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Abstract

Many computer models output functional data, and in some cases, these functional
data have similar, but misaligned, shape characteristics. We introduce a general ap-
proach for building emulators for computer models that output misaligned functional
data when key values in the functional response (landmarks) can be easily identified.
This approach has two main parts: modeling the aligned (using the landmarks) func-
tional data, and modeling the functions that map the misaligned data to the aligned
space (warping functions). As the warping functions are required to be monotonic,
we give special attention to modeling monotonic functional response data. We discuss
how our approach can be used for a variety of typical emulators, such as Gaussian
processes, Bayesian multivariate adaptive regression splines, and Bayesian additive re-
gression trees, and how sensitivity analysis can be performed. We demonstrate these
approaches to build emulators for a high-energy-density physics computer model used
to simulate inertial confinement fusion ignition experiments.

Keywords: Emulator, functional data analysis, registration, warping, computer experiment,
monotonicity
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1 Introduction

When a computer model is expensive to evaluate, a fast statistical surrogate model, or

emulator, is often used if a large number of model evaluations is required. The emulator

is built by modeling the input-output relationship between a relatively small (or easily

obtainable) set of model runs. Assuming the emulator is sufficiently accurate, it can be

used in place of the computer model for calculations of interest in uncertainty quantification,

such as sensitivity analysis (Saltelli et al., 2008) and calibration (Kennedy and O’Hagan,

2001). The Gaussian process has been a popular emulator because it can be flexible,

it can interpolate the training model runs, and its uncertainty away from training data

is easy to quantify (Santner et al., 2003). However, other approaches, such as Bayesian

additive regression trees (BART) and Bayesian multivariate adaptive regression splines

(BMARS) have also proven useful for emulation in various cases (Pratola and Higdon,

2016; Chakraborty et al., 2013).

Computer models frequently have highly multivariate response. When highly mulit-

variate data are indexed by a few variables, such as time and spatial location, functional

data analysis methods can be useful for inferring quantities of interest, such as functional

or non-functional parameters. A simple, but typical, example is when the output from the

model corresponds to realizations of a curve are used to infer a mean curve. It is sometimes

the case that curves have the same general shape, but that they are offset, stretched or

contracted so that recognizable features of the curves occur at different points of the in-

dexing variable. For instance, Figure 1 shows five curves that have exactly the same shape

with a single peak, but where the location of each peak is different. Taking the pointwise

average of the curves results in a curve with a single peak that is smaller than all of the

peaks in the data, which is unlikely to be a reasonable representation of the average of the

functional data. Functional data analysis methods have adopted techniques to align curves

(and higher dimensional objects) so that inference methods are not biased by misalignement

of data (see Chapter 7 of Ramsay and Silverman (2005) for details).

While these functional data analysis methodologies have primarily been motivated by

inference, we are more interested in prediction. We would like to be able to predict func-

tional data in its native, misaligned space, based on a number of non-functional covariates.

Further, the applications we are interested in necessitate that this prediction be more flex-
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Figure 1: Misaligned functional data are shown, along with their pointwise mean. Align-
ment before taking the pointwise mean would produce a curve that would likely be more
informative. Similarly, modeling functional data using covariates is likely to be easier when
the data are aligned.

ible than traditional linear models. These applications focus on building fast statistical

surrogate models for expensive computer simulators used for understanding many domains

of science and engineering. We will particularly focus on a high-energy-density physics

computer model used to simulate inertial confinement fusion ignition experiments that

take place on the National Ignition Facility (NIF) at Lawrence Livermore National Lab-

oratory. The goal of these experiments is to achieve nuclear fusion by compressing and

heating a fuel capsule using high-energy lasers. The simulator, called HYDRA, takes nine

inputs describing the laser stimulus (shape, amount, and timing) given to the capsule as

well as the density of the fuel in the capsule (Peterson et al., 2017). The simulator outputs

many quantities, but we are particularly interested in the energy production rate over time.

Figure 2 shows the log of the simulator output from five different combinations of the nine

inputs. The goal is to use an ensemble of nearly 25000 such simulations to build an emulator

that, given a new set of inputs, can produce accurate predictions and quantify prediction

uncertainty. This problem is challenging because of the degree of misalignement of the

functional responses, the large number of curves, and the non-trivial number of inputs.

Approaches to nonlinear modeling of misaligned functional responses based on covari-

ates are limited. Hung et al. (2015) build a Gaussian process emulator, including the
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Figure 2: Five curves output from five runs of the HYDRA simulator with different input
settings.

functional response using a Kronecker covariance structure and handling the misalignment

with missing data methods. Missing data methods, where the functional response is im-

puted for the entire range of possible functional responses, are unlikely to be useful here

because of the large variability in the misalignment of the responses, as shown in Figure 2.

Further, missing data methods will not help to align important features of the functional

response. Without such alignment, even very flexible models may not perform well, as

the parameter relationship that leads to the misalignment of features can be complex and

difficult to disentangle from parameter influence on curve shape. Hence, other approaches

center on registration, which is the process of aligning functional data. When only the

aligned functions are of interest, the data can be registered as a preprocessing step, as in

Bayarri et al. (2007). A model built from registered data would be limited to prediction of

aligned curves only, unless a registration model was also built.

The prospect of combining an aligned functional data model with a registration model is

of interest to functional data analysis researchers more generally. For instance, Earls et al.

(2017) develop a model that, for a functional dataset without covariates, uses Gaussian
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processes to simultaneously infer the aligned mean curve and the warping function, which

is the function that maps the unregistered data to be registered (i.e., warps the misalgined

data to an aligned space). Telesca (2015) also considers, for the purposes of inference and

not prediction, a linear mixed model for both the aligned data and the warping functions.

A good deal of attention has been given to modeling of warping functions for inference

purposes (Gervini and Gasser, 2004; Tucker et al., 2013), but attention has not been given

to modeling warping functions with covariates, especially in a nonlinear fashion. A warp-

ing function must be non-decreasing, and modeling with monotonicity constraints can be

complicated. Further, joint modeling of the warped data and the warping functions (e.g.,

imagine amplitude and phase variability) can lead to identifiability issues, since overfitting

of the warping functions (which represent phase variability) is detrimental to the modeling

of the warped data (which represent amplitude variability).

While many methods for registration have been proposed, landmark registration is pre-

ferred when possible (Gervini and Gasser, 2004). Landmark registration consists of aligning

functions according to where important functional traits (landmarks) occur. For instance,

local maxima, minima, or inflection points may be considered landmarks. Landmarks cor-

respond to important points along the warping functions, meaning that landmarks can be

used to learn and constrain warping functions. In a sense, landmarks are the features that

need to be aligned, where the values in between landmarks may be less important. The

difficulty with landmark registration is that landmarks can sometimes be difficult to select.

Hence, methods that do not depend on landmarks are more common. Recent work by Strait

and Kurtek (2016) develops a method to estimate landmark placement with uncertainty.

In the case of the HYDRA simulations, there are a few clear landmarks occurring in each

curve. These are the start, end, global maximum, and point at which the curve changes

direction between the start and global maximum. If we consider warping functions that

are linear between the landmarks, Figure 3 shows what the aligned curves look like. For

comparison, Figure 3 also shows what the aligned curves would look like with only the start

and end points as landmarks. Variation near the excluded landmarks is likely to require

the model for the aligned curves to be more complex, and justifies the inclusion of all four

landmarks since they are easily identified. Figure 4 shows the (inverse) warping functions

using four landmarks.
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Figure 3: The five curves from Figure 2 warped in two different ways. The left panel shows
landmark warping with two landmarks, while the right uses four landmarks. Dotted vertical
lines indicate the location of landmarks

In order to model misaligned functional data using covariates, we propose using a non-

linear regression model for both the aligned functional response and the warping functions

based on the covariates. Monotonicity of the warping function model is enforced simply

by fitting the unconstrained model and rejection sampling the posterior predictive distri-

bution. This misaligned functional data modeling approach is general, in that it can be

applied for various choices of nonlinear regression model. We will demonstrate the approach

with Bayesian multivariate adaptive regression splines (BMARS), Bayesian additive regres-

sion trees (BART), and local approximate Gaussian processes (laGP). These models have

been found to work well for various large datasets (Francom et al., 2019; Gramacy et al.,

2015; Pratola et al., 2014). The purpose of this paper is not necessarily to compare these

models, but to show that they can each work under the proposed framework. We chose

these particular methods because they are scalable to large datasets and they quantify their

predictive uncertainty.

We summarize BMARS, BART, and laGP the modeling techniques in the following

paragraphs. Assuming scalar model output, let xi be the p-dimensional inputs to the ith

model run for i = 1, . . . , nx, and let yi be the associated response.
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Figure 4: Warping functions for the five curves in Figure 2 that are linear between land-
marks.

BMARS The premise of multivariate adaptive regression splines (Friedman, 1991) is to

learn learn how to combine covariates to build a set of basis functions that can predict the

output of interest. The basis functions are tensor products of truncated polynomials (often

with polynomial degree one), so that

yi = a0 +

M∑
m=1

amBm(xi) + εi, εi ∼ N(0, σ2)

Bm(x) =

Jm∏
j=1

[
sjm(xvjm − kjm)

]
+

where M is the number of basis functions, Jm is the degree of interaction in the mth basis

function (the elements of the tensor product must use unique variables, hence the product

is an interaction between a collection of variables), vjm is the variable used, kjm is a knot,

sjm ∈ {−1, 1} is the sign, am is the coefficient for the mth basis function, and σ2 is the
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error variance. The Bayesian approach to MARS (Denison et al., 2002) puts priors on the

unknown parameters, which are all those listed in the previous sentence, and uses reversible

jump MCMC to sample the posterior. We use the implementation of Francom and Sansó

(In press), which uses the innovations of Francom et al. (2018) and Francom et al. (2019).

BART Bayesian additive regression trees (Chipman et al., 2010) learns a set of trees that

are added together to provide good prediction. Similar to the BMARS formulation above,

we have

yi =
M∑
m=1

gm(xi;Tm,θm) + εi, εi ∼ N(0, σ2)

but now we have the mth “basis” gm as a tree model defined by splitting rules Tm and

terminal node parameters θm. Tree priors, as well as terminal node parameter priors and

a prior for σ2 complete the model specification (for fixed M), and a Bayesian backfitting

MCMC procedure is used to sample the posterior. We use the implementation of McCulloch

et al. (2018).

laGP Local approximate Gaussian processes (Gramacy and Apley, 2015) fit GP models

to neighborhoods of points around predictive locations. Hence, there is no general model

fitting, but small models are fit independently for each prediction. This approach is aug-

mented by creative ways of choosing neighborhoods, as merely using the nearest neighbors

to fit a GP produces suboptimal predictions. A greedy search for the best set of “neighbors”

of a given size coupled with active learning techniques typically yields accurate predictions

quickly, even for very large datasets. While individual GP models are stationary, the pre-

dictions from laGP are nonstationary. While this approach does not quantify uncertainty

in individual GP parameterizations, it does produce a GP and hence some gauge predictive

uncertainty. We use the method of Gramacy and Haaland (2016) implemented in Gramacy

et al. (2016).

In the remainder of the paper, we describe general methods for emulation with functional
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response, including general methods for emulation with monotonic functional response (Sec-

tion 2); we describe general approaches for emulating functional response models in combi-

nation with landmarks to build emulators for models with misaligned functional response

(Section 3); we build and evaluate emulators for the HYDRA computer model, which has

misaligned functional response, and perform a sensitivity analysis (Section 4); and finally

we conclude (Section 5). The methods outlined in these sections could be used to build

models and perform sensitivity analyses for various complex data generating processes that

produce misalgined functional responses with clear landmarks. Such a contribution, to our

knowledge, has not been made in the literature to date.

2 Emulation of Models With Functional Response

There are two popular approaches to building emulators for models with functional re-

sponse. The first is to augment the computer model inputs with the functional variable,

and build a model for a univariate output as a function of the larger collection of inputs.

The second is to decompose the functional response onto a set of basis functions, and model

the basis decomposition coefficients as a function of the computer model inputs. Below, we

describe each of these approaches in more detail, after which we describe a simple approach

to modeling monotone functional responses.

2.1 Augmentation Approach

The augmentation approach to modeling functional responses using covariates merely aug-

ments the covariates to include the variable that indexes the functional response. Thus, if

the functional response for model run i given covariates xi is denoted yi(r), where r is the

functional indexing variable, then the augmentation approach would model the univariate

response yij as a function of covariates (rj ,xi)
′ where rj is the discretized variable r. When

the functional responses for different model runs are given on the same discretized grid, or

could be put on the same discretized grid (i.e., r1, . . . , rnr), this can be a popular choice for

computational reasons. If the number of model runs is nx and the number of covariates in

x is p, the scalar response model has p + 1 covariates and nxnr “model runs,” which can

be difficult to handle if either nx or nr are moderately large.
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However, under a separable Gaussian process model, the computational cost is less than

that necessary to build a GP with nx+nr model runs because of the Kronecker structure of

the covariance, though separability can be a strong assumption (Williams et al., 2006). Part

of the draw of laGP and other approximate GP methods is that the scalability improvements

allow the modeler to avoid the separability assumption.

Under the BMARS model with functional responses on a common grid, significant

computational gains are achieved by recognizing that each basis function has a Kronecker

structure, so that the matrix of basis functions is a Khatri-Rao product (Francom et al.,

2018). While it is unclear whether there would be an opportunity for computational savings

for BART with functional responses on a common grid, the development of BART has gone

more in the direction of handling such datasets by improving scalability, as in Pratola et al.

(2014). One of the issues with applying the augmentation approach to BART is that the

functional response is often smooth, and the BART model does not provide smooth func-

tional response predictions. Starling et al. (2018) develops a targeted smoothing approach

where inputs that should have a smooth relationship with the response are not split on in

trees, but are included in GP models at the leaves.

2.2 Basis Approach

Instead of augmenting the input space, the basis approach reduces the functional problem to

that of considering several scalar response problems. This is achieved by decomposing, for

each available combination of inputs, the functional responses onto a common set of basis

functions and to model the basis coefficients using the covariates. Typically, the projection

onto basis functions K1(r), . . . ,Knr(r) satisfies yi(r) =
∑nr

l=1milKl(r), which we rewrite as

yi(r) =

nk∑
l=1

ml(xi)Kl(r) + ui(r) (1)

where often the number of basis functions, nk, is selected to be less than nr in order to

achieve dimension reduction. When nk < nr, the ui(r) term is included as a truncation

error.

Higdon et al. (2008) uses GPs to model ml(xi), a principal component (or empirical

orthogonal function) basis for K, and an iid Gaussian error for ui(r). Bayarri et al. (2007)
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also uses GPs to model ml(xi), but uses a wavelet basis for K, and disregards ui(r).

Francom et al. (2019) uses BMARS to model ml(xi), a principal component (or empirical

orthogonal function) basis for K, and an empirical distribution for ui(r). They form the

empirical truncation distribution by uniformly sampling from the observed truncations

(with replacement) for each value of r. The number of elements to sample from for each

r is the number of model runs (there is a truncation error for each model run). Thus,

this approach is sensible for emulators built from a large number of model runs, since the

truncation error is typically neither iid or Gaussian and it allows for the coefficient models

to be fit completely in parallel.

2.3 Monotonic Functional Response

Many computer models have monotone functional response, though the monotonicity con-

straint is typically not enforced in the emulator because it is difficult to do (for instance,

the implosion model of Higdon et al. (2008)). In our case, our warping function model

will need to have monotone functional response, since changing the order of the functional

variable is not sensible. Below we discuss some possible approaches.

A natural way to incorporate monotonicity is in the prior, so that models that yield non-

monotone predictions (or at least the predictive mean) would be given no posterior weight.

This requires the ability to check whether the model yields any non-monotone predictions,

perhaps by checking if the derivative of the model with respect to the functional variable

is positive. It is easy to calculate the derivative of the BMARS model with respect to

the functional variable since d
dr [s(r − t)]α+ = α [s(r − t)]α−1+ 1(s(r − t) > 0)s. The difficulty

comes when checking that the derivative is positive for a given model (with any combination

of covariates, not just the ones we have seen) since we have a linear combination of such

functions where the coefficients in the linear combination are a function of the other inputs.

Another approach is to incorporate monotonicity into the modeling framework so that

the response is monotone by construction. This can be done in a few ways. For instance, we

could model the log derivative of the functional response, perhaps obtained by differencing

(Earls et al., 2017). The problem with this is that when we transform (exponentiate and

integrate) back to the original space, we get undesirable heteroskedasticity in the functional

response predictions. This is because any error in the log derivative space (particularly a
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nugget term) is compounded when integrating (or summing, when differencing is used

to approximate the derivative). Another way to build monotonicity into the modeling

framework is to model the functional response using monotonic basis functions with positive

coefficients. This is common in one dimension (Bornkamp and Ickstadt, 2009; Shively et al.,

2009), but when we need to be able to include interactions between the functional variable

and covariates, this becomes difficult, again, since we have coefficient functions rather than

scalars. The way that Chipman et al. (2016) are able to build monotonicity into BART

is similar to this, but their approach (ensuring marginal monotonicity of the functional

response in each additive component, or “basis” function) works because BART is additive

rather than a linear combination. Projecting onto a set of monotone basis functions and

modeling the log of the coefficients is another approach. Projecting onto I-splines (Ramsay,

1998) can result in a similar problem to the case of modeling in the derivative space, where

basis functions represent very local movements so that we get a similarly heteroskedastic

result when combining them.

Yet another approach to the monotonicity problem is to fit the unconstrained model and

do a correction after the fact. This has been a topic of study in other fields, like quantile

regression and dose response modeling. For instance, Chernozhukov et al. (2009) show

that, in a quantile regression setting, swapping quantiles that are out of order improves

estimates. Lin and Dunson (2014) develop a projection of an unconstrained GP into a

monotone space which amounts to averaging non-monotone quantities, and show that this

has empirical Bayes properties.

A more appealing approach that involves correcting the unconstrained model is to use

rejection sampling of the posterior predictive distribution, since in our case (when modeling

warping functions) we need samples from the posterior predictive distribution to have mono-

tone functional response. Holmes and Heard (2003) apply reasoning to MCMC sampling

in the model space that is applicable here. The posterior predictive distribution we want

to sample is π(ynew|y, C) where C is the monotonicity constraint. If we sample π(ynew|y)

and reject samples that do not satisfy C, then the resulting samples are from π(ynew|y, C).

This approach is simple, easy to implement for a wide range of models (including both

the augmentation approach and basis approach models from Sections 2.1 and 2.2 above),

theoretically justified, and is efficient in many cases. Specifically, this approach is efficient
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when, given the unconstrained model, there are few, if any, predictions that are not mono-

tone. In cases where all or almost all posterior predictive samples violate the constraint,

this would not work. However, such a situation could be symptomatic of more significant

problems, as the training data may have strong violations of the constraint or perhaps the

model is overfitting.

While we generally opt to use Bayesian approaches in order to propagate uncertainty

in a coherent way, this approach could be applied to non-Bayesian models that provide

predictive distributions (like laGP and other non-Bayesian GP models). For these models,

we apply the same reasoning and use rejection sampling of the predictive distribution.

3 Misaligned Functional Response Emulation using Land-

marks

Now that we have in place the ability to build a model for a functional response in terms

of covariates, as well as a monotone functional response in terms of covariates, we will use

these tools to build our model for the misaligned functional response in terms of covariates.

Let yi(r) denote the output from the ith computer model run, for i = 1, . . . , nx. The

output is a function of r, though r may have a different range for different model runs. We

model yi(r) as the composition of two random functions,

yi(r) = yi(r
∗) ◦ w−1i (r), (2)

where yi(r
∗) is the aligned version of yi(r), and wi(r

∗) is the monotone warping function

that maps the aligned functional variable to the original (misaligned) scale. To be more

explicit, let T be the set of all possible values of r and let T ∗ be the set of possible values

of r∗. Then wi : T ∗ → T , yi(r) : T → R, and yi(r
∗) : T ∗ → R. Since function composition

is associative, and w−1i ◦ wi is the identity function, we can rewrite the Equation 2 as

yi(r) ◦ wi(r∗) = yi(r
∗).

13



3.1 Two Independent Models Approach

One way to get a model for the misaligned data is to model the aligned data and the

warping functions independently. Using Equation 2, these can be combined to model the

misaligned data. Also, the aligned data model and the warping function model can each

be built using the approaches of Section 2, since each now has aligned functional response.

In practice, the landmarks we identify are the only points for which we have realizations

of the warping functions, and hence, the only points we can use to train the warping function

model. The warping functions themselves will need to be evaluated at points between the

landmarks. If we did not have landmarks, the warping functions could be learned based

on how they improve the fit of the aligned data model, though it is difficult to identify

whether variations in the functions ought to be modeled by warping or by changing the

aligned data model. Hence, regularization is often necessary to enforce a certain level of

smoothness of warping functions. Landmarks are beneficial since they are realizations of

the warping functions, but the warping model fit to landmarks also ought to be smooth

between landmarks. We go as far as to adopt linearity between landmarks as a simple

approach that seems to work well in practice. Hence, we will not require our emulators to

predict warping functions away from the landmarks, though we note that the augmentation

approach to BMARS would use a linear prediction between the landmarks because of the

form of the model.

In practice, we also have that r and r∗ are discretized. Say that r is discretized

into r1, . . . , rnr with corresponding function values y1, . . . , ynr so that yj = y(rj), and

the curve has associated landmarks L1, . . . , Lq. Then we get the warping function w by

linearly interpolating the x-y pairs (L∗1, L1), . . . , (L
∗
q , Lq), where L∗1, . . . , L

∗
q are the (arbi-

trary) new locations of the landmarks after alignment. Given w we can get a discretized

r∗ by evaluating r∗j = w−1(rj). Hence, x-y pairs (r1, y1), . . . , (rnr , ynr) are aligned as

(w−1(r1), y1), . . . , (w
−1(rnr), ynr). The result can be put on an arbitrary grid r∗1, . . . , r

∗
m

by linear interpolation. We can go backwards (i.e., given aligned data, “unwarp” it back to

its misaligned space) using the same approach replacing w−1 with w.
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3.2 Single Model Approach

Treating the aligned data and the warping functions independently could be justified from

a modularization approach (Liu et al., 2009), where the modeler thinks that the warping

functions ought to only be influenced by the landmarks and that the aligned data model

ought to only involve the data aligned by the true landmarks. However, to condition on all

the data (landmarks and aligned data) would mean that the warping model ought to depend

on the fit to the landmarks and the fit of the aligned model according to the alignment from

the warping model. This becomes difficult to implement, especially for large datasets, and

is conceptually difficult to justify since we have landmarks. If we did not have landmarks,

this would be a more justifiable approach.

A different approach to jointly considering the aligned data and the warping functions

is to model the aligned data and the warping functions with a single functional (or mul-

tivariate) response model. This is because the misaligned functional response could really

be thought of as multivariate functional response, as for the ith realization we get two

functional responses yi(r
∗) and wi(r

∗). In practice, this is further simplified since r∗ is

discretized and wi(r
∗) is completely determined by the landmarks Li1, . . . , L

i
q. Hence, the

ith model response is
(
yi(r

∗
1), . . . , yi(r

∗
m), Li1, . . . , L

i
q

)
. With multivariate response like this,

the basis approach of Section 2.2 with empirical orthogonal functions (EOFs) is reasonable

since those basis functions need not be smooth, so a single basis function can encode the re-

lationship between the aligned data and the warping functions. This allows for correlations

between the position of the landmarks and the y-values of the functions to be captured in

the basis.

It should be noted that with eigen-decomposition based bases like EOFs, care needs

to be exercised so that the empirical basis functions correctly describe variation is dis-

parate data types. The x and y units of the functional response of computer models are

typically different, and often have vastly different scales. In our multivariate response(
yi(r

∗
1), . . . , yi(r

∗
m), Li1, . . . , L

i
q

)
, the units of yi(r

∗
1), . . . , yi(r

∗
m) are very different from the

units of Li1, . . . , L
i
q. Hence, standardization is necessary. Also, if equal attention is to be

given to the aligned data and the warping functions in the basis decomposition, the number

of discretized values of those functions need to be comparable or some kind of weighting

needs to be implemented. The weight of yi(r
∗
1), . . . , yi(r

∗
m) should be the same as the weight
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of Li1, . . . , L
i
q in determining variance to be explained in basis functions. Given a careful

basis decomposition, the methods of Section 2.2 can be used to fit a single model for both

the aligned data and the warping functions, which can then be combined as described in

the previous section to provide predictions in the misaligned space.

4 HYDRA Emulation

HYDRA is used by scientists seeking to simulate inertial confinement fusion ignition ex-

periments at the National Ignition Facility at Lawrence Livermore National Laboratory

(Marinak et al., 2001). We will focus on HYDRA’s simulation of energy production rate

over time as a function of nine inputs described in Peterson et al. (2017). Eight of the

inputs describe a laser stimulus (shape, amount, and timing) given to a fuel capsule, and

the ninth is the density of the fuel in the capsule. We utilize a pre-existing ensemble of

simulations consisting of 24440 completed model runs, which is a combination of two latin

hypercubes where one is more concentrated than the other. A small percentage of the runs

failed because of errors during in-situ processing of the model output. We disregard the

runs that failed.

We use the log of energy production rate since each simulation of energy production rate

varies over many orders of magnitude, and we are interested in both small and large values.

The simulations of log of energy production rate over time exibit some clear features. There

is an initial ramp up, followed by a slowing, another ramp up which eventually peaks, after

which we have a decrease. The landmarks that we align are (1) the start, (2) the point

between the initial ramp up and slowing, (3) the peak, and (4) the end, demonstrated

in Figure 5. All but the second landmark are trivial to identify. We identify the second

landmark by finding the line between the first and third landmarks, transforming the log

energy production rate so that this line is the new x-axis, and finding the new maximum.

4.1 Prediction performance

With landmarks, we can proceed with the approaches detailed above. We randomly sample

100 of the 24440 model runs to hold out from emulator training. We show results for six

emulators: (1) BMARS using the augmentation approach, (1) BART using the augmen-
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Figure 5: HYDRA simulation landmarks.

tation approach, (2) laGP using the augmentation approach, (3) BMARS for EOF basis

coefficients, (4) BART for EOF basis coefficients, and (5) laGP for EOF basis coefficients.

For each of the models in EOF space, 10 EOFs are used, and the truncation error is as-

sumed to come from the empirical distribution of truncation errors as in Francom et al.

(2019). Figure 6 shows the predictions for the augmentation approach emulators for each

of three hold-out model runs. Figure 7 shows predictions for the EOF basis emulators. All

of these emulators are generally able to predict well, as they can capture the general shape

of the curves and their position in time (note the differences in both the x and y axes for

each holdout model run).

Figure 6 and Figure 7 are meant to provide intuition about each emulator’s predictions

rather than comparing emulator performance. Figure 8 gives more information for com-

parison, including root mean squared prediction errors (aligned and warping models), 95%

contour sizes, and empirical coverages for the 100 holdout model runs. The standing of

each of the three holdout model runs shown in Figures 6 and 7 are also labeled in Fig-

ure 8. These demonstrate, for instance, that the relatively poor prediction of laGP-EOF

in holdout 3 from Figure 7 is an outlier, and that laGP-EOF performs better in most of

the other 100 holdout predictions. Figure 8 also demonstrates that (1) there is not much

difference in aligned model prediction, though the EOF approaches seem to work slightly

better here; (2) there is somewhat more spread in the RMSE of the laGP and laGP-EOF

warping models; (3) likely because of (2), laGP has somewhat larger 95% contour areas and

laGP-EOF has a large range of 95% contour areas; and (4) all emulators tend to have good
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Figure 6: A comparison of emulator predictions for three holdout model runs. The columns
show three model runs. The rows correspond to emulation techniques. Plots obtained using
BMARS and BART approaches show posterior predictive samples, posterior predictive
samples of the mean, and their corresponding average. In the plots using laGP approaches,
GP means and samples are shown. In each plot, a 95% contour of the predictive samples
is shown as well as the holdout functional response. Note the changes in both the x and y
axes for each holdout model run.
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Figure 7: A comparison of emulator predictions for three holdout model runs. The columns
show three model runs. The rows correspond to emulation techniques. Plots obtained using
BMARS and BART approaches show posterior predictive samples, posterior predictive
samples of the mean, and their corresponding average. In the plots using laGP approaches,
GP means and samples are shown. In each plot, a 95% contour of the predictive samples
is shown as well as the holdout functional response. Note the changes in both the x and y
axes for each holdout model run.
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empirical coverage. The variance of the laGP predictions could be decreased by allowing

larger numbers of neighbors to be used when building GP models.

Figures 9, 10, and 11 show more context for the predictions. Each figure shows 25 hold-

out model runs with emulator predictions, all with the same x and y axis limits. Figure 9

shows these predictions for the BMARS-EOF emulator, Figure 10 shows the predictions for

the BART-EOF emulator, and Figure 11 shows the predictions for the laGP-EOF emula-

tor. Each shows a good ability to follow the changes in curve shape as well as the changes

in curve timing. The laGP-EOF emulator predictions show both the largest and smallest

uncertainties, and could again be refined by allowing for larger neighborhoods, at some

computational expense.

4.2 Sensitivity Analysis

We now demonstrate how a sensitivity analysis of the HYDRA model could be conducted

with an emulator for misaligned functional response. The goal of sensitivity analysis is to

understand how changing the inputs to a model will affect the output. Functional ANOVA

techniques like the Sobol decomposition (Sobol’, 2001) are often used to partition the output

variance based on the inputs their interactions.

The Sobol decomposition is typically approximated with Monte Carlo methods. For

expensive models, emulators are often used as surrogates for computer models when using

Monte Carlo methods, as many evaluations of the model are required. While we could

approximate the Sobol decomposition of any of the emulators we have introduced, the

BMARS and BMARS-EOF emulators have the advantage that the Sobol decomposition

can be performed analytically (Francom et al., 2018, 2019). Hence, we will illustrate the

sensitivity analysis with the Sobol decomposition of the BMARS aligned data model and

the BMARS warping model.

Figure 12 shows the functional sensitivity analysis of the BMARS aligned model. This

indicates that most of the variance in the early to middle warped time period is due to

variation in input three, which controls the density of the fuel in the capsule. There is a

decrease in the total variance about 75% of the way through the warped time (r∗ = 0.75), as

many of the curves overlap around that point. Variation after that point is due to changes

in the shape, timing, and amount of laser stimulus to the fuel capsule.

20



●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

B
M

A
R

S

B
A

R
T

la
G

P

B
M

A
R

S
−

E
O

F

B
A

R
T

−
E

O
F

la
G

P
−

E
O

F

0.0

0.5

1.0

1.5

2.0

2.5

Aligned model RMSE

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

B
M

A
R

S

B
A

R
T

la
G

P

B
M

A
R

S
−

E
O

F

B
A

R
T

−
E

O
F

la
G

P
−

E
O

F

0.0

0.5

1.0

1.5

2.0

2.5

1

2
3

1 2 3

1 2

3

1

2 3

1

2

3

1
2

3

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

B
M

A
R

S

B
A

R
T

la
G

P

B
M

A
R

S
−

E
O

F

B
A

R
T

−
E

O
F

la
G

P
−

E
O

F

0e+00

2e−05

4e−05

6e−05

8e−05

Warping model RMSE

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

B
M

A
R

S

B
A

R
T

la
G

P

B
M

A
R

S
−

E
O

F

B
A

R
T

−
E

O
F

la
G

P
−

E
O

F

0e+00

2e−05

4e−05

6e−05

8e−05

1 2

3

1

2
3

1

2

3

1

2

3

1

2

3

1

2
3

●

●

●

●
●

●

●

●

●●

●
●
●

●
●●

●

●

B
M

A
R

S

B
A

R
T

la
G

P

B
M

A
R

S
−

E
O

F

B
A

R
T

−
E

O
F

la
G

P
−

E
O

F

0.002

0.003

0.004

0.005

95% region size

●

●

●

●
●

●

●

●

●●

●
●
●

●
●●

●

●

B
M

A
R

S

B
A

R
T

la
G

P

B
M

A
R

S
−

E
O

F

B
A

R
T

−
E

O
F

la
G

P
−

E
O

F

0.002

0.003

0.004

0.005

1
2 3 1

2

3

1

2

3

1
2 3

1 2
3

1

2

3

●

●

●●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●
●

●

●

●

B
M

A
R

S

B
A

R
T

la
G

P

B
M

A
R

S
−

E
O

F

B
A

R
T

−
E

O
F

la
G

P
−

E
O

F

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Empirical coverage

●

●

●●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●
●

●

●

●

B
M

A
R

S

B
A

R
T

la
G

P

B
M

A
R

S
−

E
O

F

B
A

R
T

−
E

O
F

la
G

P
−

E
O

F

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 1

2

3 1 2 3 1 2

3

1
2

3 1

2

3 1
2

3

Figure 8: An evaluation of emulator predictive accuracy and uncertainty for five emulation
approaches based on 100 held out model runs. For each of the 100 predictions, aligned
and warping model RMSE are calculated as well as the area of the 95% contour and that
contour’s empirical coverage. The numbers on top of each boxplot show where the three
holdout predictions shown in Figures 6 and 7 stand.

Figure 13 shows the functional sensitivity analysis of the BMARS warping model. This

shows that input six explains most of the timing variation, with some contribution from

input eight and a small contribution from input three for the initial timing.

5 Conclusion

We have presented approaches to modeling misalgined functional data in terms of covariates

when landmarks can be identified. The approach is general, so that most nonlinear models

could be used. The innovations of this work include (1) the general approach to modeling
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Figure 9: Various holdout predictions using the BMARS-EOF emulator shown with the
same axis limits.

misalgined functional responses by unitlizing landmarks and warping models, (2) a simple

way to include a monotonicity constraint on the functional responses, (3) modeling aligned

data and warping functions using independent models or a single model in EOF coefficient

space, and (4) sensitivity analysis for misalgined functional response emulators.

We have demonstrated the effectiveness of our approach to emulate a computer model

with nine inputs and misaligned functional response. Popular approaches to this problem

may have emulated the aligned functional response (Bayarri et al., 2007) or some important

feature or function of the output (Walters et al., 2018). Our approach demonstrates a

successful way to emulate the full output of the computer model, in addition to a sensitivity

analysis using the emulator.

This paper opens up the field of computer experiments for misaligned simulations. Fu-

ture research in this area, such as incorporating landmark uncertainty, using these emulators

for calibration, and applying the methodology to higher dimensional misaligned functional

responses, could provide interesting solutions to problems that emulator users often face.
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Figure 10: Various holdout predictions using the BART-EOF emulator shown with the
same axis limits.

We are actively pursuing some of these areas.
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Figure 11: Various holdout predictions using the laGP-EOF emulator shown with the same
axis limits.
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