
FacetBook

Thomas Schmitz Cormac Flanagan

June 11, 2019

Abstract
This report describes FacetBook, a prototype social networking website that

we built to ascertain the usefulness of the security library FIO, which implements
(in Haskell) the Faceted Values technique for dynamic information flow control.
We conduct our experiment by creating two versions of FacetBook: one that
uses FIO and one that does not. We compare the two versions by counting the
number of lines of code in the trusted computing base, which is the portion of
code that must be carefully audited to ensure the absence of security bugs.

1 Research questions

An important goal for achieving security is to minimize the size of the trusted
computing base (TCB), which is the portion of code that must be carefully au-
dited for security [7]. (We refer to the remaining code as the untrusted computing
base (UCB).)

Our hypothesis is that faceted execution (as implemented by the FIO library)
makes it easier to minimize the size of the TCB in realistic applications. In
particular, we have two research questions:

1. Does FIO help minimize TCB size when coding a secure application?

2. Does FIO help minimize TCB size when changing an existing application
to meet new requirements?

Our experimental design to investigate these questions is as follows:

• Create Design V1 for a prototype application called FacetBook.

• Create Implementation V1-FIO using FIO, minimizing the TCB.

• Create Implementation V1-NoFIO without FIO, minimizing the TCB.

• Measure TCB size of the two implementations.

• Create Design V2 by making a small change to Design V1.

• Create Implementation V2-FIO by modifying V1-FIO.

1

Lines of code
Version FIO TCB UCB Total application-specific code
V1-FIO 108 99 352 451
V2-FIO 108 99 360 459
V1-NoFIO 0 118 295 413
V2-NoFIO 0 419 0 419
V2-NoFIO-minTCB 0 128 298 426

Table 1: The number of lines of code in each version of FacetBook. The em-
phasized entries are useful for quantifying security.

Changes (measured in lines of code)
Version Modified Moved Inserted Deleted
V1-FIO
V2-FIO 1 0 8 0
V1-NoFIO
V2-NoFIO 2 3 6 0
V2-NoFIO-minTCB 4 6 7 0

Table 2: The differences between each version of FacetBook. Each row in the
table lists the differences from the version in the row above it. The emphasized
entries are useful for quantifying ease of achieving security.

• Create Implementation V2-NoFIO by modifying V1-NoFIO.

• Create Implementation V2-NoFIO-minTCB from V2-NoFIO by minimiz-
ing the TCB.

• Quantify the effect on security by comparing the increase in TCB size
when going from V1 to V2.

• Quantify the ease of achieving security by comparing the number of lines
of code changed when minimizing the TCB size in V2.

Table 1 shows the number of lines of code for each version. Table 2 shows the
number of edit actions required to change each version to the next. The full
source code is available at https://github.com/tommy-schmitz/facetbook.
In the sections below, we discuss these results.

2 Design V1: FacetBook

2.1 Overview

FacetBook is a prototype social networking website. Users can submit posts
(pieces of text that are visible to a subset of other users of the website) and

2

can play Tic Tac Toe with other users, which is a simple and well-known game
that children commonly play using pencil and paper. (In this case, the game
is played using two computers equipped with web browsers and mouse pointer
devices.)

For the purposes of our experiment, the “posts” feature exists so that FacetBook
has a rich TCB (because the information flow requirements are complex), while
the “Tic Tac Toe” feature exists so that it has a rich UCB (because the infor-
mation flow requirements are simple, but the other computations are relatively
complex).

2.2 User interface

Figure 1 illustrates the structure of FacetBook’s webpages.
The login page allows typing a username and clicking the “Submit” button

to go to the dashboard page. For simplicity, authentication always succeeds with
no password required—sophisticated authentication machinery would remain
constant throughout all six versions of FacetBook, and so would simply add a
constant number of lines of code to the TCB. Unlike other work [3], we make
no attempt here to remove authentication code (i.e. password-checking code)
from the TCB.

The dashboard page shows a list of 20 recent posts created by users of
FacetBook. The list comes from the server’s database of all posts, but contains
only those that the currently authenticated user is permitted to view. The page
also has two links: one going to the post page and one to the tictactoe page.

The post page allows users to compose posts, and so has a form with two
fields: the permissions field expects a space-delimited list of usernames indi-
cating who is allowed to see the post, and the content field expects any string.
Upon clicking “Submit,” the form is submitted via HTTP POST protocol to
the /post endpoint, and the server saves the submitted data in a database.

The tictactoe page initially shows a form with a single field partner ex-
pecting the username of the person with whom to play Tic Tac Toe. Upon
clicking “Submit,” the Tic Tac Toe board and its controls appear on the page.
If this pair of users (the currently authenticated user and the specified partner)
has never played Tic Tac Toe together before, then the server begins by adding
a fresh game to the list of ongoing games in the database. Then the server re-
trieves the game (whether freshly-created or pre-existing) from the database and
renders it into HTML when serving the page. Thereafter, if the user clicks on the
controls of the game, then the web browser sends a request (using Javascript)
specifying what action to take, and the server updates the game in the database
as appropriate. Then the server replies with updated HTML, which replaces
(using Javascript) the display in the browser.

2.3 Information security

In FacetBook, restricted information arrives via HTTP POST protocol at the
/post endpoint. This endpoint is how users express their information flow

3

F
ig

u
re

1
:

S
cr

ee
n

sh
o
ts

o
f

F
a
ce

tB
o
o
k
.

4

desires, namely that only the users specified in the permissions field can know
about this post and its content (in the content field).

The restricted output channel is the server’s response to any incoming HTTP
request—unless that request contains credentials of an appropriate user. In
FacetBook, requests specify credentials in the HTTP GET parameter username
(rather than in a cookie).

These information security specifications implicitly define a specific attacker
model that considers some potential attacks and ignores others. Notably, our
model ignores the correctness of the user interface, which is important because
we intend to place the client code in the UCB. If an attacker controls the UCB,
then the attacker could interfere with the creation of the POST request by, for
instance, adding an extra entry to the permissions field before submitting the
POST request. In the design of FacetBook, we explicitly ignore such an attack
and choose instead to assume that the POST parameters received at the server
correctly reflect the user’s intentions.

3 FIO library

Figure 2 shows the interface of the FIO library. The main difference from previ-
ous work [6] is that this code now supports using an arbitrary security lattice [5],
rather than specifically a power set security lattice over the set of Strings. As
a result, the type constructors Fac, FIORef, FIO, and PC now take an additional
type parameter for specifying the security lattice. The corresponding Lattice

type class (lines 1 through 4) specifies the methods (leq, lub, and bot) that
the security lattice must implement.

In addition to the extra type parameter, we change slightly the representa-
tion of the PC datatype, so now PC ks1 ks2 denotes the set of lattice elements
k such that

• k′ v k for all k′ ∈ ks1, and

• k′ 6v k for all k′ ∈ ks2.

The main library function is runFIO, which runs an FIO computation safely,
namely by respecting the information flow requirements specified by any faceted
values used in the computation. The computation bifurcates if necessary.

The FIO library contains 108 lines of code. (Only the interface is shown in
Figure 2.)

4 V1-FIO

FacetBook V1-FIO is the initial version of the code, which implements Design
V1, uses the FIO library, and is organized so as to minimize the size of the TCB.

5

1 class Lattice a where

2 leq :: a -> a -> Bool

3 lub :: a -> a -> a

4 bot :: a

5

6 data Fac l a where

7 Undefined :: Fac l a

8 Raw :: a -> Fac l a

9 Fac :: l -> Fac l a -> Fac l a -> Fac l a

10 BindFac :: Fac l a -> (a -> Fac l b) -> Fac l b

11

12 data FIORef l a = FIORef (IORef (Fac l a))

13

14 data FIO l a where

15 Return :: a -> FIO l a

16 BindFIO :: FIO l a -> (a -> FIO l b) -> FIO l b

17 Swap :: Fac l (FIO l a) -> FIO l (Fac l a)

18 IO :: l -> IO a -> FIO l a

19 New :: a -> FIO l (FIORef l a)

20 Read :: FIORef l a -> FIO l (Fac l a)

21 Write :: FIORef l a -> Fac l a -> FIO l ()

22

23 data PC l = PC [l] [l]

24

25 runFIO :: Lattice l => PC l -> FIO l a -> IO a

Figure 2: The interface of the FIO library in all versions of FacetBook.

6

26 data Label = Whitelist [User]

27 | Bot

28 instance Lattice Label where

29 leq Bot _ = True

30 leq _ Bot = False

31 leq (Whitelist us1) (Whitelist us2) =

32 let subset xs ys = all (\x -> x `elem` ys) xs in

33 us2 `subset` us1

34 lub Bot k = k

35 lub k Bot = k

36 lub (Whitelist us1) (Whitelist us2) =

37 Whitelist (List.intersect us1 us2)

38 bot = Bot

Figure 3: The code for the Label datatype in all versions of FacetBook.

39 type Post = String

40 data FList a = Nil

41 | Cons a (Fac Label (FList a))

42 type PostList = FList Post

43 type Database = (FIORef Label PostList, FIORef Label [TicTacToe])

Figure 4: The code for the FList datatype and associated type definitions in
V1-FIO.

4.1 Tour of TCB

4.1.1 Security lattice

The lattice of security labels is defined in Figure 3. The label Bot is for public
data; the label Whitelist users is for data visible only to the users listed in
the list users. The datatype Label forms a lattice, as evidenced by the type
class instance Lattice Label and its three methods leq, lub, and bot.

4.1.2 Database format

The database format is defined in Figure 4. For simplicity, we keep the database
in memory rather than on disk (unlike other work on using faceted values with
databases [8, 2]). The Database type is a pair of two mutable references
(FIORefs), one for holding the current list of posts and a second for holding
the current list of ongoing Tic Tac Toe games. The PostList type makes use of
a custom datatype FList, which is a singly-linked list datatype whose “next”
pointer is always faceted. The Post type is simply an alias for Haskell’s built-in
String type.

7

44 main :: IO ()

45 main = do --IO

46 database <- runFIO (Constraints [] []) $ do --FIO

47 r1 <- New Nil

48 r2 <- New []

49 return (r1, r2)

50 let port = 3000

51 Warp.run port $ \request respond -> do --IO

52 let (k1, k2) = policy request

53 let fio_respond = \x -> IO k2 $ do --IO

54 respond x

55 return ()

56 let faceted_request = Fac k1 (Raw request) Undefined

57 runFIO (Constraints [] []) $

58 UCB.handle_request faceted_request database fio_respond

59 return ResponseReceived

Figure 5: The code for the main function in V1-FIO.

The faceted values in an FList potentially allow the “list” to be structured
actually as a tree with branching factor 2. However, in practice, when appending
to the list, each facet shares a suffix with the opposing facet, so in fact the
structure in memory forms a directed acyclic graph whose size is linear in the
total number of posts.

4.1.3 Main function

Figure 5 shows the main function. Its purpose is to start the web server and set
up appropriate security sandboxes before handling each request.

Line 47 initializes the database with an empty list of posts, and line 48
initializes it with an empty list of Tic Tac Toe games. Line 51 creates a socket
(using the Haskell library function Warp.run) for listening for incoming HTTP
requests, which are handled by the code on lines 52 through 59. Line 58 calls
UCB.handle request, which is outside the TCB; however, its inputs (database,
faceted request, and fio respond) are all faceted appropriately, and its side
effects are sandboxed appropriately by runFIO (Constraints [] []) on line
57.

4.1.4 Policy function

The function policy (called on line 52) computes the appropriate labels to use
in FacetBook. Its code is shown in Figure 6. We parse the request to determine
its meaning, and then we return two labels: one for the confidentiality of the
request, and one for the label of the output channel for returning an HTTP

8

60 policy :: WAI.Request -> (Label, Label)

61 policy request =

62 if WAI.pathInfo request == ["login"] then

63 (Bot, Bot)

64 else case check_credentials request of

65 Nothing ->

66 (Bot, Bot)

67 Just username -> case WAI.pathInfo request of

68 ["post"] ->

69 let permissions = get_parameter request "permissions" in

70 let users = words permissions in

71 if all valid_username users then

72 (Whitelist (username : users), Whitelist [username])

73 else

74 (Whitelist [username], Whitelist [username])

75 _ ->

76 (Bot, Whitelist [username])

Figure 6: The code for the policy function in V1-FIO.

response to the user.
Specifically, this policy assigns Bot for both labels (lines 63 and 66) when

the user is not logged in, which is the case when requesting the login page
(line 62) or when lacking credentials on any other page (line 65). When the
user has valid credentials, the HTTP response label is Whitelist [username]

(lines 72, 74, and 76), indicating that the response can contain private infor-
mation belonging to the authenticated user. For most pages, the confiden-
tiality label on the request is Bot (line 76), which means that the request it-
self carries no sensitive information; however, on the "post" page, the label
Whitelist (username : users) (line 72) indicates that the request is visible
only to the users named in the permissions parameter of the request (and the
currently authenticated user too). This label ensures that when the submit-
ted post is written to the database, it will be faceted appropriately. The label
Whitelist [username] on line 74 is used in case a client sends a malformed
request where the permissions parameter contains invalid entries.

4.1.5 Import statements

The TCB includes the import statements at the top of each file. Primarily, we
must verify that the UCB module imports (Figure 7) do not include FIO(runFIO,
FIO(IO), Fac(Raw, Fac, Undefined, BindFac)). As a result, these import
statements are actually part of the TCB.

The import statements in the TCB and Shared modules are also in the TCB,
naturally, and help auditors determine which standard libraries must be trusted.

9

77 {-# LANGUAGE OverloadedStrings #-}

78 module UCB where

79 import qualified Data.List as List

80 import Data.Monoid((<>))

81 import Data.String(fromString)

82 import qualified Data.ByteString.Lazy.Char8 as ByteString(intercalate)

83 import Network.HTTP.Types.Status(status200, status404)

84 import qualified Network.Wai as WAI(Request, pathInfo, ResponseLBS)

85 import Shared

86 import FIO(FIO(Read, Write, Swap), Fac(), FIORef)

Figure 7: The import statements for the UCB module in V1-FIO.

87 {-# LANGUAGE OverloadedStrings #-}

88 module Shared where

89 import Data.String(fromString)

90 import Data.ByteString.Char8(unpack)

91 import qualified Network.Wai as WAI(Request, queryString)

92 import qualified Data.List as List(intersect)

93 import FIO

Figure 8: The import statements for the Shared module in V1-FIO.

94 {-# LANGUAGE OverloadedStrings #-}

95 module TCB where

96 import qualified Network.Wai.Handler.Warp as Warp(run)

97 import qualified Network.Wai as WAI(Request, pathInfo)

98 import Network.Wai.Internal(ResponseReceived(ResponseReceived))

99 import Shared

100 import FIO

101 import qualified UCB as UCB(handle_request)

Figure 9: The import statements for the TCB module in V1-FIO.

10

102 check_credentials :: WAI.Request -> Maybe User

103 check_credentials request =

104 let username = get_parameter request "username" in

105 if valid_username username then Just username

106 else Nothing

107

108 get_parameter :: WAI.Request -> String -> String

109 get_parameter request key =

110 case lookup (fromString key) (WAI.queryString request) of

111 Just (Just value) -> unpack value

112 _ -> ""

113

114 valid_username :: String -> Bool

115 valid_username s =

116 s /= "" &&

117 all (\c -> (c>='0' && c<='9') ||

118 (c>='a' && c<='z') ||

119 (c>='A' && c<='Z') ||

120 c=='_') s

Figure 10: The code for the helper functions in V1-FIO.

4.1.6 Helper functions

For completeness, we include the TCB’s helper functions, which are shown in
Figure 10. check credentials is the password-checking function. It gets the
username from the HTTP GET parameters. For simplicity, it always succeeds
without any password. When no username is supplied, it returns Nothing, in-
dicating invalid credentials. get parameter extracts an HTTP GET parameter
from a request. valid username checks that a string is non-empty and contains
only letters, numbers, and underscores.

4.1.7 Summary

In summary, the TCB of FacetBook V1-FIO contains 99 lines: 41 in TCB.hs, 48
in Shared.hs, and 10 import statements in UCB.hs.

4.2 Tour of UCB

4.2.1 Handle-request function

The entry point to the UCB is handle request, called on line 58 in main.
Figure 11 shows its code. Its purpose is to “unfacet” the request (i.e. bifur-
cate if necessary, using Swap to do so), and then defer to the helper function
parse request and its return value handler to do the actual processing. At

11

121 type Handler = Database -> (WAI.Response -> FIO ()) -> FIO ()

122 handle_request :: Fac Label WAI.Request -> Handler

123 handle_request faceted_request database respond = do --FIO

124 Swap $ do --Fac

125 request <- faceted_request

126 return $ do --FIO

127 let handler = parse_request request

128 handler database respond

129 return ()

Figure 11: The code for the handle request function in V1-FIO.

the call site (line 58 in main), the faceted request always has a specific shape,
namely with Undefined in the low-security facet. As a result, the bifurcation
at line 124 executes the high-security path like normal (with a changed PC),
and then the low-security path is a no-op.

This code illustrates a typical interaction between the two monads Fac and
FIO. Line 124 uses Swap to change the current monad from FIO to Fac to allow
extracting request from faceted request on line 125. Then line 126 uses
return to change the current monad back from Fac to FIO to allow executing
the action on line 128. By using two monads, we can delimit the scope of the
bifurcation to be lines 125 to 128. The computations join back together at line
129.

4.2.2 Parse-request function

The parse request function translates an incoming web request (of type WAI.Request,
imported from Haskell’s WAI library for web servers) into an appropriate action
(of type Handler) to take in response to that request. Figure 12 shows its code.
It duplicates some functionality (checking whether the request is for the “login”
page, checking credentials, etc.) from the policy function in the TCB, so it
would be reasonable to refactor the code to reduce redundancy. We decided
against doing so because the function names policy and parse request docu-
ment their purposes well, whereas it is nontrivial to choose a good name for the
newly created functions and intermediate datatypes in the refactored version;
in any case, the amount of duplicated code is small.

4.2.3 Handler functions

The parse request function delegates functionality to eight other functions
called Handlers, namely:

• login: sends to the client a login page.

• authentication failed: sends a page to redirect back to the login page.

12

130 parse_request :: WAI.Request -> Handler

131 parse_request request =

132 if WAI.pathInfo request == ["login"] then

133 login

134 else case check_credentials request of

135 Nothing ->

136 authentication_failed

137 Just username -> case WAI.pathInfo request of

138 ["post"] ->

139 let content = get_parameter request "content" in

140 let permissions = get_parameter request "permissions" in

141 let users = words permissions in

142 if content /= "" && all valid_username users then

143 do_create_post username content users

144 else

145 compose_post username

146 ["dashboard"] ->

147 dashboard username

148 ["tictactoe"] ->

149 let partner = get_parameter request "partner" in

150 if valid_username partner then

151 let action = get_parameter request "action" in

152 tictactoe_play username partner action

153 else

154 tictactoe_select_partner username

155 _ ->

156 not_found

Figure 12: The code for the parse request function in V1-FIO.

13

• do create post username content users: inserts a new post into the
database and redirects to the dashboard page.

• compose post username: sends to the client a page displaying a form in
which the user can compose a new post.

• dashboard username: sends a page displaying a few links to other pages,
as well as a list of recent posts.

• tictactoe play username partner action: updates a Tic Tac Toe game
in the database (if necessary) and sends to the client a page displaying
the current state of the game.

• tictactoe select partner username: sends to the client a page prompt-
ing the user to type the name of another user.

• not found: sends a page with “404 bad request” on it.

The Handler type is defined on line 121

type Handler = Database -> (WAI.Response -> FIO ()) -> FIO ()

and its definition means that it takes as input the database reference cells (type
Database defined on line 43) and a callback function (of type WAI.Response ->

FIO ()) whose behavior when called is to send an HTTP response to the user’s
web browser. Thanks to the code in main, the database contents are secure
(inside FIORefs) and the response callback function will not work if the current
control flow has been influenced by information that the user should not know
(in that case, the callback would behave as a no-op).

4.2.4 Summary

The UCB of FacetBook V1-FIO contains 352 lines: 362 in UCB.hs minus the 10
import statements at the top of the file, which are actually part of the TCB.

5 V1-NoFIO

FacetBook V1-NoFIO is the next version of the code, which implements Design
V1, does not use the FIO library, and is organized so as to minimize the size
of the TCB. In this section, we highlight the differences between V1-FIO and
V1-NoFIO.

5.1 Removing undesirable dependence on FIO

The FIO library is unnecessary in this version of FacetBook, so we can simplify
the code by removing dependence on FIO.

First, and most obviously, we remove the file FIO.hs from the codebase. As
a result, we remove all calls to Swap, which is now unnecessary due to the lack of

14

158 main :: IO ()

159 main = do --IO

160 r1 <- newIORef []

161 r2 <- newIORef []

162 let database = (r1, r2)

163 let port = 3000

164 Warp.run port $ \request respond -> do --IO

165 let unit_respond = \x -> do --IO

166 respond x

167 return ()

168 handle_request request database unit_respond

169 return ResponseReceived

Figure 13: The code for the main function in V1-NoFIO.

faceted values. Similarly, we replace uses of New, Read, and Write with uses of
newIORef, readIORef, and writeIORef, respectively. Continuing likewise, we
remove the FList datatype (which uses faceted values) and update the PostList
type definition:

157 type PostList = [(Label, Post)]

These simple changes affect the line count very little (aside from removing the
108-line FIO library).

5.2 Removing desirable dependence on FIO

Next, we completely remove the policy function and the lines in main that de-
pend on it. Figure 13 shows the new main function. At this point, the function-
ality of FacetBook is intact, but its security guarantees have disappeared—in
particular, all posts are now visible to all users, regardless of any permission
settings on any posts. To reimplement this security feature, we define a new
function filter posts:

170 filter_posts :: Label -> PostList -> PostList

171 filter_posts k = filter (\(k',p) -> leq k' k)

and we call it inside the dashboard function just after reading the posts from
the database:

172 labeled_posts <- readIORef (fst database)

173 let posts = filter_posts (Whitelist [username]) labeled_posts

15

We must also add a line to the do create post function to label posts just
before they are written into the database (line 175):

174 d <- readIORef (fst database)

175 let labeled_data = (Whitelist (username : users) ,

176 username ++ ": " ++ content)

177 writeIORef (fst database) (labeled_data : d)

5.3 Minimizing the TCB

With only the changes mentioned so far, the file UCB.hs is poorly named because
it now contains code that belongs in the TCB. To rectify this situation, we begin
by moving four functions from UCB.hs to TCB.hs, namely handle request,
parse request, do create post, and dashboard. Finally, to keep the TCB as
small as possible, we must rewrite parse request so that it uses sandboxing for
the other six types of request (besides do create post and dashboard). The
new code is in Figure 14. Line 179 defines the sandbox function, which simply
arranges for the posts to be censored from the database before calling a given
handler h. By calling it on lines 182, 185, 194, 201, 203, and 205, we avoid the
need to move any more functions from UCB.hs to TCB.hs.

5.3.1 Summary

In V1-NoFIO, the TCB contains 118 lines of code: 63 in TCB.hs, 45 in Shared.hs,
and 10 import statements in UCB.hs. The UCB contains 295 lines of code: 305
in UCB.hs minus the 10 import statements at the top of the file.

Qualitatively comparing V1-FIO to V1-NoFIO is largely subjective. The
application-specific TCB is smaller in V1-FIO; on the other hand, since FIO is
part of the TCB, the total TCB size is less in V1-NoFIO.

Furthermore, the TCB code is qualitatively different in the two implemen-
tations. In V1-FIO, the structure of the TCB (especially the policy function)
relieves auditors from digging through the codebase to find and verify security-
critical operations, such as filtering the list of posts before displaying it, and
correctly labeling new posts before inserting them into the database. On the
other hand, one can argue that the policy function complicates the control
flow. The control flow in V1-NoFIO is more straightforward, since there is no
need to parse the request twice.

6 Design V2: Adding a widget

Design V2 is the same as Design V1 except that the tictactoe page should now
also display recent posts below the Tic Tac Toe game board. Figure 1 highlights
the design change in the screenshot of the tictactoe page.

This design change affects the information flow of FacetBook because the
tictactoe page now includes information from both portions of the database:
the posts and the games.

16

178 parse_request request =

179 let sandbox h = \database respond ->

180 let censored = (undefined, snd database) in

181 h censored respond in

182 if WAI.pathInfo request == ["login"] then

183 sandbox $ UCB.login

184 else case check_credentials request of

185 Nothing ->

186 sandbox $ UCB.authentication_failed

187 Just username -> case WAI.pathInfo request of

188 ["post"] ->

189 let content = get_parameter request "content" in

190 let permissions = get_parameter request "permissions" in

191 let users = words permissions in

192 if content /= "" && all valid_username users then

193 do_create_post username content users

194 else

195 sandbox $ UCB.compose_post username

196 ["dashboard"] ->

197 dashboard username

198 ["tictactoe"] ->

199 let partner = get_parameter request "partner" in

200 if valid_username partner then

201 let action = get_parameter request "action" in

202 sandbox $ UCB.tictactoe_play username partner action

203 else

204 sandbox $ UCB.tictactoe_select_partner username

205 _ ->

206 sandbox $ UCB.not_found

Figure 14: The code for the parse request function in V1-NoFIO.

17

207 respond $ WAI.responseLBS status200 headers $

208 render_tictactoe new_game username partner

Figure 15: Excerpt of the code to display a Tic Tac Toe game in V1-FIO.

209 d <- Read (fst database)

210 Swap $ do --Fac

211 all_posts <- flatten d

212 return $ do --FIO

213 respond $ WAI.responseLBS status200 headers $

214 render_tictactoe new_game username partner <>

215 "

Recent posts:<hr />" <>

216 ByteString.intercalate "<hr />" (map escape (take 20 all_posts))

217 return ()

Figure 16: The new code to display a Tic Tac Toe game in V2-FIO.

7 V2-FIO

FacetBook V2-FIO implements Design V2, uses the FIO library, and is organized
so that the change from V1 to V2 is as convenient as possible.

Figures 15 and 16 show the differences between V1-FIO and V2-FIO. Only
these lines must change to implement the new widget.

In V2-FIO, the TCB is the same as in V1-FIO. The UCB contains 8 more
lines of code.

Since the TCB is the same in V1-FIO and V2-FIO, no further changes are
needed to minimize the TCB, which suggests that the information security is no
worse than it was before. Furthermore, no special effort is required to maintain
confidence in security when making the change from Design V1 to Design V2.

8 V2-NoFIO

FacetBook V2-NoFIO implements Design V2 without using the FIO library, and
is organized so that the change from V1 to V2 is as convenient as possible.

Figures 17 and 18 show the differences between V1-NoFIO and V2-NoFIO.

218 respond $ WAI.responseLBS status200 headers $

219 render_tictactoe new_game username partner

Figure 17: Excerpt of the code to display a Tic Tac Toe game in V1-NoFIO.

18

220 labeled_posts <- readIORef (fst database)

221 let d = filter_posts (Whitelist [username]) labeled_posts

222 let posts = flatten d

223 respond $ WAI.responseLBS status200 headers $

224 render_tictactoe new_game username partner <>

225 "

Recent posts:<hr />" <>

226 ByteString.intercalate "<hr />" (map escape (take 20 posts))

Figure 18: The new code to display a Tic Tac Toe game in V2-NoFIO.

Aside from these changes, we must also remove the call to sandbox on line 202,
which ruins the carefully audited boundary between the TCB and UCB. As a
result, in V2-NoFIO, the file UCB.hs is poorly named because its contents must
now be audited for information leaks. The TCB includes the whole codebase:
429 lines of code.

Note that V2-NoFIO is still secure (thanks to the call to filter posts on
line 221), just like all the other versions of FacetBook; however, the auditing ef-
fort to confirm its information security increased significantly when we removed
the call to sandbox on line 202.

9 V2-NoFIO-minTCB

FacetBook V2-NoFIO-minTCB implements Design V2 without using the FIO
library, and is organized so as to minimize the size of the TCB. In this section,
we highlight the differences from V2-NoFIO.

To minimize the TCB, we must move the tictactoe play function from
UCB.hs to TCB.hs. To keep the TCB as small as possible, we also refactor it to
call three new functions: UCB.tictactoe error response, UCB.update game,
and UCB.tictactoe play response.

Figure 19 shows the new code for tictactoe play. Lines 231 and 234 set
up appropriate sandboxes for calling the UCB functions on lines 232 and 236,
which relieves auditors from reading the code in UCB.hs (aside from its import
statements).

Compared to V1-NoFIO, the TCB is 10 lines larger, which suggests that
the change has reduced confidence in the security of the system. Compared
to V2-NoFIO, we modified 4 lines, moved 6 lines, and inserted 7 new lines;
these changes were necessary to minimize the size of the TCB, suggesting that
some nontrivial effort is required to maintain confidence in security. When
FIO is unavailable, the next best sandboxing techniques lead to an inflexible
architecture that becomes outdated when requirements change.

19

227 tictactoe_play username partner action database respond =

228 if partner == username then

229 respond $ UCB.tictactoe_error_response

230 else do --IO

231 let censored_database = (undefined, snd database)

232 new_game <- UCB.update_game username partner action censored_database

233 labeled_posts <- readIORef (fst database)

234 let d = filter_posts (Whitelist [username]) labeled_posts

235 let posts = flatten d

236 respond $ UCB.tictactoe_play_response new_game username partner posts

Figure 19: The code for the tictactoe play function in V2-NoFIO-minTCB.

10 Conclusions

To quantitatively answer the question of whether FIO makes it easier to achieve
information security, we constructed the prototype social network application
FacetBook, and measured the code changes required to add a widget for dis-
playing recent posts alongside the Tic Tac Toe game.

10.1 Research question 1

Does FIO help minimize TCB size when coding a secure application?
The FIO library has 108 lines of code, and the application-specific TCB in

V1-FIO has 99 lines of code. The application-specific TCB in V1-NoFIO has
118 lines of code.

In terms of total size, the TCB is smaller in V1-NoFIO. On the other hand,
the code in FIO is not application-specific, and so the burden of auditing it for
correctness can be amortized over many applications. So our results our incon-
clusive on this question, as FIO could be considered helpful or not, depending
on one’s point of view.

10.2 Research question 2

Does FIO help minimize TCB size when changing an existing application to
meet new requirements?

In the FIO version of FacetBook, the feature extension requires no significant
refactoring:

• We merely add code for getting the posts and displaying them in a widget.
The extension adds 0 lines of code to the TCB, and no special refactoring
is required.

On the other hand, in the non-FIO codebase, we have two unappealing options:

20

• We could simply remove the sandboxing and implement the extension
without refactoring any module boundaries. By taking this approach, we
greatly increase the size of the TCB, which now includes all of the code
pertaining to Tic Tac Toe, including all helper functions: 419 lines of code
altogether.

• We could carefully refactor the modules so that we only add to the TCB
the code related to displaying the new widget; the other helper functions
can remain outside of the TCB. The net result is still a larger TCB (10
more lines) and extra developer effort (17 changes) spent on refactoring.

From this experiment, we conclude that the FIO library makes it possible in
some situations to extend the functionality of applications at no extra cost (in
terms of TCB lines and refactoring effort). In comparison, without FIO, this
feature extension either significantly decreases security (via a larger TCB) or
requires additional refactoring effort to mitigate such a decrease.

11 Discussion

One design decision is the richness of the security policy. For instance, we could
include all of the rules of the Tic Tac Toe game in the policy, thus enforcing fair
and correct playing of the game. However, since the security policy lies within
the TCB, a larger policy means greater difficulty auditing the policy itself for
correctness. Therefore, since correct functionality of the Tic Tac Toe game is
less important than enforcing post visibility settings, we choose to include in
the policy only the code pertaining to the latter criterion.

Another design choice is whether to make the policy a “transparent” wrap-
per around the functioning system (analogous to higher-order contracts being
projections [4] that do not modify the behavior of correct programs) or to inte-
grate the policy into the functioning system itself. For instance, in FacetBook,
the policy code must inspect the request parameters to determine the request’s
meaning; should this part of the code be duplicated in the functioning system,
which also needs to determine each request’s meaning? We have chosen to du-
plicate this code, so there are some similarities in the control flow of functions
policy and parse request (Figures 6 and 12).

For the database, we use the FIORef type from our FIO library to keep per-
sistent state in memory. For the list of ongoing Tic Tac Toe games, the FIORef
will never become faceted because that data is public for everyone to see; how-
ever, for the faceted list of posts, the situation is more complicated. Specifically,
since faceted execution works by refusing to update the facets that are forbidden
from seeing the effects of the currently executing code, the data structure must
operate in an append-only manner, lest we degrade performance by creating
an exponentially large faceted structure. Some work by Algehed, Russo, and
Flanagan [1] will address this performance-related limitation of faceted execu-
tion. For now, in FacetBook, we simply use two separate FIORefs: one for the

21

list of Tic Tac Toe games (a non-faceted, non-append-only data structure), and
one for the list of posts (a faceted, append-only data structure).

References

[1] Maximilian Algehed, Alejandro Russo, and Cormac Flanagan. “Optimiz-
ing Faceted Secure Multi-Execution”. In: Computer Security Foundations
Symposium (CSF’19). IEEE. 2019.

[2] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly
Sagiv, Thomas Schmitz, and Keith Winstein. “Secure serverless computing
using dynamic information flow control”. In: Proceedings of the ACM on
Programming Languages 2.OOPSLA (2018), p. 118.

[3] Ethan Cecchetti, Andrew C Myers, and Owen Arden. “Nonmalleable infor-
mation flow control”. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM. 2017, pp. 1875–1891.

[4] Robert Bruce Findler and Matthias Blume. “Contracts as pairs of projec-
tions”. In: International Symposium on Functional and Logic Programming.
Springer. 2006, pp. 226–241.

[5] Minh Ngo, Nataliia Bielova, Cormac Flanagan, Tamara Rezk, Alejandro
Russo, and Thomas Schmitz. “A Better Facet of Dynamic Information Flow
Control”. In: WWW’18 Companion: The 2018 Web Conference Compan-
ion. 2018, pp. 1–9.

[6] Thomas Schmitz, Dustin Rhodes, Thomas H. Austin, Kenneth Knowles,
and Cormac Flanagan. “Faceted Dynamic Information Flow via Control
and Data Monads”. In: Principles of Security and Trust - 5th International
Conference, POST 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Nether-
lands, April 2-8, 2016, Proceedings. 2016.

[7] Michael D Schroeder. “Engineering a security kernel for multics”. In: ACM
SIGOPS Operating Systems Review. Vol. 9. 5. ACM. 1975, pp. 25–32.

[8] Jean Yang, Travis Hance, Thomas H Austin, Armando Solar-Lezama, Cor-
mac Flanagan, and Stephen Chong. “Precise, dynamic information flow for
database-backed applications”. In: Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI).
2016.

22

