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Abstract

Bayesian computation of high dimensional linear regression models using Markov

Chain Monte Carlo (MCMC) or its variants can be extremely slow or completely pro-

hibitive since these methods perform costly computations at each iteration of the sam-

pling chain. Furthermore, this computational cost cannot usually be efficiently divided

across a parallel architecture. These problems are aggravated if the data size is large or

data arrive sequentially over time (streaming or online settings). This article proposes

a novel dynamic feature partitioned regression (DFP) approach for efficient online in-

ference for high dimensional linear regressions with large or streaming data. DFP

constructs a pseudo posterior density of the parameters at every time point, followed

by quickly updating the pseudo posterior when a new block of data (data shard) ar-

rives. DFP updates the pseudo posterior at every time point suitably and partitions

the parameter space to exploit parallelization for efficient posterior computation. The

proposed approach is applied to high dimensional linear regression models with Gaus-

sian scale mixture priors and spike and slab priors on large parameter spaces, along

with large data, and is found to yield state-of-the-art inferential performance. The

algorithm enjoys theoretical support with pseudo posterior densities over time being
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arbitrarily close to the full posterior as the data size grows, as shown in the supple-

mentary material.

Key Words: Bayesian Statistics; Data Shards; High Dimensional Regression; Sufficient

Statistics; Streaming Data; Shrinkage Prior.

1 Introduction

With recent technological progress, data containing a large number of predictors (a couple

of thousand or more) are ubiquitous. In such settings, it is commonly of interest to consider

the linear regression model

y = x′β + ε, ε ∼ N(0, σ2), (1)

where x is a p × 1 predictor, β is the corresponding p × 1 coefficient, y is the continuous

response and σ2 is the error variance. Bayesian methods for estimating β provide a natural

probabilistic characterization of uncertainty in the parameters and in predictions. Fitting

Bayesian linear regression models in presence of very high dimensional predictors presents

onerous computational burdens either due to decomposition of large matrices or due to poor

convergence and inferential issues caused by the high correlations among the parameters.

This article develops a dynamic approach, called Dynamic Feature Partitioning (DFP), for

boosting the scalability of high dimensional Bayesian linear models for large/streaming data.

Broadly, two classes of prior distributions on β are typically employed in high dimen-

sional regression literature. The traditional approach is to develop a discrete mixture of

prior distributions (George and McCulloch, 1997; Scott and Berger, 2010). These meth-

ods enjoy the advantage of inducing exact sparsity for a subset of parameters and minimax

rate of posterior contraction (Castillo et al., 2015) in high dimensional regression, but face

computational challenges when the number of predictors is even moderately large. As an

alternative to this approach, continuous shrinkage priors (Armagan et al., 2013; Carvalho

et al., 2010; Caron and Doucet, 2008) have emerged which induce approximate sparsity in

high-dimensional parameters. Such prior distributions can mostly be expressed as global-
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local scale mixtures of Gaussians (Polson and Scott, 2010) and offer an approximation to

the operating characteristics of discrete mixture priors. Global-local priors allow parameters

to be updated in blocks via a fairly automatic Gibbs sampler that leads to rapid mixing and

convergence of the resulting Gibbs sampler. However, unless care is exercised, sampling can

be expensive for large values of p. In fact, existing algorithms (Rue, 2001) to sample from

the full conditional posterior of β require storing and computing the Cholesky decomposi-

tion of a p× p matrix, that necessitates p3 floating point operations, which can be severely

prohibitive for large p. There are available linear algebra artifacts such as the Sherman-

Woodbury-Morrison matrix identity (Hager, 1989) to enable efficient computations in high

dimensional regressions involving small n and large p, though it is less clear as to how these

approaches can be adapted when the number of samples is massive to start with, or data is

observed in a stream. Besides, having small sample size may limit the inferential accuracy

for large p.

In fact, when the number of observations is massive, data processing and computational

bottlenecks render all the above mentioned methods for high dimensional regression infeasible

as they demand likelihood evaluations for updating model parameters at every sampling

iteration, which can be costly. Matters are more complicated in the case of streaming data,

where the posterior distribution changes once a new data shard arrives, so that the MCMC

samples from the posterior distribution up to the last time point become useless.

We propose a novel online Bayesian sampling algorithm, referred to as Dynamic Feature

Partitioning (DFP) that enables efficient computation of high dimensional regression in the

presence of a large number of parameters and a large sample size. DFP splits a large dataset

into a large number of moderately sized data shards and sequentially feeds data shards to the

model. The DFP framework dynamically partitions the set of parameters with the onset of a

new data shard, draws samples from the conditional posterior distribution in each partition,

but instead of conditioning on all parameters, conditions on functions of sequential point

estimates of parameters from other partitions along with the sufficient statistics from the

observed data. This leads to an approximation of the conditional posterior distributions

that enables rapid computation by parallelizing posterior updates of partitions in different

processors. Additionally, it eliminates the need to store the entire data in time (process the
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entire dataset at once), and leads to an approximation of the conditional distributions that

produces samples from the correct target posterior asymptotically. The DFP algorithm is

demonstrated to be highly versatile and efficient across a variety of high dimensional linear

regression settings, enabling online sampling of parameters with dramatic reductions in the

per-iteration computational requirement.

The rest of the article is organized as follows. Section 2 introduces a number of shrinkage

priors and variable selection priors in high dimensional regression and describes the computa-

tional challenges with big n and p. Section 3 introduces the DFP algorithm and additionally

provides a brief overview of the existing literature on high dimensional models with big data

to highlight our contribution. Section 4 demonstrates the performance of DFP for high

dimensional linear regression with (1) the Bayesian Lasso and (2) the Horseshoe shrinkage

prior distributions and (3) the Spike and Lasso discrete mixture prior distribution for variable

selection (described in Section 2.3). Further evidence on the empirical performance of DFP

is provided in the analysis of a financial dataset consisting of the minute by minute average

log-prices of the NASDAQ stock exchange from September 10 2018 to November 13 2018

during trading hours in Section 5. Finally, Section 6 concludes the article with discussions

and possibilities of future directions. Theoretical insights into the convergence behavior of

the DFP algorithm are provided in the supplementary material.

2 Computational Challenges in the High-Dimensional

Regression Models

This section motivates the need for the dynamic feature partitioning algorithm by highlight-

ing the issues with drawing online inference in Bayesian high dimensional linear models with

big or streaming data. Let Dt = {X t,yt} be the data (responses and predictors) shard

observed at time t and D(t) = {Ds, s = 1, . . . , t} denote the data observed through time t,

t = 1, ..., T . We assume that shards are of equal size, with each shard containing n samples,

i.e., X t is of dimension n × p and yt is of dimension n × 1. We emphasize that such an

assumption is not required for the algorithmic development in the next section and is kept

merely to simplify notations.

4



In the context of the linear regression model in (1), without the focus being on regu-

larization or variable selection, a Bayesian hierarchical model is set up by assigning a prior

β|σ2 ∼ N(µβ, σ
2Σβ) and σ2 ∼ IG(a, b). With data D(t) observed through time t, the

marginal posterior density of parameters σ2 and β at time t appear in closed form and are

given by IG(a∗t , b
∗
t ) and Multivariate− t2a∗t (µ

∗
t , (b

∗
t/a
∗
t )V

∗
t ) respectively, where a∗t = a+ nt

2
,

µ∗t = (Σ−1β +
∑t

s=1X
′
sXs)

−1(Σ−1β µβ +
∑t

s=1X
′
sys), V

∗
t = (Σ−1β +

∑t
s=1X

′
sXs)

−1, b∗t =

b +
µ′βΣ−1

β µβ+
∑t
s=1 y

′
sys−µ∗

′
t V

∗−1
t µ∗t

2
. Notably, posterior distributions depend on the data only

through the three sufficient statistics
∑t

s=1X
′
sXs,

∑t
s=1X

′
sys and

∑t
s=1 y

′
sys. Hence pos-

terior distribution at time t with the onset of data Dt can readily be constructed by storing

and updating the sufficient statistics without having the need to store the entire data D(t)

through time t. When p is large, the major challenge in computing posterior distributions at

time t comes from evaluating V ∗t which involves taking inverse of a p× p matrix. However,

the marginal posterior distribution of β being in closed form, operating characteristics of

the posteriors are available analytically, bypassing the need to follow an iterative sampling

scheme to estimate these operating characteristics.

Such closed form expressions for the marginal posterior distributions of parameters are

hard to come by when the focus is on Bayesian high dimensional regularization (shrinkage)

or variable selection priors. This article considers the Bayesian Lasso and Horseshoe priors as

two representative priors from the class of shrinkage priors and the Spike and Lasso prior from

the class of variable selection priors. Below we briefly introduce online posterior computation

with these priors with large or streaming data and describe computational challenges with

large p. The computational challenges are similar in other Bayesian shrinkage or variable

selection priors.

2.1 Bayesian Lasso Shrinkage Prior

The Bayesian Lasso shrinkage prior stands as an important example of the global-local

(GL) scale mixtures (Polson and Scott, 2010) of normal prior distributions. The prior takes

the specific form p(βj|σ2, λ) = λ
2σ

exp(−λ|βj|/σ), j = 1, .., p, λ2 ∼ G (r, d), with the con-

ditional posterior distribution of β given other parameters not available in closed form.

However, conditional distributions can be obtained in closed form using a data augmenta-
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tion approach. In fact, the hierarchical data augmented model with the Bayesian Lasso prior

on β with data D(t) = {(ys,Xs) : s = 1, ..., t} upto time t is given by

ys|Xs,β, σ
2 ∼ Nn

(
Xsβ, σ

2In
)
, s = 1, ..., t

β|τ 2, σ2 ∼ Np

(
0, σ2M τ

)
, τ 2j ∼ Exp

(
λ2

2

)
, π

(
σ2
)
∝ 1

σ2
, λ2 ∼ G (r, d) , j = 1, ..., p,

where τ 21 , ..., τ
2
p are predictor specific latent variables employed for data augmentation, τ 2 =

(τ 21 , ..., τ
2
p )′ and M τ = diag(τ 2). The batch MCMC implemented using the customary

Gibbs sampler alternates between the full conditional distributions of (1) β|σ2, λ2, τ 2,D(t);

(2) σ2|β, λ2, τ 2,D(t); (3) λ2|β, σ2, τ 2,D(t) and (4) τ 2j |σ2, λ2,β,D(t), j = 1, ..., p, given by

β|σ2, τ 2, λ2,D(t) ∼ Np

((
S

(t)
1 +M−1

τ

)−1
S

(t)
2 , σ

2
(
S

(t)
1 +M−1

τ

)−1)

σ2|β, τ 2, λ2,D(t) ∼ IG

nt+ p

2
,

(
S

(t)
3 + β′S

(t)
1 β − 2β′S

(t)
2

)
+ β′M−1

τ β

2


1

τ 2j
|β, σ2, λ2,D(t) ∼ Inv −Gaussian

(√
λ2σ2

β2
j

, λ2

)
, λ2|β, σ2, τ 2,D(t) ∼ IG

(
p+ r,

∑p
j=1 τ

2
j

2
+ d

)
.

(2)

The full conditional posterior distributions at time t depend on the dataD(t) only through

a few sufficient statistics S
(t)
1 = S

(t−1)
1 +X ′tX t, S

(t)
2 = S

(t−1)
2 +X ′tyt and S

(t)
3 = S

(t−1)
3 +y′tyt,

which are updated at the onset of a new data shard. At each time t = 1, ..., T , the main

computational issue lies in the Gibbs sampling step of β that requires decomposing a p× p

covariance matrix costing ∼ p3 floating point operations (flops) and ∼ p2 storage units, and

is rendered infeasible.

2.2 Horseshoe Shrinkage Prior

We also consider the popularly used Horseshoe (Carvalho et al., 2010) shrinkage prior on

high dimensional predictor coefficients, which is well recognized in the Bayesian shrinkage

literature for its ability to artfully shrink unimportant predictor coefficients while applying

minimum shrinkage on important coefficients. Several recent articles theoretically prove its
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ability to estimate true predictor coefficients a-posteriori in presence of both high and low

sparsity (Armagan et al., 2013).

Similar to the Bayesian Lasso, the Horseshoe shrinkage prior also does not admit closed

form full posterior of β. Thus, Gibbs sampling is implemented by invoking a data augmen-

tation approach similar to the Bayesian Lasso. The hierarchical data augmented model with

the Horseshoe shrinkage prior is given by

ys|Xs,β, σ
2 ∼ Nn

(
Xsβ, σ

2In
)
, s = 1, .., t, β|σ2, τ 2,λ ∼ Np

(
0, τ 2σ2Mλ

)
, π(σ2) ∝ 1

σ2

λ2j | νj ∼ IG
(

1

2
,

1

νj

)
, νj ∼ IG

(
1

2
, 1

)
, τ 2 | ξ ∼ IG

(
1

2
,
1

ξ

)
, ξ ∼ IG

(
1

2
, 1

)
, j = 1, .., p,

where β = (β1, . . . , βp)
′, Mλ = diag

(
λ21, . . . , λ

2
p

)
, λ =

(
λ21, . . . , λ

2
p

)′
and ν = (ν1, . . . , νp)

′.

The data augmentation allows the batch MCMC procedure to draw MCMC samples at time

t from the following full conditional distributions,

β|σ2, τ 2, λ2,D(t) ∼ Np

((
S

(t)
1 +

M−1
λ

τ 2

)−1
S

(t)
2 , σ

2

(
S

(t)
1 +

M−1
λ

τ 2

)−1)

σ2|β, τ 2, λ2,D(t) ∼ IG

(
nt+ p

2
,
S

(t)
3 + β′S

(t)
1 β − 2β′S

(t)
2

2
+
β′M−1

λ β

2τ 2

)

λ2j |βj, νj, τ 2, σ2,D(t) ∼ IG

(
1,

[
1

νj
+

β2
j

2τ 2σ2

])
, νj|λ2j ,D(t) ∼ IG

(
1,

(
1 +

1

λ2j

))
ξ|β, σ2, τ 2,D(t) ∼ IG

(
1, 1 +

1

τ 2

)
, τ 2|β,λ, σ2,D(t) ∼ IG

(
p+ 1

2
,
1

ξ
+
β′M−1

λ β

2σ2

)
. (3)

The conditional distributions are dependent on the data D(t) only through sufficient

statistics S(t) = {S(t)
1 ,S

(t)
2 ,S

(t)
3 } which are updated using S

(t)
1 = S

(t−1)
1 + X ′tX t, S

(t)
2 =

S
(t−1)
2 +X ′tyt and S

(t)
3 = S

(t−1)
3 + y′tyt. Similar to the Bayesian Lasso, the Gibbs sampling

step of β involves decomposing and storing a p× p matrix per iteration that becomes costly

with big p.

2.3 Spike and Lasso Variable Selection Prior

Although shrinkage priors are designed to shrink the posterior distributions of unimpor-

tant predictor coefficients close to zero, the shrinkage frameworks do not allow detection
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of unimportant predictors. In contrast, the spike and slab discrete mixture of distributions

are specifically designed for variable selection in high dimensional regressions (George and

McCulloch, 1997). In this section, a variant of the spike and slab mixture prior is introduced

as,

βj|σ2, τ 2j , γj ∼ γjN
(
0, σ2τ 2j

)
+ (1− γj)N

(
0, c2

)
τ 2j ∼ Exp(λ2/2), γj ∼ Ber(θ), λ2 ∼ Ga(r, d), θ ∼ Beta(a, b).

Integrating over the latent variables τ 2j and λ2, we obtain βj|σ2, λ2, γj ∼ γjDE(λ/σ) + (1−

γj)N(0, c2), for j = 1, ..., p, as a mixture of a double exponential and normal densities. We

refer to this mixture distribution as the Spike and Lasso distribution. Choosing c2 small, the

prior performs simultaneous variable selection and parameter estimation, adaptively thresh-

olding small effects with the concentrated normal spike while minimally shrinking the large

effects with the heavy-tailed double exponential (DE) slab distribution. Allowing the prior

inclusion probability θ to be random enables us to automatically adjust for multiple com-

parisons (Scott and Berger, 2010). Spike and slab discrete mixture priors enjoy attractive

theoretical properties (Castillo et al., 2015) and a transformed spike and slab prior has re-

cently been added as a penalty to the frequentist penalized optimization literature (Ročková

and George, 2016).

With data upto time t, D(t) and sufficient statistics S
(t)
1 , S

(t)
2 and S

(t)
3 , the prior formula-

tion and data model lead to the following closed form full conditional posteriors facilitating
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implementation with Gibbs sampler

β|σ2, τ 2, γ,D(t) ∼ Np

((
S

(t)
1 +M−1

)−1
S

(t)
2 , σ

2
(
S

(t)
1 +M−1

)−1)

σ2|β, τ 2, λ2,D(t) ∼ IG

nt+ p

2
,

(
S

(t)
3 + β′S

(t)
1 β − 2β′S

(t)
2

)
+ β′M−1β

2


λ2|β, σ2, τ 2,D(t) ∼ IG

(
p+ r,

∑p
j=1 γjτ

2
j

2
+ d

)
, θ ∼ Beta

(
a+

p∑
j=1

γj, b+ p−
p∑
j=1

γj

)
1

τ 2j
|γj = 1,β, σ2, λ2,D(t) ∼ Inv −Gaussian

(√
λ2σ2

β2
j

, λ2

)
, τ 2j |γj = 0,β, σ2, λ2,D(t) ∼ Exp(λ2/2)

γj|β, σ2, τ 2, θ,D(t) ∼ Ber(ηj), ηj =
θ
(
σ2τ 2j

)− 1
2 exp

(
− β2

j

2σ2τ2j

)
θ
(
σ2τ 2j

)− 1
2 exp

(
− β2

j

2σ2τ2j

)
+ (1− θ) (c2)−

1
2 exp

(
− β2

j

2c2

) .
(4)

where M = diag(w1, . . . , wp) with wj = τ 2j if γj = 1; = c2 otherwise. The computational

issue arises from the Gibbs sampling step of β that incurs a complexity of O(p3), as well

as due to updating γj’s, j = 1, ..., p resulting in high autocorrelation. Updating subsets of

β parameters in smaller blocks may be an option. However, shrinkage or variable selection

priors generally do not allow closed form marginal distributions for such blocks of regression

parameters. Again, the sequential nature of Gibbs sampling prohibits updating blocks of

parameters in β in parallel. The dynamic feature partitioning strategy developed in the

next section will provide a solution to this computational challenge by parallelizing the

approximate Bayesian computation of blocks of parameters into different processors.

3 Dynamic Feature Partition in High-Dimensional Re-

gression

The dynamic feature partitioning (DFP) is a general online algorithm for streaming data

(or massive data fed to a model in small batches or shards during model computation)

that partitions the large parameter space and facilitates rapid Bayesian updating of dif-

ferent partitions of parameters in parallel. While the algorithm is applied to mitigate the
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aforementioned computational issues in the Bayesian high dimensional linear regression, the

algorithm per se is more general in nature and perhaps useful in other contexts.

3.1 Relevant Notations and Details of DFP

Let Θ = {θ1, . . . , θq} represent the parameter space with q parameters, which is bigger than

p (the no. of predictors), since the parameter space includes the error variance σ2 as well as

latent variables from the data augmentation procedure described in Section 2. We further

assume

(1) q is fixed over time, i.e., the parameter space does not change with the arrival of new

data shards.

(2) At each time point, the posterior distribution of the parameters Θ depends on the

data only through lower dimensional functions of D(t) which are referred to as sufficient

statistics. More formally, S(t) is a vector of sufficient statistics for Θ if Θ|D(t) has the

same distribution as Θ|S(t). Denoting f(Θ|D(t)) as the full posterior distribution of Θ,

this assumption implies that f(Θ|D(t)) = f(Θ|S(t)).

Referring to Section 2, both (1) and (2) are valid for linear regression models with shrinkage

prior distributions or discrete mixture variable selection priors on coefficients.

At time t, consider a partition of the parameter indices given by G(t) = {Gt
1, . . . , G

t
kt
},

such that Gt
l ∩ Gt

l′ = ∅, l 6= l′ and
⋃kt
l=1G

t
l = {1, . . . , q}. Also let ΘGtl

= {θi | i ∈ Gt
l} and

Θ−Gtl = Θ{1,...,q}\Gtl = {θi | i ∈ {1, . . . , q} \ Gt
l} = {θi | i /∈ Gt

l} be parameters contained

and not contained in the lth partition, respectively. We consider both the number of par-

titions kt and the constitution of each partition to be adaptive and dynamically changing

over time. The prior specifications and conditional independence assumptions often suggest

natural parameter partitioning schemes. We provide an outline of the dynamic parameter

partitioning schemes employed in this article in the context of high dimensional regressions

with shrinkage and Spike and Lasso priors towards the end of this section.

Consider also a sequence of point estimates Θ̂
(t)

constructed dynamically over time for the

parameter Θ. Given a partition of the parameter space at time t, the DFP approximation to

the posterior full conditional distribution f
(
ΘGtl
|Θ−Gtl ,S

(t)
)

of ΘGtl
(l = 1, ..., kt), referred

10



to as the DFP pseudo conditional posterior, is given by f
(
ΘGtl
|Θ̂

(t−1)
−Gtl

,S(t)
)

, with Θ−Gtl

replaced by its point estimate Θ̂
(t−1)
−Gtl

at time (t−1). Since the conditioning set remains fixed

throughout time t, conditional distributions ΘGtl
’s for l = 1, ..., kt are not dependent on each

other at time t. This eliminates the need to sequentially update parameter blocks ΘGtl
’s, and

samples can rather be drawn rapidly from kt DFP pseudo conditional posteriors in parallel.

All these concepts and notations will be used to describe the DFP algorithm below.

DFP Algorithm for online approximate MCMC inference:

The DFP algorithm provides an online approximate MCMC sampling based on dynamically

adaptive parameter partitions and their point estimates constructed sequentially over time.

The algorithm begins by initializing the point estimate of Θ (call it Θ̂
(0)

) at some default

value and initializing sufficient statistics S(0) at 0. When new data shard Dt arrives at time

t (t = 1, ..., T ), sufficient statistics S(t) are updated as a function of S(t−1) and Dt, denoted

as S(t) = g(S(t−1),Dt). In the examples of Section 2, g(·) is implicitly defined through the

three equations, S
(t)
1 = S

(t−1)
1 + X ′tX t, S

(t)
2 = S

(t−1)
2 + X ′tyt and S

(t)
3 = S

(t−1)
3 + y′tyt.

The dynamic partitioning scheme (described later) then updates partitions of the set of

parameters and creates new partitions G(t) at time t. The DFP algorithm then proceeds

by sampling from the DFP pseudo conditional posteriors at time t in parallel. If the DFP

pseudo conditional posteriors are in closed form, one may consider block updating of ΘGtl

from f
(
ΘGtl
|Θ̂

(t−1)
−Gtl

,S(t)
)

. Otherwise, the sampling in each partition proceeds by employing

a Gibbs sampler with smaller blocks of parameters in the lth partition. More specifically,

θj ∈ ΘGtl
is updated by drawing S (a moderately large number, taken to be 500 in Sec-

tion 4) approximate MCMC samples θ̃
(1,t)
j , ..., θ̃

(S,t)
j from f

(
θj|ΘGtl\{j}, Θ̂

(t−1)
−Gtl

,S(t)
)

. Often

this distribution depends on a lower dimensional function of ΘGtl\{j}, Θ̂
(t−1)
−Gtl

and S(t), given

by J
(t)
l,j = hj(ΘGtl\{j}, Θ̂

(t−1)
−Gtl

,S(t)), i.e., f
(
θj|ΘGtl\{j}, Θ̂

(t−1)
−Gtl

,S(t)
)

= f
(
θj|J (t)

l,j

)
. Specific

examples of J
(t)
l,j are provided in Sections 4.1, 4.2 and 4.3. Once S approximate MCMC sam-

ples are drawn from DFP pseudo conditional posteriors fairly rapidly, we use these samples

to construct the point estimates of parameters at time t, given by Θ̂
(t)

. In our exposition,

we use mean of the S samples θ̃
(1,t)
j , ..., θ̃

(S,t)
j to construct θ̂

(t)
j . The theoretical results in

the supplementary material prove desirable performance of the proposed algorithm when

the sequence of estimators Θ̂
(t)

is consistent in estimating the true parameters as t → ∞.
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Efficient updating of DFP pseudo conditional posteriors using the sufficient statistics and

point estimates of parameters from the previous time point lead to scalable inference.

Partitioning schemes:

As discussed before, an efficient partitioning of parameter indices G(t) at the tth time is

achieved by heavily exploiting the nature of the model and prior distributions. We believe

that a general partitioning scheme that is applicable to any model and/or any prior distribu-

tion is unappealing since it will not be able to fully exploit the specific features of the model

and prior distributions. Since the main focus of this article is on Bayesian shrinkage and

variable selection priors in high dimensional linear regression models, broadly two different

partitioning schemes are proposed, one for the model (1) with shrinkage priors and the other

for spike and slab priors.

(A) Partitioning algorithm for shrinkage priors: Referring to the discussion in Sections 2.1

and 2.2, the computational bottleneck mainly arises due to sampling from the posterior

full conditional of β. Therefore, in the course of developing a partitioning strategy for the

parameters in (1) with shrinkage priors, the main focus rests on how to partition β into

blocks of sub-vectors with a minimal loss of information due to separately updating these

blocks residing in different partitions from their DFP full conditionals. To this end, we

set the maximum size of each block of β residing in different partitions to be less than

or equal to M at every time to keep a control on the computational complexity. M is user

defined and its choice depends on the available computational resources. In high dimensional

linear regression with Bayesian shrinkage priors, empirical investigations show M = 100 to

be sufficient. Thereafter we envision the problem of partitioning β at time t as a graph

partitioning problem. To elaborate, at time t, for j, j′ ∈ {1, ..., p}, let the sample correlation

between S iterates of βj and βj′ from time (t − 1) following the DFP algorithm, given

by {β̃(s,t−1)
j }Ss=1 and {β̃(s,t−1)

j′ }Ss=1, be denoted by rj,j′ . A graph is constructed with nodes

as the predictor indices {1, ..., p} and an edge between two nodes j, j′ if rj,j′ > c where

c ∈ (0, 1). Our proposed scheme constructs different graphs in this manner corresponding to

different choices of the cut-off c ∈ seq(0.01,0.99,by=0.01). Thereafter we find connected

components of all these constructed graphs and look for the smallest value of c (say c∗)

for which the size of all connected components are less than M . Such an implementation
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is readily achieved by the functionalities in the igraph package in R. The bt connected

components {P(t)
1 , ...,P(t)

bt
} corresponding to the cut-off value c∗ at time t are recognized as

partitions of the indices {1, ..., p} and βj’s corresponding to different connected components

go to different partitions at time t. Computational cost with Gibbs updating of the rest of the

parameters is less substantial and thus there is more room to partition the other parameters.

Since the data augmentation approaches in Sections 2.1 and 2.2 introduce latent vectors (τ 2

in Section 2.1, λ and ν in Section 2.2) of the same size as β, we either keep all elements of

a latent vector together in one partition or divide a latent vector into blocks with indices

{P(t)
1 , ...,P(t)

bt
} and send the latent vector with indices P(t)

k to the same partition where βP(t)
k

lies. Variance σ2 and other hierarchical parameters are kept together in a separate partition.

Since a partition involves blocks of β with size at most M , sampling them together from

their DFP full conditionals incurs complexity at most of O(M3).

(B) Partitioning algorithm for Spike and Lasso priors: Since the Spike and Lasso example

in Section 2.3 involves coefficients belonging to one of the two mixture components at every

iteration of the posterior sampling, the parameter partitioning scheme adopted for shrinkage

priors appears to be less efficient here. Instead, we propose a dynamic partitioning scheme

of the parameter space by tacitly exploiting the natural partitioning of the β parameters

and associated latent vector τ into important and unimportant components. Define Θ1t =

{(βj, τ 2j ) : γ̂
(t−1)
j = 1} and Θ2t = {(βj, τ 2j ) : γ̂

(t−1)
j = 0}, where γ̂

(t−1)
j ∈ {0, 1} corresponds to

the point estimate of γj at time (t−1). Thereafter our partitioning scheme suggests keeping

the entire Θ1t in one partition and dividing Θ2t into partitions, with each partition of Θ2t

containing (βj, τ
2
j ) for a single j. Additionally, all γj’s are kept in the same partition and

λ2, σ2, θ in another partition. Since spike and slab priors are typically employed to recover β

parameters which are sparse in nature in the truth, Θ1t is expected to be of small to moderate

size with cardinality much smaller than p as time progresses. Thus, updating (βj : βj ∈ Θ1t)
′

together requires computation complexity of order |Θ1t|3 << p3. On the other hand, βj’s for

j ∈ Θ2t are updated individually without incurring any notable computational burden. A

similar strategy is followed when the double exponential slab distribution in the Spike and

Lasso prior is replaced by any other distribution.

13



3.2 Comparison of DFP with Other Approximate Bayesian Frame-

works

Algorithm 1 presents a sketch of the Dynamic Feature Partition (DFP) in high dimen-

sions. Although DFP is an approximate Bayesian algorithm, it has significant distinctions

from the literature on frameworks involving approximate Bayesian inference as discussed

below.

When the full posterior distribution is computationally prohibitive, methods like vari-

ational Bayes offer a computationally efficient alternative by optimizing the parameters in

a class of analytic approximations to the posterior. Variational Bayes algorithms are ex-

tended to online variational Bayes algorithms (Sato, 2001; Hoffman et al., 2010; Campbell

et al., 2015) for efficient online Bayesian learning for streaming or large data. Although

the DFP framework proposes approximating the full posterior distribution, the approxima-

tion technique is fundamentally different from variational approximations. While variational

Bayes approximates the full posterior distribution by a distribution with block independent

marginals, the DFP framework invokes approximations by blocking independent posterior

conditional distributions of parameters. More importantly, variational approximations often

pre-decide parameter blocks which are to be considered independent in the posterior infer-

ence, while DFP dynamically adapts to ensure efficient partitioning of parameters. As a

result, variational approximation may underestimate uncertainty from the variationally ap-

proximated posterior distribution of β, while DFP is demonstrated to have close to nominal

coverage in almost all high dimensional simulation examples.

In the general Bayesian literature of streaming data, Sequential Monte Carlo (SMC)

(Chopin, 2002; Arulampalam et al., 2002; Lopes and Tsay, 2011; Doucet et al., 2001; Zhou

and Jasra, 2015) is one of the most popular online methods that relies on resampling par-

ticles sequentially as data shards arrive over time. A naive implementation of SMC might

be less efficient and less accurate involving large n and p due to the need to employ very

large numbers of particles to obtain adequate approximations and prevent particle degen-

eracy. The latter is addressed through rejuvenation steps using all the data (or sufficient

statistics), which may become expensive in an online setting (Snyder et al., 2008). There

14



are approaches in recent years to overcome the dimensionality issue in the SMC algorithm

mainly in the context of fitting state-space models. To this end, carefully constructed SMC

algorithms (Chopin et al., 2004; Beskos et al., 2014; Schweizer, 2012; Carvalho et al., 2010)

show promise in terms of scaling in a polynomial complexity with the number of parameters,

though the complexity as a function of the size of the dataset is either growing with time

(e.g., for Chopin et al. (2004)) or is not apparent from the context. Rebeschini et al. (2015)

develop a blocking strategy for high dimensional particle learning (PL) where the error of

approximation is free of the dimension of the parameter space. Unfortunately, the numeri-

cal examples for high dimensions provided by Rebeschini et al. (2015) do not demonstrate

satisfactory performance with large state-space models. Furthermore, the results rely on the

decay of correlations for state-space varying parameters in the fitted model, which is suitable

in the context of state-space models, but less satisfactory for our problem of interest. Wigren

et al. (2018) propose another approach for high dimensional particle learning in state-space

models, though the numerical illustration of the approach may struggle to comfortably scale

beyond a few dozen dimensional state-space models. While most of these developments have

taken place in the high dimensional problem of particle filtering in state-space models, we

are concerned with estimation of high dimensional parameters, which has been given far less

attention. To this end, Lindsten et al. (2017) propose a new SMC algorithm based on param-

eter partitioning, though difficulties may arise when joining the partitions, which requires

a careful resampling. In the same vein, Gunawan et al. (2018) propose an approach that

employs a sub-sampling technique to combat the problem of large data in the realm of high

dimensional problems. Arguably, there is a general lack of extensive empirical investigations

of SMC or PL algorithms proposed for high dimensional problems, and most of them do not

come with any open source code for implementation. Perhaps a static parameter estimation

presents a bigger challenge than state filtering in high dimensions. One plausible reason can

be the fact that new data points add more information for the state in a state-space setting.

On a separate note, Hamiltonian Monte Carlo (HMC) methods with stochastic gradient de-

scent can also leverage the online nature of the data (Betancourt, 2017) while exploring the

distribution efficiently. However, HMC may not be suitable for computing high dimensional

regression with a discrete mixture of prior distributions involving a large number of binary
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variables. Additionally, the performance of HMC with a high dimensional parameter space

is yet to be fully reckoned with.

In a recent article, Wang et al. (2016) introduce a two stage predictor partitioned high

dimensional linear regression for fast computation. In the first stage, predictors are de-

correlated, which is followed by partitioning the predictor space into subsets. In the second

stage, Lasso is fit on each subset of predictors. This approach yields only point estimates

of β with no straightforward Bayesian extension. Moreover, it somewhat loses its appeal

when dealing with streaming data, as the first stage of de-correlation would have to be done

repeatedly at the onset of a new data shard.

4 Illustrations of DFP with Shrinkage and Discrete

Mixture Priors in High Dimensional Regressions

This section illustrates parametric and predictive performances of the online DFP al-

gorithm for (i) Bayesian Lasso, (ii) Horseshoe and (iii) Spike and Lasso discrete mixture

priors. For the simulation examples in (i)-(iii), shards of size n = 1000 observations arrive

sequentially over T = 500 time horizons. Data shard Dt at time t consists of an n × 1

response vector yt and an n × p predictor matrix X t = (x1t, ...,xnt)
′, t = 1, ..., T . At each

time, S = 500 approximate MCMC samples of ΘGt1
, ...,ΘGtkt

are drawn from their respective

DFP pseudo conditional posteriors to approximate the full posterior distribution f(Θ|D(t)).

The p × 1 predictor vector xjt (j = 1, ..., n) at time t is generated as xjt ∼ N(0,H),

where H = Block-diag(H1, ...,H100), with each H l being a 50 × 50 Toeplitz structured

matrix having the (m,m′)th element as ρ|m−m
′|, ρ ∈ (0, 1). This is to mimic the scenario

where there are blocks of predictors such that predictors within a block are correlated and

predictors across blocks are uncorrelated. All simulation examples consider high correlations

among predictors in a block with ρ = 0.9. This presumably induces strong associations

among parameters, which is often challenging for any high dimensional regression framework

to estimate. The inferential challenge appears to be more critical for the DFP framework as

it relies on parameter partitioning, which might naturally weaken correlations a-posteriori

among parameters. To simulate the true predictor coefficients β = (β1, ..., βp)
′, the following
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Algorithm 1: Dynamic Feature Partition

1 1

Input: (1) Data shard Dt at time t; (2) Parameter partition G(t−1); (3) Sufficient

Statistics S(t−1) (4) Approximate posterior draws Θ̃
(1,t−1)

, . . . , Θ̃
(S,t−1)

at

time (t− 1); (5) Parameter Estimates Θ̂
(t−1)

Output: (1) Approximate posterior draws Θ̃
(1,t)

, . . . , Θ̃
(S,t)

at time t; (2) Sufficient

Statistics S(t); (3) Parameter Estimates Θ̂
(t)

2 DFP(Dt,G(t),S(t−1), Θ̂
(t−1)

)
3 begin

/* Step 1: Update the Partitioning of the set of parameters at

time t: the partitioning schemes should ideally exploit the

nature of the model and prior distributions. We propose

partitioning schemes specific to the high dimensional linear

regression models with shrinkage priors and spike and slab

priors in Section 3, page 12 and 13. */

4 G(t) = PartitionUpdate
(
Θ̃

(1,t−1)
, . . . , Θ̃

(S,t−1))
/* step 2: Update Sufficient Statistics */

5 Update S(t) = g(Dt,S
(t−1))

6 for Gt
l ∈ G(t) do

7 for θj ∈ ΘGtl
do

8 set J
(t)
l,j ← hj

(
ΘGtl\{j},S

(t−1), Θ̂−Gtl

)
9 end

10 end
/* step 3: Approximate Sampling for Parameter Blocks in Parallel

*/

11 for Gt
l ∈ G(t) do

12 for θj ∈ ΘGtl
do

13 for s=1:S do

14 sample θ̃
(s,t)
j ∼ f

(
θj|J (t)

l,j

)
15 end

16 end

17 end
/* step 4: Update Estimates */

18 for Gt
l ∈ G(t) do

19 for θj ∈ ΘGtl
do

/* Compute relevant point estimates for the parameters from

approximate MCMC samples. We consider the mean of the

samples as the point estimate for each parameter */

20 set θ̂
(t)
j ← stat

(
θ̃
(1,t)
j , . . . , θ̃

(S,t)
j

)
21 end

22 end

23 return {Θ̃(1,t)
, . . . , Θ̃

(S,t)},S(t), Θ̂
(t)

24 end
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scenarios are considered:

Simulation 1: 50 randomly selected βj’s are drawn i.i.d. from N(3,1), 50 randomly selected

βj’s are drawn i.i.d. from N(1,1), rest are all set to 0.

Simulation 2: 50 randomly selected βj’s are drawn i.i.d. from N(3,1), rest are all set to 0.

Simulation 3: All βj’s are drawn i.i.d. from U(−1, 1).

Simulation 1 focuses on a sparse case with varying magnitudes of nonzero coefficients. We

will refer to it as the low and high sparse case. Simulation 2 corresponds to a sparse case

with similar magnitudes of nonzero coefficients, while Simulation 3 corresponds to a dense

case which is motivated by practical applications where each of the covariates has a small

effect on the outcome. The responses yt for t = 1, ..., T are generated from X t and the true

predictor coefficients using (1), with σ2 chosen so as to keep a signal to noise ratio of 1 for

the generated data.

The performance of DFP is compared with a set of competitors suitable for high dimen-

sional linear regressions models. We specifically compare with (a) batch MCMC that draws S

MCMC samples from the full conditional distributions at every time point with the full data

D(t) through time t at disposal; and (b) Conditional Density Filtering (C-DF) (Guhaniyogi

et al., 2018). Batch MCMC offers the “gold standard” for ordinary Gibbs sampling that

uses the full data D(t) at time t. At time t, batch MCMC initializes the MCMC chain at

the last iterate in time (t − 1). In examples (i)-(iii), the conditional posterior distributions

depend on the data through lower dimensional sufficient statistics, and hence batch MCMC

only stores and propagates the sufficient statistics to update the conditional distributions in

successive time points. Conditional density filtering is proposed in the same vein as DFP

with an important difference. While DFP proposes dynamic partitioning of the parameter

space, C-DF works with parameter partitions fixed over time. We find that the naive im-

plementation of C-DF demonstrates considerably inferior performance than DFP. To make

C-DF more competitive, we employ a version of C-DF that draws samples from parameter

partitions sequentially rather than in parallel, to be able to use samples from one partition

to construct more accurate point estimates for the other partitions at every time. Such

an implementation of C-DF considerably improves its performance, though at the expense

of added computational burden. Overall, comparison with this improved version of C-DF
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will demonstrate the advantages of dynamic partitioning over fixed partitioning as a tool to

provide a better approximation to the full posterior distribution of parameters. Online vari-

ational inference provides an alternate strategy to draw approximate inference in presence of

big data and a large number of parameters. However, in absence of any open source code for

online variational inference in high dimensional linear regression, we refrain from employing

it as a competitor. Finally, we compare our approach with a variant of the Sequential Monte

Carlo (SMC) approach. As discussed in Section 3.2, most of the developments in SMC and

PL algorithms have taken place in the high-dimensional state-space models and they do not

assume seamless extensions to very high dimensional static parametric models. There are

only a handful of approaches using SMC and its variants in static parametric models, mostly

for moderately large dimensional problems. However, to the best of our knowledge, SMC

or any of its variants have not been empirically investigated in static parametric models

with dimensions as high as we consider (p = 5000). Therefore, we adapt the recent sub-

sampled SMC approach outlined in Gunawan et al. (2018) to our setting. Note that the

approach in Gunawan et al. (2018) is designed for the scenario when the entire dataset is

available to the user. To adapt it to the streaming data context, we employ a data annealing

approach instead of the temperature annealing approach used by the authors. Our data

annealing approach performs data sub-sampling from the entire data D(t) when a new batch

arrives at time t and uses the sub-sampling density approximation as well as the Hamiltonian

Monte-Carlo technique for efficient drawing of high dimensional Monte Carlo samples. This

approach uses the entire data set (upto time t) D(t) in drawing SMC samples at time t, and

strictly speaking is not an online Bayesian competitor. Nevertheless, it can demonstrate the

state-of-the-art performance from SMC which will be helpful in assessing the performance

of DFP. We refer to this approach as sub-sampled SMC (SSMC).

Plots of kernel density estimates for marginal approximate DFP posterior densities on

representative model parameters are shown at various time points with the true value of the

respective parameters overlaid to assess the posterior inference from DFP. Additionally, to

measure the predictive performance of competitors, we report: (a1) mean squared prediction

error (MSPE); (a2) Interval score (Gneiting and Raftery, 2007) of the 95% predictive interval;

(a3) coverage of the 95% predictive interval and (a4) average run time for each batch or shard.
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Note that (a1) demonstrates the performance in terms of point prediction, while (a2) and

(a3) show how well calibrated the predictions turn out to be. Finally, (a4) helps readers gauge

the computation time vis-a-vis accuracy of the competitors. At time (t− 1), evaluations of

predictive performance metrics (a1)-(a3) are based on the data shard observed at time t. All

results are based on averages over 10 independent replications. All computation times are

based on an R implementation in a cluster computing environment with three interactive

analysis servers, 32 cores each with the Dell PE R820: 4x Intel Xeon Sandy Bridge E5-4640

processor, 16GB RAM and 1TB SATA hard drive.

4.1 DFP with Bayesian Lasso

We consider the first application of DFP with the popular Bayesian Lasso (Park and

Casella, 2008) shrinkage prior on high dimensional predictor coefficients. Details of the

Bayesian Lasso prior and challenges regarding posterior computation with the Bayesian

Lasso prior has already been presented in Section 2.1.

The DFP algorithm applied to this setting proposes dynamic partitioning of the param-

eter space over kt = bt + 1 subsets at time t. Let the partition of the parameter space at

time t be defined by

Θ
G

(t)
l

=
{
β
i
(t)
m1+···+ml−1+1

, τ 2
i
(t)
m1+···+ml−1+1

, ..., β
i
(t)
m1+···+ml

, τ 2
i
(t)
m1+···+ml

}
, l = 1, .., bt, Θ

G
(t)
bt+1

=
{
σ2, λ2

}
,

where the lth partition, l = 1, .., bt consists of 2ml parameters (ml is also a function of

t) and i
(t)
m1+···+ml−1+1, ..., i

(t)
m1+···+ml ∈ {1, ..., p} correspond to the indices of predictor co-

efficients and latent variables belonging to the lth partition at time t. Let at time t,

βl =

(
β
i
(t)
m1+···+ml−1+1

, ..., β
i
(t)
m1+···+ml

)′
, τ 2

l =

(
τ 2
i
(t)
m1+···+ml−1+1

, ..., τ 2
i
(t)
m1+···+ml

)′
, M τ,l = diag(τ 2

l )

and β−l be the vector of all βj’s except those included in βl. β̂
(t−1)
l , β̂

(t−1)
−l , τ̂

2(t−1)
l are the

point estimates of βl,β−l, τ
2
l respectively at time (t − 1). S

(t)
1,l and S

(t)
2,l are analogously

defined. Also assume S
(t)
1,l,−l = S

(t−1)
1,l,−l +X

′
t,lX t,−l, where X t,l and X t,−l are the sub-matrices

of X t corresponding to βl and β−l, respectively. Following Algorithm 1, sampling proceeds

using DFP as follows:

1. Initialize: Initialize variables β, τ 2, σ2 and λ. Set β̂
(0)
, σ̂2(0), τ̂ 2(0), λ̂2(0) at their initial
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values.

2. Observe data and partition parameter space at time t: Observe data Dt = {yt,X t} at

time t. Update the partitions of the parameters based on the iterates of the parameters

at time (t−1). The parameter partitioning algorithm at time t for the shrinkage priors

is given in Section 3.

3. Update sufficient statistics: Update sufficient statistics S
(t)
1 ,S

(t)
2 ,S

(t)
3 based on S

(t−1)
1 ,S

(t−1)
2 ,S

(t−1)
3

and Dt with the equations given in Section 2.1.

4. Drawing approximate posterior samples: Draw S samples from the DFP full condi-

tional posterior distributions of βl and τ 2
l given by

1

τ 2j
|· ∼ Inv −Gaussian

√ λ̂2(t−1)σ̂2(t−1)

β2
j

, λ̂2(t−1)

∀τ 2j ∈ τ 2
l , βl ∼ N

(
µ
β
(t)
l
,Σ

β
(t)
l

)
µ
β
(t)
l

=
(
S

(t)
1,l +M−1

τ,l

)−1(
S

(t)
2,l − S

(t)
1,l,−lβ̂−l

(t−1)
)
, Σ

β
(t)
l

= σ̂2(t−1)
(
S

(t)
1,l +M−1

τ,l

)−1
.

The conditional distributions of the parameters in the lth server depends on the lower

dimensional functions of sufficient statistics, point estimates from time (t− 1) and the

other parameters from the same partition. This is conceptualized in the notation J
(t)
l,j

in Section 3. Sampling from the DFP full conditionals of {βl, τ 2
l } (l = 1, ..., bt) is per-

formed on bt servers in parallel. In the (bt+1)-th server, draw S samples from the DFP

conditional distributions of λ2 and σ2 given by λ2 ∼ Gamma

(
p+ r,

∑p
j=1 τ̂

2(t−1)
j

2
+ d

)
,

σ2 ∼ IG

(
nt+p
2
,

(
S

(t)
3 +β̂

(t−1)′
S

(t)
1 β̂

(t−1)−2β̂(t−1)′
S

(t)
2

)
+β̂

(t−1)′
(M̂

(t−1)

τ )−1β̂
(t−1)

2

)
.

5. Compute the sequence of estimators at time t: Set β̂
(t)

, τ̂ 2(t), σ̂2(t), λ̂2(t) from their re-

spective sample averages from S MCMC samples.

Figure 1 presents MSPE, coverage, interval score for the 95% predictive intervals and

computation time in seconds per batch of the competing methods for Simulation 1. Figures

2 and 3 highlight the same quantities for Simulations 2 and 3 respectively, except the com-

putation time which is similar for competitors across the three simulations. Batch MCMC,
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being a batch method, is expected to converge faster. The predictive inference of DFP im-

proves rapidly and becomes indistinguishable from batch MCMC within t ≈ 100 − 150 for

all three simulations. In contrast, the predictive performance of C-DF appears to be infe-

rior to batch MCMC even at t = 150. The substantial gain in predictive inference of DFP

over C-DF can perhaps be attributed to the dynamic partitioning of the parameter space,

thereby learning posterior correlations among parameters more accurately over time which

yields a better approximation of the full posterior. Additionally, DFP approximation enjoys

significant reduction in per batch run time over its competitors.

The average MSPE, run time, coverage and interval scores of 95% predictive intervals

over the last 100 time points for all the competitors are presented in Table 1. Table 1

shows that in all three simulations, DFP emerges as a computationally efficient replacement

for batch MCMC, both in terms of point prediction as well as characterizing predictive

uncertainties. As mentioned earlier, naive implementation of C-DF demonstrates inferior

predictive inference. An improved implementation of C-DF presented here, in contrast, loses

appeal with minimal gain in computation time over batch MCMC. The SSMC approach also

demonstrates similar inferential performance with DFP with a higher computation time.

Due to space constraint, density estimates for a few selected predictor coefficients are

displayed at t = 250, 500. Since Simulation 1 is the most interesting scenario, posterior

densities of a randomly chosen zero coefficient, a nonzero coefficient with a lower magnitude

and a nonzero coefficient with a higher magnitude are presented in Figure 1. Posterior

densities of the selected βj’s in the batch MCMC and DFP tend to show discrepancies in

the earlier time points. These discrepancies diminish at t = 500, empirically validating the

fact that approximate DFP draws converge to the full posterior distribution in time. This

conclusion remains valid for Simulations 2 and 3.

4.2 DFP with Horseshoe

Our second application considers implementing DFP on the Horseshoe shrinkage prior

(Carvalho et al., 2010). The full conditional distributions of parameters along with com-

putational issues in implementing Gibbs sampling with the Horseshoe shrinkage prior are

given in Section 2.2. The DFP algorithm is employed to incur computational benefits in
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Table 1: Bayesian Lasso performance statistics for MCMC, CDF, DFP and SSMC. Coverage
and length are based on the average of the 95% credible predictive intervals in the last 100
batches. The subscript provides standard errors calculated over 10 replications.

Low & High Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9140.019 0.0020.000 3.8270.345 339.57866.343
DFP 0.8970.021 0.0020.000 3.9250.370 148.29243.878
CDF 0.9020.021 0.0020.000 3.8970.370 303.21573.600
SSMC 0.9030.018 0.0020.000 3.8110.355 234.19857.627

Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9150.021 0.0020.000 3.5020.345 400.20388.666
DFP 0.8980.023 0.0020.000 3.5920.393 162.78858.104
CDF 0.9030.023 0.0020.000 3.5560.380 365.98371.200
SSMC 0.9120.021 0.0020.000 3.5120.346 289.17966.265

Dense

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9400.017 4e− 051e−05 1.6290.121 377.822128.891
DFP 0.9170.019 4e− 051e−05 1.6620.148 145.34048.056
CDF 0.9190.018 4e− 051e−05 1.6540.143 352.099105.388
SSMC 0.9430.016 4e− 051e−05 1.6280.121 278.35465.505

Figure 1: Performance measures for MCMC, DFP and CDF in the case of Bayesian Lasso
under the high and low sparse case are presented in the first row. Coverage and Interval
scores are based on the average of the 95% predictive intervals. The second row shows
estimated densities of selected parameters at t = 250 and t = 500 for DFP and batch
MCMC. Confidence bands are based on repeating the analysis over 10 replications.
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situations with large p. The DFP algorithm applied to this problem considers partitioning
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Figure 2: Performance measures for MCMC, DFP and CDF for Bayesian Lasso under the
sparse case are presented. Coverage and Interval scores are based on the average of the
95% predictive intervals. We also show estimated densities for a selected βj at t = 250 and
t = 500 for both batch MCMC and DFP.
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Figure 3: Performance measures for MCMC, DFP and CDF for Bayesian Lasso under the
dense case. Coverage and Interval scores are based on the average of the 95% predictive
intervals. Estimated densities of selected parameters at t = 250 and t = 500 for both batch
MCMC and DFP are also added.
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(d) β

the parameters Θ = {β,λ,ν, σ2, τ 2, ξ} into kt = bt + 2 subsets at time t given by

Θ
G

(t)
l

=
{
β
i
(t)
m1+···+ml−1+1

, λ2
i
(t)
m1+···+ml−1+1

, ..., β
i
(t)
m1+···+ml

, λ2
i
(t)
m1+···+ml

}
, l = 1, .., bt,

Θ
G

(t)
bt+1

=
{
ν
}
, Θ

G
(t)
bt+2

=
{
σ2, τ 2, ξ

}
.

Let βl and λl be the vector of βjs and λ2js, respectively, corresponding to the lth partition.

Define S
(t)
1,l , S

(t)
2,l and S

(t)
1,l,−l as in Section 4.1. Let Mλ,l = diag(λl) and β−l be the βjs not

contained in βl. The DFP algorithm proceeds as follows.

1. Set β̂
(0)
, σ̂2(0), λ̂

2(0)
, ν̂2(0), τ̂ 2(0) and ξ̂(0) at their initial values.

2. Observe data Dt = {yt,X t} at time t. Update the partitions of the parameters based

on the iterates of the parameters at time (t− 1). The dynamic partitioning scheme for
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parameters for shrinkage priors described in Section 3 is employed. Throughout, the

partitions G
(t)
bt+1 and G

(t)
bt+2 are kept fixed.

3. Update sufficient statistics S
(t)
1 ,S

(t)
2 ,S

(t)
3 based on S

(t−1)
1 ,S

(t−1)
2 ,S

(t−1)
3 and Dt with

the equations given in Section 2.2.

4. Draw S samples from the DFP conditional distributions of βl and λl given by

λ2j ∼ IG

(
1,

[
1

ν̂
(t−1)
j

+
β2
j

2τ̂ 2(t−1)σ̂2(t−1)

])
, λ2j ∈ λ2

l , βl ∼ N
(
µ
β
(t)
l
,Σ

β
(t)
l

)
µ
β
(t)
l

=

(
S

(t)
1,l +

M−1
λ,l

τ 2

)−1(
S

(t)
2,l − S

(t)
1,l,−lβ̂−l

(t−1)
)
, Σ

β
(t)
l

= σ̂2(t−1)

(
S

(t)
1,l +

M−1
λ,l

τ 2

)−1
,

Sampling from the DFP full conditionals of {βl,λl} (l = 1, .., bt) are performed on bt

servers in parallel with the number of flops at most M3 at every server. Draw S samples

from the DFP full conditionals of ν given by νj ∼ IG

(
1,

(
1 + 1

λ̂
2(t−1)
j

))
, j = 1, ..., p,

in the (bt + 1)-th server. Finally, in the (bt + 2)-th server, draw S samples from the

DFP full conditional posterior distributions of τ 2, ξ, σ2 given by ξ ∼ IG
(
1, 1 + 1

τ2

)
,

τ 2 ∼ IG

(
p+1
2
, 1
ξ

+ β̂
(t−1)′

(M̂
(t−1)

λ )−1β̂
(t−1)

2σ2

)
,

σ2 ∼ IG

(
nt+p
2
,
S

(t)
3 +β̂

(t−1)′
S

(t)
1 β̂

(t−1)−2β̂(t−1)′
S

(t)
2

2
+ β̂

(t−1)′
(M̂

(t−1)

λ )−1β̂
(t−1)

2τ2

)
.

5. Set β̂
(t)

, λ̂
2(t)

, ν̂(t), τ̂ 2(t), σ̂2(t) and ξ̂(t) as their respective sample averages from S

MCMC samples.

Figure 4 presents dynamically evolving MSPE, coverage, interval score for the 95% pre-

dictive interval and computation time in seconds per batch of the competing methods for

Simulation 1. As observed in Section 4.1, MSPE for DFP falls sharply as time progresses

and becomes indistinguishable with the MSPE of batch MCMC after t ≈ 200− 250. While

accurate point prediction is one of our primary objectives, characterizing uncertainty is of

paramount importance given the recent development in the frequentist literature on char-

acterizing uncertainties in high dimensional regressions (Javanmard and Montanari, 2014;

Van de Geer et al., 2014; Zhang and Zhang, 2014). Although Bayesian procedures provide

an automatic characterization of uncertainty, the resulting credible intervals may not possess
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Table 2: Horseshoe performance statistics for MCMC, C-DF, SSMC and DFP. Coverage
and interval scores are based on the average of the 95% credible predictive intervals of the
last 100 batches. Subscripts provide standard errors over 10 simulations.

Low & High Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9240.019 0.0020.001 3.7251.006 298.12652.808
DFP 0.9050.020 0.0020.000 3.7150.341 143.58730.989
CDF 0.9090.020 0.0020.000 3.7040.338 289.12058.688
SSMC 0.9220.021 0.0020.001 3.7221.006 288.78383.226

Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9250.021 0.0020.001 3.3751.004 357.01064.220
DFP 0.9060.021 0.0020.000 3.3860.343 164.55542.560
CDF 0.9100.022 0.0020.000 3.3720.349 329.12983.201
SSMC 0.9230.022 0.0020.001 3.3771.026 338.99666.246

Dense

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9310.018 0.0010.000 2.38321.448 262.59434.915
DFP 0.8910.022 4e− 051e−05 1.7490.180 117.41614.589
CDF 0.9030.021 3e− 051e−05 1.6960.162 261.79868.321
SSMC 0.9320.017 0.0010.001 2.2213.996 311.43870.867

Figure 4: Performance measures for MCMC, DFP and C-DF in the case of Horseshoe under
the high and low sparse case are presented in the first row. Coverage and Interval scores
are based on the average of the 95% predictive intervals. The second row shows estimated
densities of selected parameters at t = 250 and t = 500 for both batch MCMC and DFP.
Confidence bands are based on the analysis over 10 replications.
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(h) σ2

the correct frequentist coverage in nonparametric/high-dimensional problems (Szabó et al.,

2015). An attractive adaptive property of the shrinkage priors, including Horseshoe, is that
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Figure 5: Performance measures for MCMC, DFP and C-DF for Horseshoe under the
sparse case are presented. Coverage and Interval scores are based on the average of the 95%
predictive intervals. We also show estimated densities of a selected βj at t = 250 and t = 500
for both batch MCMC and DFP.
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(d) Selected β

the lengths of the intervals automatically adapt between the signal and noise variables, main-

taining close to nominal coverage. Approximate Bayesian inference with the DFP algorithm

is found to preserve this desirable property of the Horseshoe prior. In fact, Figures 4, 5 and

6 show similar coverage and interval scores for DFP and batch MCMC as time progresses.

This observation is further reinforced from Table 2 which demonstrates practically identical

performances of batch MCMC, CDF, SSMC and DFP, with DFP having notably reduced

computation time.

Density estimates for a few selected predictor coefficients are displayed at t = 250, 500.

Since Simulation 1 is the most interesting scenario, posterior densities of a randomly chosen

zero coefficient, a nonzero coefficient with a lower magnitude and a nonzero coefficient with

a higher magnitude are presented in Figure 4. For nonzero coefficients, the density estimates

seem to be similar in DFP and in batch MCMC, though DFP yields marginally narrower

credible intervals than batch MCMC corresponding to zero coefficients. One fundamental

advantage of the Horseshoe shrinkage prior over frequentist penalized optimization is its

ability to accurately characterize parametric and predictive uncertainties without any user

dependent choice of tuning parameters. However, it might lose this appeal due to its high

computation time and inability to provide rapid inference with big n and p. DFP applied

to the Horseshoe prior solves the computational bottleneck for big n and p, perhaps offering

wider applicability to the Horseshoe prior in regression problems at a much larger scale.

We expect similar conclusions to hold for other state-of-the-art shrinkage priors such as, the
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Generalized Double Pareto (Armagan et al., 2013) and the normal gamma (Griffin et al.,

2010) prior distributions.

Figure 6: Performance measures for MCMC, DFP and C-DF for Horseshoe under the
dense case are presented. Coverage and Interval scores are based on the average of the 95%
predictive intervals. We also show estimated densities of a selected βj at t = 250 and t = 500
for both batch MCMC and DFP.
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4.3 Spike and Lasso

Without being too repetitive, we briefly sketch the main steps of implementing the DFP

algorithm with the Spike and Lasso prior as follows.

1. Initialize: Set β̂
(0)
, σ̂2(0), λ̂2(0), γ̂2(0), τ̂ 2(0) and θ̂(0) at their initial values.

2. Parameter space partitioning at time t: Observe dataDt = {yt,X t} at time t. Update

the partitions of the parameters based on the iterates of the parameters at time (t−1).

As discussed in the partitioning scheme for the Spike and Lasso prior in Section 3, the

number of partitions is kt = 1+ |{j : (βj, τ
2
j ) ∈ Θ2t}|, where | · | denotes the cardinality

of the set.

3. Update sufficient statistics: Update sufficient statistics S
(t)
1 ,S

(t)
2 and S

(t)
3 based on

S
(t)
1 = S

(t−1)
1 +X ′tX t, S

(t)
2 = S

(t−1)
2 +X ′tyt and S

(t)
3 = S

(t−1)
3 + y′tyt.

4. Draw approximate posterior samples at time t: Define I1t = {j : (βj, τ
2
j ) ∈ Θ1t},

where Θ1t = {(βj, τ 2j ) : γ̂
(t−1)
j = 1}. In a server, draw S samples from the DFP full

conditional posterior distributions of βI1t = (βj : j ∈ I1t)′ and τ 2
I1t = (τ 2j : j ∈ I1t)′
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Table 3: Spike and Lasso performance statistics for MCMC, CDF, SSMC and DFP. MSPE,
Coverage and interval scores are based on the average of the 95% credible predictive intervals
for the last 100 batches.

Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9210.021 0.0020.000 3.4790.335 396.73097.681
DFP 0.8980.023 0.0020.000 3.5870.388 9.2623.476
CDF 0.8940.023 0.0020.000 3.5950.385 395.402136.833
SSMC 0.9220.02 0.0020.001 3.4830.379 311.89752.019

Low & High Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

MCMC 0.9220.019 0.0020.000 3.7950.324 393.42255.556
DFP 0.8970.021 0.0020.000 3.9290.385 9.4062.886
CDF 0.8920.021 0.0020.000 3.9820.380 407.42450.365
SSMC 0.9250.017 0.0020.001 3.8020.333 314.78345.451

given by

1

τ 2j
|· ∼ Inv −Gaussian

√ λ̂2(t−1)σ̂2(t−1)

β2
j

, λ̂2(t−1)

 ∀ j ∈ I1t, βI1t ∼ N

(
µ
β
(t)
I1t
,Σ

β
(t)
I1t

)

µ
β
(t)
I1t

=
(
S

(t)
1,I1t +M−1

I1t

)−1(
S

(t)
2,I1t − S

(t)
1,I1t,−I1tβ̂−I1t

(t−1)
)
, Σ

β
(t)
I1t

= σ̂2(t−1)
(
S

(t)
1,I1t +M−1

I1t

)−1
,

where MI1t is a sub-matrix of M corresponding to the indices of I1t, S(t)
1,I1t ,S

(t)
1,I1t,−I1t

and S
(t)
2,I1t are defined analogous to the last section. Similarly draw (βj, τ

2
j ) for j ∈

I2t = {j : (βj, τ
2
j ) ∈ Θ2t}, Θ2t = {(βj, τ 2j ) : γ̂

(t−1)
j = 0} in different processors from

their DFP full conditional distributions. Draw S samples from the DFP full conditional

posterior distributions of γ given in (4) with σ2,β, τ replaced by their point estimates

from time (t − 1). Finally, draw S samples from the DFP full conditional posterior

distributions of λ2, σ2 and θ in a server.

5. Compute the sequence of estimators at time t: Set β̂
(t)

, τ̂ 2(t), λ̂2(t), σ̂2(t) and θ̂(t) as

their respective sample averages from S MCMC samples. Set γ̂
(t)
j = 1 if out of S

approximate posterior samples of γj at time (t − 1), at least S/2 have resulted in

γj = 1.

Since spike and slab prior distributions are primarily designed to identify important

variables in sparse high dimensional regressions, we investigate DFP with the Spike and

Lasso prior for Simulations 1 and 2. Figure 7 presents the dynamic progression of various
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performance metrics for DFP, batch MCMC and C-DF over T = 500 time points. Unlike

Sections 4.1 and 4.2, the operating characteristics of the Spike and Lasso applied to all

three competitors take longer time to stabilize. This is not surprising, given that batch

MCMC with spike and slab mixture priors is known to offer less accurate performance with

a smaller sample size due to the high correlation between various γj’s. As before, DFP

approximates batch MCMC accurately in terms of the operating characteristics. In fact,

Table 3 shows practically indistinguishable performance of DFP and batch MCMC, while

C-DF yields marginally larger interval scores even at latter time points. SSMC continues

to show competitive performance with a much higher computation time compared to DFP.

DFP dynamically learns the partition based on Θ1t and Θ2t. Since we consider sparse

examples, the cardinality of the set Θ1t is never large, and hence the parameters therein

can be updated quickly. Our detailed investigation also reveals that even a large number of

partitions of Θ2t does not compromise the accuracy of the inference and prediction. This

helps to accrue substantial gains in computation time for DFP compared to its competitors,

as demonstrated in Table 3. In contrast, C-DF fixes the partitions in the beginning and is

unable to leverage the information of the zero and nonzero βj’s as the approximate posterior

sampling progresses.

Representative posterior densities of βj’s from DFP and batch MCMC are presented in

Figure 8. Both in Simulations 1 and 2, the posterior densities of βj’s for DFP and batch

MCMC are centered around the truth and have similar tails. Both Simulations 1 and 2

involve high sparsity, resulting in the posterior density of θ centered at a small value. Again

there is a considerable agreement in the posterior densities of θ from DFP and batch MCMC.

Finally, posterior densities of σ2 for DFP and batch MCMC are found to differ by a small

margin from the truth.

4.4 Sensitivity to the choice of S

One of the important ingredients in the development of DFP is the choice of the number

of Monte Carlo samples S at every time and it is instructive to see the effect on inference

with different choices of S. The simulation section presents results of DFP with S = 500. To

assess the sensitivity to the choice of S in our simulations, we compute DFP after moderately
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Figure 7: Performance measures for MCMC, DFP and C-DF with the Spike and Lasso
prior under Simulations 1 (1st row) and 2 (second row). Coverage and interval scores are
based on the average of the 95% predictive intervals.
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perturbing S. Table 4 presents the predictive inference with DFP for S = 500, 750, 1000 in

the different simulation cases with the Bayesian Lasso prior. The results show practically

indistinguishable inference with different choices of S, with S = 750 and S = 1000 naturally

incurring much more computational cost. In our experience, the inference can be marginally

improved with much larger choices of S, though such choicees practically diminish any com-

putational advantage of DFP.

5 Application to Financial Stock Database

To illustrate the performance of DFP, we implement DFP for a financial data set consist-

ing of minute by minute average log-prices of the NASDAQ stock exchange from September

10, 2018 to November 13, 2018 during trading hours. The data consists of log-prices of Apple

stocks along with 3430 assets, and the aim of the data analysis is to evaluate the elasticity

of the price of Apple stocks with respect to the prices of the remaining assets. This is of
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Figure 8: Estimated densities for a few selected βjs, σ
2 and θ at t = 250 and t = 500. The

first row presents results for Simulation 1 while the second row demonstrates performance
of DFP in Simulation 2.
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particular interest, since Apple, one of the biggest publicly traded companies in the world, is

ubiquitous in portfolios ranging from retirement funds to small portfolios managed by indi-

viduals in the financial market. Thus accurate inference on the relationship between Apple

and other financial stocks allows better portfolio diversification. We envision it as a high

dimensional linear regression problem with the log-price of the Apple stock as the response

and log-prices of other assets as predictors. Along with prediction, the inferential interest

lies mainly in identifying important predictors significantly associated with the response.

Hence the Spike & Lasso prior on regression coefficients are employed.

The data includes several assets, such as ETFs, Trust Funds, stock tracker indexes, and

banks, which as expected, present a very high degree of collinearity. To avoid less desirable

inference due to high collinearity, a few financial assets are removed along with assets which

have very few transactions (less than 40), yielding 2015 predictors for the analysis. The data

set consists of 18330 observations collected over two months.

To compare the predictive inference of DFP with respect to the gold standard “batch

MCMC,” the dataset is divided into 183 approximately equal shards to implement DFP

and the “gold standard” batch MCMC. Both are implemented 10 times with 10 different
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Table 4: Bayesian Lasso performance statistics for DFP with S = 500, 750, 1000. Coverage
and length are based on the average of the 95% predictive intervals on the last 100 batches.
The subscript provides standard errors calculated over 10 replications.

Low & High Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

DFP(S = 500) 0.8970.021 0.0020.000 3.9250.370 148.29243.878
DFP(S = 750) 0.9060.024 0.0020.000 3.9570.344 243.17648.245
DFP(S = 1000) 0.9120.015 0.0020.000 3.9540.358 309.54244.268

Sparse

Method Predictive Coverage MSPE Int. Score Runtime (sec)

DFP(S = 500) 0.8980.023 0.0020.000 3.5920.393 162.78858.104
DFP(S = 750) 0.9030.028 0.0020.000 3.5780.369 248.92754.200
DFP(S = 1000) 0.9110.022 0.0020.000 3.5890.327 316.17859.264

Dense

Method Predictive Coverage MSPE Int. Score Runtime (sec)

DFP(S = 500) 0.9170.019 4e− 051e−05 1.6620.148 145.34048.056
DFP(S = 750) 0.9190.017 4e− 051e−05 1.6840.143 234.09946.498
DFP(S = 750) 0.9190.016 4e− 051e−05 1.6780.141 305.35446.491

permutations of the dataset to minimize the effect of sample ordering on the identification

of influential variables. Furthermore, this allows us to examine if the predictive inferential

mechanism in DFP is sufficiently robust to the inaccurate posterior approximations at earlier

time points.

Figure 9 tracks the progression of MSPE, interval score and coverage of 95% predictive

intervals for both DFP and batch MCMC as more batches are processed. At time t, the

predictive inference is assessed with the data shard obtained at time t + 1. Similar to

simulation studies, the behavior of DFP in the early batches is somewhat erratic due to the

inaccurate posterior approximation in the initial phase of the algorithm, though it stabilizes

as more data shards arrive. Furthermore, the performances of the competitors become closer

as time progresses, with batch MCMC demonstrating marginally superior performance at

higher time points. The dramatic improvement of DFP over batch MCMC is mainly observed

in terms of computation time. While batch MCMC runs 500 iterations per batch in 18.35

seconds, DFP finishes 500 iterations per batch in 0.40 seconds. Such a dramatic improvement

in computation time is consistent with our findings in Section 3.3 and can be attributed

to efficient partitioning of the parameter space as well as parallel inference on parameter

partitions at each time.

While fitting the data using the high dimensional regression model with the Spike and
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Figure 9: Performance measures for MCMC and DFP. MSPE, coverage and interval scores
for 95% predictive intervals are presented. Confidence bands (in a lighter color) are calculated
by observing the variations of these metrics over 10 permutations.
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Lasso prior, we observe a high degree of multi-modality in the posterior distribution. Al-

though a high degree of multi-modality in the high dimensional regression is known to have

minimal effects on the predictive inference, it may provide somewhat unreliable inference

in terms of variable selection. This is observed and noted in the earlier literature on high

dimensional regression (see e.g., Guha and Rodriguez (2018)). In such cases, it is customary

to run the posterior computation multiple times, record the set of variables being identified

in each of these runs, and finally declare those variables as influential which have appeared

as influential in more than half of the runs. Due to the multi-modality in the posterior
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distribution, we observe that 10 runs of both DFP and batch MCMC do not lead to the

same set of variables identified. In fact, we find a difference in the conclusion between DFP

and MCMC in terms of identified variables.

To ensure more reliable inference from DFP and the “gold standard” batch MCMC for

variable selection, we run both these competitors 10 more times on the dataset of interest.

In these 10 runs, the data is divided into 163 shards with the first shard having 20% ob-

servations, and the rest 162 shards all approximately equal. We observe that feeding more

data early on leads to reliable variable selection with minimal variation between different

runs. To provide concrete evidence on this observation, we refer to Table 5 which presents

all predictors identified by either DFP or batch MCMC in any of the 10 runs. The table also

records the number of times among the 10 runs they are identified as influential. It shows

that the number of times a predictor is selected by either batch MCMC or DFP is very close

to 0 or 10, indicating quite reliable variable selection. Importantly, much less discrepancy

is observed between DFP and batch MCMC, with them identifying 17 and 21 variables as

influential respectively, with 14 identified by both.

6 Conclusion and Future Work

The emergence of large volumes of high dimensional data mandates that model fitting

tools evolve quickly to keep pace with the rapidly growing dimension and size of data.

Although the literature in high dimensional Bayesian inference has witnessed recent up-

surge, there are limited number of Bayesian methods, online in nature, which enable efficient

Bayesian model fitting in high dimensional linear regression in presence of large or stream-

ing data. The DFP algorithm proposed in this article dynamically partitions the parameter

space after observing every data shard and employs fast and approximate Bayesian inference

at each partition in parallel. The detailed simulation studies of DFP with popular Bayesian

shrinkage priors (Bayesian Lasso, Horseshoe and Spike and Lasso) show indistinguishable

inference from batch MCMC with a considerable reduction of per batch computation time.

The supplementary material contains the proof of convergence of the DFP algorithm for high

dimensional linear regression as time t→∞.

The scope of DFP extends well beyond the realm of high dimensional linear regression
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Table 5: Number of times a stock is selected under DFP and MCMC out of 10 runs of both
methods.

Company DFP MCMC

Allscripts Healthcare Solutions, Inc. 10 10
Alphabet Inc. 10 10
Century Aluminum Company 10 10
Ferroglobe PLC 10 10
Skyworks Solutions, Inc. 10 10
Red Robin Gourmet Burgers, Inc. 9 10
Viavi Solutions Inc. 9 10
The Kraft Heinz Company 8 10
Amazon.com, Inc. 7 10
Popular, Inc. 7 9
Caesarstone Ltd. 7 9
Microsoft Corporation 8 9
SeaSpine Holdings Corporation 6 10
Qorvo, Inc. 7 10
Costco Wholesale Corporation 7 0
iQIYI, Inc. 8 0
The Ultimate Software Group, Inc. 7 0
Global Water Resources, Inc. 0 10
Kala Pharmaceuticals, Inc. 0 10
National General Holdings Corp 0 10
Applied Optoelectronics, Inc. 0 9
Atlas Air Worldwide Holdings 0 9
Baozun Inc. 0 9
Genprex, Inc. 0 9
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with Gaussian errors. For example, as part of our future work, we will employ DFP for high

dimensional logistic and probit regressions. While data augmentation schemes (Albert and

Chib, 1993; Polson et al., 2013) in high dimensional binary regression allow Gibbs sampling

for parameter blocks, making the DFP formulation natural, they also violate assumptions (1)

and (2) in the formulation of DFP in Section 3. Thus, one needs to develop a modification

of DFP to account for a growing number of latent variables as time progresses. To this

end, instead of propagating the sufficient statistics over time, we intend to propagate a

quantity known as the surrogate conditional sufficient statistics (Guhaniyogi et al., 2018)

that eliminates the need for these assumptions. In the same vein, we propose to extend the

DFP formulation for high dimensional linear regression with heavy tailed error distributions.

Notably, a heavy tailed error distribution can often be expressed as a scale mixture of

Gaussian errors. Thus, upon using a data augmentation scheme, developing DFP under this

model will require extending the DFP framework when the number of parameters increases

with the onset of a new data shard. Another important research direction is to develop the

DFP algorithm for non-local priors in high dimensions. We would also like to extend our

theoretical results on the convergence of the DFP kernel to the full posterior from a fixed

partitioning set up to an adaptive dynamic partitioning set up. The DFP approach can

presumably provide competitive inference with Sequential Monte Carlo in high dimensional

factor models and dynamic factor models where shrinkage priors have been employed recently.

Some of these constitute our current area of research.
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Convergence Behavior of Approximate Samplers

We study convergence behavior for the DFP algorithm provided in Section 3 of the main

article. Since developing results with dynamic partitioning is challenging given that any

partitioning scheme exploits specifics of model and prior distributions, the results developed

here establish convergence of the DFP algorithm with the assumption that the partitioning

of the parameter set is fixed over time. Although this is a restrictive assumption, DFP

seems to enjoy desirable asymptotic behavior even under this assumption. With dynamic

partitioning, we expect to witness stronger theoretical results for DFP, which needs separate

attention in a future work.

The theoretical development proceeds in a few steps. DFP algorithm being a Markov

chain framework assumes a transition kernel (denoted by Tt(·, ·) at time t) and a stationary

distribution of the transition kernel at each time t (referred to as the DFP stationary dis-

tribution and denoted by πt). At first, we establish the general form of the DFP stationary

distribution πt at each time t. Next, we develop sufficient conditions on the transition kernel

(Tt(·, ·)), no. of samples (S) drawn from the transition kernel at each time t, dynamic evo-

lution of the DFP stationary distributions over time and conditions on the point estimates

(Θ̂
(t)

) to ensure convergence of the DFP transition kernel to the full posterior distribution

1



asymptotically. Some of these conditions are verified for the specific cases of high dimen-

sional linear regression with shrinkage priors and spike and slab priors. To begin with, we

define a few quantities.

Notation and Framework

For the sake of simplicity denote ΘGtl
= Θl,t ∈ Rql for l = 1, ..., kt. Since our theoretical

exposition fixes partitions over time t, kt = k and ql’s are not functions of time t and∑kt
l=1 ql = q = dim(Θ). Assume Θl,t = (θl,t,1, ..., θl,t,ql)

′. The full posterior distribution of Θ

at time t, denoted by f(Θ|S(t)) in Section 3, is also shortened as ft(Θ). Assume that the

density ft(Θ) is admitted with respect to the Lebesgue measure ν. Tt : Rq × Rq → R+ is

a transition kernel at time t having the property that Tt(z, ·) is a probability measure for

all z ∈ Rq and Tt(·,A) is a measurable function for all A in the Borel sigma algebra of Rq.

Finally, we denote Θ̂
(t)

−Gtl
and Θ̂

(t)

Gtl
as Θ̂

(t)

−l and Θ̂
(t)

l respectively, l = 1, ..., k, for the simplicity

of notation.

0.1 The DFP transition kernel

It follows from the DFP algorithm that the DFP transition kernel Tt : Rq1×· · ·×Rqk → R+

at time t is given by:

Tt(Θ,Θ′) =
k∏
l=1

ql∏
i=1

ft
(
θ′l,t,i|Θ̂

(t−1)
−l , θ′l,t,j, j < i, θl,t,j, j > i

)
(1)

The unique stationary distribution πt : Rq → R+ of the transition kernel Tt at time t is given

in the following lemma.

Lemma 0.1 DFP approximate kernel Tt has a unique stationary distribution πt(Θ) =∏kt
l=1 ft(Θl|Θ̂

(t−1)
−l ).

Proof In order to prove the lemma, we will simply show that πt given by the equation above

2



satisfies
∫
Tt(Θ,Θ′)πt(Θ) dΘ = πt(Θ

′). Note that

∫
Tt(Θ,Θ′)πt(Θ)dΘ =

∫ k∏
l=1

[ ql∏
i=1

ft(θ
′
l,t,i|Θ̂

(t−1)
−l , θ′l,t,j, j < i, θl,t,j, j > i)ft(Θl|Θ̂

(t−1)
−l )

]
dΘ

=
k∏
l=1

∫ [ ql∏
i=1

ft(θ
′
l,t,i|Θ̂

(t−1)
−l , θ′l,t,j, j < i, θl,t,j, j > i)ft(Θl|Θ̂

(t−1)
−l )

]
dΘ =

k∏
l=1

ft(Θ
′
l|Θ̂

(t−1)
−l ).

Here the last step follows by recognizing that the kernel Tt is a product of various independent

Gibbs sampler (or Metropolis Hastings) kernels in different parameter partitions.

0.2 Main convergence results

We will now state a theorem and a corollary. The theorem states reasonable assumptions

to ensure decay of the total variation distance between DFP transition kernel and its sta-

tionary distribution as t increases. The corollary then adds a few more sufficient conditions

to ensure that DFP kernel becomes close to the full posterior distribution as t increases. Let

π0 denote the initial distribution from which parameters are drawn. Suppose T St denotes the

kernel corresponding to S draws from the DFP kernel Tt. We use || · ||TV to denote the total

variation distance and dH(·, ·) to denote the Hellinger distance between two densities. The

statement of the theorem is given below.

Theorem 0.2 Let ε ∈ (0, 1). Assume ∃ a constant C > 0, a positive integer S and a

function V : Rq → [1,∞) s.t. for all large t,

(i) Eπt(V
2) ≤ C

(ii) ||Tt(Θ, ·)S − πt||TV ≤ V (Θ)αSt < 1− ε ∀ Θ and for some αt ∈ (0, 1).

Then,

||T St · · ·T S1 − πt||TV ≤
t∑

s=1

εt+1−sρs, (2)

where ρt = 2
√
CdH(πt, πt−1).

The proof of Theorem 0.2 follows along the same line of the proof of Theorem 3.6 in (Yang

and Dunson, 2013) and is thus omitted.
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Corollary 0.3 If conditions (i) and (ii) of Theorem 0.2 are satisfied and additionally we

assume (iii) ρt → 0 and (iv) ||πt − ft||TV → 0, as t→∞. Then ||T St · · ·T S1 − ft||TV → 0.

Poof: Using conditions (i), (ii) and (iii), as t → ∞, ||T St · · ·T S1 − πt||TV → 0, following

Theorem 0.2. Now we use (iv) to deduce that ||T St · · ·T S1 − ft||TV ≤ ||T St · · ·T S1 − πt||TV +

||πt − ft||TV → 0, as t→∞.

Remark Corollary 0.3 shows that the DFP transition kernel after S draws each at time

1, ..., t becomes close to the full posterior distribution ft at time t. This implies that as time

t increases, samples drawn from the DFP full conditional distributions can be taken as the

draws from the un-approximated full posterior distribution ft.

Next, we argue that the assumptions in Theorem 0.2 and Corollary 0.3 are reasonable.

Note that conditions (i) and (ii) refer to the assumption that the DFP transition kernel at

time t converges to the DFP stationary distribution at time t at a geometric rate. This

assumption is also referred to as the Geometric Ergodicity assumption. We first prove that

this assumption holds for shrinkage and spike and lasso priors used in this article. Condition

(iii) ensures that the stationary distribution of the approximating kernel changes slowly as

time proceeds. This is a mild condition satisfied by any regular parametric model by applying

the Bernstein-Von Mises theorem. Finally, we prove condition (iv) under mild assumptions.

We will now proceed to verify Geometric Ergodicty for the DFP kernel with some of the

Gaussian scale mixture priors and spike and lasso prior. The theorem below shows conditions

for geometric ergodicity under Bayesian lasso prior. The proof uses some of the techniques

outlined in Pal and Khare (2014).

Theorem 0.4 Assume there exists m0 > 0 s.t. emin(S
(t)
1,∇) ≥ m0, for any set ∇ ⊆ {1, ..., p}

and any t = 1, ..., T , where S
(t)
1,∇ is a submatrix of S

(t)
1 with columns corresponding to the

indices ∇. Then the DFP Bayesian lasso transition kernel is geometrically ergodic.

Proof If Tt((β, τ
2, σ2, λ2), (β′, (τ 2)′, (σ2)′, (λ2)′)) is the transition kernel of the DFP and

πt(β, τ
2, σ2, λ2) is the stationary distribution of the transition kernel, then Tt(·, ·) and πt(·)
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for the Bayesian lasso are given by

Tt((β, τ
2, σ2, λ2), ((β)′, (τ 2)′, (σ2)′, (λ2)′)

=
∏
l

∏
j∈Gtl

{
ft((βj)

′|(τ 2j ), β̂
(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))ft((τ

2
j )′|(βj)′, β̂

(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

}
ft((σ

2)′|β̂
(t−1)

, τ̂ 2(t−1))ft((λ
2)′|β̂

(t−1)
, τ̂ 2(t−1)) (3)

πt(β, τ
2, σ2, λ2)

=
k∏
l=1

{
ft(βl, τ

2
l |β̂

(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

}
ft(σ

2|β̂
(t−1)

, τ̂ 2(t−1))ft(λ
2|β̂

(t−1)
, τ̂ 2(t−1)).

(4)

Hence, ||Tt − πt||TV = ||T̃t,1 − π̃t,1||TV , where

T̃t,1 =
∏
j∈Gtl

{
ft((βj)

′|(τ 2j ), β̂
(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))ft((τ

2
j )′|(βj)′, β̂

(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

}

π̃t,1 =
k∏
l=1

{
ft(βl, τ

2
l |β̂

(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

}
.

Thus it is enough to show the geometric ergodicity of the chain by establishing a geometric

drift condition and a geometric minorization condition for the (β, τ 2) chain.

Minorization condition.

Define, Ṽt(β, τ
2) =

∑p
j=1 β

2
j

1
m0

∑k
l=1H

′
lHl+1

+
∑p

j=1 τ
2
j , where H l = S

(t)
2,l − S

(t)
1,l,−lβ̂

(t−1)
−l . Let SṼt,d =

{(β, τ 2) : Ṽt(β, τ
2) ≤ d}. While showing minorization condition, we will establish that there

exists a constant 0 < c(Ṽt, d) < 1 depending on Ṽt and d such that T̃t,1((β0, τ
2
0), (β, τ

2)) ≥

c(Ṽt, d)g(β, τ 2) for some density function g(·) for every (β0, τ
2
0) ∈ SṼt,d. Denote λ̃ = λ̂2(t−1)

5



and µ̃j =

√
σ̂2(t−1)λ̂2(t−1)

β2
0j

. Then

ft(τ
2
j |β0) =

√
λ̃

2π
(τ 2j )−1/2 exp

{
−λ̃

(1− τ 2j µ̃j)2

2µ̃2
jτ

2
j

}

=

√
λ̃

2π
(τ 2j )−1/2 exp

{
−
λ̃τ 2j
2
− λ̃

2µ̃2
jτ

2
j

+
λ̃

τj

}

≥

√
λ̃

2π
(τ 2j )−1/2 exp

{
−
λ̃τ 2j
2
− λ̃

2µ̃2
jτ

2
j

}
.

Note that Ṽt(β0, τ
2
0 ) ≤ d implies β′0β0

1
m0

∑k
l=1H

′
lHl+1

+
∑p

j=1 τ
2
j ≤ d when (β0, τ

2
0) ∈ SṼt,d. Thus

β′0β0 ≤ d
[

1
m0

∑k
l=1H

′
lH l + 1

]
when (β0, τ

2
0) ∈ SṼt,d.

ft(τ
2
j |β0) ≥

√
λ̂2(t−1)

2π
(τ 2j )−1/2 exp

− λ̂2(t−1)τ 2j2
−
d
[

1
m0

∑k
l=1H

′
lH l + 1

]
2τ 2j σ̂

2(t−1)


≥

√
λ̂2(t−1)

2π
(τ 2j )−1/2 exp

−
1

2

√λ̂2(t−1)τ 2j −

√√√√d
[

1
m0

∑k
l=1H

′
lH l + 1

]
τ 2j σ̂

2(t−1)


2


exp

−
√√√√ λ̂2(t−1)d

[
1
m0

∑k
l=1H

′
lH l + 1

]
σ̂2(t−1)


Let c(Ṽt, d) = exp

{
−

√
λ̂2(t−1)d

[
1
m0

∑k
l=1H

′
lHl+1

]
σ̂2(t−1)

}
. Thus

T̃t,1((β0, τ
2
0), (β, τ

2)) =
k∏
l=1

∏
j∈Gtl

ft(βj|τ 2j , σ̂2(t−1), λ̂2(t−1))ft(τ
2
j |β0j, σ̂2(t−1), λ̂2(t−1))

≥ c(Ṽt, d)
k∏
l=1

∏
j∈Gtl

p∏
j=1

ft(βj|τ 2j , σ̂2(t−1), λ̂2(t−1))gt(τ
2
j |σ̂2(t−1), λ̂2(t−1)),

where gt(τ
2
j |σ̂2(t−1), λ̂2(t−1)) =

√
λ̂2(t−1)

2π
(τ 2j )−1/2 exp

−1
2

(√
λ̂2(t−1)τ 2j −

√
d
[

1
m0

∑k
l=1H

′
lHl+1

]
τ2j σ̂

2(t−1)

)2


6



is a density function. Hence the minorization condition is established.

Geometric drift condition.

E[
k∑
l=1

Ṽt(βl, τ
2
l )|β0, τ

2
0] = E2[E1[

k∑
l=1

Ṽt(βl, τ
2
l )|β0, τ

2
0]],

where the inner expectation is w.r.t conditional distribution of β|τ 2
0 and the outer expecta-

tion is w.r.t. τ 2|β0.

E1[
k∑
l=1

Ṽt(βl, τ
2
l )|β0, τ

2
0]

=

∑k
l=1H

′
l(S

(t)
1,l +M−1

τ0,l
)−1(S

(t)
1,l +M−1

τ0,l
)−1H l + tr(σ̂2(t−1)(S

(t)
1,l +M−1

τ0,l
)−1)[

1
m0

∑k
l=1H

′
lH l + 1

] +

p∑
j=1

τ 2j

≤
(
∑p

j=1 τ
2
0j)

1
m0

∑k
l=1H

′
lH l + σ̂2(t−1) p

m0[
1
m0

∑k
l=1H

′
lH l + 1

] +

p∑
j=1

τ 2j

≤ (

p∑
j=1

τ 20j)
1
m0

∑k
l=1H

′
lH l[

1
m0

∑k
l=1H

′
lH l + 1

] +
σ̂2(t−1) p

m0[
1
m0

∑k
l=1H

′
lH l + 1

] +

p∑
j=1

τ 2j , (5)

where the second step follows

(S
(t)
1,l +M−1

τ0,l
)−1 ≤ 1

m0

I, (S
(t)
1,l +M−1

τ0,l
)−1 ≤

p∑
j=1

τ 2j . (6)

E2[

p∑
j=1

τ 2j ] =

p∑
j=1

√ β2
0j

σ̂2(t−1)λ̂2(t−1)
+

1

λ̂2(t−1)


=

p∑
j=1

√√√√√ β2
0j[

1
m0

∑k
l=1H

′
lH l + 1

]
[

1
m0

∑k
l=1H

′
lH l + 1

]
σ̂2(t−1)λ̂2(t−1)

+
p

λ̂2(t−1)

≤ β′0β0

2
[

1
m0

∑k
l=1H

′
lH l + 1

] +
p
[

1
m0

∑k
l=1H

′
lH l + 1

]
2σ̂2(t−1)λ̂2(t−1)

+
p

λ̂2(t−1)
, (7)

7



where the last inequality follows by the Cauchy-Schwartz inequality. Using (5) and (7),

E[
k∑
l=1

V (βl, τ
2
l )|β0, τ

2
0] ≤ (

p∑
j=1

τ 20j)
1
m0

∑k
l=1H

′
lH l[

1
m0

∑k
l=1H

′
lH l + 1

] +
σ̂2(t−1) p

m0[
1
m0

∑k
l=1H

′
lH l + 1

]
+

β′0β0

2
[

1
m0

∑k
l=1H

′
lH l + 1

] +
p
[

1
m0

∑k
l=1H

′
lH l + 1

]
2σ̂2(t−1)λ̂2(t−1)

+
p

λ̂2(t−1)

≤ γV (β0, τ
2
0) + b,

where 0 < γ = max

{
1
2
,

1
m0

∑k
l=1H

′
lHl[

1
m0

∑k
l=1H

′
lHl+1

]
}
< 1 and b =

σ̂2(t−1) p
m0[

1
m0

∑k
l=1H

′
lHl+1

]+ p

λ̂2(t−1)
+
p
[

1
m0

∑k
l=1H

′
lHl+1

]
2σ̂2(t−1)λ̂2(t−1)

>

0. Hence the geometric drift condition is satisfied. Geometric drift and minorization condi-

tion together implies geometric ergodicity of the chain.

We will now prove a similar result for the spike and lasso model. Indeed,

Theorem 0.5 Assume there exists m0 > 0 s.t. emin(S
(t)
1,∇) ≥ m0, for any set ∇ ⊆ {1, ..., p}

and any t = 1, ..., T , where S
(t)
1,∇ is a submatrix of S

(t)
1 with columns corresponding to the

indices ∇. Then the DFP Bayesian spike and lasso transition kernel is geometrically ergodic.

Proof If Tt((β, τ
2, σ2, λ2, θ,γ), (β′, (τ 2)′, (σ2)′, (λ2)′, (θ)′, (γ)′)) is the transition kernel of the

DFP and πt(β, τ
2, σ2, λ2, θ,γ) is the stationary distribution of the transition kernel, then

8



Tt(·, ·) and πt(·) for the Bayesian spike and lasso model are given by

Tt((β, τ
2, σ2, λ2, θ,γ), ((β)′, (τ 2)′, (σ2)′, (λ2)′, (θ)′, (γ)′))

=
{
ft((β1)

′|(τ 2
1), β̂

(t−1)
−1 , τ̂

2(t−1)
−1 , σ̂2(t−1), λ̂2(t−1))ft((τ

2
1)
′|(β1)

′, β̂
(t−1)
−1 , τ̂

2(t−1)
−1 , σ̂2(t−1), λ̂2(t−1))

}
∏
l

∏
j∈Gtl

{
ft((βj)

′|(τ 2j ), β̂
(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))ft((τ

2
j )′|(βj)′, β̂(t−1)

−l , τ̂
2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

}

ft((σ
2)′|β̂

(t−1)
, τ̂ 2(t−1))ft((λ

2)′|β̂
(t−1)

, τ̂ 2(t−1))ft((θ)
′|β̂

(t−1)
, τ̂ 2(t−1))

p∏
j=1

ft((γ)′|β̂
(t−1)

, τ̂ 2(t−1))

(8)

πt(β, τ
2, σ2, λ2, θ,γ)

=
k∏
l=1

{
ft(βl, τ

2
l |β̂

(t−1)
−l , τ̂

2(t−1)
−l , σ̂2(t−1), λ̂2(t−1))

}
ft(σ

2|β̂
(t−1)

, τ̂ 2(t−1))ft(λ
2|β̂

(t−1)
, τ̂ 2(t−1))

ft(θ|β̂
(t−1)

, τ̂ 2(t−1))ft(γ|β̂
(t−1)

, τ̂ 2(t−1)). (9)

where β1 = {βj : βj ∈ Θ1,t}, τ 2
1 = {τ 2j : τ 2j ∈ Θ1,t}. Hence, ||Tt − πt||TV = ||T̃t,1 − π̃t,1||TV ,

where

T̃t,1 =
{
ft((β1)

′|(τ 2), β̂
(t−1)
−1 , τ̂

2(t−1)
−1 , σ̂2(t−1), λ̂2(t−1), θ̂(t−1), γ̂(t−1))

ft((τ
2
1)
′|(β1)

′, β̂
(t−1)
−1 , τ̂

2(t−1)
−1 , σ̂2(t−1), λ̂2(t−1), θ̂(t−1), γ̂(t−1))

}
π̃t,1 =

{
ft(β1, τ

2
1|β̂

(t−1)
−1 , τ̂

2(t−1)
−1 , σ̂2(t−1), λ̂2(t−1), θ̂(t−1), γ̂(t−1))

}
.

Thus it is enough to show the geometric ergodicity of the chain by establishing a geomet-

ric drift condition and a geometric minorization condition for the (β1, τ
2
1) chain. Define,

Ṽt(β1, τ
2
1) = β′1β1

1
m0
H′1H1+1

+ 1′τ 2
11, where H l = S

(t)
2,l − S

(t)
1,l,−lβ̂

(t−1)
−l . Using similar calculations

as in Theorem 0.4, the proof of minorization and geometric drift conditions follow.

It remains to show (iv) in Corollary 0.3. The lemma presented below develops sufficient

conditions to derive (iv). The lemma is presented for a general likelihood function pΘ(·).

Lemma 0.6 Assume that the likelihood function pΘ(·) is continuous as a function of Θ at

Θ0 = (Θ0
1, ..,Θ

0
k) and

√
tpΘ0(D(t)) in limit is bounded away from 0 and ∞. Suppose Θ0

9



is an interior point in the domain and prior distribution π0(Θ) is positive and continuous

at Θ0. Further, assume Θ̂
(t)
→ Θ0 a.s. under the data generating law at Θ0, and ft

and πt both converge to Θ0 at a rate ∆t. Then ∃ κt depending on ∆t, s.t. κt → 0 and

||ft−πt||TV = 2
∫ ∣∣πt(Θ)−ft(Θ)

∣∣ dΘ ≤ 2κt for large t, a.s. under the data generating model

at Θ0.

proof of lemma 0.6

Stationary distribution πt of the C-DF transition kernel Tt is the approximate posterior

distribution to πt obtained at time t, and by Lemma 0.1 is given by

πt(Θ1, ...,Θk) =
k∏
s=1

ft(Θs|Θ̂
(t)

−s) =

∏k
s=1

∏t
l=1

{
p
Θs,Θ̂

(t)
−s

(Dl)π0(Θ̂
(t)

−s,Θs)
}

∫ ∏k
s=1

∏t
l=1

{
p
Θs,Θ̂

(t)
−s

(Dl)π0(Θ̂
(t)

−s,Θs)
} .

By assumption, Θ̂
(t)

s → Θ0
s a.s. under Θ0, there exists Ω0 which has probability 1 under the

data generating law s.t. for all ω ∈ Ω0, Θ̂
(t)

s (ω) is in an arbitrarily small neighborhood of

Θ0
s, s = 1, ..., k. Also by assumption, prior π0 is continuous at Θ0. That is, given εt > 0 and

η1,t, η2,t > 0, there exists a neighborhood Nεt,η1,t,η2,t = {Θ : ||Θ −Θ0|| ≤ M∆t} s.t. for all

Θ ∈ Nεt,η1,t,η2,t one has |π0(Θ1, ...,Θk)− π0(Θ0
1, ...,Θ

0
k)| < εt. Using this and the consistency

of Θ̂
(t)

s , s = 1, ..., k as above, one obtains for all t > t0 and ω ∈ Ω0

|π0(Θs, Θ̂
(t)

−s)− π0(Θ0)| < εt, (10)

Similarly, continuity of pΘ(·) at Θ0 leads to the condition that for all t > t0,

|pΘ1,...,Θk
(Dt)− pΘ0

1,...,Θ
0
k
(Dt)| < εt. (11)

Further, convergence assumptions on ft and πt yield that for all t > t1 and ω ∈ Ω1

ft(Nεt,η1,t,η2,t |D(t)(ω)) > 1 − η1,t, πt(Nεt,η1,t,η2,t |D(t)(ω)) > 1 − η2,t, where Ω1 has probabil-

ity 1 under the data generating law. Considering Ω = Ω0 ∩ Ω1 and t2 = max{t1, t0} it is

evident that Ω has probability 1 under the true data generating law and all of the above

conditions hold for t > t2 and ω ∈ Ω. Simple algebraic manipulations yield πt(Θ|D(t)(ω))

ft(Θ|D(t)(ω))
=

10



πt(Nεt,η1,t,η2,t |D
(t)(ω))

ft(Nεt,η1,t,η2,t |D
(t)(ω))

∫
Nεt,η1,t,η2,t

∏t
l=1 pΘ(Dl)π0(Θ)∏t

l=1 pΘ(Dl)π0(Θ)

[∏t
l=1

∏k
s=1 pΘs,Θ̂

(t)
−s

(Dl)π0(Θ̂
(t)
−s,Θs)

]
∫
Nεt,η1,t,η2,t

[∏t
l=1

∏k
s=1 pΘs,Θ̂

(t)
−s

(Dl)π0(Θ̂
(t)
−s,Θs)

] Using (10)

we have (π0(Θ
0)− ε)

∫
Nεt,η1,t,η2,t

∏t
l=1 pΘ(Dl) ≤

∫
Nεt,η1,t,η2,t

[∏t
l=1 pΘ(Dl)

]
π0(Θ)

≤ (π0(Θ
0) + ε)

∫
Nεt,η1,t,η2,t

∏t
l=1 pΘ(Dl). Thus,

πt(Θ|D(t)(ω))

ft(Θ|D(t)(ω))
≤

(1− η1,t)−1
∏t

l=1

∏k
s=1 pΘs,Θ̂

(t)
−s

(Dl)∫
Nεt,η1,t,η2,t

∏t
l=1

∏k
s=1 pΘs,Θ̂

(t)
−s

(Dl)

∫
Nεt,η1,t,η2,t

∏t
l=1 pΘ(Dl)∏t

l=1 pΘ(Dl)

(π0(Θ
0) + ε)3

(π0(Θ
0)− ε)3

.

Using similar calculations we have

πt(Θ|D(t)(ω))

ft(Θ|D(t)(ω))
≥

(1− η2,t)
∏t

l=1

∏k
s=1 pΘs,Θ̂

(t)
−s

(Dl)∫
Nεt,η1,t,η2,t

∏t
l=1

∏k
s=1 pΘs,Θ̂

(t)
−s

(Dl)

∫
Nεt,η1,t,η2,t

∏t
l=1 pΘ(Dl)∏t

l=1 pΘ(Dl)

(π0(Θ
0)− ε)3

(π0(Θ
0) + ε)3

.

Condition (11) now gives us

∏t
l=1(pΘ0(Dl)− ε)3∏t
l=1(pΘ0(Dl) + ε)3

≤

∏t
l=1

∏k
s=1 pΘs,Θ̂

t
−s

(Dl)∫
Nεt,η1,t,η2,t

∏t
l=1

∏k
s=1 pΘs,Θ̂

(t)
−s

(Dl)

∫
Nεt,η1,t,η2,t

∏t
l=1 pΘ(Dl)∏t

l=1 pΘ(Dl)

≤
∏t

l=1(pΘ0(Dl) + ε)3∏t
l=1(pΘ0(Dl)− ε)3

.

Using the condition that limt→∞
√
tpΘ0(D(t)) is bounded away from 0 and ∞ and choosing

ε, η sufficiently small, we have
∣∣∣πt(Θ|D(t)(ω))

ft(Θ|D(t)(ω))
− 1
∣∣∣ < υt for all t > t2 and ω ∈ Ω. Finally,

∫
|πt(Θ)− ft(Θ)| ≤

∫
Nεt,η1,t,η2,t

|πt(Θ)− ft(Θ)|+
∫
Nc
εt,η1,t,η2,t

|πt(Θ)− ft(Θ)|

≤
∫
Nεt,η1,t,η2,t

|πt(Θ)− ft(Θ)|+ η1,t + η2,t ≤ ft(Nεt,η1,t,η2,t)υt + η1,t + η2,t < υt + η1,t + η2,t = κt.

Remark: Lemma outlines sufficient conditions for the DFP stationary distribution to be

close to the full posterior distribution as t increases. One of the important sufficient condi-

tions presented is the consistency of the sequence of estimators Θ̂
(t)

.
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