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SUMMARY

Bayesian computation of high dimensional linear regression models with a popular Gaussian
scale mixture prior distribution using Markov Chain Monte Carlo (MCMC) or its variants can be 10

extremely slow or completely prohibitive due to the heavy computational cost that grows in the
order of p3, with p as the number of predictors. Although a few recently developed algorithms
make the computation efficient in presence of a small to moderately large sample size (with the
complexity growing in the order of n3), the computational efficiency greatly diminishes when
sample size n is also large. In this article we propose to compress the n original samples by a 15

random linear transformation to m << n samples in p dimensions, and compute Bayesian re-
gression with Gaussian scale mixture prior distributions with the randomly compressed response
vector and predictor matrix. Our proposed approach yields computational complexity growing
in the cubic order of m. Another important motivation for this compression procedure is that it
anonymizes the data and preserves privacy by revealing little information about the original data 20

in the course of analysis. Our detailed empirical investigation with the Horseshoe prior from the
class of Gaussian scale mixture priors shows closely similar inference and a massive reduction in
per iteration computation time of the proposed approach compared to the regression with the full
sample. We characterize the dimension of the compressed response vector m as a function of the
sample size, number of predictors and sparsity in the regression to guarantee accurate estimation 25

of predictor coefficients asymptotically, even after data compression.

Some key words: Bayesian inference, Data privacy, Gaussian scale mixture priors, High dimensional linear regression,
Posterior convergence, Random compression matrix.

1. INTRODUCTION

Of late, due to the technological advances in a variety of disciplines, we routinely encounter 30

data with a large number of predictors. In such settings, it is commonly of interest to consider
the high dimensional linear regression model

y = x′β + ε, (1)

where x is a p× 1 predictor vector, β is the corresponding p× 1 coefficient, y is the continu-
ous response and ε is the idiosyncratic error. Bayesian methods for estimating β broadly employ 35

two classes of prior distributions. The traditional approach is to develop a discrete mixture of
prior distributions (George & McCulloch, 1997; Scott & Berger, 2010). These methods enjoy
the advantage of inducing exact sparsity for a subset of parameters and minimax rate of pos-
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terior contraction (Castillo et al., 2015) in high dimensional regression, but face computational
challenges when the number of predictors is even moderately large. As an alternative to this40

approach, continuous shrinkage priors (Armagan et al., 2013; Carvalho et al., 2010; Caron &
Doucet, 2008) have emerged, which induce approximate sparsity in high-dimensional parame-
ters. Such prior distributions can mostly be expressed as global-local scale mixtures of Gaussians
(Polson & Scott, 2010) given by,

βj |λj , τ, σ ∼ N(0, σ2τ2λ2j ), λj ∼ g1, for j = 1, ..., p45

τ ∼ g2, σ ∼ f, (2)

where g1, g2 and f are densities supported on the real line. The parameters λj’s are referred
to as the local-scale parameters specific to the predictors and τ is known as the global scale
parameter that controls overall shrinkage induced by these priors. Different choices of g1 and g2
lead to different classes of Bayesian shrinkage priors. For example, the state-of-the-art Horseshoe50

shrinkage prior (Carvalho et al., 2010) is obtained by choosing g1 and g2 both as half Cauchy
distributions.

Global-local priors allow parameters to be updated in blocks via a fairly automatic Gibbs
sampler that leads to rapid mixing and convergence of the resulting Markov chain. In par-
ticular, letting X be the n× p predictor matrix, y be the n× 1 response vector and ∆ =55

τ2diag(λ1, ..., λp), the distribution of β = (β1, ..., βp)
′ conditional on λ = (λ1, ..., λp)

′, τ , σ,
y and X follows N((X ′X + ∆−1)−1X ′y, σ2(X ′X + ∆−1)−1), and can be updated in a block.
On the other hand, λj’s are conditionally independent and allow fairly straightforward updating
using either Gibbs sampling or slice sampling. The posterior draws from β, λ, τ, σ are found
to offer an accurate approximation to the operating characteristics of discrete mixture priors.60

However, the existing algorithms (Rue, 2001) to sample from the full conditional posterior of β
require storing and computing the Cholesky decomposition of the p× p matrix (X ′X + ∆−1),
that necessitates p3 floating point operations (flops) and p2 storage units, which can be severely
prohibitive for large p. There is a recently proposed algorithm for efficient computations in high
dimensional regressions involving small n and large p (Bhattacharya et al., 2016), though it is65

less straightforward to adapt this approach when n is also large.
The approach we develop here compresses the response vector and predictor matrix by a ran-

dom linear transformation, reducing the number of records from n to m, while preserving the
number of original predictors. The compressed response and predictors are then made available
to a high dimensional regression analysis with a suitable Gaussian scale mixture prior on the70

predictor coefficients. Since the number of compressed records m is much smaller than the sam-
ple size n, one can adapt existing algorithms on the compressed data for efficient estimation of
posterior distribution for predictor coefficients. Theoretically, we assume that the shrinkage pri-
ors of our interest have densities with a dominating peak around 0 and flat, heavy tails, and have
sufficient mass around the true regression coefficient. We then identify conditions on the predic-75

tor matrix, the interlink between the dimension of the random compression matrix, sample size,
sparsity of the true regression coefficient vector and the number of predictors to prove consistent
estimation of the predictor coefficients asymptotically. Our detailed empirical investigation with
the Horseshoe shrinkage prior (Carvalho et al., 2010) ensures that the relevant predictors can
be learnt from the compressed data as well as from the original uncompressed data. Moreover,80

in presence of a higher degree of sparsity in the true regression model, the actual estimates of
parameters and predictions are as accurate as they would have been, had the uncompressed data
been used. Another attractive feature of this approach is that the original data are not recoverable
from the compressed data, and the compressed data effectively reveal no more information than
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would be revealed by a completely new sample. In fact, the original uncompressed data does not 85

need to be stored in the course of the analysis.
Our proposal is related to compressed sensing approaches (Donoho, 2006; Candes & Tao,

2006; Eldar & Kutyniok, 2012), with an important difference. While compressed sensing ap-
proaches broadly aim at reconstructing a sparse X from a small number of its random linear
combinations, we intend to reconstruct a sparse function of X only, and not the X and y them- 90

selves. In fact, from our point of view of privacy of the response vector and predictor matrices,
approximately reconstructing them should be viewed as undesirable. Our approach is fundamen-
tally different from Guhaniyogi & Dunson (2015) in that they compress each predictor vector,
leading to anm-dimensional compressed predictor from a p-dimensional predictor for each sam-
ple. In contrast, our compression framework does not alter the number of predictor variables in 95

the analysis before and after compression. A few notable articles in the machine learning litera-
ture show that major statistical procedures, such as the principal component analysis, clustering,
and even identifying the correct sparse set of relevant variables by the lasso are as effective under
compression (Liu et al., 2005; Zhou et al., 2008). However, we are not aware of any earlier work
where the full potential of the data compression approach to enable efficient Bayesian computa- 100

tion with big n and p has been carefully studied both theoretically and empirically.
The rest of the article proceeds as follows. Section 2 details out the proposed model and al-

gorithm for efficient estimation of predictor coefficients in presence of large n and p. Section 3
offers theoretical insights into the choice of m as a function of the true sparsity, number of pre-
dictors and sample size n to obtain accurate estimation of predictor coefficients asymptotically. 105

Section 4 empirically investigates parametric and predictive inferences from the proposed ap-
proach with the Horseshoe shrinkage prior under various simulation cases. The proposed method
is illustrated on a real data with big p and n in Section 5, followed by the concluding remarks in
Section 6.

2. COMPRESSING RESPONSE VECTOR AND PREDICTOR MATRICES FOR LARGE n 110

For subjects i = 1, ..., n, let yi ∈ Y denote the response for subject i corresponding to the
predictor xi ∈ Rp. We focus on the scenario where n < p, with n and p both large. Let y =
(y1, ..., yn)′ be the n× 1 vector of responses and X = [x1 : · · · : xp]′ be the n× p matrix of
predictors. We consider a data compression approach in the high dimensional linear regression
setting having the form 115

Φy = ΦXβ + ε, ε ∼ N(0, σ2I), (3)

where σ2 is a idiosyncratic error variance and Φ is an m× n dimensional compression matrix
with m << min(n, p). We do not estimate Φ as a variable in the regression, rather draw the
elements Φij of the Φ matrix independently from N(0, 1/n). This is a well known method of
constructing compression matrices in the literature of compressed sensing (see e.g., Eldar & 120

Kutyniok (2012)).
The data compression approach implemented here appears to be a special case of the matrix

masking technique proposed in the earlier privacy literature (Ting et al., 2008; Zhou et al., 2008;
Zhao & Chen, 2019), which, although popular in the privacy literature, has not been given due
attention theoretically, especially from a Bayesian perspective. A typical matrix masking proce- 125

dure pre- and post-multiplies the data matrix X by matrices C and D, respectively, and releases
CXD for the ensuing analysis. The transformation is quite general, and allows the possibility
of deleting records, suppressing subsets of variables and data swapping. This article chooses
C = Φ and D as the identity matrix so as to keep the original interpretation of the predictors.
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However, even in the case of Φ being known, the linear system ΦX is grossly under-determined130

due to m << min(n, p). The privacy in information theoretic terms of this compression proce-
dure could be evaluated using an upper bound of the average mutual information I(ΦX,X)/np
per unit in the original data matrix X , and showing that Sup I(ΦX,X)/np = O(m/n) (Zhou
et al., 2008), where supremum is taken over all possible distributions of X . With m growing at
a much slower rate than n, asymptotically as n→∞, the supremum over average mutual infor-135

mation converges to 0, intuitively meaning that the compressed data reveal no more information
about the original data than could be obtained from an independent sample. It is be noted that
such a bound is obtained assuming that Φ is known. In practice, only ΦX (and not even Φ) will
be revealed to the analyst. Hence, the imposed privacy through compression is more strict than
what is revealed by this result.140

Although not apparent, the ordinary high dimensional regression model in (1) bears a close
connection with its computationally convenient alternative (3), especially for large n. To see
this, note that pre-multiplying the high dimensional linear regression equation y = Xβ + ε by Φ
results in

Φy = ΦXβ + ε̃, ε̃ ∼ N(0, σ2ΦΦ′). (4)145

Equations (4) and (3) are similar in the mean function but differ in the error distribution. More
specifically, our approach assumes components of the error vector ε are i.i.d., whereas the error
vector from (4) follows a N(0, σ2ΦΦ′) distribution. Lemma 5.36 and Remark 5.40 of Vershynin
(2010) show that ||ΦΦ′ − Im||2 ≤ C ′

√
m/n, with probability at least 1− e−C′′m, for some con-

stants C ′, C ′′ > 0. As m grows at a slower rate than n, m/n→ 0 asymptotically. Hence, with150

large n, the error distributions of (3) and (4) behave similarly with a probability close to 1.
With prior distribution on β set as a Gaussian scale-mixture distribution from the class of

distributions given by (2), posterior computation cycles through updating the full conditional
distributions: (a) β|λ, σ, τ , (b) λ|β, σ, τ , (c) σ|λ, β, τ and (d) τ |λ, β, σ. While updating (b), (c)
and (d) do not face any computational challenge due to big n or p, full conditional posterior155

updating of β|λ, σ, τ has the form given by

N
((
X ′Φ′ΦX + ∆−1

)−1
X ′Φ′Φy, σ2(X ′Φ′ΦX + ∆−1)−1

)
, ∆ = τ2diag(λ1, ..., λp). (5)

The most efficient algorithm to sample from β (Rue, 2001) computes Cholesky decomposition of(
X ′Φ′ΦX + ∆−1

)
and employs the Cholesky factor to solve a series of linear systems to draw

a sample from (5). In absence of any easily exploitable structure, computing and storing the160

Cholesky factor of this matrix involves O(p3) and O(p2) floating point operations respectively
(Golub & Van Loan, 2012), which leads to computational and storage bottlenecks with a large p.
To overcome the computational and storage burden, we adapt the recent algorithm proposed in
Bhattacharya et al. (2016) (in the context of uncompressed data with small sample size) to our
setting. The detailed steps are given as following:165

Step 1: Draw v1 ∼ N(0, σ2∆) and v2 ∼ N(0, Im)
Step 2: Set v3 = ΦXv1/σ + v2.
Step 3: Solve (ΦX∆X ′Φ′ + Im)v4 = (y/σ − v3).
Step 4: Set v5 = v1 + σ∆X ′Φ′v4.

v5 is a draw from the full conditional posterior distribution of β. Notably, the computational170

complexity of Steps 1-4 is dominated by two operations: (Operation A) computing the inverse
of (ΦX∆X ′Φ′ + Im), and (Operation B) calculating ΦX∆X ′Φ′. (Operation A) leads to a com-
plexity of O(m3), whereas (Operation B) incurs complexity of O(m2p). As we demonstrate
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in Section 4, the algorithm offers massive speed-up in computation with big p and n, since
m << min(n, p). Notably, an application of Bhattacharya et al. (2016) on the uncompressed 175

data would have incurred computational complexity dominated by O(n3) and O(n2p). Thus,
our compression approach helps speeding up computation even by 400 times in our empirical
investigations with big n and p.

One important question arises as to how much inference is lost in lieu of the computational
speed-up achieved by the data compression approach. In the sequel, we address this question 180

both theoretically and empirically. Section 3 derives theoretical conditions on m, n, p and the
sparsity of the true data generating model to show asymptotically desirable estimation of pre-
dictor coefficients. Thereafter, finite sample performance of the proposed approach is presented
both in the simulation study and in the real data section.

3. POSTERIOR CONCENTRATION PROPERTIES OF THE COMPRESSION APPROACH 185

This section studies convergence properties of the data compression approach with high di-
mensional shrinkage prior on predictor coefficients. To begin with, we define a few notations.

3.1. Notations
In what follows, we add a subscript n to the dimension of the number of predictors pn and

the dimension of the compression matrix mn to indicate that both of them increase with the 190

sample size n. This asymptotic paradigm is also meant to capture the fact that the number of
predictors pn and the number of rows of the compression matrix mn are respectively larger
and smaller than the sample size n. Naturally, the predictor coefficient β and the compression
matrix Φ are also functions of n. We denote them by βn and Φn, respectively. Note that the
true data generating model under data compression is given by (4). We use superscript ∗ to 195

indicate the true parameters β∗n and σ∗2 in (4). For simplicity, we assume that σ2 = σ∗2 is known
and fixed at 1. This is a common assumption in asymptotic studies (Vaart & Zanten, 2011).
Furthermore, it is known that the theoretical results obtained by assuming σ2 as a fixed value
is equivalent to those obtained by assigning a prior with a bounded support on σ2 (Van der
Vaart et al., 2009). For vectors, we let || · ||1, || · ||2 and || · ||∞ denote the L1, L2 and L∞ norms, 200

respectively. The number of nonzero elements in a vector is given by || · ||0. Finally, emin(A) and
emax(A) respectively represent the minimum and maximum eigenvalues of the square matrix A.

3.2. Assumptions, Framework and The Main Result
For any subset of indices ξ ∈ {1, ..., pn}, |ξ| denotes the number of elements in the index set

ξ. Depending on whether A is a vector or a matrix, Aξ denotes the sub-vector or the sub-matrix 205

corresponding to the indices ξ. We let ξ∗ = {j : β∗j,n 6= 0}, i.e., ξ∗ are the indices of the nonzero
entries for the true predictor coefficient β∗n, and sn (dependent on n) designates the number of
nonzero entries in β∗n, i.e., sn = ||β∗n||0 = |ξ∗|. Since the shrinkage prior on βn assigns zero
probability at the point zero, the exact number of nonzero elements of βn is always pn. A
meaningful comparison with the value sn is made by considering s̃n, the number of elements of 210

βn exceeding in absolute value a threshold an, which will be specified later. In other words, only
elements with absolute value larger than an will be treated as significant and counted towards
non-zero entries. Before rigorously studying properties of the posterior distribution, we state
some regularity conditions on the design matrix X , the compression matrix Φn, the true sparsity
sn and the model determined approximate sparsity s̃n. 215

(A) The columns Xj of the design matrix X satisfy ||Xj ||22 = O(n), ∀ j = 1, ..., pn.
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(B) ||ΦnΦ′n − Im||2 ≤ C ′
√
mn/n, for some constant C ′ > 0, for all large n.

(C) sn log(pn) = o(mn), sn log(n) = o(mn).
(D) mn = o(n) and n1/2+δ̃/mn → 0 for some δ̃ > 0.220

(E) s̃n = O(sn).

(A) is a common assumption in the context of compressed sensing, see Zhou et al. (2008). From
the theory of random compression matrices, (B) occurs with probability at least 1− e−C′′mn (see
Lemma 5.36 and Remark 5.40 of Vershynin (2010)). Hence (B) is a mild assumption for large
n. (C) restricts the growth of the true sparsity and presents an interlink between the true sparsity,225

the dimension of the random matrix, number of predictor coefficients and the sample size. (D)
allows mn to grow at a slower rate than n, while at the same time ensuring a faster growth than√
n for mn. Assumptions (A) and (C) jointly impose restrictions on the compressed predictor

matrix X̃ = ΦnX . Following the proof of Proposition 3.6 in Zhou et al. (2008), we observe that
assumptions (A) and (C) imply emin(X̃ ′ξX̃ξ/mn) ≥ η, for some η > 0 and for all ξ ⊃ ξ∗ such230

that |ξ| ≤ sn + s̃n. We will make use of this fact in the proof of our posterior consistency result.
Our next set of assumptions concern the tail behavior of the shrinkage priors of interest and
the magnitude of the nonzero entries of β∗n. Let hµ(x) denote the prior density of βj,n for all j
with the set of hyper-parameters µ. For an =

√
sn log(pn)/mn/pn and for a sequence Mn, we

assume235

(F) max
j∈ξ∗
|β∗j,n| < Mn/2.

(G) 1−
∫ an
−an hµ(x)dx ≤ p−(1+u)n , for some positive constant u.

(H) − log( inf
x∈[−Mn,Mn]

hµ(x)) = O(log(pn)).

Assumption (F) restricts the growth of the nonzero entries in the true regression parameter
asymptotically. Assumption (G) concerns the prior concentration, requiring that the prior den-240

sity of βj,n for all j has sufficient mass within the interval [−an, an]. Finally, Assumption (H)
essentially controls the prior density around the true predictor coefficient. Notably, Assumptions
(F)-(H) are frequently used in the high dimensional Bayesian regression literature, including in
Jiang (2007) and Song & Liang (2017).

DefineBn =
{

At least s̃n absolute values of βn are greater than an =
√
sn log(pn)/mn/pn

}
,245

Cn = {βn : ||βn − β∗n||2 > ε} andAn = Bn ∪ Cn. Further suppose πn(·) and Πn(·) are the prior
and posterior densities of βn with n observations respectively, so that

Πn(An) =

∫
An
f(ỹ|βn)πn(βn)∫
f(ỹ|βn)πn(βn)

,

where f(ỹ|βn) is the joint density of ỹ = Φny under model (3). This article intends to show

Πn(An)→ 0, a.s., when n→∞. (6)250

The following theorem shows that (6) holds for the proposed model, with the proof of the theorem
given in the appendix.

THEOREM 1. Under Assumptions (A)-(H), our proposed model satisfies posterior consistency
as defined in (6).
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4. SIMULATION STUDIES 255

This section investigates frequentist operating characteristics of our data compression ap-
proach with a shrinkage prior along with its competitors in high dimensional regression. In par-
ticular, we implement (3) with the Horseshoe shrinkage prior (Carvalho et al., 2010) on each of
the predictor coefficients βj , and denote it by Compressed Horseshoe (CHS). As a frequentist
competitor, we implement Lasso (Tibshirani, 1996) on the full data. Additionally, we fit Lasso 260

on randomly chosen m data points from the sample of size n, and refer to this competitor as
Partial Lasso (PLasso). The ordinary Lasso on full data provides a comparison of our approach
with a frequentist penalized optimizer in high dimensional regression with big n and p. On the
other hand, comparison of CHS with PLasso demonstrates the inferential advantage of random
compression over naive sampling of m data points out of n data points. Although the remaining 265

section presents excellent performance of the compression approach with the Horseshoe prior
on βj’s, we expect similar performance from other Gaussian scale mixture prior distributions,
such as the Generalized Double Pareto (Armagan et al., 2013) prior or the normal gamma prior
(Griffin et al., 2010).

In the simulation examples, we draw n = 5000 samples from the high dimensional linear 270

regression model (1) with the number of predictors p = 10000 and the error variance σ2 = 1.5.
The p-dimensional predictor vectors xi for each i = 1, ..., n are simulated from N(0,Σ), with
two different constructions of Σ undertaken in simulation studies.
Scenario 1: Σ = Ip, i.e., all predictors are simulated i.i.d. We refer to this as the independent
correlation structure for the predictors. 275

Scenario 2: Σ = 0.5Ip + 0.5Jp, where Jp is a matrix with 1 at each entry. This structure ensures
that any pair of predictors have the same correlation of 0.5. We refer to this as the compound
correlation structure for the predictors.
Under Scenarios 1 and 2, the p-dimensional true predictor coefficient vector is simulated with
the number of nonzero entries: (a) s = 10; (b) s = 30 and (c) s = 50. The quantity (1− s/p) is 280

referred to as the true sparsity of the model. The magnitude of s nonzero entries are simulated
randomly from a U(1.5, 3) distribution with the sign of each entry randomly assigned to be
positive or negative.

To assess how the true sparsity (1− s/p) and the rank m of the random compression matrix
interplay, we fit CHS with m = 200 and m = 400 in both simulation scenarios under the three 285

different sparsity levels corresponding to (a), (b) and (c). For MCMC based model implementa-
tion of CHS, we discard the first 5000 samples as burn-in and draw inference based on the 5000
post burn-in samples. Both Lasso and PLasso are fitted with the R package glmnet.

The inferential performances of the competitors are compared based on the overall mean
squared error (MSE) of estimating the true predictor coefficient vector β∗ and the mean squared 290

error of estimating the truly nonzero predictor coefficient vector β∗nz (referred to as the MSEnz).
These metrics are given by

MSE = ||β̂ − β∗||22/p, MSEnz = ||β̂nz − β∗nz||22/s, (7)

where β̂ and β̂nz is a point estimate for β and βnz , respectively. For CHS, the point estimate is
taken to be the posterior mean. Uncertainty of estimating β from CHS is characterized through 295

coverage and length of 95% credible intervals averaged over all βj’s, j = 1, ..., p. Additionally,
we report the coverage and length of 95% credible intervals averaged over truly nonzero βj’s.
Finally, the quantity ||Xβ̂ −Xβ∗||22/n is reported to assess the predictive inference from the
competitors. Notably, in all three cases (a)-(c), s log(p) is similar or larger than m, presenting
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Table 1. Mean squared prediction error×103 for all the competing models under different sim-
ulation scenarios. MSPE is computed as ||Xβ̂ −Xβ∗||2/n for all the competitors.

Scenario 1, m = 200 Scenario 1, m = 400 Scenario 2, m = 200 Scenario 2, m = 400

Sparsity 10 30 50 10 30 50 10 30 50 10 30 50

CHS 0.62 46.56 205.67 0.51 0.57 0.61 0.53 39.22 196.78 0.47 0.59 0.64
PLasso 1.95 71.97 249.70 0.62 2.28 33.19 1.36 62.89 234.63 0.58 1.75 50.49
Lasso 0.02 0.07 0.10 0.02 0.07 0.10 0.03 0.07 0.12 0.03 0.07 0.12

challenging contexts where the theoretical guarantee (as given in Theorem 1) on estimation of β300

do not necessarily follow. All results presented are averaged over 20 replications.

4.1. Results
Figures 1 and 2 present the boxplots for MSE and MSEnz for all competitors under the three

different sparsity levels in Scenarios 1 and 2, respectively. Understandably, Lasso applied on the
full data is the best performer in all simulation cases. With small to moderate value of the ratio305

s/m, CHS significantly outperforms PLasso, both in terms of MSE and MSEnz . This becomes
evident by comparing the performances of CHS and PLasso for m = 400 under all three cases
(a)-(c) and for the case m = 200, s = 10. In fact when s/m is small, CHS is also found to offer
competitive performance with Lasso (refer to the results under m = 400). As sparsity decreases
and s/m becomes higher, the performance gap between CHS and PLasso narrows. This is evident310

from both Figures 1 and 2, corresponding to the case with s = 30, 50 and m = 200. Consistent
with the point estimation of β, Table 1 shows notable advantage of CHS over PLasso in terms
of predictive inference, especially with smaller s/m. Lasso on the full data is naturally found to
be the superior performer among the three. We observe a similar trend in the performance, both
under Scenario 1 and 2.315

While accurate point estimation of β∗ is one of our primary objectives, characterizing un-
certainty is of paramount importance given the recent developments in the frequentist literature
on characterizing uncertainty in high dimensional regression (Javanmard & Montanari, 2014;
Van de Geer et al., 2014; Zhang & Zhang, 2014). Although Bayesian procedures provide an au-
tomatic characterization of uncertainty, the resulting credible intervals may not possess the cor-320

rect frequentist coverage in nonparametric/high-dimensional problems (Szabó et al., 2015). To
this end, an attractive adaptive property of the shrinkage priors, including Horseshoe, is that the
length of the intervals automatically adapt between the signal and noise variables, maintaining
close to nominal coverage. It is important to see if this property is preserved under data com-
pression when the Horseshoe prior is set on coefficients β. Table 2 shows that under m = 400,325

95% credible intervals (CI) of all nonzero coefficients offer closely nominal coverage. While it
is also true for m = 200 and s = 10, the coverage for nonzero coefficients tend to deteriorate as
s/m increases. Comparing the average length of 95% CIs for all coefficients with the average
length of 95% CIs of nonzero coefficients, we observe that the posterior yields much narrower
CIs for coefficients corresponding to the noise predictors. As demonstrated in some of the recent330

literature (Bhattacharya et al., 2016), the frequentist procedures of constructing confidence inter-
vals for high dimensional parameters (Javanmard & Montanari, 2014; Van de Geer et al., 2014;
Zhang & Zhang, 2014) in Lasso yield approximately equal sized intervals for the signals and
noise variables. Additionally, the tuning parameters in the frequentist procedure require substan-
tial tuning to arrive at satisfactory coverage for the noise (though at the cost of under-covering335

the signals), while our Bayesian approach is naturally auto-tuned.
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(a) MSE of β: CHS, m = 200
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(b) MSE of β: PLasso, m = 200
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(e) MSE of nonzero β: PLasso,
m = 200

● ●

0.0015

0.0020

0.0025

0.0030

10 30 50
No. of Nonzero Coefficients

M
ea

n 
S

qu
ar

ed
 E

rr
or

(f) MSE of nonzero β: Lasso

●

●

3e−05

4e−05

5e−05

6e−05

7e−05

8e−05

10 30 50
No. of Nonzero Coefficients

M
ea

n 
S

qu
ar

ed
 E

rr
or

(g) MSE of β: CHS, m = 400

●●

●

●

●

0.000

0.002

0.004

0.006

10 30 50
No. of Nonzero Coefficients

M
ea

n 
S

qu
ar

ed
 E

rr
or

(h) MSE of β: PLasso, m = 400

●

5e−06

1e−05

10 30 50
No. of Nonzero Coefficients

M
ea

n 
S

qu
ar

ed
 E

rr
or

(i) MSE of β: Lasso

0.004

0.005

0.006

0.007

0.008

10 30 50
No. of Nonzero Coefficients

M
ea

n 
S

qu
ar

ed
 E

rr
or

(j) MSE of nonzero β: CHS, m =

400

●

●

●

●

●

0.0

0.3

0.6

0.9

10 30 50
No. of Nonzero Coefficients

M
ea

n 
S

qu
ar

ed
 E

rr
or

(k) MSE of nonzero β: PLasso,
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Fig. 1. First and third row present mean squared error
(MSE) of estimating the true predictor coefficient β0 by
a point estimate of β from CHS, PLasso and Lasso for
m = 200 and m = 400, respectively. Second and fourth
row present mean squared error (MSE) of estimating the
true nonzero coefficients in β0 by a point estimate of the
corresponding coefficients in β from CHS, PLasso and
Lasso form = 200 andm = 400, respectively. All figures
correspond to the scenarios where the predictors are gener-
ated under the independent correlation structure (Scenario
1). Each figure shows performance of a competitor under
the data generated with 10, 30 and 50 nonzero coefficients

in β0.

4.2. Choice of Dimension of the Compression Matrix
Since CHS is regarded as a computationally convenient approximation to the Horse-

shoe prior on the full data, the approximation accuracy is expected to increase as m ap-
proaches n. On the contrary, a higher value of m diminishes any computational gain of- 340

fered by CHS. In practice, we define a model fitting statistic for CHS, given by Mfit(m) =
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(k) MSE of nonzero β: PLasso,
m = 400
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Fig. 2. First and third row presenting mean squared error
(MSE) of estimating the true predictor coefficient β0 by
a point estimate of β from CHS, PLasso and Lasso for
m = 200 and m = 400 respectively. Second and fourth
row presenting mean squared error (MSE) of estimating
the true nonzero coefficients in β0 by a point estimate of
the corresponding coefficients in β from CHS, PLasso and
Lasso for m = 200 and m = 400 respectively. All figures
correspond to the scenarios where the predictors are gen-
erated under the compound correlation structure (Scenario
2). Each figure shows performance of a competitor under
the data generated with 10, 30 and 50 nonzero coefficients

in β0.

Mfit1(m) +Mfit2(m), where Mfit1(m) =
∑n

i=1(yi − yrep,i)2, Mfit2(m) =
∑n

i=1 σ̂
2
rep,i,

yrep,i =
∑T

t=1 yrep,i,t and σ̂2rep,i =
∑T

t=1(yrep,i,t − yrep,i)2/T . Here yrep,i,t is drawn from
N(x′iβ

(t), σ2(t)), where β(t), σ2(t) are the t-th post burn-in iterates of β and σ2 obtained from
fitting (3), t = 1, ..., T . In the construction of Mfit(m), Mfit1(m) evaluates inferential accu-345

racy whereas Mfit2(m) indicates model fit. The metric closely mimics posterior predictive loss
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Table 2. Average coverage and average length of 95% credible intervals of β for CHS under
different simulation cases.

Scenario 1, m = 200 Scenario 1, m = 400 Scenario 2, m = 200 Scenario 2, m = 400

Sparsity 10 30 50 10 30 50 10 30 50 10 30 50

Coverage (overall) 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.98
Length (overall) 0.02 0.08 0.17 0.02 0.03 0.03 0.01 0.11 0.17 0.01 0.02 0.03

Coverage (nonzero) 0.97 0.86 0.68 0.95 0.97 0.97 0.98 0.89 0.63 0.95 0.96 0.95
Length (nonzero) 5.72 5.93 5.19 5.53 5.90 5.83 5.49 6.59 4.42 5.51 5.79 5.77

m

M
fit
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(a) Model fit: s = 10

m

M
fit

100 300 500 700 900

1
11
21
31
41
51
61
71
81
91
101
111
121
131
141
151
161
171
181
191

(b) Model fit: s = 30

Fig. 3. The model fitting statistic (Mfit(m)/104) values
for different choices of dimension of the compression ma-
trix. Results are presented for data generated under Sce-
nario 1 with n = 5000, p = 10000 and with two different

sparsity levels, s = 10 and s = 30.

criterion (Gelfand & Ghosh, 1998), except that the post burn-in iterates from the approximating
model (3) is used in the original model, deemed necessary due to the changing dimension of the
response vector with different choices of m. We propose to fit the model (3) over a grid of m
values in parallel and choose the value of m after which Mfit(m) values stabilize. 350

To assess the above algorithm for selecting m, we fit (3) for m = 100, 200, ..., 1000 with data
generated under Scenario 1 with s = 10 and 30. Figure 3 shows that the model fitting statistic
stabilizes at m = 400 and m = 500 respectively for s = 10 and s = 30. Interestingly, MSEnz
for m = 400 and m = 500 under these two simulation scenarios are 0.005 and 0.004 respec-
tively, which are of the same order with the corresponding values obtained from the full Lasso 355

(see Figure 1). Likewise, we find the algorithm for selecting m produces desirable inference in
terms of parameter estimation in all other simulation experiments.

5. APPLICATION TO FINANCIAL STOCK DATABASE

This section illustrates the performance of CHS along with its competitors for a financial
data set consisting of minute by minute average log-prices of the NASDAQ stock exchange 360

from September 10, 2018 to September 30, 2018 during trading hours. The data consists of log-
prices of Apple stocks along with 3430 assets, and the aim of the data analysis is to evaluate
the elasticity of the price of Apple stocks with respect to the prices of the remaining assets.
This is of particular interest, since Apple, one of the biggest publicly traded companies in the
world, is ubiquitous in portfolios ranging from retirement funds to small portfolios managed by 365

individuals in the financial market. Thus accurate inference on the relationship between Apple
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Table 3. MSPE for all competitors are reported for the
stock price data. We additionally report coverage and

length of 95% predictive interval for CHS.
MSPE Coverage Length

Competitors CHS PLasso Lasso CHS CHS
m = 400 0.01 1.60 1.36 0.99 0.03
m = 500 0.01 1.58 1.36 0.99 0.02

and other financial stocks allows better portfolio diversification. We employ a high dimensional
linear regression model with the log-price of the Apple stock as the response and log-prices of
other assets as predictors.

The data includes several assets, such as ETFs, Trust Funds, stock tracker indexes, and banks,370

which as expected, present a very high degree of collinearity. To avoid less desirable inference
due to high collinearity, a few financial assets are removed along with assets which have very
few transactions (less than 40), yielding 2014 predictors for the analysis. The data set consists of
2276 observations collected over a few days. Due to the time window of the collected data being
narrow, we ignore the temporal variation of log-prices of the Apple stock.375

We fit CHS with m = 100, 200, 300, 400, 500, 600 and observe that the model fitting statistic
stabilizes after m = 400, with m = 400 and m = 500 yield the lowest model fitting statistic.
Hence, we conclude no practical gain of fitting the compressed data model beyond m = 500 and
present results for bothm = 400 andm = 500. Inference with PLS and Lasso are also presented
along with CHS. Since MSPE as described in Section 4 involves comparison between the point380

estimate of Xβ and its true value which is not known in the real data, we formulate MSPE for
the real data as ||y −Xβ̂||2/n, where β̂ is some point estimate of β. The data shows notable
advantage of fitting the Horseshoe shrinkage prior over its frequentist alternatives, perhaps due
to the high degree of collinearity leading to an ill conditionedX ′X matrix. As a result, the MSPE
from the approximated inference offered by CHS demonstrates much lower value than PLS or385

Lasso (refer to Table 3). As expected, Lasso on the full data shows much lower MSPE than PLS.
Additionally, the average coverage and length of 95% predictive interval from CHS are close to
nominal, indicating satisfactory characterization of uncertainty.

6. CONCLUSION

This article presents a data compression approach in high dimensional linear regression with390

Gaussian scale mixture priors. The proposed approach ensures privacy of the original data by
revealing little information about it to the analyst. Additionally, it leads to a massive reduction
in computation for big n and p. Simulation studies show notable advantage of data compression
over naive sub-sampling of data, as well as competitive performance of the approach with un-
compressed data, especially in presence of a high degree of sparsity. Asymptotic results throw395

light on the interplay of sparsity, dimension of the compression matrix, sample size and the
number of predictors.

Although our approach is applied to the Horseshoe prior, it lends easy usage to any other
Gaussian scale mixture prior, such as the Generalized Double Pareto (Armagan et al., 2013) or
the normal gamma prior (Griffin et al., 2010). The data compression approach also finds natural400

extension to high dimensional binary or categorical regression using the data augmentation ap-
proach. While simulation studies show promising empirical performance of such an approach,
we plan to put forth effort to develop theoretical results in a similar spirit as Section 3. We also
plan to extend our idea to high dimensional nonparametric models with big n and p.
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APPENDIX

We begin by stating an important result from the random matrix theory, the proof of which is immediate
following Theorem 5.31 and Corollary 5.35 of Vershynin (2010). 410

LEMMA A1. Consider themn × n compression matrix Φn with each entry being drawn independently
from N(0, 1/n). Then, almost surely

(
√
n−
√
mn − o(

√
n))2/n ≤ emin(ΦnΦ′n) ≤ emax(ΦnΦ′n) ≤ (

√
n+
√
mn + o(

√
n))2/n, (A1)

when both mn, n→∞.

LEMMA A2. There exist a sequence of test functions κn for testing H0 : βn = β∗n vs. H1 : βn ∈ An 415

such that Eβ∗
n
(κn) ≤ exp(−c̃3mn), sup

βn∈An

Eβn
(1− κn) ≤ exp(−2c̃4mn), for all large n, for some

c̃3, c̃4 > 0.

Proof. Denote ỹ = Φny and X̃ = ΦnX . Define a sequence of test functions κn =
maxξ⊃ξ∗,|ξ|≤sn+s̃n 1{||(X̃ ′ξX̃ξ)

−1X̃ ′ξ ỹ − β∗n,ξ||2 ≥ ε/4}. Let β̂n,ξ = (X̃ ′ξX̃ξ)
−1X̃ ′ξ ỹ. Then

Eβ∗
n
(κn) ≤

∑
ξ⊃ξ∗,|ξ|≤sn+s̃n

Pβ∗
n
(||β̂n,ξ − β∗n,ξ||2 ≥ ε/4) =

∑
ξ⊃ξ∗,|ξ|≤sn+s̃n

Pβ∗
n
((β̂n,ξ − β∗n,ξ)′(β̂n,ξ − β∗n,ξ) ≥ ε2/16)420

≤
∑

ξ⊃ξ∗,|ξ|≤sn+s̃n

Pβ∗
n
((β̂n,ξ − β∗n,ξ)′X̃ ′ξ(ΦnΦ′n)−1X̃ξ(β̂n,ξ − β∗n,ξ) ≥ ηε2mn/16× n/(

√
mn +

√
n+ o(

√
n))2)

≤
∑

ξ⊃ξ∗,|ξ|≤sn+s̃n

Pβ∗
n
(χ2
|ξ| ≥ ηε

2mn/16× n/(
√
mn +

√
n+ o(

√
n))2)

≤
∑

ξ⊃ξ∗,|ξ|≤sn+s̃n

Pβ∗
n
(χ2
|ξ| ≥ (1− δ)ηε2mn/16) ≤

(
pn

s̃n + sn

)
exp(−2c̃3mn) ≤ exp(−c̃3mn),

for some constant c̃3 > 0. where the inequality in the second line follows from two results. First, by
Lemma A1, emin((ΦnΦ′n)−1) ≥ n/(

√
n+
√
mn + o(

√
n))2. Second, by assumptions (A) and (C), fol- 425

lowing the proof of Proposition 3.6 in Zhou et al. (2008), emin(X̃ ′ξX̃ξ/mn) ≥ η, for some η > 0 and
for all ξ ⊃ ξ∗ such that |ξ| ≤ sn + s̃n. The first inequality in the fourth line follows due to the fact
that n/(

√
mn +

√
n+ o(

√
n))2 → 1 as n→∞. Hence n/(

√
mn +

√
n+ o(

√
n))2 ≥ 1− δ for some

δ ∈ (0, 1), for all large n. The second inequality in the fourth line in obtained by applying the Bern-
stein inequality (Song & Liang, 2017). The third inequality in the fourth line is obtained by the fact that 430(

pn
s̃n+sn

)
≤ ps̃n+snn ≤ exp((s̃n + sn) log(pn)) ≤ exp(c̃3mn), using assumptions (C) and (E).

Consider ζ = ξ∗ ∪ {k : |βk,n| ≥ an}. Then ζ ∈ {ξ : ξ ⊃ ξ∗, |ξ| ≤ sn + s̃n}. Then

sup
βn∈An

Eβn
(1− κn) ≤ sup

βn∈An

{1− Pβn
(||β̂n,ζ − β∗n,ζ || ≥ ε/4)} = sup

βn∈An

Pβn
(||β̂n,ζ − β∗n,ζ || ≤ ε/4).

Under An, ||βn,ζ − β∗n,ζ || ≥ ||βn − β∗n|| − ||βn,ζc − β∗n,ζc || ≥ ε− anpn ≥ ε/2. Here the last inequality
follows due to the fact that β∗n,ζc = 0 and for any k ∈ ζc, |βn,k| ≤ an and an < ε/(2pn) (due to the fact 435
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that sn log(pn)/mn → 0 ). Using the above fact, we have

sup
βn∈An

Pβn(||β̂n,ζ − β∗n,ζ || ≤ ε/4) ≤ sup
βn∈An

Pβn(||β̂n,ζ − βn,ζ || ≥ ||βn,ζ − β∗n,ζ || − ε/4)

= sup
βn∈An

Pβn
(||β̂n,ζ − βn,ζ || ≥ ε/4)

≤ sup
βn∈An

Pβn
((β̂n,ζ − βn,ζ)′X̃ ′ζ(ΦnΦ′n)−1X̃ζ(β̂n,ζ − βn,ζ) ≥ ηε2mn/16× n/(

√
mn +

√
n+ o(

√
n))2)

≤ sup
βn∈An

Pβn
(χ2
|ζ| ≥ ηε

2mn/16× n/(
√
mn +

√
n+ o(

√
n))2) ≤ sup

βn∈An

Pβn
(χ2
|ζ| ≥ (1− δ)ηε2mn/16)440

≤ exp(−2c̃4mn), for some constant c̃4 > 0.

Proof of Theorem 1:

Proof.

Πn(An) =

∫
An

f(ỹ|βn)πn(βn)∫
f(ỹ|βn)πn(βn)

=

∫
An

f(ỹ|βn)
f(ỹ|β∗

n)
πn(βn)∫ f(ỹ|βn)

f(ỹ|β∗
n)
πn(βn)

=
N1,n

N2,n
≤ κn + (1− κn)

N1,n

N2,n
, (A2)

where κn is the sequence of tests given in Lemma A2. Note that

Pβ∗
n

(κn > exp(−c̃3mn/2)) ≤ Eβ∗
n

(κn) exp(c̃3mn/2) ≤ exp(−c̃3mn/2).445

Therefore
∑∞
n=1 Pβ∗

n
(κn > exp(−c̃3mn/2)) <∞. Applying Borel-Cantelli lemma

Pβ∗
n

(κn > exp(−c̃3mn/2) infinitely often) = 0. Thus,

κn → 0 a.s. (A3)

Eβ∗
n
((1− κn)N1,n) =

∫
(1− κn)

∫
An

f(ỹ|βn)

f(ỹ|β∗n)
πn(βn)f(ỹ|β∗n)450

=

∫
An

∫
(1− κn)f(ỹ|βn)πn(βn) ≤ sup

βn∈An

Eβn
(1− κn) ≤ exp(−2c̃4mn).

Applying Borel-Cantelli lemma, Pβ∗
n

((1− κn)N1,n exp(mnc̃4) > exp(−mnc̃4/2) infinitely often) = 0
so

exp(mnc̃4)(1− κn)N1,n → 0 a.s.. (A4)

Note thatN2,n =
∫ f(ỹ|βn)
f(ỹ|β∗

n)
πn(βn). Consider the setHn =

{
βn : 1

mn
log
[
f(ỹ|β∗

n)
f(ỹ|βn)

]
< υ

}
, for υ = c̃4/2.455

exp(c̃4mn)N2,n ≥ exp(c̃4mn)

∫
Hn

exp

(
−mn

1

mn
log

f(ỹ|β∗n)

f(ỹ|βn)

)
πn(βn) ≥ exp((c̃4 − c̃4/2)mn)Πn(Hn).

In view of (A2), (A3) and (A4), it is enough to show that − log(Πn(Hn)) = o(mn).
With little algebra, we obtain

1

mn
log

[
f(ỹ|β∗n)

f(ỹ|βn)

]
=
[
−(ỹ − X̃β∗n)′(ΦnΦ′n)−1(ỹ − X̃β∗n) + ||ỹ − X̃βn||2 − log |ΦnΦ′n|

]
/(2mn).

Notably, − log |ΦnΦ′n|/mn ≥ log(n/(
√
n+
√
mn + o(

√
n))2)→ 0 (by Lemma A1), as n→∞. Also,460

Pβ∗
n
(ỹ : (ỹ − X̃β∗n)′(I − (ΦnΦ′n)−1)(ỹ − X̃β∗n) > mn/ log(n))

≤ Eβ∗
n
[log(n)(ỹ − X̃β∗n)′(I − (ΦnΦ′n)−1)(ỹ − X̃β∗n)/mn]

= Trace(ΦnΦ′n − I) log(n)/mn ≤ ||ΦnΦ′n − I||2 log(n)/mn ≤ log(n)/
√
nmn,
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where the last inequality follows due to Assumption (B). Using Assumption (D),
∑∞
n=1 log(n)/

√
nmn ≤∑∞

n=1 log(n)/n1+δ̃ <∞. Hence by Borel-Cantelli lemma, (ỹ − X̃β∗n)′(I − (ΦnΦ′n)−1)(ỹ −465

X̃β∗n)/mn → 0 a.s., as n→∞.
The above two results jointly imply Hn ⊃ {βn : −||ỹ − X̃β∗n||2 + ||ỹ − X̃βn||2 ≤ mnc̃6},

for some constant c̃6 > 0. Now use {βn : −||ỹ − X̃β∗n||2 + ||ỹ − X̃βn||2 ≤ mnc̃6} ⊃ {βn :
||βn − β∗n||1 < c̃7}, for some constant c̃7 > 0. Also, {βn : ||βn − β∗n||1 < c̃7} ⊃ {|βj,n| ≤ c̃7/pn, ∀ j /∈
ξ∗} ∩ {|βj,n − β∗j,n| ≤ c̃7/sn ∀ j ∈ ξ∗}. Now, πn(|βj,n| ≤ c̃7/pn, ∀ j /∈ ξ∗) ≥

∏
j /∈ξ∗ πn(|βj,n| ≤470

an) ≥ (1− p−1−un )pn → 1, as n→∞. Here the first inequality follows as an =
√
sn log(pn)/mn/pn

and sn log(pn)/mn → 0. The second inequality follows by Assumption (G). On the other hand,
πn(|βj,n − β∗j,n| ≤ c̃7/sn, ∀ j ∈ ξ∗) ≥ (2c̃7/sn inf

[−Mn,Mn]
hµ(x))sn , which holds for all large n as

|β∗j,n| < Mn/2 and c̃7/sn → 0 as n→∞. Thus, − log(πn(|βj,n − β∗j,n| ≤ c̃7/sn, ∀ j ∈ ξ∗)) ≤
O(sn log(pn)) = o(mn), by Assumptions (C) and (H). Hence, − log(πn(Hn) = o(mn). � 475
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