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Department of Statistics, University of California, Santa Cruz

September 12, 2019

Abstract

While many statistical approaches have tackled the issue of large spatial datasets,
the issue arising from costly data movement and data storage have long been set aside.
Having an easy access to the data has been taken for granted and is now becoming an
important bottleneck in the performance of statistical inference. As the availability of
high resolution spatial data continues to grow, the need to develop an efficient modeling
technique is becoming a priority. In this paper, we develop a distributed method for
the Nearest-Neighbor Gaussian Process (NNGP) models as a solution to large datasets.
The framework that we propose retain the exact implementation of the NNGP while
allowing for a parallel computation of the posterior inference. The method allows for
any choice of grouping of the data whether it is at random or by region. As a result
of this new method, the NNGP model can be applied to a dataset with n observations
split into J servers with computations of order n/J .
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1 Introduction

The increased availability of georeferenced data has produced a need to handle, analyze

and make inferences and predictions for very large collections of data, posing a large com-

putational burden on model-based inference of spatial fields. Geostatistical methods that

deal with point-referenced data consider random fields that are indexed in space, usually

2D or 3D. Intuitively, proximity between observations should provide information for in-

ference about unobserved values of the field. This is often formalized using model-based

approaches for which there is a solid body of literature and software, see, for example, the

books by Cressie (1993); Gelfand et al. (2010); Cressie and Wikle (2011); Banerjee et al.

(2014). Modern geostatistical approaches provide flexible probabilistic models, coupled

with powerful learning methods, that are used to investigate challenging inferential ques-

tions related to geographically-referenced data. Traditionally, model-based spatial models

have relied on the Gaussian process (GP). GPs capture the dependence due to proximity

trough a covariance function. For a likelihood-based approach to GPs, the bottleneck lies

in the computation of the determinant and the inverse of the covariance matrix induced by

the locations of the available observations. Matrix inversion has order n3 operations, which

can be costly for datasets with large number of observations n. To illustrate the problem

with some numbers, an application for observations at, say, 10,000 locations will produce

a covariance matrix with 50,005,000 possibly different values. Such a large data structure

would need to be stored, decomposed and operated with, possibly within an iterative pro-

cedure. Modern applications can have datasets that are orders of magnitude larger than

that. To tackle this problem most current methods take one of two approaches: exploit

sparsity in the structure of the covariance matrix or reduce the dimensionality of the prob-

lem by seeking representations of GPs on lower dimensional subspaces. In both cases the

goal is to speed up calculations, as well as reduce the size of the objects that need to be

handled and stored in memory when performing computations. An example of the former

is covariance tapering that consists of truncating the covariance function to zero for distant

observations (Furrer et al., 2006). By using an appropriate tapered correlation kernel, the
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covariance matrix becomes very sparse while remaining positive definite. An example of

the latter is the predictive Gaussian processes, as introduced by Banerjee et al. (2008),

which represents the GP using basis functions generated by the covariance function. This

produces a reduction of the dimension of the matrix that needs to be inverted to perform

inference to a fixed, small dimension, that depends on a pre-specified set of knots. This

is a similar approach to the one in Higdon (1998); Cressie and Johannesson (2008). For

further information about the state of the art model-based geostatistics methods suitable

for large data sets see Banerjee (2017) and Heaton et al. (2018). In this paper we focus on

nearest-neighbor GP ((NNGP), Datta et al., 2016), a model that is particularly intriguing,

as it blends features of both the dimension reduction and the sparsity approaches. NNGP

uses the conditional distribution structure of a joint likelihood to build a directed network

of neighbors . By making observations conditionally independent of non-neighboring loca-

tions, the new precision matrix has a very sparse structure. In that case, the number of

operations needed to invert the precision matrix is limited by the number of neighboring

locations allowed.

While data storage has been improved to accomodate the flood of information needed to

be stored, model-based approaches rely on data access and ultimately on data movement.

In most cases, models take for granted that the data can be accessed and manipulated all

at once. In recent years, several situations have emerged where the data have been stored

in multiple locations (distributed data). Similarly, data may be stored in one location

but be too large to use at once. Under these scenarios, our primary objective is to adapt

our statistical methods to keep up with competitive algorithms. Distributed computing

and parallel implementation are key to the next significant gain in efficiency of statistical

inference. In this paper, we introduce a divide-and-conquer approach for NNGPs. The gain

in efficiency from the distributed approach is of particular interest as it does not sacrifice

accuracy in the process. In section 2, we review the distributed approaches suggested by

Katzfuss and Hammerling (2014) and Guhaniyogi et al. (2017). In section 3, we introduce

NNGPs and detail our divide-and-conquer strategy. Finally, in the last section, we illustrate

the method by applying it to a simulated dataset and the soil moisture active-passive
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(SMAP) satellite data for three days in August 2017.

2 Distributed Computing for Spatial Models

Previous work in distributed approaches for statistical models include the parallelization

of low-rank models by Katzfuss and Hammerling (2014), and the aggregation of Bayesian

posterior inference by Guhaniyogi et al. (2017). The goal of this section is to discuss the

current state of distributed computing for spatial inference and motivate the need for our

new approach.

2.1 Parallel Inference for Low-Rank Models

While low-rank models already achieve a significant improvement in computational effi-

ciency compared to the implementation of the full GP, Katzfuss and Hammerling (2014)

took a step further by using parallelization to achieve an even greater speed gain. Their

divide-and-conquer approach was developed with two scenarios in mind. The first situation

assumes that the data reside on J servers. In that case, moving the data to a common

server is too slow but moving the results on the other hand, is fast. The second situation

applies to any large spatial dataset which can benefit from being separated into J blocks.

In either case, the studied model is such that

y(sj,i) = w(sj,i) + ε(sj,i) (1)

where sj,i is the location of observation i on server j for i = 1, ..., nj , j = 1, ..., J , and

ε(sj,i) ∼ N(0, vε(sj,i)) is independent of y for a known function vε. In spatial low-rank

models, the approximation of the true underlying process is based on a set of m basis

functions B:

w(sj,i) = B(sj,i)
′
η + δ(sj,i),

where δ ∼ N(0, vδ(sj,i)) is spatially independent and independent of η. Assuming the

covariance parameters are fixed, and using a normal prior, η ∼ Nm(ν0,K0), the posterior
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distribution of η is Nm(νy,Ky), where

K−1y = K−10 +R, R = B
′
1:JV

−1
1:JB1:J

νy = Ky(K
−1
0 ν0 + γ), γ = K

′
1:JK

−1
1:Jy1:J ,

where B1:J = (B1, ...,BJ) is a vector of matrices where each Bj = (B(sj,1), ...,B(sj,nj ))

and V 1:J = blockdiag(V 1, ...,V J) where each V j = diag(vδ(sj,1) + vε(sj,1), ..., vδ(sj,nj ) +

vε(sj,nj )). Because of the block structure of V 1:J , the above calculations become a sum of

quantities that can be computed independently on each server:

R =

J∑
j=1

B
′
jV
−1
j Bj , γ =

J∑
j=1

B
′
jV
−1
j yj .

The main algorithm is therefore reduced to computing the posterior parameters on

each server j, moving the results to a central node and adding them to obtain the posterior

parameters for the joint model. This is a special case of the algorithm developed by Qian

(2018) discussed in section 3.2.

2.2 Distributed Kriging

Distributed Kriging (DISK) is another distributed approach for Bayesian modeling explored

in Guhaniyogi et al. (2017). Let wjb(si) be the collection of MCMC samples for server

j = 1, ..., J for location si. The DISK posterior estimates are obtained by approximating

the Wasserstein barycenters of the samples, that is by averaging over the empirical quantiles

of each samples. The strength of the framework is that it is agnostic to the choice of model,

however an important drawback is the assumption that the subsets are created at random

and contain locations for each region of the spatial domain. In many applications, it is

often the case that data is stored by region, violating the assumption. In those situations,

an initial randomization step would be required to proceed with the technique which can

be costly and inefficient. A more desirable approach will tackle the dataset as presented

without incurring additional data movement costs.
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3 Nearest-Neighbor Gaussian Process

Let w(s) ∼ GP (0, Cθ) denote a zero-centered GP where s is any location in a space D.

The process relies on a valid covariance function Cθ, θ = (σ2, φ), which only depends

on the distance between pairs of observations. Let S = s1, ..., sk be a set of reference

locations, possibly involving a grid where the indexes 1, ..., k are tied to a specified ordering

of the locations. Since this is a fixed subset of D, wS ∼ Nk(0, Cθ(S)) where Cθ(S) is the

covariance matrix for S associated with the covariance function Cθ. The joint distribution

of S can be expressed using a chain of conditional distribution:

p(wS) = p(w(s1))

k∏
i=2

p(w(si)|w(s1), ..., w(si−1)).

The Vecchia approximation as introduced in Vecchia (1988) suggests that for a large i, the

conditional distribution above includes superfluous information. It is therefore appropri-

ate to restrict the conditional distribution to an approximation of order m based on the

Euclidean distance between the locations. This likelihood approximation method implies

that the locations that are closest to si influence the value of w(si) the most. Applying

this to the full joint distribution, we obtain

p̃(wS) = p(w(s1))

k∏
i=2

p(w(si)|wN(si)),

whereN(si) ⊂ {s1, s2, ..., si−1} which includes them closest locations to si. This sequential

structure produced by the ordering of the reference locations creates a directed acyclic

graph which guarantees a proper joint density. Using the conditional Normal distribution

density, we obtain the following approximated joint distribution

p̃(wS) =

k∏
i=1

N(w(si)|BsiwN(si),F si),

where

Bsi = Cθ(si, N(si))C
−1
θ (N(si))

F si = Cθ(si)− Cθ(si, N(si))C
−1
θ (N(si))Cθ(N(si), si),
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where Cθ(si, N(si)) is a vector where each entry is the covariance between si and its

neighbors N(si), Cθ(N(si)) is a symmetric matrix with elements corresponding to the

covariance of each pair of neighbors, and Cθ(si) is the variance of si. In all cases, the

covariances are fully specified by the covariance function Cθ. The resulting distribution for

p̃(wS) is a multivariate normal distribution with covariance matrix denoted C̃θ(S).

Let u be any location in D, and N(u) be the set of m neighbors of u in S. As detailed

in Datta et al. (2016), given a parent spatial process and a fixed reference set S, we can

construct a new process over D. In this case, the original process is GP (0, Cθ), therefore for

a fixed set of observations U = u1, ...,un, the nearest neighbors density of wU conditional

on wS is

p̃(wU |wS) =
n∏
i=1

p(w(ui)|wN(ui)) (2)

=
n∏
i=1

N(w(ui)|BuiwN(ui),Fui), (3)

where

Bui = Cθ(ui, N(ui))C
−1
θ (N(ui))

Fui = Cθ(ui)− Cθ(ui, N(ui))C
−1
θ (N(ui))Cθ(N(ui),ui)

From this point, we can define a new covariance function C̃∗θ . For any two locations u1

and u2 in D, we have

C̃∗θ (u1,u2) =


C̃θ(s1, s2), if u1 = s1, u2 = s2

Bu1C̃θ(N(u1), s2), if V 1 /∈ S, V 2 = s2

Bu1C̃θ(N(u1), N(u2))B
′
u2

+ 1(u1=u2)Fu1 , if V 1,V 2 /∈ S

where C̃θ is the covariance matrix associated with the density of w̃S . This completes the

construction of the new spatial process which is denoted NNGP (0, C̃∗θ ).

The computational advantage lies in the sparsity of the precision matrix obtained under

the new covariance function C̃∗θ . Assuming that we restrict the size of the neighborhood

set to m, the largest matrix inversion required by the MCMC updates are m×m. In fact,

the calculations are linear in n (O((n+ k)m3)).
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3.1 Divide-and-conquer for NNGP (DICNNGP)

As we have seen in the previous section, the core computational advantage of the NNGP

resides in the sparsity of the resulting precision matrix. Such sparsity can be explicitly

leveraged in a dimension reduction setting, as illustrated in Banerjee (2017), where the

conditional distribution of wU on wS (see Equation 2) is rewritten as a linear model:

w(ui) =

m∑
j=1

Aj(ui)w(sj) + η(ui), η(ui) ∼ N(0, δ2(ui)), (4)

whereA(ui) = (a1(ui), ..., am(ui)) and δ2(ui) are fully specified by the covariance function.

We can compute the values of A(ui) and δ(ui) efficienctly as:

AN(ui)(ui) = C−1θ (N(ui))Cθ(N(ui),ui),

and ∀sj /∈ N(ui), aj(ui) = 0, and

δ2(ui) = Cθ(ui)− Cθ(ui, N(ui))AN(ui)(ui).

This linear representation allows us to use the split-and-merge idea presented in Qian

(2018). Consider observations X,Y with n observations and p covariates to be modeled

using simple linear regression,

Y = Xβ + ε, ε ∼ Nn(0, σ2In)

under a conjugate prior NIGp(µ,Λ, a, b) for β and σ2. The posterior distributions of β and

σ2 can be obtained by dividing the data into two blocks (X1,Y 1) and (X2,Y 2), computing

their respective posterior distributions and merging the results. Denoting the subsamples

posterior parameters as µi,Λi, ai, bi for i = 1, 2, the posterior distribution given the full

data is NIGp(µ̃, Λ̃, ã, b̃) with,

µ̃ = (Λ1 + Λ2)
−1(Λ1µ1 + Λ2µ2),

Λ̃ = Λ1 + Λ2,

ã = a1 + a2 +
p

2
,

b̃ = b1 + b2 +
1

2
(µ1 − µ)

′
(Λ−11 )(µ1 − µ) +

1

2
(µ2 − µ)

′
(Λ−12 )(µ2 − µ),
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where p is the dimension of the covariates in the regression model. It is important to

highlight that the combined posterior distribution is not an approximation, the resulting

inference is exactly what would be obtained by performing the calculations on the complete

dataset.

Rewriting Equation (3) for the joint model of U , we have

wU = AwS + ηU , ηU ∼ Nn(0,D), (5)

where A is the matrix formed by the vectors A(ui), and D is a diagonal matrix with

elements δ2(ui). The joint posterior distribution of wS and σ2 given the observations wU

is a NIGk(µ
∗,V ∗, a∗, b∗) where

µ∗ = V ∗(A
′
D−1wU )

V ∗ =
(
A
′
D−1A+ C̃−1θ (S)

)−1
a∗ = a+

n

2

b∗ = b+
1

2

(
w
′
UwU − µ

′∗V ∗µ∗
)

where C̃−1θ (S) is the sparse prior precision matrix of wS , and a and b are the hyperpa-

rameters of the prior on σ2. Applying the divide-and-conquer algorithm from Qian (2018)

with the assumption that we have J blocks, the parameters of the posterior distribution

are equivalently computed by

µ∗ = V ∗
J∑
j=1

A
′
jD
−1
j wj

V ∗ =

 J∑
j=1

A
′
jD
−1
j Aj + C̃−1θ (S)

−1

a∗ = a+

J∑
j=1

nj
2

b∗ = b+
1

2
µ
′
C̃−1θ (S)µ+

1

2

J∑
j=1

(µj − µ)
′
(Λ−1j )(µj − µ),

9



where

µj =
(
A
′
jD
−1
j Aj

)′
A
′
jD
−1
j wj ,Λj = A

′
jD
−1
j Aj ,

whereAj is formed by the vectorsA(ui) for ui in block i, wj is formed from the observations

wU in block i, and Dj is a diagonal matrix with elements δ(ui) for ui in block j.

A careful analysis of the order of computations highlights the possible gain in efficiency

from the parallelization of the model. In the R package spNNGP by Finley et al. (2017),

the posterior sampling for the NNGP model is achieved in the best case scenario with

computations that are linear in n. The order of the computations also depend on the size of

the neighborhood (m3) and the size of the parameter space (p3). In the spatial setting that

is of interest, we assume that m and p are reasonably small and therefore have a minimal

impact on the computational efficiency. In the divide-and-conquer approach suggested, the

initial calculations involving the reference grid are linear in k, where k is the size of the

reference grid. In an optimal implementation of the algorithm, the posterior inference can

be performed with operations that are linear with respect to the size of each server. This

implies that the order of calculations is reduced to n/J , where the computations for each

block can be done concurrently. Finally, the order of computations rely on the number

of neighbors and on the number of parameter in the same way as the implementation of

the NNGP. Assuming that θ is held constant, we can review one iteration of the MCMC

algorithm to understand the magnitude of the gain.

3.2 Model Development

The implementation of the NNGP model in Datta et al. (2016) suggests to use U as the

reference set. However, in the case where the data is too large to be stored on one computer,

this ultimately cannot be achieved. That is, the dimension of the posterior distribution

would be the same as the original data, and therefore be too large to be stored. For that

reason, the implementation of a distributed approach relies on the use of a reference grid,

which is assumed to be known by all servers.

There are two situations that can arise when splitting information on multiple servers.
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Figure 1: There are two ways to split a database between servers. On the left, the obser-

vations are divided locally, and on the right they are split randomly.

As illustrated in Figure 1, the observations can be stored arbitrarily on each server or they

can be divided by regions. For instance, if we have two servers, one on the East coast of

the United States, and one of the West coast, we can assign observations based on their

distance from the servers’ locations. The divide-and-conquer approach developed in section

3.1c is independent of the method used to assign observations to servers.

3.2.1 Adding covariates

So far we have been restricting our spatial model to a zero-centered GP. We can expand

our model by adding a mean function,

y(ui) = X(ui)
′
β + w(ui) + ξ(ui), ξ(ui) ∼ N(0, τ2) (6)

where x(ui) is a vector of p spatially-independent covariates, and w(ui) is a GP. Since the

mean function and the spatial process can be written as a linear model, the joint model

for U = u1, ..., un is available as

Y =
[
X A

] β
wS

+ ξ, ξ ∼ Nn(0, τ2I).
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Assuming the prior for β is Np(0,Kβ), the joint posterior distribution for β and wS is

Np+k(µ
∗,V ∗) where

µ∗ = V ∗
([
X A

]′
G−1Y

)
V ∗ =

([
X A

]′
G−1

[
X A

]
+ K̃

)−1
,

where G = D + τ2I, and K̃ = blockdiag(C̃−1θ (S),Kβ). Applying the divide-and-conquer

construction to these parameters using J blocks, we have,

µ∗ = V ∗

 J∑
j=1

[
Xj Aj

]′
G−1j Y j


V ∗ =

 J∑
j=1

[
Xj Aj

]′
G−1j

[
Xj Aj

]
+ K̃

−1 ,
where Aj , Xj , Gj and Y j include the locations ui corresponding to block j.

3.2.2 Posterior inference of covariance function parameters

The posterior inference for the nugget τ2 and range parameter φ can be obtained under two

different approaches. The first one consists of selecting φ and τ2 based on the maximum

marginal likelihood obtained from fitting the model over a grid of possible values. While

this method is highly efficient, it only provides a point estimate for the parameters. A

more complete approach uses MCMC to sample from the posterior distribution of the two

parameters. The drawbacks of this method is that it is computationally expensive as it

requires constant communication between the servers and the user node. More specifically,

at each iteration, the new parameters must be communicated to the user node, and the

covariance matrix must be fully computed for the reference set.

The marginal likelihood in the first scenario can be computed using the outputs from

each server. The marginal likelihood distribution is such that

m(Y |θ) =
p(Y |β, σ2, θ)p(β, σ2|θ)

p(β, σ2|Y , θ)
, (7)
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holds true for any value of β. By fixing β = 0, the sampling distribution simplifies to:∣∣∣G∣∣∣−1/2exp

(
1

2σ2
Y TG−1Y

)
Finally, since G is diagonal, we can further rewrite the expressions to represent the J

servers

Y TG−1Y =
n∑
i=1

Y (si)
2

δ(si) + τ2
=

J∑
j=1

nj∑
i=1

Y (sji)
2

δ(sji) + τ2∣∣∣G∣∣∣−1/2 =
J∏
j=1

∣∣∣Gj

∣∣∣−1/2.
The calculations of the proposal probability for the MCMC under the second scenario

are very similar to the first approach. In this case, the joint posterior distribution for φ

and τ2 is:

p(θ|β, σ2,Y ) ∝ p(Y |β, σ2, θ)p(β, σ2|θ).

which is equal to the numerator of the marginal likelihood (see Equation 6). Using the

simplified calculations outlined above for the sampling distribution, we obtain posterior

samples for φ and τ2.

As previously mentioned, while the second method provides more information about

the uncertainty of the results, the speed of the computations can be strongly impacted

when communication between serves is is an issue.

3.2.3 Posterior predictive distribution

Using the posterior samples for wS , and θ, we can obtain the posterior predictive distribu-

tion for any new location u∗. Denote N(u∗) as the set of neighbors of u∗ in the reference

set S. For each posterior sample w
(b)
S , θ

(b), b = 1, ..., B, we can obtain a posterior predictive

sample w(b)(u∗) from

w(b)(u∗) =
m∑
j=1

a
(b)
j (u∗)w(b)(sj)

where the linear coefficients are computed from the covariance function as

A
(b)
N(u∗)(u

∗) = C−1
θ(b)

(N(u∗))Cθ(b)(N(u∗),u∗),
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and a
(b)
i (u∗) = 0 for any location i not in the neighborhood of u∗.

4 Applications

In the next section, we apply the divide-and-conquer approach to a simulation as well as

to the NASA soil moisture active-passive satellite (SMAP) dataset. The spatial prediction

abilities of NNGP have already been established in previous work as seen in Banerjee

(2017). The goal of these applications is to illustrate the potential gain in performance

by using multiple servers and parallel computing. In addition, we aim to demonstrate the

inherent sequential nature of the algorithm. The notion of servers can be extended and

applied to the case where blocks of data are recorded sequentially, that is, the methodology

proposed in this paper can be used to fit the NNGP and then update the fit as new data

become available. This will be discussed further in the context of the analysis of the SMAP

dataset, where the servers are defined as the days during which the data were recorded.

4.1 Simulation

Let u1, ...,u10,000 ∈ U be randomly generated locations in a unit square, the simulated

data was obtained from the following model

Y (ui) = X(ui)β + w(ui) + ε(ui), i = 1, ..., 10, 000

where w(ui) ∼ GP (0, Cθ), ε(ui) ∼ N(0, τ2). Using an exponential covariance function

for the spatial process, with range and variance parameters φ = 1/3 and σ2 = 1, and

observational error variance τ2 = 0.1. In addition, p = 6 independent covariates (X)

generated from a zero-centered Normal distribution were included in the model. The

associated vector of linear coefficients β = (5, 5, 5, 5, 5, 10).

For simplicity, we arbitrarily separated the dataset into two blocks representing two

servers. Maximizing the marginal likelihood to estimate φ and τ2, we obtained an inter-

polated surface for the simulated observations. The results in Figure 2 show the observed

values for wU on the left, and the interpolated surface obtained for the reference grid on

14



Figure 2: Two surface plots showing the simulated surface (on the left) and the mean

posterior predictive surface over the reference grid (on the right).

the right. The predicted values captured the range and the variability of the observations

which leads us to conclude that splitting the dataset into blocks did not interfere with the

results. Figure 3 shows the marginal likelihood obtained over a grid of values for φ and

τ2 with the red cross indicating the parameter values that were selected. In this case, the

true value for the range parameter φ was recovered but the value of the nugget was slightly

underestimated.

Another simulation was used to test the MCMC approach to obtaining posterior infer-

ence on φ and τ2. The MCMC algorithm was ran for 5000 iterations with a burn-in period

of size 1000. Figure 4 shows the posterior distributions for φ and τ2 along with 95% credi-

ble intervals. We notice that the mode is not located at the true value for both parameters

which is expected since the NNGP model is an approximation of the true model. Finally,

similar to the previous approach, Figure 5 shows the observed values for the spatial process

on the left and the predicted values over the reference grid on the right. Again, the range

and the local variability of the predictions are in line with fitting the NNGP model directly

on the dataset.
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Figure 3: This plot is the marginal likelihood for a grid of possible values for φ and τ2. The

blue dot marks the true values, and the red cross marks the values chosen with maximum

likelihood. In this simulation, the true values values maximized the marginal likelihood.
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Figure 4: Histograms showing the density of the posterior distributions for φ and τ2.
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Figure 5: Two surface plots showing the simulated surface and the mean posterior predic-

tive surface obtained.

The objective of the simulations were to show that while the predictions were unchanged

by the divide and conquer approach, the runtime for the algorithm can be substantially

improved. Figure 6 compares the time elapsed to fit the NNGP using different number

of cores to perform the inference. For this simulation, the number of cores corresponded

to the number of blocks created from the original dataset. We started with 1 core and

gradually increased to 32 cores, which was the maximum number of cores available. The

computer used to fit the model was a Dell PE R820 with 4 x Intel Xeon Sandy Bridge E5-

4640 processor, each of which has 8 cores per cpu, 2.7 GHz, 16GB RAM, and 1TB SATA

hard drive. While the theoretical reduction of the computation is by a factor equivalent

to the number of servers J , it is important to consider that a portion of the difference

between the times elapsed is due to the matrix multiplication involved in the posterior

distribution parameters for the reference grid. In this model, the matrix multiplication has

order of operations kn2. When using J servers, this is reduced to kn2/J2, which implies

that the calculations are reduced by the squared of the number of servers. It is important

to mention that the comparison is not meant as a direct competition between the existing
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implementation of the NNGP and the proposed divide-and-conquer method. Rather, the

distributed approach presented here is meant as a proof of concept for datasets that are

too large to be handled on one computer which would prevent the use of the existing R

package.

Figure 6: This plot shows the time elapsed to run the simulation based on the number of

observations. The green line is the runtime for ten servers, and the red line is the runtime

for one server.

4.2 Soil Moisture Data

To illustrate the importance of the distributed computation of likelihood-based spatial

models, we applied our algorithm to data collected by the SMAP satellite (NASA, 2018).

The SMAP satellite is an Earth satellite that measures soil moisture and freeze state of

the top layer of soil as a percentage. Usual applications of soil moisture data range from

agricultural productivity to human health. The SMAP mission has been designed to target

specifically the understanding of the relationship between soil moisture, the freeze/thaw
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cycle and a variety of environmental constraints. The ultimate goal being to improve

weather and climate forecasting (Koster et al., 2018).

The satellite takes on average two days to cover the surface of the Earth. For that

reason, we selected three days to conduct our experiment. In this analysis, we wish to

demonstrate the sequential feature of the divide-and-conquer algorithm. The GP can be

fitted once per day after which the data is no longer needed. This implies that at no

point in time one needs to have the data for the three days on one server. This becomes

particularly useful for tasks requiring daily updates of massive datasets. As presented in

our results, we highlight the evolution of the predictions over the course of the three days of

data available from August 6, 2017 to August 8, 2017. The data is retrieved at a resolution

of 36km by 36km. By restricting our analysis to North America, the result is a dataset

with approximately 10,500 datapoints daily, for a total of 30,000 datapoints. As previously

noted, the soil moisture is captured by a percentage for the top layer of soil. In order to

transform the range to be applicable for the GP model, we use a probit transformation on

the data presented in Figure 7.

As mentioned in section 3.2, a reference grid is needed to accommodate the size of the

dataset. To create the reference grid, we first generated a equidistant grid of size 50 by

50 based on a rectangle spanning over North America. We then cropped the grid using

a polygon shaped as North America to only keep inland locations. The size of the final

reference grid was therefore reduced by more than half and contained 1,173 locations.

The covariance function used in the results presented was the Matern with smoothing

parameter ν = 3/2. Different smoothness parameters were investigated but did not lead

to significant differences in the resulting predictions. The point estimates for the nugget

τ2 and the covariance range parameter φ were obtained after each day by maximizing the

marginal likelihood over a grid of possible values. The grid for τ2 included values between

0.5 and 1.5, and the grid for φ ranged from 2.5 and 3.5. For all three days, the pair of

parameters that maximized the marginal likelihood were the same at τ2 = 1.5 and φ = 3.5.

The resulting posterior predictive mean at each reference locations along with the in-

terquartile range are shown in Figures 8 to 10. It is important to highlight that the results
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(a) August 6, 2017 (b) August 7, 2017

(c) August 8, 2017

Figure 7: These plots show the soil moisture assessments recovered from the satellite on

August 6-8, 2017.

are shown in a different map projection as the initial dataset. The dataset was recorded

using a cylindrical equal area projection which made the area of interest not easily recog-

nizable. In order to have a better visual appreciation of the results, the figures are shown

using longitude and latitude coordinates. In Figure 11, we show a selection of posterior

predictive samples. This allows us to understand and quantify the uncertainty of our pre-

dictions in multiple ways. As previously mentioned, we computed the interquartile range of

our posterior predictive samples at each reference location. We see that the range is larger

for the predictions in Canada. This can be due to the higher variability of the observations

in the Canadian region.

For the computations, we split each day into 30 additional blocks, for a total of 90

subsamples. Using the ”foreach” function in R over 20 cores, the calculations for one

iteration of the marginal likelihood took under 20 seconds. In this scenario also, the

computer used to run the inference was a Dell PE R820 with 32 cores.
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(a) Posterior Predictive Mean (b) Posterior Predictive Interquartile Range

Figure 8: The plots show the resulting posterior predictions for soil moisture obtained on

a grid over North America after performing statistical inference on August 6, 2017.

(a) Posterior Predictive Mean (b) Posterior Predictive Interquartile Range

Figure 9: The plots show the resulting posterior predictions for soil moisture obtained on

a grid over North America after performing statistical inference on August 6-7, 2017.

(a) Posterior Predictive Mean (b) Posterior Predictive Interquartile Range

Figure 10: The plots show the resulting predictions for soil moisture obtained on a grid

over North America after performing statistical inference on August 6-8, 2017.
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Figure 11: The plots show a selection of three posterior predictive samples for soil moisture

obtained on a grid over North America after performing statistical inference on August 6-8,

2017.

5 Conclusions and Future Work

As datasets continue to grow, the need to bring our statistical methods to the data rather

than have the data come to us will become a priority. With many spatial applications,

the cost of moving data to a central location has become a bottleneck in our ability to

perform accurate statistical inference. In this paper, we have laid out a technique to speed

up the implementation of NNGP models by distributing the computations by servers. Not

only can we improve the computational aspect by a factor proportional to the number of

servers available to the user, we also prevent the need to manipulate the data all at once.

In that light, we have shown that our method is a good alternative for sequential problems

where data is collected over time. The algorithm allows the user to fit model and update

the posterior parameters as new data become available.

Finally, while the divide-and-conquer presented focused on the univariate case, the

NNGP model has been extended to the multivariate setting. Many applications rely on
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the joint modeling of multiple measurements and the implementation of a distributed

approach would be largely beneficial.
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