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Abstract

Hybrid optimization methods that combine statistical modeling with mathemati-
cal programming have become a popular solution for Bayesian optimization because
they can better leverage both the efficient local search properties of the numerical
method and the global search properties of the statistical model. These methods seek
to create a sequential design strategy for efficiently optimizing expensive black-box
functions when gradient information is not readily available. In this paper, we pro-
pose a novel Bayesian optimization strategy that combines response surface modeling
with barrier methods to efficiently solve expensive constrained optimization problems
in computer modeling. At the heart of all Bayesian optimization algorithms is an ac-
quisition function for effectively guiding the search. Our hybrid algorithm is guided
by a novel acquisition function that tries to decrease the objective function as much
as possible while ensuring that the boundary of the constraint space is never crossed.
Illustrations highlighting the success of our method are provided, including a real-
world computer model optimization experiment from hydrology.
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1 Introduction

Constrained optimization problems are pervasive in scientific and industrial endeavors. In

many engineering applications, physical systems of interest are often represented as black-

box functions, and these black-box functions can be difficult to optimize because their

outputs may be complex, multi-modal, and difficult to understand. The problem becomes

even more challenging when the black-box functions are computationally expensive to eval-

uate and no gradient information is available, as well as when the constraint boundaries

are not known in advance and are nonlinear. Bayesian optimization (BO) has emerged as

a powerful tool for solving global optimization problems of expensive black-box functions

(Jones et al., 1998). Having origins in the work of Mockus et al. (1978), BO is an efficient

sequential design strategy for optimizing black-box functions, in few steps, that does not

require gradient information (Brochu et al., 2010). The success of BO has been heavily

tied to the use of acquisition functions for guiding the search (Taddy et al., 2009; Snoek

et al., 2012; Lindberg and Lee, 2015). An appropriate acquisition function should accu-

rately encode the beliefs about which is the next best input to evaluate, while also striking

a balance between exploration (global search) and exploitation (local search). It is due to

these reasons that we develop a novel BO acquisition function that is capable of reliably

guiding the search algorithm, with few function evaluations, to the global solution of a

black-box constrained optimization problem.

In this article, we seek to solve problems of the form

min
x
{f(x) : c(x) ≤ 0, x ∈ X} (1)

where X ⊂ Rd is a known, bounded region such that f : X → R denotes a scalar-valued

objective function and c : X → Rm denotes a vector of m constraint functions. Both the

objective, f , and constraint functions, c, are assumed to be expensive black-box functions,

and we focus on the derivative-free situation where no information about the gradients of

the objective and constraint functions is available (Conn et al., 2009). We also define the

feasible set of points, F ⊂ X , to be the collection of inputs x that satisfy the constraint

functions c. Lastly, we make the assumption that a solution to (1) exists.

Provably convergent methods for solving derivative-free constrained optimization prob-
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lems are plentiful in the mathematical programming literature (Conn et al., 2009), yet

their search is typically focused locally and so only local solutions can be guaranteed. On

the other hand, statistical models offer the opportunity to search the space globally for

solutions to constrained optimization problems, but suffer from a lack of convergence guar-

antees, speed as compared to local search algorithms, and typically heuristics are needed

to handle constraints. However, although not coined as BO, many authors have realized

that the marriage of mathematical programming with statistical modeling could serve to

better leverage both the efficient local search properties of the numerical method and the

global search properties of the statistical model. For example, Gramacy et al. (2016) took a

hybrid optimization approach and combined statistical surrogate modeling with a penalty

function approach to derive an acquisition function based on augmented Lagrangians. Like-

wise, Pourmohamad and Lee (2019) combined statistical surrogate modeling with a filter

method in order to derive an acquisition function that chose inputs that maximized the

probability that a point would be acceptable to the filter and thus reduce the objective

function. In this article, we take a similar position and derive a novel acquisition function,

that is based on the hybridization of Gaussian process surrogate modeling (Santner et al.,

2003) and barrier methods (Nocedal and Wright, 2006), that tries to decrease the objective

function as much as possible while ensuring that the boundary of the constraint space is

never crossed. Our new BO approach is highly competitive with the state-of-the-art current

methods.

The remainder of this article is organized as follows. In Section 2, we introduce the

three major components that we hybridize for our BO algorithm. Section 3 explains the

derivation of our novel acquisition function. Three versions of the acquisition function are

proposed, and we highlight the rationale behind each. Section 4 demonstrates the efficiency

of our new BO algorithm by solving two synthetic test problems and a real-world hydrology

computer experiment. Lastly, section 5 finishes with some discussion about potential future

work and concluding remarks.
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2 Hybrid Optimization

Section 2 introduces the three components of our algorithm that we hybridize in order to

solve problems of the form (1).

2.1 Gaussian Process Surrogate Modeling

Popular in the modeling of computer experiments, surrogate models are efficient statisti-

cal models that serve as a fast approximation to the true computer model or black-box

function (Sacks et al., 1989; Santner et al., 2003; Kleijnen, 2015; Gramacy, 2020). Due

to their analytical tractability, the canonical choice for modeling of computer experiments

has been the Gaussian process (GP). GPs are distributions over functions such that the

joint distribution at any finite set of points is a multivariate Gaussian distribution, and

are defined by a mean function and a covariance function. GPs have a number of desir-

able properties such as being flexible (a form of nonparametric regression), being able to

closely approximate most functions, and often being much cheaper/faster to evaluate than

the actual computer model. More importantly, using GPs for surrogate modeling allows

for uncertainty quantification of computer models (or black-box functions) at untried (or

unobserved) inputs. Let {x(i), y(i)}ni=1 denote the input-output pairs of data after n evalua-

tions of a computer model. The GP, Y (x), serves as a flexible regression model for the data

{x(i), y(i)}ni=1 and its predictive equations arise as a simple application of conditioning for

multivariate normal joint distributions, i.e., the predictive distribution Y (x)|{x(i), y(i)}ni=1

at a new input x follows another Gaussian process Y (x)|{x(i), y(i)}ni=1 ∼ N(µ(x), σ2(x)).

2.2 Barrier Methods

Barrier methods (Nocedal and Wright, 2006), also known as interior point methods, are a

natural strategy for solving problems of the form (1) as they try to decrease the objective

function as much as possible while ensuring that the boundary of the feasible set F is never

crossed. In order to ensure that the boundary is never crossed, barrier methods replace the

inequality constraints with an extra term in the objective function that can be viewed as
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a penalty for approaching the boundary. And so, we can rewrite (1) as

min
x

{
f(x) +

m∑
i=1

B{ci(x)≤0}(x)

}
(2)

where B{ci(x)≤0}(x) = 0 if ci(x) ≤ 0 and ∞ otherwise. In general, this reformulation is

not particularly useful as it introduces an abrupt discontinuity when ci(x) > 0. However,

we can replace the discontinuous function in (2) with a continuous approximation, φ(x),

that is ∞ when ci(x) > 0 but is finite for ci(x) ≤ 0 and approaches ∞ as ci(x) approaches

zero. The continuous approximation φ(x), known as the barrier function, thereby creates

a “barrier” to exiting the feasible region. A typical choice of barrier function is the log

barrier function which is defined as

φ(x) = −
(

1

γ

) m∑
i=1

log(−ci(x)) (3)

for γ > 0. Using the log barrier function, we can approximate the problem in (2) as

min
x
{BM(x; γ)} = min

x

{
f(x)−

(
1

γ

) m∑
i=1

log(−ci(x))

}
. (4)

Here we note that for ci(x) < 0, φ(x) is a smooth approximation of
∑m

i=1 B{ci(x)≤0}(x), and

that this approximation improves as γ goes to ∞.

2.3 Bayesian Optimization

A method that dates back to Mockus et al. (1978), Bayesian optimization (BO) is a se-

quential design strategy for efficiently optimizing black-box functions, in few steps, that

does not require gradient information (Brochu et al., 2010). More specifically, BO seeks to

solve the minimization problem

x∗ = argmin
x∈X

f(x). (5)

The minimization problem in (5) is solved by iteratively developing a statistical surrogate

model of the unknown objective function f , and at each step of this iterative process, using

predictions from the statistical surrogate model to maximize an acquisition (or utility)

function, a(x), that measures how promising each location in the input space, x ∈ X ,
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is if it were to be the next chosen point to evaluate. Thus, the role of the acquisition

function, a(x), is to guide the search for the solution to (5). We defer further discussions of

acquisitions to Section 3, but clearly different choices of acquisition functions should lead

to different measures of belief of the search algorithm when searching for the next best

input to evaluate. GPs have been the typical choice of statistical surrogate model for the

objective function f in BO, and this is due to their flexibility, well-calibrated uncertainty,

and analytic properties (Gramacy, 2020).

Lastly, although the general definition of BO is that of an unconstrained optimization

problem, extensions to the constrained optimization case are straightforward and many

(Lee et al., 2011; Gramacy et al., 2016; Letham et al., 2018).

3 Novel Acquisition Functions

At the heart of all Bayesian optimization algorithms is an acquisition function, a(x), for

effectively guiding the search. Bayesian optimization essentially embeds an optimization

problem inside of a difficult and expensive outer optimization problem, and so a good

acquisition function should be easy to evaluate and quick to maximize with respect to

the original outer optimization problem. Furthermore, given that the GP surrogate model

is essential for maximizing the acquisition function, it is also of tantamount importance

that the acquisition function should balance exploration – improving the model in the less

explored parts of the search space and exploitation – favoring parts the model predicts as

promising.

In what follows, we explain the derivation of our novel acquisition function, a hybridiza-

tion of the methods in Section 2, and explore three different variations of the acquisition

function.

3.1 Expected Barrier Method

One of the simplest approaches to hybridizing mathematical programming with statistical

modeling is to build a surrogate model based on the outputs of the mathematical program,

i.e., modeling y(i) = BM(x(i); γ) via f (i) and c(i) by fitting a GP surrogate model, Y (x),
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to the n pairs {x(i), y(i)}ni=1. However, as pointed out in Gramacy et al. (2016), models

such as these will likely require nonstationary GP surrogate models in order to do a good

job at model fitting and prediction which ultimately will affect how well we are able to

maximize our acquisition function since this function will critically rely on the GP surrogate

predictions. Instead, we follow the recommendation of Gramacy et al. (2016) and model

the components of the barrier method, i.e. f and c, separately using independent surrogate

models. We note that although the use of correlated surrogate models for f and c may

yield improvements (Pourmohamad and Lee, 2016), we found that using independent GP

surrogate models worked about as well in practice on this problem and were faster and

easier to implement. Working with independent surrogate models Yf (x) and Yc(x) =

(Yc1(x), ..., Ycm(x)) for the objective and constraint functions, respectively, we can model

y(i) = BM(x(i); γ) with the following surrogate model

Y (x) = Yf (x)−
(

1

γ

) m∑
i=1

log(−Yci(x)). (6)

Optimization can now proceed by searching the predictive mean surface of Y (x). In order

to do so, we look to minimize the expectation of Y (x), i.e.,

min
x

E(Y (x)) = min
x

E

(
Yf (x)−

(
1

γ

) m∑
i=1

log(−Yci(x))

)

= min
x

E (Yf (x))−
(

1

γ

) m∑
i=1

E (log(−Yci(x)))

≈ min
x

E (Yf (x))−
(

1

γ

) m∑
i=1

(
log(E(−Yci(x)))− V(−Yci(x))

2E(−Yci(x))2

)
= min

x
µf −

(
1

γ

) m∑
i=1

(
log(−µci) +

σ2
ci

2µ2
ci

)
(7)

The derivation of the expectation of the log operator, in the third line of (7), is taken from

Teh et al. (2007) and is a direct consequence of taking a second order Taylor expansion

about E(−ci(x)). Now, it is clear to see that minimizing the predictive mean in (7) can be

viewed as maximizing the following acquisition function:

a(x) = −µf +

(
1

γ

) m∑
i=1

(
log(−µci) +

σ2
ci

2µ2
ci

)
. (8)
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Following the logic in Section 2.3, we can now sequentially optimize this novel acquisition

function in order to guide our search for the solution to (1). As straight forward as this may

seem, careful inspection of the acquisition function in (8) reveals two non-trivial challenges

that must be addressed before its use. The first challenge is that γ is a free parameter

that, in the context of Bayesian optimization, has no explicit rules in how it must be set.

As we will highlight in subsequent sections, care must be taken when choosing the value

of γ as it will be seen that γ plays a critical role in the exploration-exploitation tradeoff

of our optimization algorithm. The second challenge, or rather undesirable characteristic,

of our acquisition function is that there is no variability associated with the objective

function in it, but only with the constraints, i.e., σ2
ci

. Without a term like σ2
f in (8) to

measure our prediction uncertainty for the objective function, our acquisition function will

be overly optimistic in exploring the objective function and will settle more often that

not on exploitation, rather than exploration, as it will assume that we are predicting the

objective function at untried inputs exactly correctly. In what follows for the remainder of

Section 3, we explore solutions to these two challenges and further validate these solutions

in Section 4.

3.2 The Role of γ

In the mathematical programming literature, it is sufficient to set γ to be a “large” num-

ber to ensure local convergence of the barrier method algorithm. However in our case

extra care must be taken in setting γ as it will be shown that the value of γ will play a

critical role in balancing the exploration-exploitation tradeoff of our acquisition function.

Recall the optimization problem in (4). When the constraints are met, we have that the

quantity
∑m

i=1 log(−ci(x)) > 0. Now, when γ is large (i.e., tending to ∞) the quantity

1/γ
∑m

i=1 log(−ci(x)) goes to 0 and results in a local (greedy) search algorithm. On the

other hand, when γ is small (i.e., tending to 0) the quantity 1/γ
∑m

i=1 log(−ci(x)) is posi-

tive and large, and results in a global search algorithm. From this point-of-view, γ can be

seen as a tuning parameter that can be adjusted to control the level of search of the BO

algorithm. One potential option for setting the value of γ would be to select an appropriate

fixed value based on the complexity of the optimization problem and that would be at the
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discretion of subjectivity. We refer to this as the “fixed γ” acquisition function, or “fixed”

for short. Although simple to implement, great care would need to be taken when choosing

a fixed γ as an inappropriate choice might bias the search into too much exploration, or

too little. A perhaps better choice would be to take an objective approach and allow the

current evaluated data, {x(i), f (i), c(i)}ni=1, to be used to choose the appropriate value of

γ dynamically. To this end, we propose allowing γ to be defined as γ = 1/σ2
f , where σ2

f

is the predictive variance associated with the surrogate model for the objective function

f . Setting γ this way reflects the fact that we think that the exploration of the objective

function’s surface should be based on our level of certainty about it. When σ2
f is large there

is a lot of uncertainty in our prediction of the objective function, and consequently γ will

be small, leading to global search. Conversely, when σ2
f is small there is less uncertainty

in our prediction of the objective function, and so γ will be large and lead to local search.

Under this choice of γ we obtain the updated acquisition function

a(x) = −µf + σ2
f

m∑
i=1

(
log(−µci) +

σ2
ci

2µ2
ci

)
. (9)

We refer to this acquisition function as “One Over Sigma” (OOS), and it incorporates

the uncertainty in both the objective and constraint functions and directly balances the

exploration-exploitation based on this uncertainty. This acquisition function provides a

robust balance between performance and elimination of the need to tune γ.

3.3 Expected Improvement

Originally introduced in the computer modeling literature (Jones et al., 1998), the expected

improvement (EI) acquisition function has become one of the most famous, and proba-

bly most used, acquisition functions in BO. Realizing the importance of the exploration-

exploitation tradeoff, Jones et al. (1998) defined the improvement statistic at a proposed

input x to be I(x) = maxx{0, fn
min − Y (x)} where, after n runs of the computer model,

fn
min = min{f(x1), ..., f(xn)} is the current minimum value observed. Since the proposed

input x has not yet been observed, Y (x) is unknown and can be regarded as a random vari-

able. Likewise, I(x) can be regarded as a random variable and so new candidate inputs,
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x∗, can be selected by maximizing the expected improvement, i.e.,

x∗ = arg max
x∈X

E{I(x)}. (10)

Fortunately, if we treat Y (x) as coming from a GP then, conditional on a particular param-

eterization of the GP, the expected improvement acquisition function is available in closed

form as

E(I(x)) = (fn
min − µn(x))Φ

(
fn
min − µn(x)

σn(x)

)
+ σn(x)φ

(
fn
min − µn(x)

σn(x)

)
(11)

where µn(x) and σn(x) are the mean and standard deviation of the predictive distribution

of Y (x), and Φ(·) and φ(·) are the standard normal cdf and pdf respectively. The equation

in (11) provides a combined measure of how promising a candidate point is, that trades off

between local search (µ(x) under fmin) and global search (σ(x)).

Now, although the EI acquisition function was originally developed for the case of un-

constrained optimization, we can exploit its natural exploration-exploitation characteristics

by inserting it into the minimization problem in (7). Replacing the objective function’s

surrogate model, Yf (x), with the improvement function −I(x) in (6), yields

min
x

E

(
−I(x)−

(
1

γ

) m∑
i=1

log(−ci(x))

)
= min

x
−E(I(x))−

(
1

γ

) m∑
i=1

(
log(−µci) +

σ2
ci

2µ2
ci

)
.

(12)

Note that since we are minimizing in (7) we will need to use the negative improvement

function. The minimization problem in (12) leads to the following acquisition function

a(x) = (fn
min − µf )Φ

(
fn
min − µf

σf

)
+ σfφ

(
fn
min − µf

σf

)
+

(
1

γ

) m∑
i=1

(
log(−µci) +

σ2
ci

2µ2
ci

)
.

(13)

The parameter γ is a fixed constant in (13), however, present now in the acquisition function

is a variance term for the objective function f which will help our BO algorithm in the

tradeoff between exploring locally versus globally. The EI acquisition function shows great

promise when γ can be tuned optimally.
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4 Illustrative Examples

More and more test problems and comparators have become available in the literature as

Bayesian optimization becomes a more relevant tool for solving constrained optimization

problems. To demonstrate the effectiveness of our novel acquisition function, we solve

two constrained optimization problems from the literature (Gramacy et al., 2016; Pourmo-

hamad and Lee, 2019), as well as a constrained optimization problem with no Bayesian op-

timization comparators. Two of the three problems are synthetic problems where the exact

solutions to the problems are known, and the third problem is motivated by a real-world

hydrology computer experiment that requires running an expensive black-box computer

model. In the case where comparator solutions existed, we tried to mimic the conditions of

the comparator algorithms as to facilitate a fair comparison amongst algorithms. As well,

we solved each of the three problems using all three variations of the proposed acquisition

function in order to compare and contrast them. For γ, we consider values from 10 to

1, 000, 000. Lastly, there are many tools and software packages available for fitting GPs to

data, however, for all of our examples we favor using the R package laGP (Gramacy, 2016)

when fitting our GP surrogate models to the objective and constraint functions.

4.1 Modified Townsend Problem

The modified Townsend problem (14) is a constrained optimization problem that is not

new to the mathematical community, but to the best of our knowledge has not been solved

from a Bayesian optimization point-of-view. The modified Townsend problem is defined as

follows:

min f(x1, x2) = sin(x2) exp{(1− cos(x1))
2}+ cos(x1) exp{(1− sin(x2))

2}+ (x1 − x2)2

s.t. c(x1, x2) = x21 + x22 −
(

2 cos(t)− 1

2
cos(2t)− 1

4
cos(3t)− 1

8
cos(4t)

)2

− (2 sin(t))2

(14)

where t = arctan2(x1, x2), −2.25 ≤ x1 ≤ 2.5, and −2.5 ≤ x2 ≤ 1.75. The optimal

solution to the modified Townsend problem is f(x1, x2) = −2.0239884, which occurs at

(x1, x2) = (2.0052938, 1.1944509). The modified Townsend problem is a low dimensional

problem having only two inputs, x1 and x2, however, solving the problem is nontrivial as
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both the objective and constraint functions are highly nonlinear, and the solution to the

problem is known to lie along the boundary of the feasible set F (Figure 1). The problem

is further complicated as there are several local minima within the feasible set which can

trap local or greedy search algorithms.

Figure 1: A view of the the objective function of the modified Townsend problem subject to

the constraint function. The problem contains several local minima, and the global minimum is

known to lie along the boundary of the feasible space.

To solve the modified Townsend problem, we start with an initial random sample of 20

inputs from a Latin hypercube design (LHD) (McKay et al., 1979) over the input space

and sequentially choose 100 more inputs by following the BO paradigm and using our novel

acquisition function to guide the search. As a general guideline, we follow the rule of thumb

put forth by Loeppky et al. (2009), and require that the number of initial inputs be about

ten times the input dimension, that is, n = 10d, to achieve reasonable GP surrogate model

fits for f and c.

We solve the modified Townsend problem using the the three variations of acquisitions

functions found in Section 3. Here we denote the three acquisitions functions as either

fixed, one over σ2 (OOS), or expected improvement (EI), based on sections 3.1, 3.2, and
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3.3, respectively. For each of the three acquisitions functions, we conduct 30 repetitions of

a Monte Carlo experiment in order to understand the distribution and robustness of our

solutions for the modified Townsend problem. Note that we apply the same initial LHD,

of size 20, to each of the acquisition functions during a given Monte Carlo experiment. We

set γ = 1, 000, 000 for both the fixed and EI acquisition functions.

blackbox evalulations (n)

be
st

 v
al

id
 o

bj
ec

tiv
e 

(f)

0 20 40 60 80 100 120

-2
-1

0
1

2 Fixed
OOS
EI
Global Solution

n 45 70 120

95%

Fixed -1.638 -1.639 -1.640

OOS -1.352 -1.831 -1.963

EI -1.625 -1.659 -1.954

average

Fixed -1.716 -1.741 -1.805

OOS -1.620 -1.942 -2.003

EI -1.822 -1.949 -2.002

5%

Fixed -2.007 -2.017 -2.017

OOS -1.942 -2.018 -2.021

EI -2.007 -2.020 -2.022

Figure 2: The results of running 30 Monte Carlo repetitions with random starting inputs. The

plot and table show the average best valid objective function values found over 120 black-box

iterations. 5th and 95th percentiles are also included to better understand the spread of the

distribution on the Monte Carlo repetitions.

On average, both the OOS and EI acquisition functions were able to find the global

solution of the problem over the additional 100 input-output updates (Figure 2), with EI

being much quicker at decreasing the objective function than OOS at the early stages of the

BO algorithm. In fact, the fixed acquisition function does a better job at minimizing the

problem at the early stages of the BO algorithm as compared to OOS as well. However, the

OOS acquisition function does steadily decrease the objective function in the search for the

global minimum and, at around 60 iterations, has caught up to the EI acquisition function
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and in the end has consistently found the global solution of the problem. The same cannot

be said about the fixed acquisition function as, on average, the BO algorithm under this

fixed acquisition function has not yet converged to the global solution. Looking at the lower

5% quantile of the table in Figure 2 we see that the BO algorithm does indeed approach

the solution of the modified Townsend problem under the fixed acquisition function, and

so, for some of the Monte Carlo repetitions the BO algorithm is finding the solution under

this acquisition function. We do not believe that it is the case that, for the fixed acquisition

function, the algorithm need be run longer to find the global solution, but that the algorithm

is getting stuck in local minima due to the lack of a variance term for the objective function

in the fixed acquisition function. To better understand this, we take a look at a single run

of the Monte Carlo experiment for each of the three different acquisition functions (Figure

3).

Figure 3: A view of the performance of the BO algorithm, using the three different versions of

the acquisition function, for a single run of the Monte Carlo experiment.

Given the same initial LHD design to the three acquisition functions, we see very dif-

ferent behavior of the BO algorithm. As hypothesized, the fixed acquisition function was

quick to get stuck in a local minima and so it did not explore the input space well. The

fixed acquisition function suffers from the lack of a variance term for the objective func-

tion, and so extra care must be taken when choosing an appropriate value of γ. Choosing

γ small promotes more global search, so with a small value for γ, say γ = 10, we see that

the BO algorithm, under the fixed acquisition function, does a much better job of solving
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the modified Townsend problem (Figure 4) as opposed to a much larger value of γ. On

the other hand, the OOS and EI acquisition functions spend their time exploring the space

much more globally. Interestingly, in this instance of the algorithm, it would seem that

the EI acquisition function tended not to get stuck in any of the local minima whereas the

OOS acquisition function spent some partial amount of time investigating the local minima

before deciding to search elsewhere globally.

blackbox evalulations (n)

be
st

 v
al

id
 o

bj
ec

tiv
e 

(f)

0 20 40 60 80 100 120

-2
-1

0
1

2 Fixed γ = 1,000,000
Fixed γ = 10
OOS
EI
Global Solution

Figure 4: The average best valid objective function values found over 120 black-box iterations

for 30 Monte Carlo repetitions with random starting inputs. The effect of making γ smaller for

the fixed acquisition function leads to better performance of the BO algorithm.

4.2 Gramacy et. al 2016 Problem

Originally introduced in Gramacy et al. (2016), the optimization problem is a toy example

with known solution and known comparators (Gramacy et al., 2016; Pourmohamad and Lee,

2019). The problem contains a simple known linear function, and two unknown nonlinear
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constraints. More formally, we state the problem as follows:

min f(x1, x2) = x1 + x2

s.t. c1(x1, x2) =
3

2
− x1 − 2x2 −

1

2
sin(2π(x21 − 2x2)),

c2(x1, x2) = x21 + x22 −
3

2

(15)

where the optimal solution is f(x1, x2) = 0.5998, which occurs along the constraint space

boundary at (x1, x2) = (0.1954, 0.4044). We stress the fact that the objective function is

a known function because in the works of Gramacy et al. (2016) and Pourmohamad and

Lee (2019) they do not treat the objective function as a black-box function but rather as

a function whose analytical form is known. For sake of comparison we could also take this

approach, however, in this example we choose to treat the objective function as a black-

box function merely for illustration, as we postulate that having to model and quantify the

uncertainty for the objective function (even as simple of a function as it is) should put our

BO algorithm at a slight disadvantage as opposed to the case where we treat it as known.

Mimicking the sample size conditions put forth in Gramacy et al. (2016) and Pourmohamad

and Lee (2019), we start with an initial LHD of size 10 from the input space, and then

sequentially select an additional 100 inputs to evaluate. Likewise, following Gramacy et al.

(2016) and Pourmohamad and Lee (2019), we repeat this Monte Carlo experiment a total

of 100 times. We set γ = 1, 000, 000 for both the fixed and EI acquisition functions.

As seen in Figure 5, on average, the three acquisition functions exhibit somewhat similar

behavior as seen before in the modified Townsend problem. The OOS acquisition function

tends to lag behind the other two acquisition functions, but eventually the OOS acquisition

function passes the fixed acquisition functions, and then catches up to the EI acquisition

for the remainder of the search. However, this time the fixed acquisition function with

γ = 1, 000, 000 did not seem to get stuck in a local minima but did still tend to be slower

to find the global minimum of the problem. However, in the end all three of the acquisition

functions are able to converge towards the global solution to the problem. Pourmohamad

and Lee (2019) solved this minimization problem in (15) using a statistical filter method

(SFM) approach, and showed their method to have superior performance in comparison to

the augmented Lagrangian method proposed in Gramacy et al. (2016). Due to this fact,

we compare our BO algorithm to that of the results presented in Pourmohamad and Lee
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n 25 50 100

95%

Fixed 0.773 0.760 0.754

OOS 0.803 0.755 0.606

EI 0.778 0.613 0.605

SFM 0.769 0.616 0.604

average

Fixed 0.654 0.626 0.608

OOS 0.660 0.611 0.602

EI 0.655 0.604 0.602

SFM 0.710 0.606 0.600

5%

Fixed 0.601 0.600 0.600

OOS 0.604 0.601 0.600

EI 0.602 0.600 0.600

SFM 0.606 0.600 0.599

Figure 5: The results of running 100 Monte Carlo repetitions with random starting inputs.

The plot and table show the average best valid objective function values found over 100 black-

box iterations. 5th and 95th percentiles are also included to better understand the spread of the

distribution on the Monte Carlo repetitions.

(2019). As we can see from Figure 5, for the first approximately 30 sequential updates our

BO algorithm does a much better job at finding the best current minimum for all three

acquisition functions. In fact, with the exception of the fixed acquisition function, the OOS

and EI acquisition functions do a much better job of fast reliable convergence towards the

global minimum than the statistical filter method.

4.3 Pump-and-treat Hydrology Problem

A real-world hydrology computer experiment, the pump-and-treat hydrology problem (Ma-

tott et al., 2011) is based on a groundwater contamination scenario stemming from the
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Lockwood Solvent Groundwater Plume Site located near Billings, Montana. Years of in-

dustrial practices have led to the formation of two plumes of chlorinated contaminants

in the area, and these two contaminated plumes are slowly, and dangerously, migrating

towards the Yellowstone river. Preventing the two plumes from reaching the Yellowstone

river is of utmost importance as it helps to ensure the safety of the local water supplies. In

order to stop the migration of the two plumes, a pump-and-treat remediation is proposed.

Six pump-and-treat wells will be placed at the site of the plumes (two pump-and-treat

wells will be placed at one of the plume sites while the other plume site will contain four

pump-and-treat wells) and these pump-and-treat wells will then pump out the contami-

nated water from the soil, purify it, and then return the clean treated water to the soil. To

better understand the dynamics of the physical system, and to come up with an optimal

strategy, a computer simulator was constructed to model the physical process under study.

Here the inputs to the computer simulator are the pumping rates that can be set for the

six pump-and-treat wells, and the output of the computer simulator is the cost associated

with running the pump-and-treat wells and whether or not the containment of the two con-

taminated plumes was successful. Thus, the goal of the pump-and-treat hydrology problem

is to minimize the cost of running the pump-and-treat wells while ensuring that the two

contaminated plumes are contained.

Casting the pump-and-treat hydrology problem in the framework of a constrained op-

timization, we formulate the problem as follows:

min
x
{f(x) =

6∑
j=1

xj : c1(x) ≤ 0, c2(x) ≤ 0, x ∈ [0, 20 · 104]6}. (16)

Here the objective function, f , is (known) linear and describes the cost associated with

running the pump-and-treat wells. The two plumes of contaminants are contained when

the two constraints, c1 and c2, are satisfied. The inputs x1, ..., x6 represent the six pumping

rates that can be set for the six pump-and-treat wells within the computer simulator. The

computer simulator is essentially a black-box function since, for any input configuration

evaluated by the simulator, the only information that is returned is that of the objective

and constraint values. Likewise, each input evaluation is an expensive one, and so the time

it takes to run the computer simulator is nontrivial.
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The pump-and-treat hydrology problem was solved in both Gramacy et al. (2016) and

Pourmohamad and Lee (2019) (amongst other older poorer solutions) and so we benchmark

the results of our BO algorithm against theirs. Once again, we try to mimic the conditions

put forth in those papers as closely as we can so that as fair of a comparison as possible

can be made. Mimicking Gramacy et al. (2016), we start with an initial LHD of size 10

from the input space, and then sequentially select an additional 500 inputs to evaluate.

Likewise, we repeat this Monte Carlo experiment a total of 30 times. To encourage slightly

more global exploration, we set γ = 10 for both the fixed and EI acquisition functions.The

results in Pourmohamad and Lee (2019) were shown to be superior than that of Gramacy

et al. (2016), and so in the table in Figure 6 we only include the statistical filter method

(SFM) as a comparator, however, in Figure 6 we overlay our results on top of all of the

results from Gramacy et al. (2016) and Pourmohamad and Lee (2019).

The BO algorithm seemed to perform best under the OOS acquisition function, with EI

acquisition function being only slightly better than the fixed acquisition function. The BO

algorithm, under all of the acquisition functions, did appear to be as good, if not better,

than the methods examined in Gramacy et al. (2016), with the OOS acquisition function

clearly outperforming all of the methods presented in Gramacy et al. (2016). On the other

hand, only the OOS acquisition function was able to challenge the SFM, dominating it

through several stretches of iterations, and arriving at nearly the same best overall average

value found. Overall, the BO algorithm was successful at minimizing the objective function

and was highly competitive, if not better, with the methods of Gramacy et al. (2016) and

Pourmohamad and Lee (2019).

5 Discussion

Constrained optimization is a challenging task when the functions of interests arise from

expensive black-box systems. BO has been shown, many times over, to be an effective

solution to problems of this nature. The success of BO algorithms are clearly tied to the

acquisition function they use for effectively guiding the search. The novelty of the work

presented in this article is in the development of a new and efficient acquisition function

for BO of expensive black-box constrained optimizations problems. Deriving the novel
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Fixed 35005 30824 25841

OOS 34332 30651 24155

EI 35188 30787 24951

SFM 34763 30220 24742

average

Fixed 29748 26990 24796

OOS 28297 25305 23892

EI 29462 26435 24384

SFM 28974 25604 23738

5%

Fixed 25824 24156 23717

OOS 24847 23881 23437

EI 26163 24075 23661

SFM 27647 24464 23236

Figure 6: The results of running 30 Monte Carlo repetitions with random starting inputs. The

plot and table show the average best valid objective function values found over 500 black-box

iterations. 5th and 95th percentiles are also included to better understand the spread of the

distribution on the Monte Carlo repetitions.

acquisition function from the successful hybridization of statistical surrogate modeling with

barrier methods leads to a powerful acquisition function that is able to leverage both the

efficient local search properties of the numerical method and the global search properties

of the statistical model. We demonstrated the success of our new BO algorithm on a suite

of test problems and a real-world computer experiment.

Our approach does require a choice of acquisition function, and some of those choices

contain a tuning parameter γ. Our OOS acquisition function performed well in compar-

isons, and does not require a tuning parameter, so it is the most robust and straightforward

option. In some cases, careful tuning of γ in the EI acquisition function may achieve slightly
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better results, but that does require tuning, for which we have provided some heuristical

advice.

Avenues for extensions to BO acquisition functions are endless and provide for further

research. A potential extension of the fixed and EI acquisition functions could be to explore

cooling schedules for γ, as is done in simulated annealing (Kirkpatrick et al., 1983). One

could envision starting with a small value of γ (global search), and allowing for the value

of γ to grow (local search) as a function of the sample size n as the search progresses.
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