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Abstract

Gaussian process (GP) models have been widely used for statistical modeling of point-referenced

data in many scientific applications, including regression, classification, and clustering problems.

Standard specification of GP models is computationally inefficient for applications with a large

sample size. One solution is to construct the GP by convolving a smoothing kernel with a

discretized White noise process, which requires choosing the number of bases. The distance

between adjacent bases plays a key role in model accuracy. In this paper, we perform a series of

simulations to find a general rule for the basis spacing required for accurate representation of a

discrete process convolution GP model. Under certain common conditions, we find that using

a basis spacing of one-quarter the practical range of the process works well in practice.

Keywords: Gaussian Processes; Process Convolutions; Spatial Modeling

1 Introduction

A common approach in spatial modeling is to represent the process of interest as a univariate

spatial Gaussian process (GP) {z(s) : s ∈ Rd}, which is a collection of random variables indexed

by points s in space Rd. Any finite collection of these random variables {z(s1), · · · , z(sn)} is

distributed as multivariate Gaussian with a certain mean function and covariance matrix Σ. In

this paper, we limit our study to isotropic GP where the correlation between two points z(si) and

z(sj) depends only on their separating Euclidean distance ||si−sj ||. Under this isotropy assumption,
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the covariance matrix Σ can be factored into σ2C, where σ2 denotes the marginal variance and

C is a correlation matrix whose elements Cij are pre-computed from a correlation function that

depends on ||si − sj || and other parameters. Common correlation functions include the Gaussian,

Exponential, Matérn, and the Spherical class. More details on GP and associated correlation

functions can be found in Cressie (1991), Stein (1999), Banerjee et al. (2003), and Paciorek and

Schervish (2006). Parameter inference under this standard specification often requires inversion

of the covariance matrix whose computational complexity grows at O(n3), where n denotes the

data sample size. This makes standard GP impractical for applications with a large n, which is

fairly common nowadays. This issue becomes even more undesirable for Bayesian inference with

Markov chain Monte Carlo (MCMC) which requires such matrix inversion at each of thousands

of MCMC iterations or more. Some methods can ameliorate this issue, such as partitioning the

spatial domain and fitting a separate GP in each (Kim et al., 2005; Gramacy and Lee, 2008), or

reducing the occurence of such O(n3) computations for a GP with a single-parameter correlation

function (Yang et al., 2014). Another approach for reducing computational cost due to large n

is Discrete Process Convolutions (DPC) (Higdon, 1998, 2002), which formulates the GP z(s) by

convolving a symmetric kernel k(u− s;Q) with a discretized latent process x(u) indexed at a grid

of bases {uj}m
j=1:

z(s) =
m∑

j=1

k(uj − s;Q)x(uj), s ∈ S ⊆ Rd.

Here, Q−1 denotes the covariance matrix of the kernel, x(u) is usually given a White noise process,

and m denotes the number of bases which gives a basis spacing of 1/(m−1). Note that DPC arises

as an approximation (required in practice) to continuous process convolutions: z(s) =
∫

Rd k(u −

s;Q)x(u)du, where the correlation function for z is given by the convolution of the kernel with

itself. For instance, when the kernel is a Gaussian density (a common choice in practice), it

results in a Gaussian correlation function. We may safely assume that given enough bases, a GP

constructed by DPC has a correlation structure that is a close approximation to its counterpart

in continuous process convolutions. Figure 1 provides an one-dimensional (1-D) example of a GP

constructed by DPC, where the left panel shows a set of six 1-D Gaussian kernels centered at evenly

spaced bases on the interval [−5, 5], and the center panel shows the resulting GP obtained as the

sum of these kernels. In a two-dimensional (2-D) domain, bases are specified on a retangular grid
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with even spacing in the same dimension, and there can be more bases in one dimension than the

other. The right panel of Figure 1 shows an example of bases specified on a 2-D domain. The

computational complexity of DPC grows at O(m3), where m denotes the number of bases. Hence,

DPC is computationally efficient for applications in low dimension where m is much smaller than n.

For this reason, DPC is useful for many environmental applications such as geology and climatology

whose spatial domain is naturally 2-D and data size is often huge due to advance in technology.

Given a bounded domain, having a smaller distance between adjacent bases (thus resulting in more

bases) allows DPC to better describe local features in the process of interest. Bases are selected

by the user before modeling and the optimal basis spacing depends on the application. This paper

presents a simulation study to establish a rule-of-thumb for choosing the basis spacing for a GP

formulated by DPC. Simulation setup is discussed in detail in Section 2, simulation results are

presented in Section 3, and a summary of our research is given in Section 4. In the rest of this

paper, the term DPCGP is used to refer to a GP formulated by DPC.
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Figure 1: Left panel shows 1-D Gaussian kernels centered at six evenly spaced bases on the interval [−5, 5],

and center panel shows resulting GP obtained as the sum of these kernels. Right panel shows an example of

bases specified on a 2-D domain.

2 Simulation Setup

As DPCGP is computational efficient only in low dimension, our study focuses on 1-D and 2-D

domains. Without loss of generality, 1-D domain is specified as the unit interval [0, 1] and 2-D

domain is specified as the unit area [0, 1]2. To simplify the experimental design, the number of
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bases is used as the design points instead of basis spacing, because different spacing values may

correspond to the same number of bases at slightly different locations which leads to a large number

of cases to evaluate. Using the number of bases as design points limits the size of our study and

the final results can be re-interpreted to arrive at a rule-of-thumb for basis spacing. In the rest of

this paper, more bases is equivalent to smaller basis spacing, and vice versa. Our study develops a

series of DPCGP models on simulated data with bases spaced evenly along each dimension, where

the number of bases ranges from 5 to 40 in a step size of 1 for each dimension. For example, if the

number of bases is 10 in each dimension of the 2-D domain, then there is a total of 10 × 10 = 100

bases. Previous experience with DPCGP shows that using more bases (smaller basis spacing) tends

to improve model accuracy, but this effect diminishes as the number of bases is beyond a certain

threshold. This threshold varies with respect to the dependence range in the unknown process

of interest that DPCGP tries to model. A short range means that a sample point is correlated

closely with its neighbors and less with points far away, which requires more bases than a longer

range. Our study develops each DPCGP model on simulated data under different combinations of

correlation functions and practical ranges (PR). As a property of the correlation function, PR is

typically defined as the distance from the origin at which the correlation is 0.05. PR can be thought

of as the maximum distance between two points having non-negligible correlation. Our goal is to

obtain a rule-of-thumb for basis spacing associated with this threshold with respect to PR. Details

on data generation is given in Section 2.1, followed by model specification in Section 2.2.

2.1 Data Generation

Data is simulated from three different correlation functions: Gaussian, Matérn with smoothness

parameter κ = 4, and Exponential, which represent real scenarios where the process of interest

is very smooth, somewhat smooth, and non-smooth, respectively. Figure 2 shows these three

correlation functions along with one that is induced by the Bézier kernel which will be discussed

later. Table 1 summarizes the differentiability of the resulting processes from these correlation

functions. For each correlation function (except the one induced by Bézier kernel), three PR’s:

0.1, 0.2, and 0.3 are considered for response generation. A smaller PR results in a response with

more local features, which can be better modeled by DPCGP with finer basis spacing, up to a

certain limit. Table 2 shows all combinations of correlation function and PR considered. Two sets
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Gaussian correlation function.

Table 1: Correlation functions and differentiability of their resulting responses.

Correlation Function Differentiability of Resulting Response

Gaussian Infinitely mean-square differentiable

Matérn (κ = 4) dκe − 1 = 3 times mean-square differentiable

Exponential Not mean-square differentiable

Bézier (κ = 3) kernel induced bκc = 3 times mean-square differentiable

of response are simulated for each combination: one over the 1-D unit interval [0, 1] and the other

over the 2-D unit area [0, 1]2. Each response is a random draw of n samples from a multivariate

Gaussian distribution with mean zero and covariance matrix equal to the marginal variance times

the correlation matrix determined from the correlation function. Here, we let n = 1000 for 1-D and

n = 2000 for 2-D. In all cases, the marginal variance is given a value of 0.25, which gives a marginal

standard deviation (SD) of
√

0.25 = 0.5. Figure 3, 4, and 5 display all responses simulated for each

combination of correlation function and PR for 1-D (top) and 2-D (bottom). Data is generated

by adding zero-mean Gaussian error with SD = 0.05 to the response. This level of noise is 10%

of the response marginal SD. Only one noise level is considered here to limit the size of our study.

Results obtained from this noise level should remain useful for cases with a lower noise level as

fewer number of bases is needed for less noisy data in general. Studying higher noise level is less

meaningful as model can become inaccurate.
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Figure 3: Top: Gaussian response and data on the 1-D unit interval [0, 1]. Bottom: Gaussian response on

the 2-D unit area [0, 1]2.
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Figure 4: Top: Matérn(κ = 4) response and data on the 1-D unit interval [0, 1]. Bottom: Matérn(κ = 4)

response on the 2-D unit area [0, 1]2.
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Figure 5: Top: Exponential response and data on the 1-D unit interval [0, 1]. Bottom: Exponential response

on the 2-D unit area [0, 1]2.

2.2 Model Specification

The correlation structure and smoothness of DPCGP mainly depends on the kernel type. In the

literature, the Gaussian density is a common kernel choice which induces a Gaussian correlation

structure in continuous process convolutions. The resulting GP is infinitely mean-square differen-

tiable, which is a very smooth process. DPC is an approximation of its continuous counterpart,

therefore, the resulting correlation structure is also approximately Gaussian given sufficiently fine

basis spacing. When the unknown process of interest is less smooth, it requires a kernel supporting

adjustment of smoothness, and one such choice is a compactly supported density (Lemos and Sansó,

2009) defined as follows:

k(u− s;Q) =

 (1−D2
M )κ if DM < 1

0 otherwise,
(1)

where DM =
√

(u− s)>Q(u− s) denotes the Mahalanobis distance with covariance matrix Q−1.

Since our study concerns isotropic processes only, Q−1 is specified as a diagonal matrix with

identical diagonal elements. This isotropic form is called the Bézier kernel whose compact support

7



has a radius equal to the square-root of the diagonal elements of Q−1. Increasing κ for a Bézier

kernel increases the smoothness of the resulting GP. According to Brenning (2001), the resulting

GP is bκc times mean-square differentiable. An example of the induced correlation function from

a Bézier (κ = 3) kernel is shown in Figure 2. Our study evaluates both the Gaussian and Bézier

kernels with a diagonal Q−1 having the same values on the diagonal. For each simulated dataset, a

different kernel standard deviation is used such that the kernel induced correlation function has a

PR equal to the PR of the correlation function in data generation. This kernel standard deviation

is termed practical kernel size (PKS) in the rest of this paper. For example, when PR=0.1, 0.2, and

0.3, the corresponding PKS for a Gaussian kernel is 0.029, 0.058, and 0.087, respectively. Table 2

summaries all configurations in the experimental design. The same configuration is applied to 1-D

and 2-D separately. Each dataset is randomly divided into a training set and a validation set of

equal size. That is, there are 500 samples for each set in 1-D and 1000 samples for each set in 2-D.

Each DPCGP model is developed on the training set and evaluated on the validation set. Training

is performed using the lme() function from the nlme R package, which treats DPCGP as a Linear

Mixed-Effects Model. RMSE (root-mean-squared-error) against the true response is computed on

the validation set to assess model performance. The number of bases at which RMSE starts to

saturate is recorded. Sensitivity to kernel size is analyzed by evaluating two (correlation function,

kernel) combinations: (Gaussian, Gaussian) and (Matern(κ = 4), Bézier(κ = 3)) with kernel sizes

at 80%, 90%, 100%, 110%, and 120% of PKS.

3 Simulation Results

Simulation results are shown in Figure 6, where each curve corresponds to a specific (correlation

function, kernel) combination as indicated in the legend, and it is formed by a series of DPCGP

models whose number of bases are shown on the x-axis and the resulting validation RMSE on the

y-axis. In the 2-D study (bottom row), number of bases on the x-axis is for a single dimension;

total number of bases is the square of this value. The left, center, and right panels correspond

to PR of 0.1, 0.2, and 0.3, respectively. In general, validation RMSE starts to saturate when

the number of bases reaches a certain threshold. A larger threshold (more bases) is associated

with a smaller PR, which is expected since a smaller basis spacing is needed to better describe

local features. Within each PR, threshold changes across different (correlation function, kernel)

8



Table 2: All configurations in the experiment. Same configuration is applied to 1-D and 2-D separately.

Dataset Correlation

Function

Practical

Range

DPCGP Kernel Practical

Kernel Size

Number of

Bases: m

Basis Spacing:

1/(m − 1)

1
Gaussian 0.1 Gaussian 0.029 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

Gaussian 0.1 Bézier (κ = 3) 0.086 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

2
Gaussian 0.2 Gaussian 0.058 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

Gaussian 0.2 Bézier (κ = 3) 0.174 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

3
Gaussian 0.3 Gaussian 0.087 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

Gaussian 0.3 Bézier (κ = 3) 0.261 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

4
Matérn (κ = 4) 0.1 Gaussian 0.029 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

Matérn (κ = 4) 0.1 Bézier (κ = 3) 0.086 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

5
Matérn (κ = 4) 0.2 Gaussian 0.058 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

Matérn (κ = 4) 0.2 Bézier (κ = 3) 0.174 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

6
Matérn (κ = 4) 0.3 Gaussian 0.087 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

Matérn (κ = 4) 0.3 Bézier (κ = 3) 0.261 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

7
Exponential 0.1 Gaussian 0.029 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

Exponential 0.1 Bézier (κ = 3) 0.086 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

8
Exponential 0.2 Gaussian 0.058 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

Exponential 0.2 Bézier (κ = 3) 0.174 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

9
Exponential 0.3 Gaussian 0.087 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

Exponential 0.3 Bézier (κ = 3) 0.261 5, 6, · · · , 39, 40 0.25, 0.2, · · · , 0.0263, 0.0256

combinations. In general, fewer bases is needed when the kernel induced correlation function is

the same or close to that of the data, e.g., (Gaussian, Gaussian) and (Gaussian, Bézier (κ = 3)).

More bases are needed when the kernel induced and data correlation functions are moderately

different, e.g., (Matern (κ = 4), Gaussian) and (Matern (κ = 4), Bézier (κ = 3)). Finally, when

the difference in correlation structure is large, e.g., (Exponential, Gaussian) and (Exponential,

Bézier (κ = 3)), the model completely misses the true response as indicated by the large validation

RMSE which is much larger than the noise SD. This case is excluded from further analysis since

the associated models are inaccurate. Table 3 summarizes the near-optimal number of bases and

the corresponding basis spacing under each scenario. These numbers are based on visual inspection

from Figure 6, which may or not may be the exact optimal, but close enough for us to establish

a rule-of-thumb for choosing the basis spacing. Results are roughly the same between 1-D and

2-D except for PR = 0.1, where DPCGP has good 1-D model fit but struggles to fit the 2-D true

response resulting in validation RMSE being slightly higher than noise SD. Figure 7 and 8 illustrate

the effect of kernel size on model performance for two cases: (Gaussian, Gaussian) and (Matern

(κ = 4), Bézier (κ = 3)), which represent matching and moderately different correlation structure,

respectively. Here, kernel size is varied at 80%, 90%, 100%, 110%, and 120% of PKS. These results

show that kernel size has limited effect on model performance given enough bases (small enough

9



basis spacing), and the saturation point in each case roughly stays the same. In practice, DPCGP

is mostly used for 2-D applications where the kernel induced correlation function is unlikely to be

a perfect match to the true correlation structure. A rule-of-thumb for choosing the basis spacing

should be robust enough to work in practice. We consider establishing the rule-of-thumb based on

the 2-D case where the correlation function is Matern (κ = 4) and the kernel is Gaussian or Bézier

(κ = 3) due to reasons described above. According to Table 3, the near-optimal basis spacing in

this case is 0.0345 for PR = 0.1, 0.0526 for PR = 0.2, and 0.0714 for PR = 0.3. The relationship

between basis spacing and PR appears to be linear: basis spacing = α×PR for PR> 0.1, where

the least squares estimate of α is found to be around 0.2528. Hence, a reasonable rule-of-thumb

for basis spacing can be established as PR/4 for PR≥ 0.1. Note that PR< 0.1 is excluded because

DPCGP tends to be unreliable in this region for 2-D. Given this rule-of-thumb, the general steps

for setting up a DPCGP model proceed as follows:

1. Scale the spatial domain to [0, 1] or [0, 1]2 and estimate the dependence range from data.

2. Select a kernel whose induced correlation function best describes the process of interest.

3. Specify a kernel size such that the PR of the kernel induced correlation function equals to

the estimated dependence range in step 1.

4. Calculate basis spacing as: estimated dependence range / 4, and obtain the corresponding

number of bases.

The estimated dependence range may be inaccurate and lead to an over/underestimated kernel size.

This is acceptable provided that inaccuracy is not too large, because sensitivity analysis shows that

model performance is not very sensitive to kernel size. Overestimation of dependence range can

lead to an overestimated basis spacing. This issue can be alleviated by further reducing the basis

spacing given by the rule-of-thumb as appropriate.

4 Summary

Research presented in this paper aims to obtain a rule-of-thumb for choosing the basis spacing

for DPCGP models. A series of experiments is performed on simulated data based on Gaussian,

Matérn (κ = 4), and Exponential correlation functions. Three different PR’s (0.1, 0.2, and 0.3)

10



Table 3: Near-optimal number of bases and the corresponding basis spacing for each experiment.

Dimension Correlation

Function

DPCGP

Kernel

Near-Optimal (Number of Bases, Spacing)

PR=0.1 PR=0.2 PR=0.3

1-D

Gaussian Gaussian (30, 0.0345) (15, 0.0714) (10, 0.1111)

Gaussian Bézier (κ = 3) (30, 0.0345) (15, 0.0714) (10, 0.1111)

Matérn (κ = 4) Gaussian (30, 0.0345) (20, 0.0526) (15, 0.0714)

Matérn (κ = 4) Bézier (κ = 3) (35, 0.0294) (20, 0.0526) (15, 0.0714)

2-D

Gaussian Gaussian (25, 0.0417) (15, 0.0714) (10, 0.1111)

Gaussian Bézier (κ = 3) (25, 0.0417) (15, 0.0714) (10, 0.1111)

Matérn (κ = 4) Gaussian (30, 0.0345) (20, 0.0526) (15, 0.0714)

Matérn (κ = 4) Bézier (κ = 3) (30, 0.0345) (20, 0.0526) (15, 0.0714)
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Figure 6: Validation RMSE vs. number of bases for each (correlation function, kernel) combination. Top

row shows results for 1-D and bottom row shows results for 2-D.

11



5 10 15 20 25 30 35 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Gaussian, PR=0.1; Gaussian, PKS=0.029

Number of basis points

V
al

id
at

io
n 

R
M

S
E

80% of PKS
90% of PKS
100% of PKS
110% of PKS
120% of PKS

5 10 15 20 25 30 35 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Gaussian, PR=0.2; Gaussian, PKS=0.058

Number of basis points

V
al

id
at

io
n 

R
M

S
E

80% of PKS
90% of PKS
100% of PKS
110% of PKS
120% of PKS

5 10 15 20 25 30 35 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Gaussian, PR=0.3; Gaussian, PKS=0.087

Number of basis points

V
al

id
at

io
n 

R
M

S
E

80% of PKS
90% of PKS
100% of PKS
110% of PKS
120% of PKS

5 10 15 20 25 30 35 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Gaussian, PR=0.1; Gaussian, PKS=0.029

Number of basis points

V
al

id
at

io
n 

R
M

S
E

80% of PKS
90% of PKS
100% of PKS
110% of PKS
120% of PKS

5 10 15 20 25 30 35 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Gaussian, PR=0.2; Gaussian, PKS=0.058

Number of basis points

V
al

id
at

io
n 

R
M

S
E

80% of PKS
90% of PKS
100% of PKS
110% of PKS
120% of PKS

5 10 15 20 25 30 35 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Gaussian, PR=0.3; Gaussian, PKS=0.087

Number of basis points

V
al

id
at

io
n 

R
M

S
E

80% of PKS
90% of PKS
100% of PKS
110% of PKS
120% of PKS

Figure 7: Sensitivity to kernel size under Gaussian correlation function and Gaussian kernel (1-D at the

top and 2-D at the bottom). Kernel SD is varied at 80%, 90%, 100%, 110%, and 120% of PKS.
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Figure 8: Sensitivity to kernel size under Matérn (κ = 4) correlation function and Bézier (κ = 3) kernel

(1-D at the top and 2-D at the bottom). Kernel SD is varied at 80%, 90%, 100%, 110%, and 120% of PKS.
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are evaluated for each case. DPCGP models under the Gaussian and Bézier (κ = 3) kernels are

developed on the training data using different number of bases ranging from 5 to 40. In each case,

the kernel size is specified to match the dependence range of the resulting GP to the PR in data

generation. Model performance is assessed via RMSE on validation data, and the near-optimal

basis spacing is obtained for each PR. A rule-of-thumb for basis spacing is established as PR/4.
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