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Abstract

Large spatial datasets often have fine scale features that only occur in
sub-domains of the space, coupled with large scale features at much larger
ranges. We develop a multi-scale spatial kernel convolution model where
fine scale local features are captured by high resolution knots while lower
resolution terms are used to describe large scale features. To achieve par-
simony and explicitly identify the sub-domains of the space that exhibit
fine scale attributes, we develop a form of shotgun stochastic search coupled
with a stochastic process prior that induces structured sparsity that results
in spatially varying resolution. In contrast to existing approaches, our ap-
proach does not require Markov chain Monte Carlo. In addition, the model
does not require the spatially varying maximum resolution to be specified in
advance. Our model fitting approach, based on Bayesian model averaging,
is computationally feasible on large datasets, as computations for shotgun
stochastic search can be performed in parallel, and it is possible to leverage
the availability of convenient formulas for updating the coefficients when
a single new knot is added. Competitive performance for computations,
prediction, and interval estimation is demonstrated using simulation exper-
iments and real data. Supplementary material for this article is available
online.
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1 Introduction

The traditional problem of model-based spatial statistics is to use a collection of
spatially referenced observations to produce an estimate of the mean function of
the data generating process, together with uncertainty intervals, across the entire
domain. It is usually the case that observations are irregularly scattered over a
large domain, and increasingly often, there is a need to handle very large amounts
of data. Furthermore, it is desirable that models for this kind of data are able
to capture behavior that varies due to differences in scales and in locations. For
example, to model sea surface temperature in the Mediterranean, a model must
be able to account for large scale features like the fact that the sea is warmer near
Turkey than near Spain, and small scale features like how tiny islands in Greece
can affect the temperature near the island. Gaussian processes provide a flexible
framework for modeling this kind of data.

A well established literature has been developed on the idea of using Gaus-
sian processes as the main tool for model based geostatistics (see, for example,
Gelfand et al., 2010, for a comprehensive review). However, for n data points,
the computation of the likelihood for a Gaussian process requires inversion of an
n by n covariance matrix, which is computationally expensive (O(n3)). There
are numerous approaches to resolving this issue in a big spatial data context, see
Heaton et al. (2018) for a comparative review, and Banerjee (2017) for a review
of Bayesian methods. Briefly reviewing some of the popular approaches, we see
that sparsity inducing techniques seek to reduce the number of non-zero elements
in the covariance matrix of the Gaussian process through compactly supported
covariance functions (Furrer et al. (2006), Kaufman et al. (2008)). Alternatively,
they build sparse precision matrices using Gaussian Markov random fields (Rue
and Held, 2005) or nearest neighbor Gaussian processes (Datta et al., 2016). Di-
mension reduction is another common approach. These techniques express the
underlying spatial process as a sum of J basis functions, where J << n. Some
examples include predictive processes (Banerjee et al., 2008), and discrete process
convolutions ( Higdon (1998), Stein (2007) Lemos and Sansó (2009) among many
others). Discrete process convolutions focus on basis functions that are generated
by kernels or radial basis functions usually centered on a grid. Conditional on the
data and the parameters, the model reduces to a linear regression with J coeffi-
cients, which entails a reduction of the computational complexity to O(J2n+J3)).
However, setting J too small can cause the model to miss the small scale features,
but increasing J can make the parameter space unfeasibly large.

Traditional Gaussian process geostatistical models make very strong assump-
tions regarding the symmetry of the Gaussian field. In particular they assume
stationarity, namely that covariance functions depend only on the displacement
vector between two points, not their locations. Many approaches have been devel-
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oped to account for non-stationarity. Some representative examples are: Schmidt
and O’Hagan (2003) that uses the idea of deforming the space to map the original
field onto a stationary field; Bornn et al. (2012) that embeds the nonstationary field
into a higher dimensional space where the field will exhibit stationarity; Fuentes
and Smith (2001) that allows the parameters of the covariance function to change
in space, and Paciorek and Schervish (2006) that derives a class of nonstation-
ary covariance functions. By construction, finite basis function representations
of Gaussian processes, like discrete process convolutions, are non-stationary, but
most models in the literature using such formulations do not attempt to explic-
itly describe the characteristics of the non-stationarity. Lemos and Sansó (2009);
Lemos and Sansó (2012) seek to capture non-stationarity explicitly by considering
kernels with spatially varying elliptical shapes.

Multi resolution models layer multiple processes on top of each other at different
resolutions to accomplish dimension reduction while accounting for both fine and
large scale features in the data. Examples include the approach of Nychka et al.
(2015), which uses a Gaussian Markov random field prior on coefficients of basis
functions at each resolution, and enforces prior independence between coefficients
at different resolutions. The multi-resolution predictive process in Katzfuss (2017)
recursively fits a predictive process (Banerjee et al., 2008) at increasing resolutions
by refining an original set of knots. Both of these examples allow for nonstationary
covariance functions, but enforce the same multiresolution structure across the en-
tire field. A Bayesian approach that partially relaxes this structure was proposed
in Guhaniyogi and Sansó (2017). They propose discrete process convolution with a
nested set of knots and isotropic basis functions at differing resolutions linked by a
shrinkage prior that takes into account the multiresolution structure of the knots.
A related model, that provides an extensions to of Katzfuss (2017) approach that
allows for spatially varying shrinkage was proposed by Benedetti et al. (2018).
These two methods both can characterize non-stationarity though spatially vary-
ing shrinkage, which is desirable. However, both methods require MCMC, and
require setting in advance a maximum number of resolutions, which makes them
susceptible to not having enough knots to model a spatial surface well.

In this paper we consider a multi-resolution model that uses kernel convolu-
tions in an increasingly refined set of nested grids. Rather than spatially varying
shrinkage, we obtain spatially varying resolution by assuming a prior on the coeffi-
cients that sets some of them to be zero in a manner that forces parts of the nested
grid to be empty. The sparsity also allows us to consider arbitrarily high number
of resolutions, with no pre-specified bound. Having no upper bound in resolution
makes our model extremely flexible, and quite robust to not having enough knots
at the first resolution. To explore the space of possible sparse knot configurations,
we extend shotgun stochastic search (Hans et al., 2007) to this setting, which
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allows our method to take advantage of parallel computing environments. We
demonstrate how to use this method to perform prediction, uncertainty quantifi-
cation, and demonstrate competitive computational performance when compared
with other approaches on a variety of spatial fields.

2 Background and Notation

We will begin by exploring the background material necessary for our approach.
Let {w(s) : s ∈ D} be the spatial process of interest on the domain D ∈ Rd, where
d ∈ {1, 2}. We can construct this Gaussian process in the manner of Higdon
(1998). Let k(s) be a kernel function, and βj, j = 1, . . . , J a set of Gaussian
random variables corresponding to a set of points in D, s1, . . . , sJ , usually defined
over a regular grid. We focus on the finite dimensional representation of the
process, w(s) =

∑J
j=1K(s− sj|φ)βj. Following Lemos and Sansó (2012) we term

this a discrete process convolution (DPC).
These models are subject to the choice of the knot locations sj, their total

number J , the kernel functions K and their associated parameters φ. Even with
a small number of knots, DPCs are able to capture the long range behavior of
a spatial field. But, unless J is taken as a very large number, a DPC can miss
short range features. And clearly, using a very large number of knots defeats the
dimension reduction purpose of the DPC representation. In addition, it is often
the case that some areas of the domain will show substantially more variability
than others. To approach this issue, we will introduce the multi-resolution DPC.
This embeds multiple DPCs at different resolutions into the same model. We will
next define the notation for the structure we will use for the multiple resolutions.

2.1 Domain Partitioning

To define the structure of our multiple resolutions, we will follow the notation of
Guhaniyogi and Sansó (2017). Start by partitioning the spatial domain D into
J(1) square subregions D1....DJ(1). The centers of these regions define the first
resolution of knots. To define resolution 2, each of the square subregions Di will
be partitioned into 2d square subregions, giving us J(2) = J(1) ∗ 2d subregions
on the second resolution. The 2d partitions of domain Di are labeled as Di,i2

where i2 ∈ {1...2d}. We can now iteratively define resolution r by partitioning the
subregions at resolution r − 1 into 2d square regions, and can index a domain in
this region as Di1,...ir where i1 ∈ 1...J(1) and i2 − ir ∈ 1...2d. We will refer to the
center of domain Di1,...ir as a knot srj where j =

∑r−1
l=1 ((il−1)(2d)r−l)+ ir. Figure 1

displays both one and two dimensional examples of the knot placements.
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Figure 1: On the left, a plot of how knot locations work at different resolutions,
and on the right, the same but in 2 dimensions.

From this definition, we can see that J(r) = 2d(r−1). We can view this par-
titioning as forming a tree, with the highest nodes at the lowest resolution, and
lower nodes representing higher resolutions. 2d branches come from each node
to the nodes at the next level. Motivated by this tree structure, we will define
parent(Di1,..ir−1,ir) = Di1,..ir−1 and children(Di1,..ir−1) = {Di1,..ir−1,ir : ir ∈ 1, .., 2d}.
These definitions are also useful to apply to the knots. We define parent(srj) =

sr−1
b j−1

2d
c+1

and children(sr−1j ) = {srk : k ∈ 2p(j−1)+1, 2p(j−1)+2...2p(j−1)+2p}.
Lastly, we define the subtree, which is the set of all domains that are ancestors of
a particular domain. Formally, subtree(Di1,..,ir) = {Di1,..,ir,...}.

3 A Bayesian multiresolution model

We start with a standard spatial regression model,

y(s)i = x(s)i
Tα + w(s) + ε(s)i, ε(s) ∼ N(0, σ2),

where x(s)i is a set of individual level predictors, α are the fixed effect coefficients
associated with the predictors, w(s) is the spatial effect, i is the index for replicates
at a particular point s, and ε(s)i is the random noise. Note that the predictors
occur on the individual level, not the level of the spatial process. The spatial pro-
cess is defined by a multiresolution DPC, w(s) =

∑∞
r=1

∑J(r)
j=1 K(s, srj , φr, ν)βrj . For

computational purposes, we require that K is compactly supported, with range
φr. To facilitate our desire that higher resolution kernels reflect small scale behav-
ior, we will let the kernel width decrease linearly as the resolution increases, i.e.
φr = τ ||srj − srj−1|| for some τ > 1. We propose to use a Bezier kernel (Brenning,
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2001), which is compactly supported, and has a parameter ν that controls the
differentiability. In section 4 we will discuss the sensitivity of this method to the
parameters ν and τ .

We will now turn our attention to the coefficients βrj . To achieve spatially vary-
ing resolution, we require sparsity, i.e. βrj = 0 for some r and j, that is structured
in a manner such that the number of resolutions varies in space. As an aside, when
comparing spatially varying shrinkage with spatially varying resolution, an anal-
ogy can be made to shrinkage versus variable selection in the regression context.
Although a full review is omitted here, the review by Hahn and Carvalho (2015)
covers many of the trade-offs between shrinkage and sparsity in that context.

3.1 A prior that induces spatially varying resolution

Motivated by this analogy, we will adapt a standard variable selection prior on
the coefficients of our model (Hans et al., 2007) to this setting in order to induce
spatially varying resolution. First, some notation must be introduced. Let γ =
[γ1, γ2, ...] be a vector of infinite length with length(γr) = J(r). Let the jth entry
of γr be called γr,j, j ∈ 1, 2.., J(r). We will set γr,j = 1 if βrj 6= 0, and we will
set our prior on this vector. This is vector of infinite length, so any prior will be
better understood as a stochastic process.

For our prior to induce spatially varying resolution, we would like to satisfy
three properties. First, every resolution 1 knot must be associated with a nonzero
coefficient. Without the entire resolution 1 grid, it is conceivable that parts of our
spatial field would not be modeled as not spatially varying, which does not make
sense. And second, to allow the resolution to vary spatially, with a different number
of resolutions possible at different locations, we only consider configurations that
satisfy

βrj 6= 0 =⇒ βr−1
b j−1

2d
c+1
6= 0, which is identical to γr,j = 1 =⇒ γbr−1, j−1

2d
c+1.

In other words, if a coefficient associated with a knot is nonzero, then the coefficient
associated with the parent of the knot must also be nonzero. Throughout this
paper, we will interchangeably refer to the set of nonzero coefficients in the model
as the knot configuration. Models with these restrictions will produce a field that
has locally varying resolution. This is a sparse analogue to a feature of the model
in Guhaniyogi and Sansó (2017), where the shrinkage applied to the coefficient of
a parent is also applied to its children. Lastly, we would like our prior to not result
in infinitely many nonzero coefficients, as these models will not be computationally
feasible. Motivated by this, we set Pr(γ1,j = 1) = 1, and

Pr(γr,j = 1|γr−1) = π × γr−1,b j−1

2d
c+1.
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This prior follows the properties above. Every resolution one knot is in the
model, and if a knot at resolution r > 1 is in the model, then its parent must be as
well. To understand some of the other features of this prior, we can consider the
random variable Xr =

∑J(r)
j=1 γr,j, the number of nonzero βrj at resolution r. Xr can

be thought of as a branching process (Chung, 2012). The initial state of the process
is X1 = J(1), and the offspring distribution be Binomial(2d, π). The extinction
probability of this process is analogous to the probability of having a finite number
of nonzero βrj . By the properties of a branching process, the extinction probability
is 1 as long as the expected value of the offspring distribution is less than 1.
Therefore, if we set π such that π2d < 1, then the extinction probability of this
process is 1, and the prior favors a finite number of nonzero coefficients.

To complete the specification of our prior, we must either fix π at some constant
less than 1, or assume π to be a random variable and choose a prior for it. Fixing
π was shown to be inadequate in the setting of linear model selection in Scott and
Berger (2010). Specifically, a fixed value of π results in inadequate correction for
multiplicity, which can lead to models that are too large, which in our context
translates to overfitting. Scott and Berger (2010) recommend the use of a Beta
prior on π, and show that this corrects for multiplicity and results in smaller models
in the linear regression context while still preserving a closed form prior model
probability, which we will need for our model selection procedure. Following this
approach we let π ∼ Beta(aπ, bπ), so that under the prior, E(π) = aπ/(aπ + bπ).

This prior provides several attractive features. As shown in section 4, it is not
very sensitive to varying aπ and bπ, and those parameters can be used to control
the prior expected number of nonzero coefficients in a way that is easy to inter-

pret. Recalling again the properties of a branching process, E
(∑∞

r=1

∑J(r)
j=1 γj,r

)
=

J(1)/(1− 2d E(π)), provided that 2daπ/(aπ + bπ) < 1. The prior probability of a
particular coefficient being nonzero is decreasing geometrically with resolution, as
Pr(γr,j = 1) = E(π)r−1. The prior probability for a particular set of nonzero
coefficients γ is

p(γ) =
B
(
aπ +

∑∞
r=2

∑J(r)
j=1 γr,j, bπ +

∑∞
r=2

[
2d
∑J(r−1)

j=1 γr−1, j −
∑J(r)

j=1 γr,j

])
B(aπ, bπ)

.

whereB (a, b) is a Beta function. For further interpretability of the hyper-parameters
we use the alternative parameterization θ = aπ + bπ and µ = aπ/(aπ + bπ).

It is important to notice that in the multiresolution context, the Beta prior on π
favors smaller models more as the number of knots increases, which makes the Beta
prior favor sparser models. To demonstrate this, we will explore the prior odds in
favor of a smaller model under a simple context with 1 dimension of knots. We will
compare a prior with fixed π = .5, and call this p1, and a prior with π ∼ Beta(1, 1),
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and call this p2. Under these two priors, we have the same prior expected number
of knots, but have very different prior odds in favor of a smaller model. Let m0

be a model with J(1) first resolution knots, and no additional knots, and m1 be a
model with a single second resolution knot, and the same J(1) first resolution knots.
Under the first prior,the prior odds p1(m0)/p1(m1) = 1/((1− π)π) = 4, which is
constant in J(1). Under the second prior, using the fact that B(x+ 1, y) = B(x+
y)x/(x + y), the prior odds p2(m0)/p2(m1) = (2J(1) + 2)(2J(1) + 3)/(2J(1) + 1)
This expression indicates that under p2, the prior odds in favor of the smaller model
are increasing as J(1) increases, which favors the smaller model more strongly for
larger models. And even for J(1) = 1, the smaller model is favored more under
p2 than p1. This has been confirmed by our empirical explorations, which indicate
that using a random prior on π in our spatial multiresolution model produces a
smaller number of knots than the one that is obtained with a fixed value of π,
without compromising goodness of fit.

3.2 Spatially varying resolution and multifractal analysis

The spatially varying resolution induced by the proposed prior causes the resulting
surface to have spatially varying regularity. One way to measure this is multifractal
analysis (Jaffard et al., 2006), which uses discrete wavelet analysis to estimate
changes in the regularity of the signal, as measured by Holder exponents. To
explore how spatially varying resolution causes the local signal regularity to change,
and how the varying degrees of sparseness controlled by π can affect this, we
simulate 100 trajectories from priors corresponding to grid of values for ranging
from 0 to 1, in a one dimensional setting. We then perform a multifractal analysis
by recording the resulting ranges of Holder exponents. In all our simulations we
use J(1) = 7. Notice that π = 0 results in just the 7 knots, and for increasing
π, the average number of resolutions and knots will increase. For the π = 1
example, we truncate the maximum number of resolutions to 10, but as shown
in section 3.1, no truncation is necessary for π < .5. Next, conditional on the
knots and locations, a design matrix will be generated from our Bezier kernel,
with φr = 2.5 and ν = 1. Finally, for each knot srj , we generate βrj ∼ N(0, 1/r2),
which makes the coefficients on average smaller at higher resolutions. A wide range
of Holder exponents suggests that the fractal behavior varies substantially in the
resulting curve, which means that the roughness of the response curve differs at
different points in the domain. Results are displayed in figure 2, where a clear
increasing trend is observed in the range of Holder exponents, save for π = 1, as,
in such case, the Holder exponents are virtually unchanged in the space. This
makes intuitive sense, since for a dense multiresolution grid, the resolution is not
spatially varying.
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Figure 2: Left panel: randomly selected curves, one for each sparsity level, plotted
on the same axes. Smaller values of π correspond to stronger spatial variability of
the roughness of the sample paths. For π = 1 we observe homogeneous local vari-
ability across space. Right panel: distribution of Holder exponents as a function
of π. An evident increasing pattern is present, except for π = 1, where Holder
exponents typically have a very small range, indicating that the fields with dense
multiresolution grids do not exhibit multifractal behavior.
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3.3 Prior for the nonzero βr
j and σ2

The prior on the nonzero coefficients must be compatible for the spatial structure as
well as computationally tractable. Let β = {β1

1 , ...β
1
J(1), β

2
1 , ...β

2
J(2),...}. Conditional

on the vector γ, we let βγ be a vector of length
∑∞

r=1

∑J(r)
j=1 γ

r
j that contains

the nonzero βrj . Since γ specifies which βrj are zero, p(β, γ) = p(β|γ)p(γ) =
p(βγ|γ)p(γ), so we can focus on specifying a prior on βγ. In order to define the
design matrix, let Kr be an n× J(r) matrix where the Kr(i, j) = K(si, s

r
j , φr, ν),

and Kr,γ be the n×
∑J(r)γr,j

i=1 matrix with columns that correspond to nonzero γr,j.

Finally, let Kγ = [K1,γ, K2,γ, ...] be a
∑∞

r=1

∑J(r)
j=1 ×n matrix. This is the design

matrix that corresponds to the nonzero βrj .
A g-prior (Zellner, 1986) on the coefficients associated with the knots, cou-

pled with a reference prior on σ2|γ satisfies our desiderate, and has analytically
tractable marginals. Note that putting a reference prior on coefficients common to
all models being compared, and a g-prior on the other coefficients is a commonly
used approach in the model selection context (Liang et al., 2008). For this multi-
resolution model, the g-prior is of the form p(βγ, σ

2|γ) = p(βγ|σ2, γ)p(σ2|γ) where
p(βγ|σ2, γ) = N(0, gσ2(KT

γ Kγ)
−1), with a reference prior on the fixed effects α,

the error σ2, and p(γ) specified in the manner of section 3.1.
Notice that, usually, the argument for using a reference prior on α is made by

assuming that the columns of Kγ have mean zero. However, centering this matrix
would result in our basis functions no longer being compact. Fortunately, as Li
and Clyde (2018) point out, the posterior distributions of the centered and non-
centered models would have equivalent posteriors through a change of variables.
Therefore, we will not center our design matrix.

An important property of the g-prior is that it induces shrinkage to high reso-
lution knots that is, on average, larger than the one applied to low resolution ones.
This behavior is due to the fact that more locations are in the range of kernels
at lower resolutions. Therefore, the prior variance for the coefficients associated
with the low resolution knots is higher than for the high resolution knots. We
demonstrate this with a simple simulation. First, 10,000 locations are generated
from a Uniform(0,10) distribution. Then, a number of multiresolution design ma-
trices K|τ, ν are formed for the Bezier kernel with a smoothness ν = 1 and a
kernel width τ = 1.5, 7 resolution, and 5 knots at 1. This is approximately equally
spaced data with a dense grid of knots unlikely to occur in MSSS, but is useful
for demonstration purposes. We compute the diagonal of (KtK)−1 and take the
average by resolution. The results are displayed in the supplementary material.
We observe that the shrinkage is approximately linear on the log scale, save for the
jump from resolution 1 to 2, which makes the shrinkage geometric in resolution.

To set the value of g we observe that small values of g result in large shrinkage
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of the posterior mean. A popular default choice is g = n, which is known as
a unit information prior (Kass and Wasserman, 1995), and provides reasonable
performance in our context. The marginal likelihood for fixed g is available in
closed form. However, Liang et al. (2008) observe that choosing g in this manner
produces an information paradox. Loosely speaking, the marginal probability of
model should approaches 1 as r2 → 1, but in the case of a g-prior with fixed
g, this converges to a constant. We can resolve this issue by using the hyper-g
prior suggested by the authors, which is of the form g/(1 + g) ∼ Beta(1, a/2− 1).
This prior resolves the information paradox for non-null models and still results
in a closed expression for the marginal likelihood, though it involves the Gauss
hypergeometric 2F1 function. Due to instability in the computation of 2F1, for
moderate to large n, this will require a Laplace approximation.

As a final note, the g-prior is improper if any columns of the design matrix are
empty. In the context of this multi-resolution spatial model, this means that the
prior does not make sense for a kernel function that has no data points within its
range. To account for this, we propose to set βrj = 0 if it is associated with an
empty column, regardless of the resolution. This is sensible, as even in a situation
with proper priors, the coefficients associated with an empty column could not be
learned well by the data.

We have now specified a prior on the model space λ, and the marginal likelihood
of the data conditional on λ, so up to a normalizing constant, our posterior model
probabilities are

p(γ|y) ∝ a− 2∑J(r)
i=1 γr,j + a− 2

2F1

(
n− 1

2
, 1,

∑J(r)
i=1 γr,j + a

2
, R2

γ

)
×

B
(
aπ +

∑∞
r=2

∑J(r)
j=1 γr,j, bπ +

∑∞
r=2

[
2d
∑J(r−1)

j=1 γr−1, j −
∑J(r)

j=1 γr,j

])
B(aπ, bπ)

.

Therefore, for a particular γ, we can compute the posterior model probability by
forming the design matrix Kγ, estimating βγ using least squares, calculating R2

γ,
and using the Laplace approximation to compute the 2F1 function. In the next
sections, we will discuss how to use these model probabilities to explore the space
of possible knot configurations, and how to updated the least squares estimate of
βγ in a computationally efficient manner.

3.4 Extending shotgun stochastic search

Since the priors we have chosen results in closed form marginal model probabilities
of particular configurations of knots, we can use shotgun stochastic search (Hans
et al., 2007) to explore the space of possible knot configurations in a quick manner
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that takes advantage of modern computing architecture, namely multiple core
processors. Shotgun stochastic search (SSS) proceeds as follows:

1. Given a current model mc, a set of the top Q models evaluated, and their re-
spective marginal model probabilities and coefficients, define a neighborhood
of possible new models N .

2. Evaluate the marginal probability of each model in N in parallel, and update
the top Q models.

3. Choose a new current model from the neighborhood with probabilities pro-
portional to their marginal probabilities.

In order to fit spatial fields with locally varying resolution, we would like to
extend SSS, but rather than selecting variables from a finite set, selecting con-
figurations of multiresolution knots arranged in nested grids. Note that this is
a countably infinite set, as we are not truncating the number of resolution to
consider. To use SSS, we need to define the neighborhood in a manner that is
consistent with the prior from section 3.1.

To perform SSS, N is split into three groups, N = N−
⋃
No

⋃
N+. N− is

defined as all models of size p-1 that contain predictors that are all selected from
γ. Moving to a model in this set is termed a deletion move. N+ is defined as all
models of size p+1 that contain all p predictors from γ and one from κ. Moving
to a model in this set is termed an addition move. No is defined as all models of
size p that contain p-1 predictors from γ and one from κ. Moving to a model in
this set is termed a replacement move.

In the multiresolution knot selection context, if mc is the current model, and
κ = {κ1, ..., κp} is the set of knots in mode the restrictions above lead to the follow-
ing neighborhood definitions. For addition moves, only models that add a single
knot that is a child of one of the knots already in mc will be considered. The po-
tential knots to add S+ will be defined as S+ = {children(κi)i ∈ {1, ..., p} \κ}. So
N+ is just all models one knot from S+, and every knot in κ. For deletion moves,
only knots that have no children will be considered for deletion. Formally, the po-
tential deletion S− will be defined as S− = {κi : [children(κi)\κ] = children(κi)}.
Therefore, N− is just all models with all but one knot in κ, with the knot removed
κdel ∈ S−.

It is not very reasonable in our context for N0 to be all possible swap moves.
This is because our space of possible variables is quite different in nature to the
regression context. In regression, the swap moves are designed to explore spaces
with correlated variables. For example, consider two possible predictors xi and xj
that are highly correlated. If mc contains xi, it would be relatively unlikely for an
add move to bring xj into the model. But in the spatial context with compactly
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supported kernels, the columns that will have the highest correlations are parents
and children, which cannot be swapped due to the restrictions we place on the
knot placements. Knots on the same resolution have fairly low correlation as long
as the kernel width is not very wide. For example, in a 1D setting, with uniformly
distributed locations and one resolution of knots, for a kernel width of 1.5 and
a smoothness of 1 (which we suggest as a default in section 4.4), the correlation
between adjacent knots is only about .5.

3.5 Computational details

Given these choices, we can now formulate the algorithm for multi-scale shotgun
stochastic search (MSSS). Given a current model mc, and a list of the Q top
models,

1. Form N = N+

⋃
N− as defined above.

2. In parallel, for every mp ∈ N , evaluate the marginal probability using the
expressions above, and update the top Q models.

3. Sample mp− from N− and mp+ from N+ with probability proportional to the
marginal model probabilities. Then sample a new mp from {mp+,mp−} with
probabilities proportional to their marginal probabilities. Return to step 1.

We run this algorithm until it reaches a local maximum, i.e. when the Q top
models does not change for some number of iterations.

In order to calculate the marginal model probabilities quickly, we provide con-
venient formulas for updating the regression parameters of a model for all possible
add 1 knot and subtract 1 knot models without computing the entire regression
from scratch. These will be provided in the supplementary material. From these
updated coefficients, we can calculateR2 in the usual manner and then can evaluate
the marginal likelihood. This is significantly faster than calculating the regression
from scratch for each model.

3.6 Prediction and interval estimation

To get predictions that account for model uncertainty, we use Bayesian model aver-
aging over the top knot configurations. Let the top Q configurations of knots found
be M = {m1, ..,mQ} with marginal model probabilities {p1, ...pQ}. Correspond-
ingly, consider their R2 values, {R2

1, ...R
2
Q}, least squared estimates of the coeffi-

cient vectors, β̂1, ...β̂Q, least squared estimates of the error variance,{σ̂2
1, ...σ̂

2
Q}, the

covariance matrices of the estimates V1, ...VQ, and the number of knots, {b1, ..., bQ}.
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For prediction at a point snew in the spatial field, Bayesian model averaging works
as follows:

1. For each of the Q knot configurations, calculate the values of the kernel
functions at snew, which is analogous to the rows of the design matrix for
an observation. Call them {knew,1, ..., knew,Q}.

2. Using each of the Q kernel function vectors, calculate the expected value
E(y(snew)|mi) for each mi ∈M . For the hyper-g prior, we have that

E(y(snew)|mi) = E

(
g

1 + g

∣∣∣∣mi

)
kTnew,iβ̂,

where

E

(
g

1 + g

∣∣∣∣mi

)
= ŝ =

2

pi + ag

2F1(.5(n− 1), 2, .5(pi + ag), R
2
i )

2F1(.5(n− 1), 1, .5(pi + ag), R2
i )
.

3. The Bayesian model averaging estimate is

y∗new(s) =

∑Q
i=1 E(y(s)|mi) ∗ pi∑Q

i=1 pi
.

In practice, the largest of the posterior model probabilities is usually much larger
than the others, so the averaging step is not always necessary. For intervals, the
same averaging procedure can be used, but instead of using the expected value,
we use the quantiles of the posterior predictive distribution. Since the posterior
predictive distribution under the Hyper-g prior is not analytically available, we
use the plug in estimator for the shrinkage factor, ŝ, from step 2 above. Then, the
posterior predictive distribution is

p(y(snew)|mi) ∼ Tn−p
(
E(y(snew)|mi), ŝσ

2
i (1 + knew,1(Vi)knew,1)

)
.

4 Assessing the proposed model

There are several things we would like to explore with respect to the performance of
this model in a situation without covariates. Namely, we will assess the predictive
accuracy and runtime of the model using a holdout set when changing the values of
parameters that affect model size, model fit, and the smoothness of the predicted
surface. Specifically, we will vary the prior sparsity parameters aπ and bπ, the
resolution 1 size J(1), the kernel width τ , and the kernel smoothness ν. For
each of a number of simulated datasets and parameters, we fit an MSSS with a
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Table 1: Equation for and plot of the mean function for the nonstationary 1D
dataset

Function Plot

f(s) =


sin(2πs) + 5 if 0 ≤ s < 2

| sin(s− 3)|3 + 5 if 2 ≤ s < 4

5|s− 5|+ 5 if 4 ≤ s < 6

sin(2πs)s+ 5 if 6 ≤ s < 10

.

10% randomly chosen holdout group, and quantify the predictive accuracy for the
different parameter combinations. In addition, we compare the performance and
runtime of our model to that of other multiresolution models that we were able to
implement. There are many possible competing models (Heaton et al., 2018, see,
for example), but here we limit ourselves with models that have a multi-resolution
structure. We focus on the model proposed in Nychka et al. (2015), abbreviated as
LK, for which the R package LatticeKrig (Nychka et al., 2016) is available, and
the multiresolution process convolution model of Guhaniyogi and Sansó (2017),
referred to as MDCT. To demonstrate how the multiresolution process convolution
models behave differently than single resolution models, we will also compare the
model with a single resolution DPC with a varying number of kernels with a kernel
width of 1.5 times the distance of the grid.

Another natural competitor is the model in Katzfuss (2017). Code for imple-
menting this model on 2d spatial fields is available. However, for the 2d datasets
described below, we were unable to obtain sensible results. Mean estimation was
possible, but when calculating intervals, the model consistently returned nega-
tive variances for some points in our spatial field. Therefore, this model will be
excluded from our comparisons.

4.1 The datasets

Our first example consists of a one dimensional piecewise function that is meant
to demonstrate the flexibility of our method in tackling highly nonstationary pro-
cesses, and was used in Guhaniyogi and Sansó (2017). We generated one example
with 20,000 observations from the mean curve, and added N(0,1) noise. Plots and
details of the function are presented in table 1. The next three simulated datasets
consist of 2-dimensional fields. The first two were generated from stationary Gaus-
sian processes with Matern covariance functions using the RandomFields package

15



Figure 3: Mediterranean sea surface temperature observational data

(Schlather et al., 2017) on the interval [0, 10]×[0, 10]. For the first of these datasets,
the scale parameter was 1 and the smoothness was 2, and for the second, the scale
was 1 and the smoothness was 1/2. The second of these fields is continuous, but
non-differentiable. For both, 20,000 observations were sampled from unequally
spaced locations, and random noise with variance .1 was added to the generated
data. The third dataset was generated from the nonstationary kernel convolution
model of Lemos and Sansó (2009) using a 9 by 9 grid of kernels that are rotated
differently across the space. This makes for a very smooth, nonstationary field.
The same unequally spaced sampling and variance of .1 were used. The unequal
spacing is displayed in the supplementary material, and the fields are displayed
with the results in table 4.

The last examples corresponds to 12,210 temperature in situ measurements
from the Mediterranean Sea during the month of December 2003. These data
are obtained from four different types of devices, namely: buckets launched from
navigating vessels; readings from the water intake of ship’s engine rooms; moored
buoys; and drifting buoys. The result is a set of very unequally spaced, with many
observations taken along shipping lanes, and large areas of the ocean scarcely
covered by the sampling. In addition, it is known that the complexity of the shapes
of the coastlines and the action of the currents, produce a very heterogeneous field
of temperatures.

4.2 Parameter settings and competitors

For each of the examples discussed in the previous section we implemented MSSS
with an intercept term, and a number of different parameter settings under a fully
crossed design, resulting in 243 total runs. For prior sparsity, kernel size, and
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kernel smoothness, the parameter settings are listed in table 2. The number of
r1 knots was varied between 10, 15, and 30 in the 1d example, and 42, 132 and
272 in the 2D simulated examples, and 91, 312, and 663 in the SST data example.
For each setting of parameters, the top 100 models were stored for creating the
prediction and intervals described in 3.6.

θ µ τ ν
1 .1 1.5 1
5 .2 2 2

10 .5 2.5 3

Table 2: The simulation study uses a fully crossed design with these settings for
the parameters of the prior and kernel function, with µ = aπ

aπ+bπ
and θ = aπ + bπ.

To fully leverage the parallel nature of MSSS, the model was implemented in
C++ using OpenMP. All data preparations were done in R, and the RCPP package
was used to pass information from R to C++. The single resolution DPC was
implemented using MCMC in R under independent priors, and run for 10,000
iterations with 3 levels and varying numbers of resolution 1 knots. The MDCT
of Guhaniyogi and Sansó (2017) was implemented in R using MCMC in R and
run for 10,000 iterations under varying numbers of resolution 1 knots and 3 levels
of resolution. The model of Nychka et al. (2015) was implemented using the
LatticeKrig package in R with varying number of first resolution basis functions
and 3 levels. Since we have run hundreds of different configurations of MSSS, in
the numerical summaries, we will show the best, worst, and median result for each
individual statistic, and in the graphical summaries, we will show plots of the best
and worst of the MSSS models measured by the top posterior model probability.

4.3 Results

For the 1D example plots of the estimated mean function under the different
models are shown in figure 4, and numerical results are found in table 3. In this
setting, MSSS worked better than other models when J(1) was large, and the
kernel width τ was small. When a small number of wide, smooth kernels were
used, the MSPE increased to as high as 1.1, but the interval coverage was still
very close to .9. Given the piecewise nature of this function, this finding is not
a surprising. It is also clear from the kernel locations that more knots are added
near the discontinuities in the mean function. This is intuitive, and is how MSSS
explicitly accounts for the local, high frequency behavior that occurs at those
points. The MDCT also performed very well, as long as enough first resolution
kernels were used. Despite very good results with respect to the estimation of the
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Figure 4: Comparison of predicted mean function, in red, and true mean function,
in black, with kernel locations for MSSS in blue and the observed data in gray.

mean function, LatticeKrig had prediction interval coverage that was higher than
the intended confidence level. This behavior repeats itself in all of the 2D examples,
and reinforces the empirical findings of Heaton et al. (2018), where LatticeKrig
demonstrated the same characteristics.

For the 2D simulated examples, predicted surfaces are displayed in table 4,
and numerical summaries are presented in the appendix. Every model save for the
DPC with the fewest kernels performed very well with the smooth, ν = 2 Matern,
returning appropriate looking predicted surfaces, and good numerical results. Ev-
ery model struggled with the extremely jagged, ν = .5 GP. The MSPE was much
higher than the true variance (which was .1) for every model. However, MSSS,
the DPCs, and the MDCT all did well in interval coverage. The best of the MSSS
models, which had the largest number of initial kernels and the least smooth basis
functions, did particularly well both in prediction and interval coverage. All of
the models performed well in fitting the simulations from the nonstationary kernel
convolutions, with good MSPE for every model except for the DPC with only 42
kernels, and excellent coverage probabilities for all but the LatticeKrig. It is worth
mentioning that for this surface, the MSSS with a very large number of R1 knots
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Model MSPE 90% Coverage Runtime (sec)
MSSS Min .99 .89 4
MSSS Med 1.02 .90 13
MSSS Max 1.10 .91 76
MDCT 10 1.17 .9 381
MDCT 20 1.02 .9 518

LK 10 1.08 .94 102
LK 20 1.03 .95 105
LK 40 1.00 .95 107

DPC 10 15.30 .84 269
DPC 100 1.17 .89 419
DPC 1000 1.13 .89 911

Table 3: Numerical summaries for the competitor models on the 1D piecewise
example. MSSS always provides excellent predictive interval coverage, and gives
excellent out of sample fit when either enough R1 kernels are used or the kernels
are of the appropriate shape.

sometimes added no knots at all, which is a desirable behavior when one resolution
is sufficient.

The spatially varying resolution created by MSSS allows for an additional visu-
alization. We can plot the posterior average number of resolutions active at each
point in the space, as seen for the best MSSS fit, in figure 5. Note that since we
are using model averaging over the top 100 models, this quantity can be a fraction.
This graphic provides information about the regions of the space where there is
more fine scale variation. The smooth, stationary GP with ν = 2 requires fewer
resolutions than the jagged GP with ν = .5. The stationarity in these datasets is
reflected by a similar pattern in resolutions across the space. In other words, there
is not a single area in the space where the resolution is much higher than in other
places. When MSSS is fit to the nonstationary kernel convolution, the behavior is
quite different. The number of resolutions required is different across the space,
with just one section of the space requiring 3 or 4, while the vast majority just
requires two.

On the SST data, to ensure that out of sample predictions were reasonable on
data this unequally spaced, MSSS required a small modification. Kernels were only
allowed to enter the model if there was at least one data point within one kernel
width from the center of the kernel. Without this restriction, kernel edge effects
can cause the out of sample predictions to be unreasonable. When a location is
far from the kernel, but still within the compact support, a low value in the design
matrix will be compensated for by a high value of the coefficient β associated
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Table 4: 2D true surfaces and predicted surfaces. The models are in the columns,
and the three datasets are in the rows. Row A is the GP, Matern covariance with
ν = 2, row B is the Row A is the GP, Matern covariance with ν = .5, and row C
is the nonstationary Kernel Convolution.

True
Field

MSSS
Best

MSSS
Worst

DPC 132
MDCT

42
Lat-

ticekrig

A

B

C

Figure 5: Plots of the maximum resolution active at each point on the surface for
the best MSSS model by marginal model probability for each of the three simulated
2D datasets.
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Figure 6: SST Predictions with ν = 3, a kernel width of 2.5, and the additional
restrictions discussed above.

with that column. The problem with this behavior is that closer the center of
the kernel, the larger coefficient can cause unrealistically large predictions out of
sample. As for the other settings, we set ν = 3 and the kernel width to 2.5 since
for sea surface temperature, we expect a relatively smooth mean function. The
SST estimates are shown in figure 6, and the number of resolutions at each point
is shown in figure 7. The plot of the number of resolutions at each point in the
Mediterranean identifies regions with temperatures that vary differently than the
surrounding areas. Some areas with higher resolutions include the region between
Palma and Sardinia, which is warmer than its surroundings, the region adjacent
to the Brittany peninsula on the northwest end of the dataset that is colder than
its surroundings, and the southeast end of the Mediterranean, which has a large
amount of temperature variation in the observed data, with observations varying
between 15 and 23 degrees in a very small region. Numerical results are in table 5.
MSSS and the MDCT with 42 kernels were the only models with both low MSPE
and well calibrated interval coverage. Unlike the GP examples, predictions were
substantially better using MSSS when compared to Latticekrig or the MDCT.

4.4 Discussion of default parameters

The results obtained in our data analysis lead to some guidelines for the selection
of the parameters of the MSSS. First, the different parameters used in the beta-
binomial prior on γ do not change the resulting surface or sparsity substantially,
unless very extreme values are used. Therefore, we propose setting µ = 1/2d and
θ = 2 as a safe default for data of the size that was dealt with here.

The remaining parameters τ , J(1), and ν can be set by maximizing the pre-
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Figure 7: Plot of the maximum resolution active at each point on the surface for
the MSSS model on SST in the Mediterranean.

Model MSPE 90% Coverage Runtime (sec)
MSSS .63 .89 235

MDCT 42 .70 .88 1020
MDCT 132 1.58 .86 1505

LK 10 .68 .95 162
LK 20 .67 .94 204

DPC 91 .99 .88 309
DPC 312 .88 .89 433
DPC 1144 1.12 .87 717

Table 5: Numerical summaries for the models on the SST dataset.

dictive distribution over a grid of possible values. For large datasets such strategy
can impose a steep computational cost. For the kernel parameters we require that
τ > 1.5. This ensures enough kernel overlap to prevent gaps. Beyond this strict
restriction, the ability of MSSS to include an unlimited number of resolutions pro-
vides some robustness with respect to τ and J(1). This is demonstrated in the
simulation study, where the MSPE does not change very much among the different
settings. For example, if J(1) is not large enough to fit the data well, MSSS is able
to add more kernels at high resolution to compensate for the lack of fit. Some at-
tention must be paid, though, to the smoothness parameter ν, as the shape of the
resulting predicted surface can be highly dependent on this parameter. However,
specific knowledge of the application can inform the choice of ν. For example, in
the SST dataset, it it would be unreasonable for a predicted field to vary in too
jagged of a manner, so a larger value of ν is preferable.
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5 Conclusion

We have proposed a novel method for fitting nonstationary spatial models that
achieves spatially varying resolution through a stochastic process prior. By avoid-
ing MCMC, utilizing sparse matrix methods, an add one column regression updat-
ing formula, and modern parallel computing, MSSS has competitive computational
performance when compared to other spatial methods. We have also shown that
MSSS provides competitive out of sample fit and uncertainty quantification on a
variety of unequally spaced spatial datasets, both stationary and non-stationary.
We have also shown that the spatially varying resolution that this method enforces
allows the statistician to simply and explicitly identify regions of non-stationarity
in spatial datasets, which can have physical meaning in the context of specific
applications.

Supplementary Materials

Online Appendix: Supplementary tables, figures, and detailed formulas for add
one and subtract one knot updating in regression.

Data and Code: Zip file containing R and C++ code for the statistical meth-
ods and the sea surface temperature dataset from the Met
Office.
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