
B :

1

n

n∑
i=1

KL(f(yi|X i,B
0), f(yi|X i,B)) < ε

}
.

Further, let πn and Πn denote prior and posterior densities of B with n observations,

Figure 4: Visualization of posterior convergence. The yellow point presents the true parame-
ter and blue ball presents a neighborhood of radius ε around the truth. Posterior consistency
roughly means as n increases, most of the posterior mass concentrates inside the blue ball
for any choice of ε. In the limit (as n→∞ ), the posterior probability inside the ball tends
to 1, for any choice of ε. In the study of posterior contraction rate, ε is considered to be a
decreasing function of n, εn → 0. The task remains to find the fastest rate of decay to 0 for
εn as a function of n. The choice of the neighborhood has profound effect on the posterior
convergence property of a model.

respectively. [19] have established posterior consistency by showing that the following result

holds for the proposed tensor regression model with gy(·) as the identity link

Πn (Bcn)→ 0 under B0 a.s. as n→∞. (4)

Figure 3 further clarifies the concept of posterior consistency. [19] have adopted a framework

where the tensor dimensions pd,ns are considered to be increasing functions of the sample

size n. Such a framework allows investigating the maximum rate at which pd,ns can grow

to maintain (4). It has been shown in [19] that posterior consistency of the model can be

maintained with
∑D

d=1 pd,n log(pd,n) = o(n) (see Theorem 2 in [19]). Notably, this condition
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requires
∑

d=D pd,n to grow sub-linearly with sample size n, though the number of cells∏D
d=1 pd,n in the tensor can possibly grow at a rate much faster than the sample size n.

Hence, the model ensures desirable performance for tensor covariates with a massive number

of cells, even in presence of moderate sample size (refer to [19] for a more detailed discussion).

The theorem also assumes that B0 admits a rank-R PARAFAC decomposition and Mn =

1
n

√
n∑
i=1

||X i||22 grows slowly as a function of n. Later, [17] have established a much stronger

“near optimal” convergence rate under similar assumptions. Specifically, [17] have shown

that the risk function

1

n

n∑
i=1

EB0

∫
KL(f(yi|B0), f(yi|B))πn(B|{yi,X i}ni=1) (5)

is bounded above by ε2n where εn can be taken as n−1/2 upto some log(n) factor. Importantly,

[56] also showed decay of (5) to 0 at an “optimal” rate, with an alternative specification of

prior distributions on the tensor margins, though the prior specified may appear to be less

conducive to full scale Bayesian computation.

Figure 5: Application to the ADHD data. Left panel is the regularized estimate overlaid
on a randomly selected subject. Right panel is a selected slice of the regularized estimate
overlaid on the template. Picture courtesy [68].

To demonstrate practical application of tensor regression framework developed in this sec-

tion, a brief analysis of tensor regression is presented in a neuroimaging data. The dataset

records resting state fMRI and T1-weighted images of 776 subjects, either normal, or suf-

fering from attention deficit hyperactivity disorder (ADHD). Information on demographic

and behavioral variables for the subjects are also available. A binary tensor regression with

gy(·) as the logit link has been fitted to the data considering binary indicators for subjects as
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responses and brain images as tensor covariates. The analysis reveals two regions of interest

significantly associated with the ADHD: left temporal lobe white matter and the splenium

that connects parietal and occipital cortices across the midline in the corpus callosum (see

Figure 5); both these findings are consistent with earlier studies. In fact, prior studies have

revealed prominent volume reductions in the temporal and frontal cortices in children with

ADHD compared with matched controls [53]. An earlier study has also recorded a reduced

size of the splenium in the corpus callosum being responsible for ADHD [58]. We refer to

[56] for more details on the data and analysis.

1.2 Nonparametric Tensor on Scalar Regression

In estimating regression relationships between a scalar response and a tensor predictor,

the bias-variance tradeoff is a central issue, both from theoretical and practical perspectives.

In the parametric generalized tensor model discussed in Section 1.1, the function class that

the model can represent is critically restricted due to its linearity in the mean function and

the low-rank constraint, implying that the variance error is low but the bias error is high

if the true functional relationship between yi and X i is either nonlinear or full rank. An

alternative approach is to fit the nonparametric tensor regression model to the data [67, 27]

given by

yi = f(X i) + εi, εi
iid∼ N(0, σ2). (6)

Here f(·) can represent a wide range of functions and the bias error can be close to zero,

though at the expense of flexibility due to the notorious high dimensionality associated with

estimating (6). In order to mitigate the burden of high dimensionality, [29] propose a new

class of additive-multiplicative nonparametric regression (AMNR) models. AMNR employs

low-rank decomposition for both the tensor predictor X and the function f(·), and hence is

referred to as a doubly decomposing nonparametric tensor regression framework.

To elaborate, [29] propose decomposing the tensor predictor X =
∑S

r=1 ξsx
(s)
1 ◦ · · · ◦x

(s)
D ,
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ξ1 ≥ ξ2 ≥ · · · using a rank-S PARAFAC decomposition, with each x
(s)
d a unit vector. Define

fAMNR(X) =
R∑
r=1

S∑
s=1

ξs

D∏
d=1

f
(r)
d (x

(s)
d ). (7)

fAMNR(·) can be conceptualized as a rank-R PARAFAC decomposition of f(·) in an infinite

space. In fact, any function in a Sobolev space of order β can be approximated to any

degree by a function of this form, with each f
(r)
d (·) belonging to a Sobolev space of order β

[21]. To estimate fAMNR(·), each local function f
(r)
d (·) is assigned a Gaussian process prior

distribution (see stat04542).

Interestingly, AMNR is interpretable as a piecewise non-parametrization of the tensor

model proposed in (2) with gy(·) as the identity link. Assuming B and X to have rank-R

and rank-S PARAFAC decompositions respectively, 〈X,B〉 =
∑R

r=1

∑S
s=1 ξs

∏D
d=1〈b

(r)
d ,x

(s)
d 〉.

Thus AMNR replaces 〈b(r)d ,x
(s)
d 〉 by a local function f

(r)
d (x

(s)
d ). [29] generalize a few earlier

approaches on nonparametric tensor regression, such as [52], which use the same vector

input for every f
(r)
d (·) and restrict S = 1. Other prominent approaches in the context of

nonparametric tensor regression includes the Tensor Gaussian Process (TGP) model [67],

which is essentially a GP regression model that reshapes a tensor into a high-dimensional

vector and takes the high dimensional vector as a predictor. While tensor GP is found

to demonstrate satisfactory practical performance, AMNR derives additional advantage by

offering theoretical support for the class of nonparametric tensor regression models discussed

below.

Suppose f̂n(·) is the Bayes estimator for estimating f(·) with sample size n. Let the

metric ||g||n for any function g(·) represents the quantity 1
n

∑n
i=1 g(X i)

2. Assume that the

true data generating model is given by (6) with the true regression function f ∗(·) belonging

to the space of Sobolev functions of order β. [29] mentioned two key assumptions in the

theoretical development of AMNR: (a) the true data generating regression function f ∗(·)

and functions generated from the fitted Gaussian process priors have the same degree of

smoothness; (b) f ∗(·) satisfies a rank additivity condition which essentially implies that for

any tensor X∗ admitting a rank-R∗ PARAFAC decomposition X∗ =
∑R∗

r=1 ξ̄rx̄
(s)
1 ◦ · · · ◦ x̄

(s)
D ,

one has f ∗(X∗) =
∑R∗

r=1 f
∗(ξ̄rx̄

(s)
1 ◦ · · · ◦ x̄

(s)
D ) [29]. Rank-additivity has been crucially used
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in developing multivariate additive model analysis, see [23], [47]. Assume that f ∗ admits

a rank S∗ decomposition in the sense of (7). [29] observed different convergence rates of

estimating f ∗ by f̂n, depending on whether S∗ is finite or infinite. When S∗ is finite, assuming

S = S∗, [29] proved that E||f̂n− f ∗||2n decays at the rate of n−2β/(2β+maxDd=1 pd). On the other

hand, when S∗ is infinite, the convergence rate deteriorates by a factor due to a finite rank

approximation of f ∗, details of which can be found in [29].

Before concluding this section, we would like to make an important observation. No-

tice that the existing literature on Bayesian tensor regressions assumes low-rank PARAFAC

decomposition either on the tensor parameter (Section 1.1) or on the regression function

(Section 1.2). There is a scope of imposing a more flexible and expressive Tucker decomposi-

tion structure on them. While the difference seems to be a minor one, it can have profound

effects, especially on neuro-scientific applications. For example, the freedom in the choice of

unequal Rds d = 1, .., D is essential when the tensor data are skewed in dimensions, which is

pretty common in EEG, with the temporal dimension often exceeding the spatial dimension.

Besides, the Tucker formulation may often be handy to achieve parsimony for datasets with

small to moderate sample sizes [39]. Considering these facts, we expect to see in future a

more flexible Bayesian modeling with Tucker decomposition in the tensor regression contexts.

2 Bayesian Tensor Regression Models with a Tensor

Response

While regression with a tensor predictor and a scalar response is able to deliver inference

on many scientific problems in neuroscience and other disciplines, a variety of applications

also motivate models with a tensor response and a vector or a tensor predictor. For example,

detecting brain regions activated by an external stimulus or condition is probably the most

common objective in fMRI studies [66]. Neuronal activation in response to a stimulus occurs

in milliseconds and cannot be observed directly. However, neuronal activation is followed

by the metabolic process which increases blood flow and volume in the activated areas, and

can therefore be measured by fMRI. During the course of a task-related fMRI experiment, a

series of brain images are acquired over multiple time points while a subject performs multiple
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tasks, yielding three dimensional tensor responses over time points. The tensor response at

each time point is presumed to be associated with the task related predictors and it is of

scientific interest to delineate the nature and region of activation. Building a regression

framework involving the tensor response and task related predictors is naturally motivated

from such scientific problems. We also refer to applications in electroencephalography (EEG)

studies, where voltage values are measured from numerous electrodes placed on the scalp

over time. The resulting data is a two-dimensional matrix where the readings are both

spatially and temporally correlated. These matrix responses are often regressed on a set

of scalar predictors (e.g., if a subject is alcoholic or not) to identify their variation with

the predictors. Similarly, tensor on tensor regressions have found applications including the

prediction of fMRI from EEG data [12], prediction of gene expression across multiple tissues

from other genomic variables [45] and temporal dynamics of international relational data

[25], to name a few. In what follows, we provide a brief review of Bayesian models for both

vector on tensor and tensor on tensor regressions.

2.1 Bayesian Vector on Tensor Regression Models

[18] formulate the Bayesian vector on tensor regression model, mainly from the motivation

of a single-subject brain activation study, though the framework can be naturally adapted

to other data application contexts. Let Y i = ((Yi,v))p1,..,pDv1,...,vD=1 ∈ ⊗Dd=1Rpd denote a tensor

valued response for the ith sample, where v = (v1, ..., vD)′ represents the position of cell v in

the D dimensional array of cells. Let xi = (x1,i, ..., xm,i)
′ ∈ X ⊂ Rm be the m-dimensional

measured vector predictor. Assuming that both response Y i and predictors xi are centered

around their respective means, the proposed tensor response regression model of Y i on xi

is given by

Y i = Γ1x1,i + · · ·+ Γmxm,i +Ei, (8)

for i = 1, ..., n. Γk ∈ ⊗Dd=1Rpd , k = 1, ..,m, is the tensor coefficient corresponding to the

predictor xk,i. Ei ∈ ⊗Dd=1Rpd represents the error tensor corresponding to the ith sample.

Flexibly modeling the distribution of Ei allows developing the correlation structure between

samples and among the cells of Y i. In the context of single-subject brain activation studies,
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the ith tensor response represents the brain image observed at time i. In this specific context,

the error tensor Ei is assumed to follow a component-wise AR(1) structure (see stat03473)

across i, vec(Ei) = κvec(Ei−1)+vec(ηi), where κ ∈ (−1, 1) is the autocorrelation coefficient,

and ηi ∈ ⊗Dd=1Rpd , with each cell in ηi following N(0, σ2/(1 − κ2)). This ensures both

computational simplicity and stationarity in the AR(1) structure.

To tackle the ultra-high dimensional modeling pursuit in estimating the Γks, [18] propose

a rank-R PARAFAC decomposition of each Γk, i.e., Γk =
∑R

r=1 γ
(r)
1,k ◦ · · · ◦ γ

(r)
D,k, where

γ
(r)
d,k = (γ

(r)
d,k,1, ..., γ

(r)
d,k,pd

)′ is a pd dimensional vector, 1 ≤ r ≤ R, 1 ≤ d ≤ D and k = 1, ..,m.

Although the M-DGDP prior constructed on tensor margins in [19] becomes an obvious

choice, [18] observe that a straightforward application of the M-DGDP prior on Γk leads

to less accurate uncertainty estimation, perhaps due to less desirable tail behavior of the

posterior distribution of the Γv,k parameters. Instead, [18] propose a new multiway stick

breaking shrinkage (M-SB) prior on the tensor coefficients Γk. The proposed multiway

shrinkage prior bears close connection with the M-DGDP prior, the main difference being

how it achieves shrinkage across ranks. More specifically, set τr,k = φr,kτk, as the scaling

specific to rank r = 1, ..., R. Effective shrinkage across ranks is achieved in [18] by adopting

a stick breaking construction for the rank-specific parameters φr,ks, φr,k = ξr,k
r−1∏
l=1

(1 − ξl,k),

r = 1, ..., R − 1, and φR,k =
R−1∏
l=1

(1 − ξl,k), where ξr,k
iid∼ Beta(1, αk). In contrast with the

exchangeable shrinkage offered by the M-DGDP prior across ranks, the M-SB prior imposes

increasing shrinkage across ranks, favoring a low-rank solution. The global scale parameter

is modeled as τk ∼ IG(aτ , bτ ). The prior specification is completed by specifying priors

on tensor margins with local scale parameters W dr,k = diag(wdr,k,1, ..., wdr,k,pd) to achieve

adequate shrinkage,

γ
(r)
d,k ∼ N(0, τr,kW dr,k), wdr,k,k1 ∼ Exp(λ2dr,k/2), λdr,k ∼ Ga(aλ, bλ), k1 = 1, ..., pd.

[18] develop theoretical results providing more insights into the model and the proposed

prior. Similar to Section 1.1, the theoretical framework of [18] assumes the number of

predictors as well as dimensions of tensor margins as functions of the sample size n (hence

using a subscript n). [18] derive restrictions on the growth of mn and pd,ns as functions of n
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to ensure asymptotically consistent estimation of Γ.

Let Γ be a mn× p1,n×· · ·× pD,n tensor whose kth slice is given by Γk. Let the true data

generating model be given by (8), with Γ0 as the true tensor coefficient. Since the shrinkage

prior on Γ assigns zero probability at point zero, the exact number of nonzero elements of

Γ is always mn

∏D
d=1 pd,n. A meaningful comparison with the number of nonzero elements

sn of the true tensor coefficient Γ0 is made by considering s̃n, the number of elements of

Γ exceeding in absolute value a threshold an, which will be specified later. In other words,

only elements with absolute values larger than an will be treated as significant and counted

towards non-zero entries.

Define Bn =
{

At least s̃n absolute values of Γ are greater than an = ε∏D
d=1 pd,n

}
, Cn ={

Γ : ||Γ− Γ0||2 > ε
}

and An = Bn ∪ Cn. [18] show that Πn(An) → 0, a.s., when n → ∞

under the assumptions given below:

(a) Γ0
k assumes a rank-R0 PARAFAC decomposition, Γ0

k =
∑R0

r=1 γ
0(r)
1,k ◦ · · · ◦ γ

0(r)
D,k , for k =

1, ..,mn, with R > R0 and ||γ0(r)
d,k || <∞;

(b) ||Γ0
k||0 = sn, with sn log(pn) = o(n);

(c) s̃n = O(sn);

(d) mn

∑D
d=1 pd,n log(pd,n) = o(n);

(e) There exists λ0, λ1 > 0 s.t. emin(X ′∇R
−1X∇) ≥ nλ20 and emax(X

′
∇R

−1X∇) ≤ nλ21,

for any set ∇ ⊆ {1, ...,mn}, where X∇ is a submatrix of X = [x′1 : · · · : x′n]′ with

columns corresponding to the indices ∇. R is an n × n matrix with var(Ev) = R,

Ev = (E1,v, ..., En,v)′.

Importantly, the result proves accurate estimation of Γ, also ensuring that the true number

of nonzero elements in Γ0 and the number of elements identified as nonzero in Γ (i.e., above

the threshold an) are of the same order. In fact the L2 metric between Γ and Γ0 is stronger

than the KL-divergence metric used in Section 1.1. Similar to Section 1.1, assumptions on

pd,n and mn allow the number of tensor cells to grow much faster than the sample size n

without disturbing the desirable posterior consistency of the model.
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Building on (8), [54] develop the mixed effect tensor response regression model with

an application to modeling the joint estimation of brain activation at the voxel level and

brain connectivity at the lobe level for multi-subject fMRI studies. Let Y i,g,t be the tensor

of observed fMRI data in brain region g for the ith subject at the tth time point. Y i,g,t is

observed in the form of a tensor with dimensions p1,g×· · ·×pD,g. To simultaneously measure

activation due to stimulus at voxels in the gth brain region and connectivity among G brain

regions, [54] employ an additive mixed effect model with a tensor-valued fMRI response and

activation-related predictors x1,i,t, ..., xm,i,t ∈ R,

Yi,g,t = Γ1,gx1,i,t + · · ·+ Γm,gxm,i,t + di,g + Ei,g,t, (9)

for subject i = 1, . . . , n, in region g = 1, . . . , G, and time t = 1, . . . , T . Γk,g (k = 1, ...,m)

represents activation due to the kth stimulus at the gth brain region, and hence multiway

stick breaking priors are independently used for each Γk,g to determine the nature of ac-

tivation. Additionally, the connectivity between different regions is ascertained by jointly

modeling di,gs with a Gaussian graphical LASSO prior [59] given by,

di = (di,1, .., di,G)′ ∼ N(0,Σ−1), i = 1, ..., n,

p(σ|ζ) = C−1
∏
g<g1

[DE(σgg1|ζ)]
G∏
g=1

[
Exp(σgg|

ζ

2
)

]
1Σ∈P+ , (10)

where P+ is the class of all symmetric positive definite matrices and C is a normalization

constant. The covariance σ = (σgg1 : g ≤ g1) is a vector of upper triangular and diagonal

entries of the precision matrix Σ. Using properties of the multivariate Gaussian distribution

(see stat05651,stat05654), a small value of σgg1 stands for weak connectivity between

regions g and g1, given the other regions. In fact, σgg1 = 0 (g < g1) implies that there

is no connectivity between regions g and g1, given the other regions. In practice, a double

exponential prior on the off-diagonal entries will a priori favor shrinkage. An efficient Markov

chain Monte Carlo algorithm has been developed for estimation of model parameters, even in

presence of high resolution fMRI images, and post burn-in MCMC samples are processed to

determine activated voxels in a brain region and connectivity between different brain regions.

19



(a) Brain connectivity map among lobes
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Figure 6: An example of brain activation and connectivity estimated jointly from the Balloon
Analog Risk-Taking Task (BART) Experiment data.

All details related to implementation and inference on (9) can be found in [54].

[54] analyze data collected in a study examining the fMRI scans of individuals undergoing

a test which introduces risk-taking scenarios. This study is known as the Balloon Analog

Risk-Taking Task (BART) Experiment [50], which requires participants to make active de-

cisions, and whose design has been found to correlate with real-world risk behavior such

as alcohol use, cigarette and drug use, gambling, stealing, unsafe sex [36, 35, 37] and trait

measures of risk-taking propensity like sensation seeking, trait impulsivity [36] and trait psy-

chopathy [28]. [54], in particular, employed the model (9) for the joint inference on voxel level

brain activation and connectivity between lobes related to the risk taking task. Figures 6b

shows the estimated map of activated voxels which shows localized activation mainly in the

frontal lobe. This localized pattern of activation in the frontal lobe while performing the

higher-order processing task of risk assessment is consistent with various previous studies [5].

Figure 6a shows estimates for the significantly nonzero partial correlations between lobes.

This figure also indicates that the frontal lobe plays an important role in this task showing

nonzero partial correlations with the insula, caudate, putamen, and occipital lobes, placing

the frontal lobe at the center of a connective network. This agrees with earlier experiments

suggesting that the frontal lobe plays a role in the assessment of risk [42]. We emphasize that

the Bayesian model shows rapid convergence of the MCMC chain and efficiently analyzes

fMRI data with more than 11, 000 voxels.
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2.2 Bayesian Tensor on Tensor Regression Models

In the realm of Bayesian modeling with a tensor response and a tensor predictor, one

of the significant earlier contributions comes from [25]. Let Y i be a tensor of dimension

p1 × · · · × pD for sample i = 1, ..., n, with the corresponding predictor X i of dimension

q1 × · · · × qD. [25] proposes the multilinear regression model given by

Y i = X i × {C1, ...,CD}+Ei, (11)

where C1, ..,CD are matrices of dimensions q1 × p1,...,qD × pD respectively, and × refers to

the Tucker product. The error tensors Ei are i.i.d with dimensions q1 × · · · × qD, and are

assumed to follow a tensor normal distribution (see stat02360), implying vec(Ei) ∼ N(0,Σ)

where Σ is a (
∏D

d=1 qd) × (
∏D

d=1 qd) dimensional covariance matrix. Estimating so many

parameters from an unstructured Σ without adding some restrictions on its form appears to

be infeasible. As an alternative, a flexible, reduced-parameter covariance model that retains

the tensor structure of the data is the tensor normal model [1, 24], which assumes a separable

(Kronecker structured) covariance matrix. Specifically, the tensor normal distribution is

denoted by Np1,...,pD(0,Σ1, ...,ΣD) which essentially implies Σ = Σ1 ⊗ · · · ⊗ ΣD, where

Σd ∈ Rqd×qd . [25] employs matrix normal priors for Cd|Σd for d = 1, ..., D, and inverse

wishart priors for Σd to deliver efficient posterior computation. Although the model is the

first of its kind in developing a Bayesian regression framework between two tensors, it comes

with a restrictive assumption that Y i and X i both have D modes. This assumption is

often violated in pertinent neuroscience applications, e.g., in the problem of developing a

regression relationship between fMRI and EEG tensors for subjects. Later on, [41] develop

another framework that relaxes this assumption.

Let Y i be the tensor response of dimension p1 × · · · × pD1 for sample i = 1, .., n, with

the corresponding tensor predictor X i of dimension q1 × · · · × qD2 . Let Y be a tensor of

dimension n× p1 × · · · × pD1 , obtained by stacking the Y i’s over i = 1, .., n. A tensor X of

dimension n× q1×· · ·× qD2 is created in a similar fashion by stacking the X is. [41] propose
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a regression framework of X on Y as follows

Y = 〈X,B〉L +E, E(v1,...,vD1+1) ∼ N(0, σ2), (12)

1 ≤ v1 ≤ n, 1 ≤ v2 ≤ p1,...,1 ≤ vD1+1 ≤ pD1 . B is the tensor coefficient of dimension

p1 × · · · × pD1 × q1 × · · · × qD2 and 〈·, ·〉L represents the contracted tensor product. When

D2 = 1, i.e., X becomes a vector, (12) reduces to (8). Reshaping each Y i and X i to vectors

of dimensions
∏D1

d1=1 pd1 and
∏D2

d2=1 qd2 , (12) can be rewritten in the standard multivariate

linear regression form given below,

Y (1) = X(1)B(1) +E(1),

where Y (1) and X(1) are n ×
∏D1

d1=1 pd1 and n ×
∏D2

d2=1 qd2 matrices obtained by stacking

reshaped vectors over all samples. B(1) is a
∏D1

d1=1 pd1 ×
∏D2

d2=1 qd2 matrix whose columns are

obtained by vectorizing the first D1 modes of B, and rows are obtained by vectorizing the

last D2 modes of B.

Estimating B involves
∏D1

d1=1 pd1 ×
∏D2

d2=1 qd2 parameters. Hence [41] have adopted the

low-rank PARAFAC decomposition for B. To estimate B in a Bayesian framework, [41]

have proposed

π(B) ∝

 exp(− λ̃
2σ2 ||B||2) if rank(B) ≤ R

0 o.w.

This specification leads to − log(π(B|Y ,X)) = ||Y −X,bB〉L||2
2σ2 + λ̃

2σ2 ||B||2, which resembles

a penalized likelihood framework (see stat05934). Here λ̃ acts as a tuning parameter,

which is optimized within the Bayesian estimation of the model. Notice that the inferential

framework in [41] is semi-Bayesian since the tuning parameter λ̃ is chosen using a cross-

validation procedure. Further, in contrast with the multiway shrinkage priors discussed

earlier, the prior in [41] imposes a similar degree of shrinkage on every tensor cell. Later,

[6] extend the modeling framework in [41] to develop dynamic tensor on tensor regression

models and use M-DGDP prior as a more effective tool to impose shrinkage on the cells of
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tensor coefficients.

If Y t represents the response tensor of dimension p1× · · · × pD1 at time t, and X t is the

tensor predictor at time t of dimension q1×· · ·×qD2 , the dynamic tensor on tensor regression

model proposed in [6] is given by

Y t =

q∑
j=1

〈B̃j,Y t−j〉L + 〈Ã,X t〉L +Et, Et ∼ Np1,..,pD1
(0,Σ1, ..,ΣD1), (13)

where Np1,..,pD1
(0,Σ1, ..,ΣD1) represents a D1 dimensional tensor normal distribution with

Σj of dimension pj × pj. Here B̃j, j = 1, .., q, and Ã are tensors of dimensions p1 × · · · ×

pD1 × p1 × · · · × pD1 and p1 × · · · × pD1 × q1 × · · · × qD2 , respectively. Using tensor calculus

(ref), equation (13) can be rewritten as

Y t =

q∑
j=1

Bj×̄D1+1vec(Y t−j) +A×̄D2+1vec(X) +Et, Et ∼ Np1,..,pD1
(0,Σ1, ..,ΣD1), (14)

where Bj is of dimension p1 × · · · × pD1 ×
∏D1

d1=1 pd1 and A is of dimension q1 × · · · × aD2 ×∏D2

d2=1 qd2 . The model presented in (14) emerges as a generalization of several econometric

models, such as the seemingly unrelated regression (SUR) model [65], the VARX and panel

VAR model [8, 9] and the vector error correlation model (VECM) [10, 51], to name a few. In

order to achieve parsimony in estimating tensor coefficients, [6] consider a rank-R PARAFAC

decomposition of the tensor coefficients, as discussed in earlier sections. The choice of the

prior distribution on the PARAFAC margins is crucial for recovering the sparsity pattern of

the coefficient tensor and for the efficiency of the inference. To this end, [6] follow the proposal

of the multiway shrinkage prior in [19] (reviewed in Section 1.1) on tensor coefficients. As

discussed before, the global-local structure of the M-DGDP prior imposes a careful shrinkage

on cell coefficients and offers better scalability properties in high-dimensional settings.

3 Conclusion

Motivated by applications in neuroscience, genomics, social science, chemometrics and

other physical and biological sciences, there has been an increasing interest in the use of

tensor-valued objects within a regression setting. As opposed to summarizing tensors, us-
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ing tensor valued objects within a regression framework reaps important modeling benefits.

These advantages include efficient computation, parsimony and importantly, accurate infer-

ence due to accounting for the neighborhood structure in a tensor. As a consequence, this

decade has witnessed rapid developments in statistical methods for tensor regression. In this

review article, we have focused on Bayesian methods related to tensor regression. Although

the literature on tensor regression is predominantly frequentist, Bayesian methods have made

inroads into the literature in the last few years, with some additional benefits. Unlike many

of the classical frequentist techniques, Bayesian models allow for flexibility, mainly via their

choices of carefully structured prior distributions on tensor valued coefficients that provide

data dependent shrinkage of tensor coefficients and model-based learning of tuning param-

eters. Additionally, they offer uncertainty in parametric and predictive inferences, and can

be easily implemented via full MCMC techniques. In this review article, we have divided

methods according to the objective of the analysis. First, we have described tensor regression

techniques with a tensor predictor and a scalar response. We have first reviewed parametric

tensor regression models, and then discussed nonparametric tensor regression models as well.

The article then reviewed tensor regression models with a tensor response and a vector- or

tensor-valued predictor. We mention applications in each case, mainly from neuroscience,

relevant to the methodology reviewed. We also offer a brief discussion on available theoretical

results regarding posterior convergence of these models.

Even though the Bayesian tensor regression methods generally exhibit rapid convergence

in model fitting using MCMC, high dimensionality of the tensor data may limit the practical

usage of Bayesian methodology. For example, fMRI experiments produce massive amount of

correlated data over millions of brain voxels, which is difficult to be dealt with using Bayesian

tensor regression. Such a computation issue is not unique to Bayesian methods for tensor

regression, since frequentist tensor regression techniques also employ cross validation steps

to estimate tuning parameters which are computationally costly. As noted before, tensor

regression methods implicitly incorporate spatial information in the data, though combining

tensor regression directly with spatial modeling techniques may draw additional inferential

advantages. EEG or fMRI experiments are examples which produce high resolution spatially

correlated data ready to be mined with Bayesian methodologies. The latter topic is quite
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recent and is certainly an important area of research. In fact, Bayesian methods for big

spatial and structured data still constitute a very active area of research and many more

important contributions are expected. Finally, it needs to be mentioned that although there

are open source codes available on Bayesian tensor regression methods, to the best of our

knowledge, an open source user-friendly software package is still unavailable. More effort in

disseminating codes and software in the public domain for tensor regression methods in the

near future would be greatly beneficial.
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