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Abstract

We develop a prior probability model for temporal Poisson process intensities through

structured mixtures of Erlang densities with common scale parameter, mixing on

the integer shape parameters. The mixture weights are constructed through incre-

ments of a cumulative intensity function which is modeled nonparametrically with

a gamma process prior. Such model specification provides a novel extension of Er-

lang mixtures for density estimation to the intensity estimation setting. The prior

model structure supports general shapes for the point process intensity function,

and it also enables effective handling of the Poisson process likelihood normalizing

constant resulting in efficient posterior simulation. The Erlang mixture modeling

approach is further elaborated to develop an inference method for spatial Poisson

processes. The methodology is illustrated with synthetic and real data examples.
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1 Introduction

Poisson processes play a key role in both theory and applications of point processes. They

form a widely used class of stochastic models for point patterns that arise in biology,

ecology, engineering and finance among many other disciplines. The relatively tractable

form of the non-homogeneous Poisson process (NHPP) likelihood is one of the reasons for

the popularity of NHPPs in applications involving point process data.

Theoretical background for the Poisson process can be found, for example, in Kingman

(1993) and Daley and Vere-Jones (2003). Regarding Bayesian nonparametric modeling

and inference, prior probability models have been developed for the NHPP mean mea-

sure (e.g., Lo, 1982, 1992), and mainly for the intensity function of NHPPs over time

and/or space. Modeling methods for NHPP intensities include: mixtures of non-negative

kernels with weighted gamma process priors for the mixing measure (e.g., Lo and Weng,

1989; Wolpert and Ickstadt, 1998; Ishwaran and James, 2004; Kang et al., 2014); piece-

wise constant functions driven by Voronoi tessellations with Markov random field priors

(Heikkinen and Arjas, 1998, 1999); Gaussian process priors for logarithmic or logistic

transformations of the intensity (e.g., Møller et al., 1998; Adams et al., 2009; Rodrigues

and Diggle, 2012); and Dirichlet process mixtures for the NHPP density, i.e., the intensity

function normalized in the observation window (e.g., Kottas and Sansó, 2007; Taddy and

Kottas, 2012). Models based on priors for the NHPP intensity typically require complex

computational methods for full Bayesian inference. The modeling approach that builds

from the NHPP density utilizes well established posterior simulation methods for Dirich-

let process mixtures, and it thus facilitates extensions to different types of hierarchical

settings (e.g., Taddy, 2010; Xiao et al., 2015; Rodriguez et al., 2017). However, this ap-

proach relies on a prior structure that models separately the NHPP density and the total

intensity over the observation window.
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Here, we seek to develop a flexible and computationally efficient model for NHPP in-

tensity functions over time or space. We focus on temporal intensities to motivate the

modeling approach and to detail the methodological development, and then extend the

model for spatial NHPPs. The NHPP intensity over time is represented as a weighted

combination of Erlang densities indexed by their integer shape parameters and with a com-

mon scale parameter. Thus, different from existing mixture representations, the proposed

mixture model is more structured with each Erlang density identified by the corresponding

mixture weight. The non-negative mixture weights are defined through increments of a

cumulative intensity on R+. Under certain conditions, the Erlang mixture intensity model

can approximate in a pointwise sense general intensities on R+ (see Section 2.1). A gamma

process prior is assigned to the primary model component, that is, the cumulative inten-

sity that defines the mixture weights. Mixture weights driven by a gamma process prior

result in flexible intensity function shapes, and, at the same time, ready prior-to-posterior

updating given the observed point pattern. Indeed, a key feature of the model is that it

can be implemented with an efficient Markov chain Monte Carlo (MCMC) algorithm that

does not require approximations, complex computational methods, or restrictive prior

modeling assumptions in order to handle the NHPP likelihood normalizing constant. The

intensity model is extended to the two-dimensional setting through products of Erlang

densities for the mixture components, with the weights built from a measure modeled

again with a gamma process prior. The extension to spatial NHPPs retains the appealing

aspect of computationally efficient MCMC posterior simulation.

The paper is organized as follows. Section 2 presents the modeling and inference

methodology for NHPP intensities over time. The modeling approach for temporal NHPPs

is illustrated through synthetic and real data in Section 3. Section 4 develops the model

for spatial NHPP intensities, including two data examples. Finally, Section 5 concludes

with a summary.
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2 Methodology for temporal Poisson processes

The mixture model for NHPP intensities is developed in Section 2.1, including discussion

of model properties and theoretical justification. Sections 2.2 and 2.3 present a prior

specification approach and the posterior simulation method, respectively.

2.1 The mixture modeling approach

A NHPP on R+ can be defined through its intensity function, λ(t), for t ∈ R+, a non-

negative and locally integrable function such that: (a) for any bounded B ⊂ R+, the

number of events in B, N(B), is Poisson distributed with mean Λ(B) =
∫
B
λ(u) du; and

(b) given N(B) = n, the times ti, for i = 1, ..., n, that form the point pattern in B

arise independently and identically distributed (i.i.d.) according to density λ(t)/Λ(B).

Consequently, the likelihood for the NHPP intensity function, based on the point pat-

tern {0 < t1 < ... < tn < T} observed in time window (0, T ), is proportional to

exp(−
∫ T
0
λ(u) du)

∏n
i=1 λ(ti).

Our modeling target is the intensity function, λ(t). Denote generically by gamma(α, β)

the gamma distribution with mean α/β, and by ga(t | α, β), for t ∈ R+, the corresponding

density. The proposed intensity model involves a structured mixture of Erlang densities,

ga(t | j, θ−1), mixing on the integer shape parameters, j, with a common scale parameter

θ. The non-negative mixture weights are defined through increments of a cumulative

intensity function, H, on R+, which is assigned a gamma process prior. More specifically,

λ(t) ≡ λ(t | H, θ) =
J∑
j=1

ωj ga(t | j, θ−1), t ∈ R+

ωj = H(jθ)−H((j − 1)θ), H ∼ G(H0, c0)

(1)

where G(H0, c0) is a gamma process specified through H0, a (parametric) cumulative

intensity function, and c0, a positive scalar parameter (Kalbfleisch 1978). For any t ∈
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R+, E(H(t)) = H0(t) and Var(H(t)) = H0(t)/c0, and thus H0 plays the role of the

centering cumulative intensity, whereas c0 is a precision parameter. As an independent

increments process, the G(H0, c0) prior for H implies that, given θ, the mixture weights

ωj are independent gamma(c0 ω0j(θ), c0) distributed, where ω0j(θ) = H0(jθ) − H0((j −

1)θ). As shown in Section 2.3, this is a key property of the prior model with respect to

implementation of posterior inference.

The model in (1) is motivated by Erlang mixtures for density estimation, under which

a density g on R+ is represented as g(t) ≡ gJ,θ(t) =
∑J

j=1 pj ga(t | j, θ−1), for t ∈ R+.

Here, pj = G(jθ)−G((j− 1)θ), where G is a distribution function on R+; the last weight

can be defined as pJ = 1−G((J − 1)θ) to ensure that (p1, ..., pJ) is a probability vector.

Erlang mixtures can approximate general densities on the positive real line, in particular,

as θ → 0 and J → ∞, gJ,θ converges pointwise to the density of distribution function G

that defines the mixture weights. This convergence property can be obtained from more

general results from the probability literature that studies Erlang mixtures as extensions

of Bernstein polynomials to the positive real line (e.g., Butzer, 1954); a convergence proof

specifically for the distribution function of gJ,θ can be found in Lee and Lin (2010). Density

estimation on compact sets via Bernstein polynomials has been explored in the Bayesian

nonparametrics literature following the work of Petrone (1999a,b). Regarding Bayesian

nonparametric modeling with Erlang mixtures, we are only aware of Xiao et al. (2020)

where renewal process inter-arrival distributions are modeled with mixtures of Erlang

distributions, using a Dirichlet process prior (Ferguson 1973) for distribution function G.

Venturini et al. (2008) study a parametric Erlang mixture model for density estimation

on R+, working with a Dirichlet prior distribution for the mixture weights.

Therefore, the modeling approach in (1) exploits the structure of the Erlang mixture

density model to extend to a model for NHPP intensities, using the density/distribution

function and intensity/cumulative intensity function connection to define the prior model
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for the mixture weights. In this context, the gamma process prior for cumulative intensity

H is the natural analogue to the Dirichlet process prior for distribution function G; recall

that the Dirichlet process can be defined through normalization of a gamma process

(e.g., Ghosal and van der Vaart, 2017). To our knowledge, this is a novel construction for

NHPP intensities that has not been explored for intensity estimation in either the classical

or Bayesian nonparametrics literature. The following lemma, which can be obtained

applying Theorem 2 from Butzer (1954), provides theoretical motivation and support for

the mixture model.

Lemma. Let h be the intensity function of a NHPP on R+, with cumulative intensity

function H(t) =
∫ t
0
h(u) du, such that H(t) = O(tm), as t → ∞, for some m > 0.

Consider the mixture intensity model λJ,θ(t) =
∑J

j=1{H(jθ)−H((j − 1)θ)} ga(t | j, θ−1),

for t ∈ R+. Then, as θ → 0 and J →∞, λJ,θ(t) converges to h(t) at every point t where

h(t) = dH(t)/dt.

The form of the prior model for the intensity in (1) allows ready expressions for other

NHPP functionals. For instance, the total intensity over the observation time window

(0, T ) is given by
∫ T
0
λ(u) du =

∑J
j=1 ωjKj,θ(T ), where Kj,θ(T ) =

∫ T
0

ga(u | j, θ−1) du is the

j-th Erlang distribution function at T . In the context of the MCMC posterior simulation

method, this form enables efficient handling of the NHPP likelihood normalizing constant.

Moreover, the NHPP density on interval (0, T ) can be expressed as a mixture of truncated

Erlang densities. More specifically, f(t) = λ(t)/
∫ T
0
λ(u) du =

∑J
j=1 ω

∗
j k(t | j, θ), for

t ∈ (0, T ), where ω∗
j = ωjKj,θ(T )/{

∑J
r=1 ωrKr,θ(T )}, and k(t | j, θ) is the j-th Erlang

density truncated on (0, T ).

Regarding the role of the different model parameters, we reiterate that (1) corresponds

to a structured mixture. The Erlang densities, ga(t | j, θ−1), play the role of basis functions

in the representation for the intensity. In this respect, of primary importance is the
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Figure 1: Prior realizations for the mixture weights (top panels) and the corresponding intensity
function (bottom panels) for three different values of the gamma process precision parameter,
c0 = 0.05, 1, 10. In all cases, J = 50, θ = 0.4, and H0(t) = t/2.

flexibility of the nonparametric prior for the cumulative intensity function H that defines

the mixture weights. In particular, the gamma process prior provides realizations for

H with general shapes that can concentrate on different time intervals, thus favoring

different subsets of the Erlang basis densities through the corresponding ωj. Here, the

key parameter is the precision parameter c0, which controls the variability of the gamma

process prior around H0, and thus the effective mixture weights. As an illustration,

Figure 1 shows prior realizations for the weights ωj (and the resulting intensity function)

for different values of c0, keeping all other model parameters the same. Note that as c0

decreases, so does the number of practically non-zero weights.

The prior mean for H is taken to be H0(t) = t/b, i.e., the cumulative intensity (hazard)
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of an exponential distribution with scale parameter b > 0. Although it is possible to use

more general centering functions, such as the Weibull H0(t) = (t/b)a, the exponential form

is sufficiently flexible in practice, as demonstrated with the synthetic data examples of

Section 3. Based on the role of H in the intensity mixture model, we typically anticipate

realizations for H that are different from the centering function H0, and thus, as discussed

above, the more important gamma process parameter is c0. Moreover, the exponential

form for H0 allows for an analytical result for the prior expectation of the Erlang mixture

intensity model. Under H0(t) = t/b, the prior expectation for the weights is given by

E(ωj | θ, b) = θ/b. Therefore, conditional on all model hyperparameters, the expectation

of λ(t) over the gamma process prior can be written as

E(λ(t) | b, θ) =
θ

b

J∑
j=1

ga(t | j, θ−1) =
exp(−(t/θ))

b

J−1∑
m=0

(t/θ)m

m!
, t ∈ R+

which converges to b−1, as J → ∞, for any t ∈ R+ (and regardless of the value of θ and

c0). In practice, the prior mean for the intensity function is essentially constant at b−1

for t ∈ (0, Jθ), which, as discussed below, is roughly the effective support of the NHPP

intensity. This result is useful for prior specification as it distinguishes the role of b from

that of parameters θ and c0.

Also key are the two remaining model parameters, the number of Erlang basis densities

J , and their common scale parameter θ. Parameters θ and J interact to control both the

effective support and shape of NHPP intensities arising under (1). Regarding intensity

shapes, as the lemma suggests, smaller values of θ and larger values of J generally result

in more variable, typically multimodal intensities. Moreover, the representation for λ(t)

in (1) utilizes Erlang basis densities with increasing means jθ, and thus (0, Jθ) can be

used as a proxy for the effective support of the NHPP intensity. Of course, the mean

underestimates the effective support, a more accurate guess can be obtained using, say,
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Figure 2: Prior realizations for the intensity under the Erlang mixture model in (1) with (θ, J) =
(0.4, 50) (left panel), (θ, J) = (0.2, 50) (middle panel), and (θ, J) = (1, 10) (right panel). In all
cases, the gamma process prior is specified with c0 = 0.01 and H0(t) = t/0.01. Each panel plots
five realizations, the average of which is indicated by the black line.

the 95% percentile of the last Erlang density component. For an illustration, Figure 2

plots prior intensity realizations for three combinations of (θ, J) values, with c0 = 0.01

and b = 0.01 in all cases. The left panel corresponds to the largest value for Jθ and,

consequently, to the widest effective support interval. The value of Jθ is the same for the

middle and right panels, resulting in similar effective support. However, the intensities in

the middle panel show larger variability in their shapes, as expected since the value of J

is increased and the value of θ decreased relative to the ones in the right panel.

2.2 Prior specification

To complete the full Bayesian model, we place exponential prior distributions on the

parameters c0 and b of the gamma process prior for H, and a Lomax prior on the common

scale parameter θ of the Erlang basis densities. A fairly generic approach to specify these

hyperpriors can be obtained using the observation time window (0, T ) as the effective

support of the NHPP intensity to be estimated.

Using the prior mean for the intensity function, which as discussed in Section 2.1 is
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roughly constant at b−1 within the time interval of interest, the total intensity in (0, T )

can be approximated by T/b. Therefore, taking the size n of the observed point pattern,

as a proxy for the total intensity in (0, T ), we can use T/n to specify the mean of the

exponential prior distribution for b. Given its role in the gamma process prior, we an-

ticipate that small values of c0 will be important to allow prior variability around H0, as

well as sparsity in the mixture weights. Experience from prior simulations, such as the

ones shown in Figure 1, is useful to guide the range of “small” values. Note that the

pattern observed in Figure 1 is not affected by the length of the observation window. In

general, a value around 10 can be viewed as a conservative guess at a high percentile for

c0. For the data examples of Section 3, we assigned an exponential prior with mean 10

to c0, observing substantial learning for this key model hyperparameter with its posterior

distribution supported by values (much) smaller than 1.

Also given the key role of parameter θ in controlling the intensity shapes, we recom-

mend favoring sufficiently small values in the prior for θ, especially if prior information

suggests a non-standard intensity shape. Recall that θ, along with J , control the effective

support of the intensity, and thus “small” values for θ should be assessed relative to the

length of the observation window. Again, prior simulation, as in Figure 2, is a useful tool.

A practical approach to specify the prior range of θ values involves reducing the Erlang

mixture model to the first component. The corresponding (exponential) density has mean

θ, and we thus use (0, T ) as the effective prior range for θ. Because T is a fairly large

upper bound, and since we wish to favor smaller θ values, rather than an exponential

prior, we use a Lomax prior, p(θ) ∝ (1 + d−1
θ θ)−3, with shape parameter equal to 2 (thus

implying infinite variance), and median dθ(
√

2− 1). The value of the scale parameter, dθ,

is specified such that Pr(0 < θ < T ) ≈ 0.999. This simple strategy is effective in practice

in identifying a plausible range of θ values. For the synthetic data examples of Section 3,

for which T = 20, we assigned a Lomax prior with scale parameter dθ = 1 to θ, obtaining

10



overall moderate prior-to-posterior learning for θ.

Finally, we work with fixed J , the value of which can be specified exploiting the

role of θ and J in controlling the support of the NHPP intensity. In particular, J can

be set equal to the integer part of T/θ∗, where θ∗ is the prior median for θ. More

conservatively, this value can be used as a lower bound for values of J to be studied in a

sensitivity analysis, especially for applications where one expects non-standard shapes for

the intensity function. In practice, we recommend conducting prior sensitivity analysis

for all model parameters, as well as plotting prior realizations and prior uncertainty bands

for the intensity function to graphically explore the implications of different prior choices.

The number of Erlang basis densities is the only model parameter which is not assigned

a hyperprior. Placing a prior on J complicates significantly the posterior simulation

method, as it necessitates use of variable-dimension MCMC techniques, while offering

relatively little from a practical point of view. The key observation is again that the Erlang

densities play the role of basis functions rather than of kernel densities in traditional (less

structured) finite mixture models. Also key is the nonparametric nature of the prior

for function H that defines the mixture weights which select the Erlang densities to be

used in the representation of the intensity. This model feature effectively guards against

over-fitting if one conservatively chooses a larger value for J than may be necessary.

In this respect, the flexibility afforded by random parameters c0 and θ is particularly

useful. Overall, we have found that fixing J strikes a good balance between computational

tractability and model flexibility in terms of the resulting inferences.

2.3 Posterior simulation

Denote as before by {0 < t1 < ... < tn < T} the point pattern observed in time window

(0, T ). Under the Erlang mixture model of Section 2.1, the NHPP likelihood is propor-
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tional to

exp

(
−
∫ T

0
λ(u) du

) n∏
i=1

λ(ti) = exp

(
−
∑J

j=1
ωjKj,θ(T )

) n∏
i=1


J∑
j=1

ωj ga(ti | j, θ−1)


=

J∏
j=1

exp(−ωjKj,θ(T ))

n∏
i=1


(∑J

r=1
ωr

) J∑
j=1

(
ωj∑J
r=1 ωr

)
ga(ti | j, θ−1)


where Kj,θ(T ) =

∫ T
0

ga(u | j, θ−1) du is the j-th Erlang distribution function at T .

For the posterior simulation approach, we augment the likelihood with auxiliary vari-

ables γ = {γi : i = 1, . . . , n}, where γi identifies the Erlang basis density to which time

event ti is assigned. Then, the augmented, hierarchical model for the data can be expressed

as follows:

{t1, ..., tn} | γ,ω, θ ∼
J∏
j=1

exp(−ωjKj,θ(T ))
n∏
i=1

{(∑J

r=1
ωr

)
ga(ti | γi, θ−1)

}
γi | ω

i.i.d.∼
J∑
j=1

(
ωj∑J
r=1 ωr

)
δj(γi), i = 1, ..., n

θ, c0, b,ω ∼ p(θ) p(c0) p(b)
J∏
j=1

ga(ωj | c0 ω0j(θ), c0) (2)

where ω = {ωj : j = 1, ..., J}, and p(θ), p(c0), and p(b) denote the priors for θ, c0, and b.

Recall that, under the exponential distribution form for H0 = t/b, we have ω0j(θ) = θ/b.

We utilize Gibbs sampling to explore the posterior distribution. The sampler involves

ready updates for the auxiliary variables γi, and, importantly, also for the mixture weights

ωj. More specifically, the posterior full conditional for each γi is a discrete distribution

on {1, ..., J} such that Pr(γi = j | θ,ω, data) ∝ ωj ga(ti | j, θ−1), for j = 1, ..., J .

Denote by Nj = |{ti : γi = j}|, for j = 1, ..., J , that is, Nj is the number of time points

assigned to the j-th Erlang basis density. The posterior full conditional distribution for
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ω is derived as follows:

p(ω | θ, c0, b,γ, data) ∝

{
J∏
j=1

exp(−ωjKj,θ(T ))

}(∑J

r=1
ωr

)n
×

{
J∏
j=1

ω
Nj

j

(∑J

r=1
ωr

)−Nj

}{
J∏
j=1

ga(ωj | c0 ω0j(θ), c0)

}

∝
J∏
j=1

exp(−ωjKj,θ(T ))ω
Nj

j ga(ωj | c0 ω0j(θ), c0)

=
J∏
j=1

ga(ωj | Nj + c0 ω0j(θ), Kj,θ(T ) + c0)

where we have used the fact that
∑J

j=1Nj = n. Therefore, given the other parameters and

the data, the mixture weights are independent, and each ωj follows a gamma posterior full

conditional distribution. This is a practically important feature of the model both in terms

of convenient updates for the mixture weights, as well as with respect to efficiency of the

posterior simulation algorithm in updating this key component of the model parameter

vector.

Finally, parameter θ and the hyperparameters, c0 and b, of the gamma process prior for

H are updated with Metropolis-Hastings (M-H) steps. A log-normal proposal distribution

is employed for the M-H step used to update each of these parameters.

3 Data examples

To empirically investigate inference under the proposed model, we present three synthetic

data examples corresponding to decreasing, increasing, and bimodal intensities. We also

consider the coal-mining disasters data set, which is commonly used to illustrate NHPP

intensity estimation.

Convergence and mixing of the MCMC algorithm was assessed graphically through
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Figure 3: Synthetic data from temporal NHPP with decreasing intensity. Trace plots of posterior
samples for the intensity function evaluated at time points t = 5, 10, 15, 20.

trace plots of the intensity function evaluated at specific time points within the observa-

tion window. An example is given in Figure 3 for the synthetic data of Section 3.1. The

trace plots in Figure 3 are representative of the mixing observed in all other data exam-

ples. Regarding model parameters, the highest autocorrelation was observed in posterior

samples for parameter θ.

We used the approach of Section 2.2 to specify the priors for c0, b and θ, and the

value for J . In particular, we used the exponential prior for c0 with mean 10 for all data

examples. For the three synthetic data sets (for which T = 20), we used the Lomax prior

for θ with shape parameter equal to 2 and scale parameter equal to 1.
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3.1 Decreasing intensity synthetic point pattern

The first synthetic data set involves 491 time points generated in time window (0, 20)

from a NHPP with intensity function β−1α(β−1t)α−1, where (α, β) = (0.5, 8×10−5). This

form corresponds to the hazard function of a Weibull distribution with shape parameter

less than 1, thus resulting in a decreasing intensity function.

The Erlang mixture model was applied with J = 50, and an exponential prior for b

with mean 0.04. As can be seen in Figure 4, the model captures the decreasing pattern of

the data generating intensity function. We note that there is significant prior-to-posterior

learning in the intensity function estimation; the prior intensity mean is roughly constant

at value about 25 with prior uncertainty bands that cover almost the entire top left panel

in Figure 4. Prior uncertainty bands were similarly wide for all other data examples.

3.2 Increasing intensity synthetic point pattern

We consider again the form β−1α(β−1t)α−1 for the NHPP intensity function, but here

with (α, β) = (6, 7) such that the intensity is increasing. A point pattern comprising

565 points was generated in time window (0, 20). The Erlang mixture model was applied

with J = 50, and an exponential prior for b with mean 0.035. Figure 5 reports inference

results which demonstrate that the model captures successfully the underlying increasing

intensity function.

3.3 Bimodal intensity synthetic point pattern

The data examples in Sections 3.1 and 3.2 illustrate the model’s capacity to uncover

monotonic intensity shapes, associated with a parametric distribution different from the

Erlang distribution that forms the basis of the mixture intensity model. Here, we consider

a point pattern generated from a NHPP with a more complex intensity function, λ(t) =
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Figure 4: Synthetic data from temporal NHPP with decreasing intensity. The top left panel
shows the posterior mean estimate (dashed-dotted line) and posterior 95% interval bands (shaded
area) for the intensity function. The true intensity is denoted by the solid line. The point pattern
is plotted in the bottom left panel. The three plots on the right panels display histograms of the
posterior samples for the model hyperparameters, along with the corresponding prior densities
(dashed lines).

50 We(t | 3.5, 5) + 60 We(t | 6.5, 15), where We(t | α, β) denotes the Weibull density

with shape parameter α and mean β Γ(1 + 1/α). This specification results in a bimodal

intensity within the observation window (0, 20) where a synthetic point pattern of 112

time points is generated; see Figure 6.
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Figure 5: Synthetic data from temporal NHPP with increasing intensity. The top left panel shows
the posterior mean estimate (dashed-dotted line) and posterior 95% interval bands (shaded area)
for the intensity function. The true intensity is denoted by the solid line. The point pattern is
plotted in the bottom left panel. The three plots on the right panels display histograms of the
posterior samples for the model hyperparameters, along with the corresponding prior densities
(dashed lines).

We used an exponential prior for b with mean 0.179. Anticipating an underlying

intensity with less standard shape than in the earlier examples, we compare inference

results under J = 50 and J = 100; see Figure 6. The posterior point and interval estimates

capture effectively the bimodal intensity shape, especially if one takes into account the
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Figure 6: Synthetic data from temporal NHPP with bimodal intensity. Inference results are
reported under J = 50 (top row) and J = 100 (bottom row). The left column plots the posterior
means (circles) and 90% interval estimates (bars) of the weights for the Erlang basis densities.
The middle column displays the posterior mean estimate (dashed-dotted line) and posterior 95%
interval bands (shaded area) for the NHPP intensity function. The true intensity is denoted by
the solid line. The bars on the horizontal axis indicate the point pattern. The right column
plots the posterior mean estimate (dashed-dotted line) and posterior 95% interval bands (shaded
area) for the NHPP density function on the observation window. The histogram corresponds to
the simulated times that comprise the point pattern.

relatively small size of the point pattern. (In particular, the histogram of the simulated

random time points indicates that they do not provide an entirely accurate depiction of

the underlying NHPP density shape.) The estimates are somewhat more accurate under

J = 100. The estimates for the mixture weights (left column of Figure 6) indicate the

subsets of the Erlang basis densities that are utilized under the two different values for

J . The posterior mean of θ was 0.366 under J = 50, and 0.258 under J = 100, that is, as

expected, inference for θ adjusts to different values of J such that (0, Jθ) provides roughly
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the effective support of the intensity.

3.4 Coal-mining disasters data

Our real data example involves the “coal-mining disasters” data (e.g., Andrews and

Herzberg 1985, p. 53-56), a standard dataset used in the literature to test NHPP in-

tenstiy estimation methods. The point pattern comprises the times (in days) of n = 191

explosions of fire-damp or coal-dust in mines resulting in 10 or more casualties from the

accident. The observation window consists of 40,550 days, from March 15, 1851 to March

22, 1962.

We fit the Erlang mixture model with J = 50, using a Lomax prior for θ with shape

parameter 2 and scale parameter 2, 000, such that Pr(0 < θ < 40, 550) ≈ 0.998, and an

exponential prior for b with mean 213. We also implemented the model with J = 130,

obtaining essentially the same inference results for the NHPP functionals with the ones

reported in Figure 7.

The estimates for the point process intensity and density functions (Figure 7, top row)

suggest that the model successfully captures the multimodal intensity shape suggested by

the data. The estimates for the mixture weights (Figure 7, bottom left panel) indicate

the Erlang basis densities that are more influential to the model fit.

The bottom right panel of Figure 7 reports results from graphical model checking,

using the “time-rescaling” theorem (e.g., Daley and Vere-Jones 2003). If the point pattern

{0 = t0 < t1 < ... < tn < T} is a realization from a NHPP with cumulative intensity

function Λ(t) =
∫ t
0
λ(u)du, then the transformed point pattern {Λ(ti) : i = 1, ..., n}

is a realization from a unit rate homogeneous Poisson process. Therefore, if we further

transform to Ui = 1−exp{−(Λ(ti)−Λ(ti−1))}, where Λ(0) ≡ 0, then the {Ui : i = 1, ..., n}

are independent uniform(0, 1) random variables. Hence, graphical model checking can be
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Figure 7: Coal-mining disasters data. The top left panel shows the posterior mean estimate
(dashed-dotted line) and 95% interval bands (shaded area) for the intensity function. The bars
at the bottom indicate the observed point pattern. The top right panel plots the posterior mean
(dashed-dotted line) and 95% interval bands (shaded area) for the NHPP density, overlaid on the
histogram of the accident times. The bottom left panel presents the posterior means (circles)
and 90% interval estimates (bars) of the mixture weights. The bottom right panel plots the
posterior mean and 95% interval bands for the time-rescaling model checking Q-Q plot.

based on quantile–quantile (Q-Q) plots to assess agreement of the estimated Ui with the

uniform distribution on the unit interval. Under the Bayesian inference framework, we can
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obtain a posterior sample for the Ui for each posterior realization for the NHPP intensity,

and we can thus plot posterior point and interval estimates for the Q-Q graph. These

estimates suggest that the NHPP model with the Erlang mixture intensity provides a

good fit for the coal-mining disasters data.

4 Modeling for spatial Poisson process intensities

In Section 4.1, we extend the modeling framework to spatial NHPPs with intensities

defined on R+×R+. The resulting inference method is illustrated with synthetic and real

data examples in Section 4.2 and 4.3, respectively.

4.1 The Erlang mixture model for spatial NHPPs

A spatial NHPP is again characterized by its intensity function, λ(s), for s = (s1, s2) ∈

R+ × R+. The NHPP intensity is a non-negative and locally integrable function such

that: (a) for any bounded B ⊂ R+ × R+, the number of points in B, N(B), follows

a Poisson distribution with mean
∫
B
λ(u) du; and (b) given N(B) = n, the random

locations si = (si1, si2), for i = 1, ..., n, that form the spatial point pattern in B are i.i.d.

with density λ(s)/{
∫
B
λ(u) du}. Therefore, the structure of the likelihood for the intensity

function is similar to the temporal NHPP case. In particular, for spatial point pattern,

{s1, . . . , sn}, observed in bounded region D ⊂ R+ ×R+, the likelihood is proportional to

exp{−
∫
D
λ(u) du}

∏n
i=1 λ(si). As is typically the case in standard applications involving

spatial NHPPs, we consider a regular, rectangular domain for the observation region D,

which can therefore be taken without loss of generality to be the unit square.

Extending the Erlang mixture model in (1), we build the basis representation for the

spatial NHPP intensity from products of Erlang densities, {ga(s1 | j1, θ−1
1 ) ga(s2 | j2, θ−1

2 ) :

j1, j2 = 1, ..., J}. Mixing is again with respect to the shape parameters (j1, j2), and the
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basis densities share a pair of scale parameters (θ1, θ2). Therefore, the model can be

expressed as

λ(s1, s2) =
J∑

j1=1

J∑
j2=1

ωj1j2 ga(s1 | j1, θ−1
1 )ga(s2 | j2, θ−1

2 ), (s1, s2) ∈ R+ × R+.

Again, a key model feature is the prior for the mixture weights. Here, the basis density

indexed by (j1, j2) is associated with rectangle Aj1j2 = [(j1−1)θ1, j1θ1)× [(j2−1)θ2, j2θ2).

The corresponding weight is defined through a random measure H supported on R+×R+,

such that ωj1j2 = H(Aj1j2). This construction extends the one for the weights of the

temporal NHPP model. We again place a gamma process prior, G(H0, c0), on H, where

c0 is the precision parameter and H0 is the centering measure on R+ × R+. As a natural

extension of the exponential cumulative hazard used in Section 2.1 for the gamma process

prior mean, we specifyH0 to be proportional to area. In particular, H0(Aj1j2) = |Aj1j2|/b =

θ1θ2/b, where b > 0. Using the independent increments property of the gamma process,

and under the specific choice of H0, the prior for the mixture weights is given by

ωj1j2 | θ1, θ2, c0, b
i.i.d.∼ gamma(c0 θ1 θ2 b

−1, c0), j1, j2 = 1, ..., J

which, as before, is a practically important feature of the model construction as it pertains

to MCMC posterior simulation.

To complete the full Bayesian model, we place priors on the common scale parame-

ters for the basis densities, (θ1, θ2), and on the gamma process prior hyperparameters c0

and b. The role played by these model parameters is directly analogous to the one of

the corresponding parameters for the temporal NHPP model, as detailed in Section 2.1.

Therefore, we apply similar arguments to the ones in Section 2.2 to specify the model

hyperpriors. More specifically, we work with (independent) Lomax prior distributions for
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scale parameters θ1 and θ2, where the shape parameter of the Lomax prior is set equal to

2 and the scale parameter is specified such that Pr(0 < θ1 < 1)Pr(0 < θ2 < 1) ≈ 0.999.

Recall that the observation region is taken to be the unit square; in general, for a square

observation region, this approach implies the same Lomax prior for θ1 and θ2. The gamma

process precision parameter c0 is assigned an exponential prior with mean 10. The result

of Section 2.1 for the prior mean of the NHPP intensity can be extended to show that

E(λ(s1, s2) | b, θ1, θ2) converges to b−1, as J →∞, for any (s1, s2) ∈ R+×R+, and for any

(θ1, θ2) (and c0). The prior mean for the spatial NHPP intensity is practically constant at

b−1 within its effective support given roughly by (0, Jθ1)× (0, Jθ2). Hence, taking the size

of the observed spatial point pattern as a proxy for the total intensity, b is assigned an

exponential prior distribution with mean 1/n. Finally, the choice of the value for J can

be guided from the approximate effective support for the intensity, which is controlled by

J along with θ1 and θ2. Analogously to the approach discussed in Section 2.2, the value

of J (or perhaps a lower bound for J) can be specified through the integer part of 1/θ∗,

where θ∗ is the median of the common Lomax prior for θ1 and θ2.

The posterior simulation method for the spatial NHPP model is developed through a

straightforward extension of the approach detailed in Section 2.3. We work again with the

augmented model that involves latent variables {γi : i = 1, . . . , n}, where γi = (γi1, γi2)

identifies the basis density to which observed point location (si1, si2) is assigned. We omit

the Gibbs sampler details, but note that the spatial NHPP model retains the practically

relevant feature of efficient updates for the mixture weights, which, given the other model

parameters and the data, have independent gamma posterior full conditional distributions.
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4.2 Synthetic data example

Here, we illustrate the spatial NHPP model using synthetic data based on a bimodal in-

tensity function built from a two-component mixture of bivariate logit-normal densities.

Denote by BLN(µ,Σ) the bivariate logit-normal density arising from the logistic trans-

formation of a bivariate normal with mean vector µ and covariance matrix Σ. A spatial

point pattern of size 528 was generated over the unit square from a NHPP with intensity

λ(s1, s2) = 150 BLN((s1, s2) | µ1,Σ) + 350 BLN((s1, s2) | µ2,Σ), where µ1 = (−1, 1),

µ2 = (1,−1), and Σ = (σ11, σ12, σ21, σ22) = (0.3, 0.1, 0.1, 0.3). The intensity function and

the generated spatial point pattern are shown in the top left panel of Figure 8.

The Erlang mixture model was applied setting J = 70 and using the hyperpriors for

θ1, θ2, c0 and b discussed in Section 4.1. Figure 8 reports inference results. The posterior

mean intensity estimate successfully captures the shape of the underlying intensity func-

tion. The structure of the Erlang mixture model enables ready inference for the marginal

NHPP intensities associated with the two-dimensional NHPP. Although such inference

is generally not of direct interest for spatial NHPPs, in the context of a synthetic data

example it provides an additional means to check the model fit. The marginal intensity

estimates effectively retrieve the bimodality of the true marginal intensity functions; the

slight discrepancy at the second mode can be explained by inspection of the generated data

for which the second mode clusters are located slightly to the left of the theoretical mode.

Finally, we note the substantial prior-to-posterior learning for all model hyperparameters.

4.3 Real data illustration

Our final data example involves a spatial point pattern that has been previously used

to illustrate NHPP intensity estimation methods (e.g., Diggle, 2014; Kottas and Sansó,

2007). The data set involves the locations of 514 maple trees in a 19.6 acre square plot in
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Figure 8: Synthetic data example from spatial NHPP. The top row panels show contour plots
of the true intensity, and of the posterior mean and interquartile range estimates. The points in
each panel indicate the observed point pattern. The first two panels at the bottom row show the
marginal intensity estimates – posterior mean (dashed line) and 95% uncertainty bands (shaded
area) – along with the true function (red solid line) and corresponding point pattern (bars at
the bottom of each panel). The bottom right panel displays histograms of posterior samples for
the model hyperparameters along with the corresponding prior densities (dashed lines).

Lansing Woods, Clinton County, Michigan, USA; the maple trees point pattern is included

in the left column panels of Figure 9.

To apply the spatial Erlang mixture model, we specified the hyperpriors for θ1, θ2,

c0 and b following the approach discussed in Section 4.1, and set J = 70. As with

the synthetic data example, the posterior distributions for model hyperparameters are

substantially concentrated relative to their priors; see the bottom right panel of Figure

9. The estimates for the spatial intensity of maple tree locations reported in Figure 9

demonstrate the model’s capacity to uncover non-standard, multimodal intensity surfaces.
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Contour plot of posterior mean intensity
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Figure 9: Maple trees data. The top row panels show the posterior mean estimate for the
intensity function in the form of contour and perspective plots. The bottom left panel displays
the corresponding posterior interquartile range contour plot. The bottom right panel plots
histograms of posterior samples for the model hyperparameters along with the corresponding
prior densities (dashed lines). The points in the left column plots indicate the locations of the
514 maple trees.
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5 Summary

We have proposed a Bayesian nonparametric modeling approach for Poisson processes

over time or space. The approach is based on a mixture representation of the point

process intensity through Erlang basis densities, which are fully specified save for a scale

parameter shared by all of them. The weights assigned to the Erlang densities are defined

through increments of a random measure (a random cumulative intensity function in the

temporal NHPP case) which is modeled with a gamma process prior. A key feature

of the methodology, and the main motivation for its development, is that it offers a

good balance between model flexibility and computational efficiency in implementation of

posterior inference. Such inference has been illustrated with synthetic and real data for

both temporal and spatial Poisson process intensities.
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