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Abstract. We assess the behavior of large-scale spatial averages of surface temperature in climate model simulations and in re-

analysis products. We rely on univariate and multivariate Dynamic Linear Model (DLM) techniques to estimate both long-term

and seasonal changes in the externally-forced temperature. The residuals capture the internal variability of the climate system

and exhibit complex temporal autocorrelation structure. To characterize this internal variability, we explore the structure of the

residuals using univariate and multivariate autoregressive (AR) models. The climate model data analyzed here consist of three5

different types of numerical experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5): preindustrial

control runs, simulations of historical climate change, and decadal predictions. Our focus is on results from one particular

model (MIROC5), as well as on two different reanalysis-based estimates of observed changes in climate (from NCEP-2 and

ERA-Interim). The climate variable of interest is monthly-mean 2 meter surface temperature over the time period from January

1981 to December 2010, spatially averaged over four different domains (global, tropical, Northern Hemisphere, and Southern10

Hemisphere). Our results illustrate differences in all components of the climate “signal” (the response to changes in exter-

nal forcings), most notably between the reanalysis products and the model-generated simulations. Despite the differences in

underlying factors contributing to variability, the three types of simulation yield very similar spectral estimates of internal

temperature variability. This is of particular interest for the decadal simulation runs as influence from initialization might be

expected. In general, we find there is no evidence that the MIROC5 model systematically underestimates the amplitude of15

observed surface temperature variability on multi-decadal timescales – a finding that has considerable relevance for efforts to

identify human-caused “fingerprints” in observational surface temperature data.

1 Introduction

Exploring the impacts of human-caused climate change is of great relevance and interest to society. The fifth phase of the

Coupled Model Intercomparison Project (CMIP5) generated many different ensembles of climate model simulations (Taylor20

et al., 2012). These simulations have enhanced our scientific understanding of the ability of current models to represent key

features of present-day climate. They have also helped to identify human and natural influences on historical climate and to

quantify uncertainties in projections of future climate change. The CMIP5 framework incorporates results from large multi-
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Figure 1. Time series of monthly-mean, spatially averaged 2 meter surface temperature from the MIROC5 model. Results are for the

three different types of simulation analyzed here (decadal prediction, historical, and control), as well as for the NCEP-2 and ERA-Interim

reanalyses. Three “replicates” of each model simulation are indicated by different line types. Top panels: Global (left) and tropical (right).

Bottom panels: Northern (left) and Southern Hemisphere (right).

model ensembles, and frequently includes multiple realizations for each model and type of simulation. More extensive details

of the CMIP5 experimental design are found in Taylor (2009).

The goal of this paper is to draw on Bayesian statistical methods to compare the observational record with three different

types of CMIP5 simulations: 1) decadal predictions of climate, initialized from a specific observational state; 2) uninitialized

simulations driven by estimated historical changes in key anthropogenic and natural forcings; and 3) control integrations with5

no year-to-year changes in external forcings, which provide estimates of the natural internal variability of the climate system.

We seek to determine whether there are statistically significant differences in aspects of the variability, both between the model
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simulations and the reanalysis products and within the three different types of simulation. We also examine model errors

in mean temperature, and as well as differences in variability between the two reanalysis products. Our analysis focuses on

monthly-mean 2 meter surface temperature time series from January 1981 to December 2010. All model and observational data

are available in gridded form for a global domain. Results are spatially averaged over four regions: global, tropical, Northern

Hemisphere and Southern Hemisphere. The latitudinal boundaries of these regions are: 90◦S to 90◦N, 20◦S to 20◦N, 0◦ to5

90◦N and 90◦S to 0◦ (respectively). We calculate area-weighted spatial averages for each of the four regions of interest. This

allows us to explore the sensitivity of our results to spatial differences in the large-scale structure of the “signal” (the climate

response to imposed changes in external forcings) and the “noise” of natural internal variability.

Our study relies on simulations generated using version 5 of the atmosphere–ocean General Circulation Model (A/OGCM)

developed jointly by the Atmosphere and Ocean Research Institute at the University of Tokyo, the National Institute for10

Environmental Studies, and the Japan Agency for Marine-Earth Science and Technology. This is commonly referred to as the

Model for Interdisciplinary Research on Climate (MIROC5) (see Watanabe et al., 2010). As an example of the data considered

here, we show in Figure 1 the first 10 years of the three different types of simulation analyzed. The globally averaged data

exhibit a pronounced annual cycle, which is clearly dominated by the Northern Hemisphere. As expected based on the changes

in incoming solar radiation as a function of latitude and season, the phasing of the annual cycle differs in the Northern and15

Southern Hemispheres. A semi-annual cycle is also visible in the tropics (Santer et al., 2018).

The analysis performed in this paper involves decomposing each temperature time series into what we refer to as a “baseline"

and a seasonal component. The baseline captures long-term externally forced changes, as well as short-term cooling responses

to volcanic eruptions. The seasonal component is dominated by the externally forced annual and semi-annual cycles. We

extract the baseline temperature and seasonality of the climate model simulations and compare them to the corresponding20

components in the observational products. For each simulation type and region, the baseline and seasonal components are

removed from the time series using Dynamic Linear Models (DLMs). This yields residual time series that primarily represent

natural internal climate variability. As in Imbers et al. (2014), our focus is on investigating the spectral characteristics of internal

variability with autoregressive (AR) models. We compare the properties of these AR spectra in the climate model simulations

and the two reanalyses. We seek to determine whether model-versus-observed spectral differences are significant, and can be25

interpreted in terms of known model deficiencies (such as systematic errors in external forcings; see Schmidt et al., 2014).

We find pronounced model-versus-observed dissimilarities in all three components of interest here: the baseline temperature,

seasonal amplitudes inferred from the DLMs, and in the AR spectral characteristics of the residuals. A second objective is to

investigate whether there are identifiable differences between the spectral properties in the decadal prediction, historical, and

control simulations that are related to such factors as the inclusion of external forcings and the initialization approach.30

The paper is organized as follows. In Section 2, we describe the model simulations and the reanalysis products analyzed.

Section 3 presents our statistical modeling approach and introduces the DLM used for estimating the baseline and seasonal

components of the time series. It also describes the AR model that we apply to the residual time series in order to estimate

natural internal variability. In Section 4, we show the results obtained from the application of the DLM and AR models to the

surface temperature time series for the four regions previously mentioned. Section 5 provides a summary and brief discussion.35
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2 Data

2.1 Climate model simulations

CMIP5 is a coordinated international modeling activity involving a large suite of simulations performed with several dozen

different climate models. We focus here on simulations performed with one particular climate model (MIROC5). As mentioned

above, we analyze both forced and unforced climate simulations. The forced decadal prediction and historical runs are used5

to explore the response of the climate system to specified historical changes in anthropogenic and natural external factors.

Examples of such external factors include human-caused changes in well-mixed greenhouse gases and natural changes in vol-

canic aerosols (Kirtman et al., 2013). The forced simulations also generate natural internal variability of the climate system. In

contrast, the MIROC5 control integration yields an estimate of “pure” natural internal variability, uncontaminated by externally

forced climate changes. Below, we briefly describe the three types of climate simulation that are of interest here.10

Decadal prediction simulations are the newest addition to the CMIP activity, and are therefore the most exploratory. These

near-term simulations were organized through a collaboration between the World Climate Research Programme’s Working

Group on Coupled Modelling (WGCM) and the Working Group on Seasonal to Interannual Prediction (WGSIP). There are

two core sets of these near-term experiments. The first is a set of 10-year hindcasts initialized from a number of different

observational starting points. Such simulations allow analysts to assess the prediction skill and to investigate the sensitivity15

of skill to differences in the initial state (e.g., to the presence or absence of a strong El Niño or La Niña). The second set of

decadal prediction runs extended the 10-year hindcasts to 30 years. The influence of external forcing is more prominent in

these longer simulations (Taylor et al., 2012). The period from 1981 to 2010 is one of the few periods for which 30-year long

decadal simulations are available. This dictates the time period and the length of our analysis. The decadal prediction runs

include the same time-varying anthropogenic and natural external forcings that are used in the historical simulations.20

The modeling groups participating in CMIP5 used different methods and observational data sets for initializing the decadal

simulations. Most initialization schemes utilize observed ocean and sea ice conditions. A full discussion of initialization meth-

ods and the organization of the decadal prediction simulations can be found in Meehl et al. (2009).

Six individual realizations (“replicates”) of the MIROC5 decadal prediction run were available (see Figure 1). Each real-

ization has small differences in the initial state in 1981. These small initial differences amplify with time, eventually yielding25

different sequences of natural internal variability in each realization (Kirtman et al., 2013).

Historical runs are not initialized from a specific observed three-dimensional ocean state. Such simulations typically com-

mence from estimated atmospheric greenhouse gas levels in 1850 or 1860, and are then run until the early 21st century. Like

the decadal simulations, the historical simulations are driven by estimated changes in well-mixed greenhouse gases, particulate

pollution, land surface properties, solar irradiance, and volcanic aerosols. The MIROC5 historical integrations span the period30

from 1850 to 2012; five historical replicates were available. To facilitate comparison with the decadal analysis, our analysis of

the historical runs is restricted to the period from January 1981 to December 2010 (see Figure 1).

As noted above, the decadal and historical simulations are performed with exactly the same physical climate model using

identical anthropogenic and natural external forcings. Differences between the MIROC5 historical and decadal prediction runs
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are related to the initialization of the latter. Initialization forces the model ocean temperature and sea-ice to be consistent with

the estimated observational state in 1981. No such consistency with observations is imposed in the historical run. The two types

of simulation can therefore produce noticeably different climate states in 1981. This difference is due to two factors. First, any

systematic model errors (in either the applied forcings and/or the climate response to these forcings) should begin to manifest

within 1-2 years of the start of the historical run in 1850, causing the simulated climate in the historical run to drift away from5

observed climate. Second, even if there were no model forcing or response errors, the phasing of internal variability is different

in the historical and decadal prediction runs – so the mean states of these two types of simulation are unlikely to be exactly the

same in 1981 (except by chance).

In observational climate records, internal variability must be statistically separated from other sources of variance: it is

occurring at the same time as the climate system is responding to multiple external forcings. Control simulations provide10

estimates of “pure” internal variability, which is an integral component of climate change detection and attribution studies

(Santer et al., 2018). In the MIROC5 pre-industrial control simulation analyzed here, there are no year-to-year changes in

atmospheric concentrations of greenhouse gases, particulate pollution, volcanic aerosols, or solar irradiance. Changes in climate

arise solely from the behavior of modes of variability intrinsic to the coupled atmosphere-ocean-sea ice system. Examples of

such modes of variability include the El Niño/Southern Oscillation (ENSO), the Interdecadal Pacific Oscillation (IPO), and15

the North Atlantic Oscillation (NAO). Control runs are typically used to simulate many centuries of internal variability, and do

not have any direct correspondence with actual time. Here, we extract ten 30-year non-overlapping monthly-mean temperature

time series from the 670-year MIROC5 control run. Each 30-year segment contains a different unique manifestation of internal

variability, so they are similar to the “replicates” available for the decadal prediction and historical runs (see Figure 1).

Several points should be emphasized prior to discussion of the model results. First, the A/OGCM simulations analyzed here20

generate their own intrinsic variability – i.e., they produce their own sequences of El Niños, La Niñas, and other quasi-periodic

modes. In the historical runs, there is no correspondence between the modeled and observed phasing and amplitude of these

modes, except by chance. In the decadal prediction runs, the situation is different. The observational ocean data used in the

initialization provide some information about the current state of ENSO and other, longer-timescale modes of variability. This

observational information constrains (at least in the first 1-2 years after initialization) the climate trajectory that is followed in25

the decadal prediction run, and imparts some short-term similarity between the simulation and observations. As the length of

time after initialization increases, chaotic variability begins to overwhelm the information that the initialization provided about

the likely trajectories of real-world modes of internal variability, and the phasing of internal variability begins to diverge in

observations and the decadal prediction runs.

Second, the real world, the historical runs, and the decadal prediction simulations contain common components of tempera-30

ture variability associated with natural changes in solar irradiance and volcanic activity. For the period of interest here (1981 to

December 2010), the main solar forcing of interest is the roughly 11-year solar cycle (Kopp and Lean, 2011). The major vol-

canic eruptions are those of El Chichón in 1982 and Pinatubo in 1991. Both eruptions produced short-term (1-2 year) cooling

of the Earth’s surface, followed by gradual recovery to pre-eruption temperature levels (Santer et al., 2001). As noted above,

the control simulation does not include any solar or volcanic forcing, so each 30-year control segment should not exhibit any35
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synchronicity between the simulated and observed temperature variability (except by chance). Further details of the MIROC5

model and the simulations performed with it can be found in Watanabe et al. (2010).

2.2 Reanalysis products

We compare the climate model simulations to two different reanalysis data sets. Reanalyses rely on a state-of-the-art numerical

weather prediction (NWP) model to produce internally and physically consistent estimates of changes in real-world climate.5

The NWP model assimilates raw observational data from satellites, radiosondes, aircraft, land surface measurements, and

many other sources, and produces an optimal “blend” of the assimilated data. A key point is that reanalyses are retrospective

– the forecast model does not change over time, so the reanalysis output is not contaminated by spurious changes in climate

associated with progressive improvement of the forecast model, or by changes over time to the assimilation system. A number

of different groups around the world have generated reanalysis-based estimates of historical climate change. Each group uses10

a different NWP model and assimilation system, and makes different subjective judgments regarding the types of observa-

tions that are assimilated, the weights applied to each data type, and the bias correction procedures applied to the ingested

observations. This leads to differences in the estimates of “observed” climate change and climate variability generated by dif-

ferent reanalysis products (Kalnay et al., 1996). These differences have generally decreased over time, as NWP models and

assimilation methods have improved.15

We use two reanalysis products here. The first is version 2 of the reanalysis performed by the National Centers for Envi-

ronmental Prediction (NCEP), referred to as subsequently as NCEP-2. Although we only consider data for our time period

of interest, NCEP-2 spans the longer period from 1979 to 2016. Further details of NCEP-2 are available in Kanamitsu et al.

(2002). The second reanalysis was generated by the European Centre for Medium-Range Weather Forecasts (ECMWF) in

collaboration with a number of other institutions. We refer to this subsequently as ERA-Interim (ERA-I). It begins in 197920

and is continuously updated. Results from both reanalyses are shown in Figure 1. For a detailed documentation of ERA-I, see

Berrisford et al. (2011) and Dee et al. (2011). A more thorough discussion and comparison of these reanalyses is available in

Fujiwara et al. (2017).

3 Statistical models for model-generated and reanalysis time series

DLMs are a popular Bayesian modeling approach for the analysis of non-stationary time series. We follow approaches detailed25

in Harrison and West (1999) and Prado and West (2010) in order to estimate time-varying baseline and seasonality components.

In Section 3.1, we present the DLM used here to extract baseline and seasonal components from the spatially averaged model

and reanalysis surface temperature time series. Section 3.2 details the multivariate extensions of the univariate analysis that are

required to deal with the availability of multiple replicates of the model simulations. Section 3.3 presents our DLM discount

factor selection strategy, which relies on evolution variance specification as a method for extracting comparable components30

of the climate signal. Section 3.4 describes a Bayesian approach to fitting autoregressive models to the DLM residuals; the

goal here is to capture the internal variability of the climate model simulations. Finally, Section 3.5 presents the results from a
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comparison of the internal variability in the three different types of model simulation and the two reanalyses. This comparison

relies on inferred spectral densities via the total variation distance.

3.1 Baseline and seasonal temperature estimation

Consider first a single reanalysis time series for one of the four domains considered. Let yt denote the univariate domain-

average temperature at time t, for t= 1, . . . ,T where T = 360 months (30 years). We aim to decompose each time series into5

a baseline temperature η1,t and seasonal components αk1,t for harmonics k = 1, . . . ,K. Let Nd(m,S) denote a d-dimensional

normal with mean m and variance S. We specify our model used to emulate the baseline and seasonality of the data as a

second-order polynomial DLM with Fourier form seasonality, i.e.,

yt = η1,t +

K∑
j=1

αk1,t + νt, νt ∼N(0,V ) (1)

where V is the unknown observational variance (Harrison and West, 1999). It is also assumed that the observational errors νt10

are independent over time. We further assume that the baseline component has a structure described by:(η1,t
η2,t

)
=
(

1 1
0 1

)(η1,t−1
η2,t−1

)
+ωηt , ωηt ∼N2(0,VWη

t ) . (2)

Here the system evolution error vectors ωηt are assumed to be independent over time. We denote the baseline evolution matrix

as Gη = (1 1
0 1). A maximum of bp/2c harmonics can be included in the model where p is the fundamental period. Here, p= 12

months, which is the annual cycle. We choose to include harmonics 1, ..,K with K = 4 in the seasonal component of the15

DLM to capture the annual, semi-annual, trimestral and quarterly cycles. Statistical assessment based on the calculation of the

highest posterior density regions indicated that higher order harmonics were not significant. Each harmonic k included in the

model is described with a Fourier form representation of cyclical functions, given as(
αk1,t

αk2,t

)
=

(
cos( 2π

p k) sin( 2π
p k)

−sin( 2π
p k) cos( 2π

p k)

)(
αk1,t−1

αk2,t−1

)
+ωα,kt , ωα,kt ∼N2(0,VWα,k

t ) . (3)

We denote the kth seasonal evolution matrix Gα,k =

(
cos( 2π

p k) sin( 2π
p k)

−sin( 2π
p k) cos( 2π

p k)

)
. It is assumed that ωα,kt are independent over time,20

as well as independent of ωηt for t= 1, . . . ,T .

Using the superposition principle (Harrison and West, 1999), we write the model as a hierarchy with an observation equation

and a system equation, as

yt = F′θt + νt, νt ∼N(0,V ) (4)

θt = Gθt−1 +ωt, ωt ∼Nn(0,VWt) . (5)25

Here n= 2+2K is the length of state vector θt. G and Wt are defined, respectively, as G = blockdiag(Gη,Gα,1, . . . ,Gα,K)

and Wt = blockdiag(Wη
t ,W

α,1
t , . . . ,Wα,K

t ). The state vector θt takes the form θt = (η1,t,η2,t,α
1
1,t,α

1
2,t, . . . ,α

K
1,t,α

K
2,t) where

F′ = (Fη
′
,Fα,1

′
, . . . ,Fα,K

′
) with F·,·

′
= (1,0) for all components.
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3.2 Multivariate extension for simulation data

For an ensemble of the R replicates of model simulations from a specified region, we consider a multivariate DLM that is an

immediate extension of the univariate case. For the decadal, historical and control experiments, R is 6, 5 and 10 respectively.

Let yt,r = F′θ+νt,r denote the univariate average regional temperature at time t, for t= 1, . . . ,T , of replicate r ∈ {1, . . . ,R}.
Each νt,r is independent and identically distributed from N(0,V ). Replacing yt in (4) with a vector of R replicate values5

Yt = (yt,1, . . . ,yt,R)′ and νt = (νt,1, . . . ,νt,R)′ with a vector of R i.i.d error terms, only the observation equation changes, i.e.,

Yt = F′θt +νt, νt ∼NR(0,V IR) (6)

θt = Gθt−1 +ωt, ωt ∼Nn(0,VWt) (7)

F′ is now a R×n dynamic regression matrix with identical rows, F′r = (Fη
′
,Fα,1

′
, . . . ,Fα,K

′
), with components defined in

the previous section. As in the univariate case, the multivariate DLM still yields a single estimate for baseline and seasonal10

components, but this estimate now reflects the overall behavior of the replicates. The internal variability of each individual

replicate is captured by the components of νt.

Assuming the system evolution covariance matrices Wt at each time t are known, the posterior distributions for θt at each

time can be sequentially updated using the Kalman filtering and backward smoothing methods for unknown constant observa-

tional variance (Harrison and West, 1999). Following this approach, conjugate priors are chosen as follows: a Normal distribu-15

tion for the initial state vector θ0 ∼Nn(m0,VC0) and an Inverse Gamma for the unknown constant V ∼ IG(n0/2,n0S0/2)

with values m0 = (285,0, ...,0)′, C0 = diag(5,2× 10−6,5,1, ...,1), n0 = 1 and S0 = 0.01.

3.3 Specification of the evolution variance

To complete the model specification, we require the sequence of state evolution variance matrices, Wt. The structure and

magnitude of Wt control stochastic variation and stability of the evolution of the model over time. More precisely, if the20

posterior variance of the state vector θt−1 at time t− 1 is denoted as V ar(θt−1|Y1:(t−1)) = Ct−1, the sequential updating

equations produce the prior variance of θt, Rt = V ar(θt|Y1:(t−1)) = GCt−1G
′+Wt. Between observations, the addition

of the error term ωt leads to an additive increase in the initial uncertainty GCt−1G
′ of the system variance. Thus it is natural

to write Wt as a fixed proportion of GCt−1G
′ such that Rt = GCt−1G

′/δ ≥GCt−1G
′. Here δ is defined to be a discount

factor such that 0< δ ≤ 1. This suggests an evolution variance matrix of the form Wt = 1−δ
δ GCt−1G

′, where the δ = 125

results in the static model (Harrison and West, 1999).

Our method utilizes component discounting to specify Wt. In other words, we use one discount factor for the baseline,

δbase, and one for the seasonal components, δseas. The seasonal discount factor is set to be 1, which ensures that the smoothed

harmonic estimates do not change over time. This choice makes the DLM seasonal component analogous to calculating a

constant climatology, a common practice in climate science. If the seasonal amplitudes are changing over time, the changes are30

aliased in the DLM residuals. As a sensitivity test, we considered lower seasonal discount factors, which allow the amplitudes

to vary over time. This test indicated that high discount factors were generally optimal. For the replicate simulation data, a high
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baseline discount value is chosen to limit the amount of replicate variability shown in the posterior estimates of the baseline

parameters. The chosen value is the largest discount factor which maximizes the observed predictive density for all 10 control

segments individually, as the control “replicates” exhibit the least absolute variance of the three types of model simulation.

The true (but unknown) long-term baseline temperature change can be more reliably estimated from the simulations (which

have multiple realizations of signal and noise) than from the single realization of the reanalysis datasets. For each region5

of interest, therefore, it is necessary to select a baseline discount factor which accounts for this difference in the inherent

“noisiness” of the simulated and reanalysis baselines. The selected discount factors ensure that the amplitude of the long-term

externally forced variability is comparable in the baselines of the model simulations and the reanalysis products.

A few additional words of explanation are necessary. Our method for extracting a baseline estimate for the climate model

ensembles averages the uncorrelated internal variability of the individual members of the ensemble. The result is a much10

smoother baseline estimate than if we were to consider each realization individually. If the same discount factor was selected for

a univariate reanalysis time series, δobsbase, as that chosen for the average of the replicate data, δmodbase, the resulting observational

baseline estimates would be more “wiggly” in comparison to those of the replicate data. Mathematically, we require the

variance of the evolution error to be of the same magnitude in both cases. To quantify the overlap between the two baseline

evolution error distributions N2(0,Wη,mod
t ) and N2(0,Wη,obs

t ), we use the Bhattacharyya distance (Derpanis, 2008). More15

specifically, we select the value of δobsbase that minimizes the cumulative value of the Bhattacharyya distance over time. The

value is computed for the comparison between the NCEP reanalysis and the historical ensemble-mean data. It is important to

note that the choice of discount factor ensures comparable baseline temperature variability between the reanalyses, the decadal

prediction and historical runs within any one region, but not between regions.

3.4 Internal variability assessment method20

In addition to estimating the overall temperature baseline and seasonal effects in the three classes of simulations and the

reanalyses, we are also interested in describing the internal variability of the MIROC5 model and the two reanalyses, and in

assessing whether the model- and reanalysis-based estimates of internal variability are consistent. Because the structure of the

DLM proposed above does not account for internal variability, the residuals (after removal of baseline and seasonal components

from the time series) will exhibit autocorrelation.25

Let zt denote the residuals obtained by subtracting, for the current spatial domain of interest, the posterior mean of the

univariate DLM at time t from a reanalysis time series. That is, zt = yt−F′θ̂t, where θ̂t denotes the posterior mean of θt at

time t. We use an autoregressive model of order q, denoted by AR(q), to capture the temporal structure of zt, i.e.,

zt =

q∑
j=1

φjzt−j + εt, εt ∼N(0,σ2), (8)

where εt are independent over time and φ= (φ1, . . . ,φq) is the vector of AR coefficients. We initially explored the possibil-30

ity of using a time-varying model, but found that a standard static AR model was reasonable. For the MIROC5 simulations

with R replicates, this univariate model is easily extended to a multivariate autoregressive model. Let zt,r denote the resid-

ual time series for replicate r ∈ {1, . . . ,R} for t= 1, . . . ,T . Thus, zt,r =
∑q
j=1φjzt−j,r + εt,r with each εt,r independent and

9



distributed N(0,σ2). Replace zt and εt in (8) with vectors of length R, Zt = (z1,t, . . . ,zt,R)′ and εt = (εt,1, . . . , εt,R)′ where

εt ∼N(0,σ2IR). This hierarchical AR is chosen, instead of a general vector AR model, to estimate a single vector of autore-

gression coefficients per climate ensemble. With conjugate priors φ∼Nq(0,Iq) and σ2 ∼ IG(1,0.01), it is easy to sample the

posterior distributions directly using standard Bayesian linear regression techniques.

In fitting AR models, we make the simplifying assumption that q may vary between the four spatial domains considered5

here, but that in any one domain, all residual time series for the three types of simulation and the two reanalyses have the same

order q. This ensures that “within domain” spectral differences are unrelated to differences in q. We select the order q using

the univariate time series of residuals for each simulation type, each domain, and each individual replicate. The order of the

fit maximizes the log-predictive likelihood; further fitting details are available in Prado and West (2010). The highest order of

distinctly non-zero coefficients, over all types of simulation, all replicates, and all reanalyses, is then used as the order for all10

univariate and multivariate autoregressive models in that spatial domain. In other words, we assume that within each region,

the order q is the same for the replicates of each of the three model simulation types and the two reanalyses. The resulting

posterior samples are used for the AR spectral analysis. Our tests of the statistical significance of model-versus-reanalysis

spectral differences (see below) are robust with respect to the choice of model order q.

For coefficients φ of an AR(q) process, the characteristic polynomial is given by Φ(u) = 1−φ1u−φ2u
2−·· ·−φquq . The15

polynomial can have r real-valued and c pairs of complex reciprocal roots such that q = r+2c. Although we do not necessarily

expect complex roots, when present, they appear in pairs of complex conjugates and are interpretable as quasi-periodicities in

the data. For each pair of complex roots written in terms of the modulus and frequency (ρj ,ωj), or equivalently the modulus

and wavelength (ρj ,λj) where λj = 2π/ωj (months), for j = 1, . . . , c. A modulus close to 1 indicates a slow decay rate in

the correlation patterns, suggesting a persistent cyclical pattern occurring every wavelength λj months. More importantly, the20

autoregressive model allows for closed form calculation of the spectral density given estimates of the coefficients φ:

f(ω) =
σ2

2π|1−φ1e−iω − ·· ·−φqe−iqω|2
. (9)

Here, i=
√
−1. Using the posterior samples of φ for a given type of model simulation, the Bayesian approach provides a

simple way to sample the corresponding spectral density. Normalizing the equation with respect to the white-noise spectrum,

σ2/2π, allows for the comparison of spectra solely with respect to differences in the AR coefficients. Further details of the25

autoregressive model, the quasi-periodicities, and the spectral densities can be found in Prado and West (2010).

3.5 Total variation distance for comparing internal variability

We use the total variation distance (TVD) for normalized spectral densities to quantify the differences between the spectral den-

sities of the three types of climate model simulation and the reanalyses. This metric allows us to test whether the model and re-

analysis time series have significantly different spectra. TVD was originally employed for comparing probability distributions,30

and has also been used to measure the similarity of normalized spectra in Euan et al. (2015) and Alvarez-Esteban et al. (2016).

These applications rely on observational oceanographic data; they focus on classifying time series in the frequency domain and

on detecting transitions and periods of stationary behavior. In order for TVD to be applicable to power spectra, normalization of

10



MIROC5 global

(δmodbase, δ
obs
base) (0.94,0.96)

DLM MAP V 0.03, 0.02, 0.22, 0.18, 0.21

AR order q 4

AR MAP σ2 0.011, 0.010, 0.046, 0.038, 0.066

maximum modulus 0.79*, 0.80*, 0.94*, 0.94*, 0.93*

complex root, max modulus, ρ 0.32, 0.40, 0.37, 0.44, 0.48

corresponding wavelength, λ 4.25, 4.38, 4.10, 4.24, 4.09

MIROC5 tropical

(0.91,0.94)

0.13, 0.12, 0.90, 0.65, 0.62

7

0.006, 0.006, 0.032, 0.04, 0.032

0.87, 0.84, 0.92, 0.93, 0.90

0.87, 0.84, 0.92, 0.93, 0.90

28.61, 28.63, 57.21, 56.03, 73.93

MIROC5 northern

(0.99,0.99)

0.11, 0.11, 0.44, 0.39, 0.46

5

0.030, 0.027, 0.126, 0.098, 0.179

0.67, 0.78*, 0.93*, 0.94*, 0.92*

0.67, 0.42, 0.52, 0.53, 0.55

26.47, 3.47, 5.21, 4.98, 4.86

MIROC5 southern

(0.99, 0.99)

0.05, 0.04, 0.25, 0.20, 0.25

5

0.018, 0.013, 0.053, 0.044, 0.079

0.72, 0.81*, 0.93*, 0.94*, 0.94*

0.72, 0.47, 0.47, 0.52, 0.55

17.51, 4.82, 3.42, 3.66, 5.16

Table 1. Model baseline discount factor δmodbase and observation baseline discount factor δobsbase. DLM smoothed estimates of observational

variance, V . AR order q and MAP of AR variance σ2. Overall maximum modulus with * indicating correspondence to real roots, maximum

complex modulus and corresponding wavelength (months) calculated from the AR MAP characteristic polynomial.

the spectral densities is first required; the integral of the normalized density must be equal to one. This is equivalent to normaliz-

ing the time series by dividing by its overall variance. The TVD of two normalized spectral densities f∗(ω) = f(ω)/
∫

Ω
f(ω)dω

and g∗(ω) = g(ω)/
∫

Ω
g(ω)dω is defined as TVD(f∗,g∗) = 1−

∫
Ω

min{f∗(ω),g∗(ω)}dω. For discrete normalized spectra, the

TVD can equivalently be written in terms of the L1 distance, TVD(f∗,g∗) = ||f∗− g∗||1/2 =
∑
ω∈Ω |f∗(ω)− g∗(ω)|/2. The

distance measure takes on values 0≤ TV D ≤ 1, with 0 being the smallest possible discrepancy and 1 the largest.5

Using the posterior spectra samples from the AR model, we can compute posterior distributions for the TVDs compared to

a reference spectrum. In the first step of our analysis, we use a white-noise spectrum as a reference, and examine whether the

residuals for the actual model temperature time time series are statistically distinguishable from this reference spectrum. Next,

using the maximum a posteriori (MAP) NCEP-2 spectrum, we employ TVD to assess the significance of the discrepancies

between the internal variability spectra of NCEP-2 and the three types of MIROC5 simulation. We also show TVD for the10

comparison between the NCEP-2 and ERA-I spectra, which provides a measure of the degree of difference we might expect

due to uncertainties in the reanalysis-based estimates of temperature change. As noted above, these uncertainties arise from

differences in reanalysis models, assimilation approaches, bias correction procedures for the assimilated data, etc.

4 Result from assessment of large-scale temperature

In this section, we first apply the previously described methodology to the time series of monthly-mean, spatially averaged near-15

surface temperature from the three sets of MIROC5 simulations. We then compare the model results to results obtained for the

NCEP-2 and ERA-I reanalysis products. Note that the results are not meant to be compared directly between each region: the

scales for our comparison metrics can vary markedly for the four spatial domains. Table 1 provides summaries of DLM and AR

statistical model parameters and posterior inferences for each spatial domain. The table includes the baseline discount factors

δmodbase and δobsbase, MAP DLM observation equation variance V , AR model order q, MAP AR variance σ2, maximum moduli20

of all reciprocal roots from the AR characteristic polynomial based on the posterior means of the AR coefficients, maximum

moduli of the reciprocal complex roots and corresponding wavelengths (months).
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Figure 2. Baseline temperature estimates. Different line colors denote the type of simulation and the reanalysis product. Top: Global (left),

tropical (right). Bottom: Northern (left), Southern Hemispheres (right). Vertical lines indicate the volcanic eruption of El Chichón in 1982

and Pinatubo in 1991.

Figure 2 displays the 95% posterior intervals for baselines η1,t, estimated using the DLM model introduced in Section 3.1.

The control run baseline estimates are noticeably flat relative to the baselines inferred for the other types of simulation and

for the reanalysis products. This difference is expected – the control run lacks year-to-year changes in external forcings, while

the reanalysis products and the historical and decadal prediction runs are affected by time-varying anthropogenic and natural

forcings. This explains why, in each of the four spatial domains we considered, the baselines in the externally forced runs5

and the reanalyses show secular temperature increases over 1981 to 2010, consistent with warming of the Earth’s surface in

response to time-increasing net anthropogenic forcing.
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Note that the surface temperature baseline has a larger overall trend in the historical and decadal prediction runs than in

NCEP-2 and ERA-I. This discrepancy in simulated and observed warming rates is at least partly related to the omission

of the observed early 21st century increase in stratospheric volcanic aerosols in the model historical and decadal prediction

simulations (Solomon et al., 2011). In the real world, the cooling caused by this post-2000 increase in stratospheric volcanic

aerosols offset part of the anthropogenic warming signal (Schmidt et al., 2014; Santer et al., 2014). Superimposed on these5

long-term warming trends in the reanalyses and the decadal prediction and historical runs are short-term (1-2 year) surface

cooling signals associated with the major eruptions of El Chichón in 1982 and Pinatubo in 1991 (Santer et al., 2001). Because

averaging over larger domains damps spatial noise, volcanic cooling signals are most pronounced in the global-spatial average,

and are noisiest in the smaller-scale tropical averages.

The surface cooling signals caused by El Chichón and Pinatubo are markedly smaller in the Northern and Southern Hemi-10

sphere averages than for the global domain. This is the result of the Northern and Southern Hemispheres baselines being

estimated with discount factors close to 1 (see Table 1). It is not unexpected for the hemisphere-specific externally-forced

components to be less variable than the spatial domains which contain interaction between the distinct hemispheric seasonal

cycles. Selection of high discount factors suggests that the externally-forced longer-term variability in both hemispheres was

very close to linear. Any shorter-term forced variability not captured by the baselines will be reflected in the residuals. For both15

the Northern Hemisphere and Southern Hemisphere, the residuals do not exhibit substantial cooling after the volcanic eruptions

of El Chichón in 1982 and Pinatubo in 1991. Further investigation of the differences in the amplitude of the global-average

and hemispheric-average volcanic signals may be of interest. Alternately, the baseline temperatures for the tropical region are

estimated with much lower discount factors (see Table 1), indicating the externally-forced longer-term variability in the tropics

was more variable.20

Figure 2 also yields many other features of interest, such as differences in mean temperature in 1981. Because the decadal

prediction runs are initialized from observed ocean temperature and sea ice data, it is not unreasonable to expect that at the

time of initialization in 1981, the mean surface temperature in these simulations should be close to the mean temperature of the

two reanalysis products. This is the case for the Northern Hemisphere and tropical averages, but not for the averages over the

other three regions. The largest mean state differences in 1981 are in the Southern Hemisphere, where the decadal prediction25

runs are noticeably warmer than either reanalysis. Because this Southern Hemisphere bias is large, it also influences the global

temperature average.

One possible interpretation of this large SH bias is that it may arise because of differences between the observed sea surface

temperature (SST) data sets used as boundary conditions for the two reanalyses and the surface temperature data selected for

initialization of the MIROC5 decadal prediction runs. Observational SST uncertainties are likely greater in the more poorly30

sampled Southern Hemisphere than in the Northern Hemisphere – which may explain why the 1981 warm bias in the decadal

prediction runs is largest in the SH.

Use of different observational SST data sets may also explain why the two reanalyses show the largest mean state differences

in the Southern Hemisphere. An alternative (and not mutually exclusive) interpretation is that the “between-reanalysis” mean

state differences reflect the sparser observational coverage in the Southern Hemisphere, and a larger SH imprint of structural35
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Figure 3. Posterior amplitude samples for harmonics k = 1,2. Whiskers indicate the maximum and minimum values, boxes indicate 95%

posterior intervals. Different colors denote the type of simulation and the reanalysis product. Top: Global, tropical. Bottom: Northern,

Southern hemispheres.

differences between the NCEP-2 and ERA-Interim forecast models (e.g., in terms of physics, parameterizations, resolution,

and data assimilation systems).

Note that the model-versus-reanalysis warm biases mentioned above do not only pertain to the decadal prediction runs –

they also affect the historical and control simulations. In all four spatial domains considered, the model-generated baseline

temperatures are consistently warmer than in either reanalysis product. The baseline temperatures in the decadal prediction5

integrations do not appear to exhibit appreciable post-initialization secular drift, and are similar to the baseline temperatures

in the historical runs. This implies that our DLM model is primarily capturing the externally forced component of surface

temperature changes in MIROC5, and that the amplitude and structure of this forced response is relatively insensitive to

whether the simulation is “free running” or initialized from observations.

Figure 3 illustrates the 95% posterior intervals of the seasonal amplitudes αk1,t for k = 1,2 (i.e., for the amplitudes of the10

annual and semi-annual cycles, respectively). Amplitudes were estimated using the DLM model in Section 3.1. For all four

spatial domains, the harmonics k = 3 and k = 4 (corresponding to the trimestral and quarterly cycles, respectively) are very

close to 0 and indistinguishable from one another, and are therefore not shown. Results for the annual and semi-annual cycles

are more interesting. Consider the reanalyses first. For all four spatial domains, and for both for k = 1 and k = 2, NCEP-2 and

ERA-I yield very similar amplitudes. The only significant difference between the two reanalyses is in the Northern Hemisphere,15

where the ERA-I annual cycle amplitude is markedly higher than in NCEP-2.
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Figure 4. MAP AR log10 spectra normalized with respect to white-noise for each climate simulation by region with 95% posterior intervals

shaded. Instead of the frequency ω, the x-axis is labeled at select years (2π/12ω). Different line colors denote the type of simulation and the

reanalysis product. Top: Global, tropical. Bottom: Northern, Southern hemispheres.

For all spatial domains except the tropics, and for all three types of simulation, the MIROC5 annual cycle amplitudes differ

significantly from those in either reanalysis product. Model-versus-reanalysis differences in annual cycle amplitude are most

pronounced in the Southern Hemisphere. The sign of the model annual cycle biases is not consistent across domains. In the

tropics and SH, the annual cycle amplitude is smaller in the simulations than in the reanalyses. In the other two domains,

however, the annual cycle amplitude is larger in the simulations than in NCEP-2 and ERA-I. We do not find any cases in which5

there are significant amplitude differences between the three types of model simulation.
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Figure 5. Top: TVD calculated from φ samples with white-noise as the reference. Bottom: TVD calculated from φ samples with the MAP

NCEP spectrum as the reference. Whiskers indicate the maximum and minimum values, boxes indicate 95% posterior intervals. Scenario or

observational product indicated by colors. Left to right: Global, tropical, northern, and southern hemispheres.

Figure 4 illustrates the 95% confidence intervals on the posterior spectra, normalized with respect to white noise on the

log-scale. Spectra were estimated using the methods presented in Section 3.4. The spectral densities are relatively smoothly

varying as a function of frequency, particularly for spectra generated with lower-order AR models (e.g., the q = 4 case for the

global region; see Table 1). The least-smooth spectra are obtained for temperatures spatially averaged over the tropics, where

a higher-order AR model (q = 7) provides the best fit to the residuals remaining after removal of the baseline and seasonal5

temperature components. This result is physically reasonable: the tropical domain is the smallest and “noisiest” of the four

domains considered here, and is strongly influenced by modes of internal variability acting on a range of different timescales,

such as the Madden-Julian Oscillation, ENSO, and the Interdecadal Pacific Oscillation.

Other features of Figure 4 are also noteworthy. First, the spectra for the three different types of MIROC5 simulation are

very similar. This suggests that the DLM method applied here has successfully partitioned the “pure” internally generated10

component of surface temperature from: 1) the externally forced components of temperature changes in the historical runs;

and 2) the combined effects of external forcing and any post-initialization drift in the decadal prediction simulations. Second,

at the lowest frequencies, model spectral densities are higher than in NCEP-2 and ERA-I, and the 95% posterior intervals of

nearly all of the simulated spectra do not overlap with the reanalysis spectra. This difference in the amplitude of simulated

and observed variability (which is most pronounced in the tropics) is consistent with findings obtained elsewhere for multi-15

model analyses of tropospheric temperature (Santer et al., 2013, 2018; Pallotta and Santer, in preparation). A model bias in the

opposite direction to that found here (i.e., a systematic underestimate of the amplitude of observed internal variability on multi-
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decadal timescales) would be more concerning – such an error would spuriously inflate signal-to-noise ratios for anthropogenic

signal detection (Santer et al., 2013, 2018). We caution, however, that the reanalysis data analyzed here are relatively short (30

years), and do not provide a strong constraint on “observed” estimates of internal variability on multi-decadal timescales.

Recall from Section 3.4 that the presence of complex roots points towards the existence of quasi-cyclical temperature varia-

tions. The results in the fourth row of Table 1 indicate that complex roots are only obtained consistently for the tropical domain.5

For all other domains, the characteristic polynomials from the AR models are dominated by real roots. This suggests that the

tropics – which are strongly affected by the El Niño/Southern Oscillation – are capturing some quasi-periodic temperature

variability associated with the occurrence of El Niños and La Niñas. Confirmation of this quasi-periodicity comes from the

fact that the tropics are also the only domain where the maximum moduli of the reciprocal complex roots of the polynomials

exceed 0.8 for both reanalyses and for all three types of simulation (see results in fifth row of Table 1). The wavelengths for the10

tropical quasi-periodic variability are approximately 28.6 months (2.38 years) for the reanalysis products, 57.2 months (4.77

years) for the decadal prediction run, 56 months (4.67 years) for the historical simulation, and 73.9 months (6.16 years) for the

control run. The apparent absence of quasi-periodic behavior on longer timescales is probably (at least in part) a reflection of

the relatively short record lengths considered here (see above).

Finally, we present results for the total variation distance (TVD), which allows us to make a quantitative evaluation of the15

differences between the various spectra. The posterior distributions of the TVD are given in Figure 5. The top row shows results

for the comparison against a white noise reference spectrum. All reanalysis and model data sets are statistically separable from

white noise. For each of the four domains, the reanalysis data sets have smaller TVD values, and are closest to the white noise

case; the three sets of simulations are further removed from the white noise reference spectrum. The systematically lower TVD

values for NCEP-2 and ERA-I may partly reflect the fact that both reanalyses exhibited decadal temperature variability that was20

consistently smaller than in the MIROC5 simulations (see above). The largest TVD values for the reanalyses and the model

simulations are in the tropics, indicating that tropical temperature variability is most clearly distinguishable from white noise.

This is consistent with the above-mentioned finding that the discrepancy between low-frequency temperature variability in the

reanalyses and the MIROC5 simulations is largest in the tropics.

The bottom row of Figure 5 displays results for the comparison between the model spectra and the NCEP MAP spectrum.25

The range of TVD values for the NCEP spectrum versus itself is simply a reflection of posterior sampling variability. The

global and tropical regions show distinct differences between the reanalysis products and the three sets of simulations, with

little or no overlap between the 95th percentiles of the reanalyses and the 5th percentiles of the simulations. The tropical region

exhibits the most significant difference between the NCEP spectrum and the simulated spectra; this is likely due to the above-

mentioned discrepancies in low-frequency variance. It may also reflect the fact that the identified quasi-periodic component of30

tropical temperature variability had a longer timescale in the three sets of simulations than in the reanalysis products.
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5 Conclusions

We applied univariate and multivariate Dynamic Linear Modeling (DLM) techniques to estimate two externally forced com-

ponents of surface temperature time series. These components contain: 1) seasonal information, which is invariant from year-

to-year; and 2) the time-varying nonlinear response to combined external forcing by human factors (such as greenhouse gases

and particulate pollution) and natural influences (changes in solar irradiance and volcanic activity). Estimation of these two5

temperature components – which we refer to as “seasonal” and “baseline”, respectively – was performed for two reanalysis

data sets and for three different types of experiment performed with one selected climate model (MIROC5). The three sets

of numerical experiments were initialized decadal predictions, control runs, and uninitialized simulations of historical climate

change. Removal of the seasonal and baseline components from the raw temperature data yielded residuals that provided in-

formation on unforced natural internal climate variability. We characterized this internal variability by fitting univariate and10

multivariate autoregressive (AR) models to the residuals. Since estimates of externally forced climate signals and internal vari-

ability depend on the particular domain of interest, we explored the efficacy of our DLM and AR signal and noise identification

methods for four different spatial domains, ranging in scale from the entire globe to the tropics.

We found significant differences between the reanalysis data and the model-generated simulations in all three temperature

components (seasonal, baseline, and internal variability). From a climate perspective, two results were particularly intriguing.15

First, we note that the three sets of simulations analyzed here are very different. While temperature variability in the control run

arises from internal variability alone, variability in the historical and decadal prediction runs is a mixture of internal variability

and response to external forcing. Additionally, the decadal prediction runs may also be influenced by post-initialization “drift”

in the model climate. Despite these differences in the mix of underlying factors contributing to variability, the three types of

simulation yielded very similar spectral estimates of internal temperature variability – as might be expected given that the same20

physical climate model is being used for each of the three sets of simulations. This similarity of the three sets of model spectra

is reassuring, and implies that our statistical analysis methods are reliably extracting the common underlying component of

internal variability.

The second intriguing result emerged from the comparison of the model and reanalysis temperature variability on multi-

decadal timescales. These timescales are important components of the background “noise” against which a gradually evolving25

anthropogenic warming signal must be detected. If models systematically underestimated natural internal variability on multi-

decadal timescales, it would imply that previously obtained anthropogenic signal detection results were spuriously inflated by

low model noise levels. Consistent with related work involving tropospheric temperature ((Santer et al., 2013, 2018; Pallotta

and Santer, in preparation)), we find that the MIROC5 model overestimates the amplitude of low-frequency internal variability

inferred from reanalysis data. This suggests that results from previous anthropogenic signal identification studies may have been30

too conservative. It would be of interest to apply our statistical techniques to observational estimates of surface temperature

that are longer than the 30-year reanalysis records available here. The ultimate goal is to obtain stronger constraints on the

amplitude of observed multi-decadal temperature variability, thereby providing a more solid observational “target” for model

evaluation purposes.
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