
High Dimensional Bayesian Network Classification with
Low Rank and Sparse Shrinkage Priors

Sharmistha Guha and Abel Rodriguez

December 15, 2018

Abstract

This article proposes a novel Bayesian classification framework for networks with
labeled nodes. While literature on statistical modeling of network data typically in-
volves analysis of a single network, the recent emergence of complex datasets in several
biological applications, including brain imaging studies, presents a pressing need to
devise a network classifier for every individual. This article considers one such applica-
tion from a brain connectome study, where the overarching goal is to classify subjects
into two separate groups based on their brain network data, along with identifying
influential regions of interest (ROIs) (referred to as nodes). Existing approaches either
treat all edge weights as a long vector or summarize the network information with a
few summary measures. Both these approaches ignore the full network structure, may
lead to less desirable inference in small samples and are not designed to identify signif-
icant network nodes. We propose a novel binary logistic regression framework with the
network as the predictor and a binary response, the network predictor coefficient being
modeled using an additive structure having a low-rank and a sparse component. The
framework is able to accurately detect both nodes and edges in the network influenc-
ing the classification. Our framework is implemented using an efficient Markov Chain
Monte Carlo algorithm. Theoretically, we show asymptotically optimal classification
for the proposed framework when the number of network edges grows faster than the
sample size. The framework is empirically validated by extensive simulation studies
and analysis of a brain connectome data.

Keywords: Brain connectome; Edge selection; High dimensional binary regression; Low-rank
prior; Node selection; Network predictor; Posterior consistency.

1 Introduction

Of late, the statistical literature has paid heavy attention to the unsupervised analysis of
a single network, thought to be generated from a variety of classic models, including ran-
dom graph models (Erdos and Rényi, 1960), exponential random graph models (Frank and
Strauss, 1986), social space models (Hoff et al., 2002; Hoff, 2005; Hoff, 2009) and stochastic
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block models (Nowicki and Snijders, 2001). These models have found prominence in social
networking applications where the nodes of the network are exchangeable. However, there
are pertinent biological and physiological applications in which network nodes are labeled
and a network is available corresponding to every individual. Section 6 presents one such
example from a brain connectome study, where brain networks are available for multiple
individuals who are classified as subjects with high or low intelligence quotients (IQ). In
this study, the human brain has been divided according to the Desikan atlas (Desikan et al.,
2006) that identifies 34 cortical regions of interest (ROIs) both in the left and right hemi-
spheres of the human brain, implying 68 cortical ROIs in all. A brain network for each
subject is represented by a symmetric adjacency matrix whose rows and columns are labeled
corresponding to different ROIs (shared among networks corresponding to all individuals)
and entries correspond to estimates of the number of fibers connecting pairs of brain regions.
The scientific goal in this setting pertains to developing a predictive rule for classifying a
newly observed brain network with labeled nodes. Additionally, it is of specific interest for
neuroscientists to identify influential brain regions (nodes in the brain network).

Earlier literature on network or graph classification has been substantially motivated by
the problem of classification of chemical compounds (Srinivasan et al., 1996; Helma et al.,
2001), where a graph represents a compound’s molecular structure. In such analyses, certain
discriminative patterns in a graph are identified and used as features for training a standard
classification method (Deshpande et al., 2005; Fei and Huan, 2010). Another type of method
is based on graph kernels (Vishwanathan et al., 2010), which defines a similarity measure be-
tween two networks. Both these approaches are computationally feasible for small networks,
do not account for uncertainty and do not facilitate influential network node identification.
When the number of network nodes is moderately large, a common approach to network
classification is to use a few summary measures (average degree, clustering coefficient, or
average path length) from the network in the context of a flexible classification approach
(see, for e.g., Bullmore and Sporns, 2009 and references therein). Clearly, the success of
this approach is highly dependent upon selecting the right summaries to include. Further-
more, global summary statistics collapse all local network information, which can affect the
accuracy of classification, not allowing identification of local differences. Furthermore, iden-
tification of the impact of specific nodes on the response, which is of clear interest in our
setting, is not feasible. An alternative approach proceeds to vectorize the network predictor
and treat edge weights together as a long vector followed by developing a high dimensional
regression model with this long vector of edge weights as predictors (Richiardi et al., 2011;
Craddock et al., 2009; Zhang et al., 2012). This approach can take advantage of the recent
developments in high dimensional binary regression, consisting of both penalized optimiza-
tion (Tibshirani, 1996) and Bayesian shrinkage (Park and Casella, 2008; Carvalho et al.,
2010; Armagan et al., 2013) perspectives. However, this treats the links of the network as
exchangeable, ignoring the fact that coefficients involving common nodes can be expected to
be correlated a priori. Ignoring this correlation may lead to unsatisfactory predictive perfor-
mance and can potentially impact model selection. In a related work, Vogelstein et al., 2013
propose to look for a minimal set of nodes which best explains the difference between two
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groups of networks, which requires solving a combinatorial problem. Durante and Dunson,
2017 propose a high dimensional Bayesian tensor factorization model for a population of
networks that allows to test for local edge differences between groups. Their approach tends
to focus mainly on classification and is not designed to detect important nodes impacting
the response.

Our goal in this paper is to develop a high-dimensional Bayesian network classifier that
not only uses all the individual edge weights, but also respects the network structure of the
data and infers on influential nodes impacting classification. To achieve this goal, we for-
mulate a high dimensional logistic network model with the network as the predictor on the
binary response corresponding to each individual. The network predictor coefficient is pro-
posed to assume an additive low-rank and sparse structure. While the low-rank component
of the predictor coefficient is designed to mainly capture the impact of interactions between
different nodes on the regression function, the sparse component accounts for the additional
effects due to the edges connecting the nodes. Low-rank modeling of predictor coefficient
matrices has been observed in the tensor regression modeling literature (Zhou et al., 2013;
Guhaniyogi et al., 2017), though modeling predictor coefficient matrices using low-rank plus
sparse decomposition is less common. A few articles have emphasized the advantage of
modeling coefficient matrices using a low-rank plus sparse structure in the context of unsu-
pervised analysis of matrix valued data in the frequentist literature. For example, low-rank
plus sparse decomposition of Hankel matrices representing the input-output structure of a
linear time invariant system (LTI) has appeared in the literature (Fazel et al., 2003; Chan-
drasekaran et al., 2011). Our proposal involves node specific latent variables in the low-rank
component which are assigned a discrete mixture prior distribution to facilitate important
node identification. On the other hand, Bayesian shrinkage priors are assigned on the ele-
ments of the second component to ensure a “near sparse” structure a posteriori. We coin the
prior on both components together as the network shrinkage prior. The proposed framework
respects the network structure of the predictor, leads to accurate classification and allows
us to identify nodes that have influence on the response. Theoretical results guaranteeing
asymptotically optimal prediction by the proposed approach have also been demonstrated.

Recently, Relión et al., 2017 have proposed a penalized optimization scheme that enables
classification of networks, in addition to identifying important nodes. Although this model
seems to perform well for the classification problem, uncertainty quantification is difficult
because standard bootstrap methods are not consistent for Lasso-type methods (e.g., see
Kyung et al., 2010 and Chatterjee and Lahiri, 2010). Modifications of the bootstrap that
produce well-calibrated confidence intervals in the context of standard Lasso regression have
been proposed (e.g., see Chatterjee and Lahiri, 2011), but it is not clear whether they
extend to the more complex penalties introduced in Relión et al., 2017. Recently Guha
and Rodriguez, 2018 have proposed a Bayesian network regression framework for a network
predictor and a continuous response. In contrast, our framework is designed for the network
classification problem. Additionally, we offer novel theoretical developments ensuring optimal
classification which is not provided in Guha and Rodriguez, 2018.

Section 2 develops the model and the prior distributions. Section 3 discusses theoretical

3



developments justifying the asymptotically desirable prediction from the proposed model.
Section 4 details posterior computation. Results from various simulation experiments and a
brain connectome data analysis have been presented in Sections 5 and 6 respectively. Finally,
Section 7 concludes the paper with a brief discussion of the proposed methodology and a
discussion of possible future work.

2 Model Formulation

2.1 Notations

Let M i represent the weighted undirected network predictor with an associated binary
response yi ∈ {0, 1}, for i = 1, ..., n. The number of samples in the study is denoted by n.
The weights corresponding to the edges belong to R and all graphs share the same labels on
their nodes. For example, in the brain connectome application discussed subsequently, M i

encodes the network connections between different regions of the brain for the ith individual
and yi is an indicator signifying if the I.Q. level of ith individual has been been found to be
‘high’ or ‘low’. Let the network corresponding to any individual consist of V nodes. Thus
M i is a V × V symmetric matrix, with the (k, l)th entry of M i denoted by mi[kl] ∈ R and
mi[kl] = mi[lk], k > l. Our network specification allows no self relationships between nodes, i.e.
mi,[kk] ≡ 0 for all k = 1, ..., V . The brain connectome application considered here naturally
justifies these assumptions. Although we present our model specific to these settings, it will
be evident that the proposed model can be easily extended to directed networks with self-
relations. Throughout this article, we denote the Frobenius inner product between two V ×V
matrices A and B by 〈A,B〉F = Trace(B′A). Frobenius inner product is the natural inner
product on the space of matrices and is a generalization of the dot product from vector to
matrix spaces. Frobenius norm of a matrixA is defined as ||A||F =

√
〈A,A〉F . Additionally,

for any vector a = (a1, ..., ap)
′, define the L1, L2 and L∞ norms by ||a||1 =

∑p
l=1 |al|,

||a||2 =
√∑p

l=1 a
2
l and ||a||∞ = max

l
|al| respectively. || · ||0 denotes the L0-norm, i.e. the

number of non-zero entries for vectors. The || · ||1, || · ||2 and || · ||∞ norms of a matrix are
defined analogously.

2.2 Bayesian Network Classification Model

In the context of network classification, we propose the high dimensional logistic regression
model of the binary response yi on the undirected network predictor M i as

yi ∼ Bernoulli

[
exp(ψi)

1 + exp(ψi)

]
, ψi = µ+ 〈M i,Γ〉F , (1)

where Γ is a V × V symmetric network coefficient matrix whose (k, l)th element is given by
2γkl, with γkk = 0, for all k = 1, ..., V .

Model (1) can be expressed in the form of a generalized linear model. To be more
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specific, 〈M i,Γ〉F =
∑

1≤k<l≤V
mi[kl]γkl, so that ψi = µ +

∑
1≤k<l≤V

mi[kl]γkl and the probability

mass function of yi can be written as

p(yi) =
exp(ψi)

yi

1 + exp(ψi)
(2)

Equation (2) connects the binary network regression model with the high dimensional binary
regression framework, with mi[kl]’s as predictors and γkl’s as the corresponding coefficients.
To be more precise, if xi = (mi[12], ...,mi[(V−1)V ])

′ ∈ RV (V−1)/2 is the collection of all up-
per triangular elements of M i, and γ = (2γ12, ..., 2γ(V−1)V )′ ∈ RV (V−1)/2 is the vector of
corresponding upper triangular elements of Γ, then (1) can be written as

yi ∼ Bernoulli [fγ(xi)] , fγ(xi) =
exp(µ+ x′iγ)

(1 + exp(µ+ x′iγ))
. (3)

A few remarks are in order. Although the binary network regression model is proposed
for the logit link, it assumes natural extension for any other link function. While ordinary
linear regression indexes predictor coefficients by the natural numbers N , Model (2) indexes
the predictor coefficients by their positions in the matrix Γ to encode the information of the
edges as well as the nodes connecting the edges. As mentioned earlier, we are interested
in identifying nodes and edges which contribute to the regression. Additionally, our goal
remains estimating the coefficients γkl and subsequently making accurate classifications.
The next section describes a low-rank and sparse shrinkage prior on network coefficients to
achieve these goals.

2.3 Additive low rank and sparse shrinkage prior on network pre-
dictor coefficients

Ordinary regression with high dimensional vector predictors has recently been of interest in
Bayesian statistics. An overwhelming literature in the last decade has focused on shrinkage
priors which shrink coefficients corresponding to unimportant variables close to zero while
minimizing the shrinkage of coefficients corresponding to influential variables (for e.g., see
Park and Casella, 2008, Armagan et al., 2013, Carvalho et al., 2010). Many of these shrinkage
prior distributions can be expressed as a scale mixture of normal distributions, commonly
referred to as global-local (GL) scale mixtures (Polson and Scott, 2010), that enable fast
computation employing simple conjugate Gibbs sampling. More precisely, in the context of
model (3), a global-local scale mixture prior would take the form

γkl|φkl, σ2 ∼ N(0, σ2φkl), σ
2 ∼ H1(·), φkl ∼ H2(·), (4)

where σ2 is the global scale parameter and φkl’s are the predictor specific scale parameters
controlling the shrinkage of γkl’s. The Bayesian Lasso shrinkage prior emerges by considering
H1(σ2) = δ1(σ2) (δ1(·) is the Dirac-delta function at 1) and H2(φkl) as a double exponential
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density. On the other hand, for the popular horseshoe shrinkage prior H(·), H2(·) is defined
in a way such that φkl ∼ C+(0, 1) and σ ∼ C+(0, 1). Unlike the discrete mixture prior
distributions (George and McCulloch, 1993), the shrinkage prior on γ assigns zero probability
at the point zero, thus the exact number of nonzero elements of γ is always q = V (V − 1)/2.

A direct application of this global-local (GL) prior on coefficients γ in (3) misses out on
important restrictions on γ imposed by the network structure in M i. To elucidate further,
note that if node k contributes minimally to the response, one would expect to have smaller
estimates for most coefficients γk,l, l > k and γl′,k, l

′ < k corresponding to edges connected
to node k. The ordinary GL shrinkage prior distribution given above does not necessarily
conform to such an important restriction.

To capture the interaction between nodes in modeling a network, Hoff, 2005 employs
the low-rank bilinear model with node specific latent variables. Low rank approximation
of matrices is a popular technique of dimension reduction in many areas of science and
engineering (Fazel et al., 2003), including matrix completion problems, principal component
analysis and factor analysis. As an extension to low-rank approximations, decomposing a
given matrix into sparse and low-rank components has gained considerable interest, with
applications in video surveillance (Candès et al., 2011), neuroimaging and recommender
systems. Finding the best low-rank plus sparse representation of an observed matrix via
rank constrained optimization is computationally expensive due to the nonconvex nature of
the problem. It has been noted that the low-rank approximation may be too restrictive and
not robust, and a low-rank plus sparse framework (Fan et al., 2013; Luo, 2011) is more stable
and yields more accurate inference.

Motivated by the literature on low-rank and sparse decomposition of unsupervised anal-
ysis of matrices, we propose an additive “low-rank and sparse” framework Γ = Γ1 + Γ2 for
the network predictor coefficient matrix. Our proposal assigns a “low-rank” and a “sparse”
structure for Γ1 and Γ2, respectively. To elaborate further, let u1, ...,uV ∈ RR be a collection
of R-dimensional latent variables, one for each node, such that uk corresponds to node k.
Define U = [u1 : · · · : uV ] as the matrix of node specific latent variables and Γ1 = UΛU ′,
where Λ is an R × R diagonal matrix with the rth diagonal entry λr ∈ {0, 1} signifying
the effect of the rth dimension of the latent variables on Γ1. We might imagine that the
interaction between the kth and lth nodes has a positive, negative or neutral impact on the
response depending on whether uk and ul are in the same direction, opposite direction or
orthogonal to each other, respectively. In other words, whether the angle between uk and
ul is acute, obtuse or right, i.e. u′kΛul > 0, u′kΛul < 0 or u′kΛul = 0, respectively.

Let Γ2 = ((γ2,kl))
V
k,l=1. To impose a sparse structure on Γ2, one possible option is to

assign a discrete mixture prior distribution on γ2,kl. These priors have the advantage of
inducing exact sparsity on a subset of parameters, but may face computational challenges
when the number of predictors becomes moderately large. Instead, we propose to assign the
Bayesian Lasso shrinkage prior of the form (4) to each γ2,kl, with an additional symmetry
restriction γ2,kl = γ2,lk. Hence, conditional on the global and local scale parameters, the γkl’s
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are independent and are represented by the sum of two components:

γkl = u′kΛul + γ2,kl, k < l (5)

Note that low-rank only modeling of Γ may be a bit restrictive, and an additional sparse
structure provides extra flexibility in estimating more general Γ coefficient. In fact, in the
context of brain connectome applications, the low-rank component u′kΛul mainly captures
the impact of the (k, l)th edge (also referred to as the (k, l)th edge effect) on the regression
function due to the interaction between the kth and the lth nodes. The impact of the (k, l)th
edge after accounting for the node effects is captured by γ2,kl. The node k is considered
“inactive” in explaining the response if uk = 0, while an edge between the kth and the lth
node is “inactive” if either the kth or the lth node is inactive as well as the additional edge
effect γ2,kl = 0. We assume that the “edge effects” are mainly caused by the interactions
between nodes, and hence most of the γ2,kl’s are zero. For computational ease, Bayesian
Lasso shrinkage priors are assigned on γ2,kl’s (see (4)) so that the posterior distribution of
unimportant γ2,kl’s are centered around zero with small variability but never exactly coincide
with zero.

In order to directly make inference on which nodes are “active”, we assign the spike-
and-slab (Ishwaran and Rao, 2005) mixture distribution prior on the latent factor uk as
below

uk ∼
{
N(0,Q), if ξk = 1

δ0, if ξk = 0
, ξk ∼ Ber(∆), Q ∼ IW (S, ν), ∆ ∼ U(0, 1) (6)

where δ0 is the Dirac-delta function at 0 andQ is a covariance matrix of order R×R. S is an
R×R positive definite scale matrix. IW (S, ν) denotes an Inverse-Wishart distribution with
scale matrix S and degrees of freedom ν. The parameter ∆ corresponds to the probability
of the nonzero mixture component. Note that if the kth node of the network predictor is
inactive in predicting the response, then a-posteriori ξk should provide high probability to
0. Thus, based on the posterior probability of ξk, it will be possible to identify unimportant
nodes impacting the response. The location parameter µ is assigned a flat prior distribution.

In order to learn how many components of uk are informative for (5), we assign a hi-
erarchical prior λr ∼ Ber(πr), πr ∼ Beta(1, rη), η > 1. The choice of hyper-parameters of
the beta distribution is crucial in order to impart increasing shrinkage on λr as r grows. In
particular, E[λr] = 1/(1+rη)→ 0, as r →∞, so that the prior favors choice of smaller num-
ber of active components in uk’s impacting the response. Additionally, the hyper-parameter
of the distribution of λr safeguards the prior on λr from flattening out even at large r. In
particular,

∑R
r=1E[λr] =

∑R
r=1 1/(1 + rη), so that

∑R
r=1E[λr] converges as R → ∞. Note

that
∑R

r=1 λr is the number of dimensions of uk contributing to predict the response. We

refer to
∑R

r=1 λr as Reff , the effective dimensionality of the latent variables.
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3 Posterior Contraction of the Binary Network Clas-

sification Model

This section establishes convergence results for (1) with γ2,kl’s following the Bayesian Lasso
shrinkage prior. From the hierarchical specification given in (4), the Bayesian Lasso shrink-
age prior is given by γkl|φkl ∼ N(0, φkl), φkl ∼ Exp(λn/2). For the theoretical study, a
common practice is to fix λn as a function of n (see Armagan et al., 2013). Our theoretical
investigations will also fix λn with the fixed values specified later.

To begin with, we consider an asymptotic setting in which the dimensions of the network
predictor grow with n. This paradigm attempts to capture the fact that the number of
elements in M i, given by V 2

n can be substantially larger than sample size n. Since model (1)
is equivalent to model (3), the size of the coefficient γ in (3) is also a function of n, given by

qn = Vn(Vn−1)
2

. This creates theoretical challenges, related to (but distinct from) those faced
in showing posterior consistency for high dimensional continuous (Armagan et al., 2013) and
binary regressions (Wei and Ghosal, 2017). Without loss of generality, we assume that the
centering parameter µ = 0 in both the true and the data generating models.

Let yn = (y1, ..., yn)′ and the log-likelihood function is given by

wγ,n(yn) =
n∑
i=1

[(x′iγ)yi − z(x′iγ)], z(x′iγ) = log(1 + exp(x′iγ)).

We use superscript (0) in order to indicate true parameters. Thus, the true data generating
model is given by

yi ∼ Bernoulli

[
exp(ψ

(0)
i )

1 + exp(ψ
(0)
i )

]
, ψ

(0)
i = 〈M i,Γ

(0)〉F . (7)

Γ(0) is assumed to have a “low-rank plus sparse structure.” To be more precise, let Γ(0) =
Γ

(0)
1 +Γ

(0)
2 , where Γ

(0)
1 = U (0)′U (0) with U (0) being an R0×Vn matrix having the rth column

u
(0)
k , k = 1, ..., V . Γ

(0)
2 is a sparse matrix, and we denote the number of nonzero elements of

γ
(0)
2 by s0

2,n, i.e. ||γ(0)
2 ||0 = s0

2,n. Also, let S0 = {j ∈ N2 : γ
(0)
j 6= 0} denote the indices of the

true nonzero coefficients in (3). Similarly denote φS0 = (φj : j ∈ S0) as the vector of φkl’s
corresponding to the indices S0.

We introduce the function Cyn,n(·) to quantify the curvature of wγ,n(yn) around γ(0),

Cyn,n(γ) = wγ,n(yn)− wγ(0),n(yn)−∇wγ(0),n(yn)′(γ − γ(0)), (8)

where ∇wγ(0),n(yn) is the derivative of wγ(0),n(yn) w.r.t. γ, evaluated at γ(0).

Define An =

{
γn : 1

n

n∑
i=1

|fγ(xi)− fγ(0)(xi)| > ε

}
as a neighborhood around the true

density. Further suppose πn(·) and Πn(·) are the prior and posterior densities of γ with n
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observations, so that

Πn(An) =

∫
An pγ(yn)πn(γ)∫
pγ(yn)πn(γ)

,

where pγn(yn) =
∏n

i=1 exp(wγ,n(yi)).

3.1 Main Results

To show the posterior contraction result, we make a couple of simplifications. It is assumed
that the dimension R of uk is fixed and is the same as R0, the dimension of u

(0)
k . Con-

sequently, effective dimensionality is not required to be estimated, and hence Λ = I is a
non-random matrix. Additionally, we assume Q to be non-random and Q = I. We empha-
size that both these assumptions are not essential for the posterior contraction rate result
to be true, but are only introduced for simplifying calculations.

To begin with, we state the following assumptions under which posterior contraction will
be shown.

(A) sup
r=1,..,R;k=1,..,Vn

|u(0)
kr | <∞;

(B) Vn = o( n
log(n)

);

(C) ||M i||∞ is bounded for all i = 1, ..,, w.l.o.g assume ||M i||∞ ≤ 1.

(D) s0
2,n = o

{
n1−ρ/2
√
qn log(n)

}
, for some ρ ∈ (0, 2);

(E) ||Γ(0)
2 ||∞ <∞;

(F) λn = C
qnnρ/2 log(n)

for some C > 0.

The following theorem shows contraction of the posterior asymptotically under mild
sufficient conditions on Vn, s

0
2,n. The proof of the theorem is provided in Appendix C.

Theorem 3.1 Under assumptions (A)-(F) for the Bayesian Lasso prior on γ2, Pγ(0)(Π(An)→
0) ≥ 1− 2

qn
.

4 Posterior Computation

Using the result in Polson et al., 2013, the data augmented representation of the distribution
of yi given in (2) follows as below

p(yi|ωi) = 2−b exp(kiψi) exp(−ωiψ2
i /2), ωi ∼ PG(1, 0), (9)
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where ki = yi − 1/2. Let xi = (ai,1,2, ai,1,3, ..., ai,1,V , ai,2,3, ai,2,4, ..., ai,2,V , ...., ai,V−1,V )′ be of

dimension q × 1, where q = V×(V−1)
2

. Assume X = (x1 : · · · : xn)′ is an n× q matrix. Then
the conditional likelihood of y = (y1, ..., yn)′ given ω = (ω1, ..., ωn)′ and γ is given by

p(y |X,γ,ω) ∝
n∏
i=1

p(yi |xi,γ, ωi, ...)

∝
n∏
i=1

exp
{

(yi − 0.5)(µ+ x′iγ)− ωi(µ+ x′iγ)2/2
}

∝
n∏
i=1

exp

{
−ωi

2

[
(yi − 0.5)

ωi
− (µ+ x′iγ)2

]}
In matrix notation, the likelihood may be written as

p(y |X,γ,ω...) ∝ N(z |µ1 +Xγ,Ω−1)

where z = ((y1 − 0.5)/ω1, ..., (yn − 0.5)/ωn)′ and Ω = diag(ω1, ..., ωn). The full conditional
distributions of the parameters are in closed form given in Appendix A. The posterior com-
putation proceeds by running the Gibbs sampler with the full conditional distributions.

Let Ω(1), ...,Ω(L), Γ(1), ...,Γ(L) and µ(1), ..., µ(L) be the L post burn-in MCMC samples
for Ω, Γ and µ respectively after suitable thinning. To classify a network M ∗ as a member

of one of the two groups, we compute S(l) = exp(µ(1)+〈M∗,Γ(l)〉)
1+exp(µ(1)+〈M∗,Γ(l)〉) for l = 1, ..., L. M ∗ is

classified as a member of group ‘low’ or ‘high’ if 1
L

∑L
l=1 S

(l) is less than or greater than 0.5,
respectively. To judge sensitivity to the choice of the cut-off, the simulation section presents
Area under Curve (AUC) of ROC curves with True Positive Rates (TPR) and False Positive
Rates (FPR) of classification corresponding to a range of cut-off values.

In order to judge the importance of the kth node in terms of predicting the response, we
rely on the post burn-in L samples ξ

(1)
k , ...., ξ

(L)
k of ξk. Also, an estimate of P (Reff = r |Data)

is given by 1
L

∑L
l=1 I(

∑R
m=1 λ

(l)
m = r), where I(A) for an event A is 1 if the event A happens,

and 0 otherwise, and λ
(1)
m , ..., λ

(L)
m are the L post burn-in MCMC samples of λm.

5 Simulation Studies

This section evaluates the inferential and predictive ability of our method, along with a num-
ber of competitors, using synthetic networks generated under various simulation settings. In
each simulation, we assess the ability of the proposed approach to correctly identify influen-
tial nodes, to accurately estimate predictive edge coefficients and to classify a network with
precise characterization of uncertainties. In this section, we evaluate the performance of
our method using synthetic networks. Specific goals are recorded in the description of each
simulation. Our proposed approach is referred to as the Bayesian Network Classifier (BNC).
As competitors, we consider both penalized likelihood methods as well as Bayesian shrink-
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age priors for binary high-dimensional regression. Classification performance of different
competitors are assessed using the area under the curve (AUC) of the ROC curve.

To study all competitors under various data generation schemes, we simulate the response
from (1) given by

yi ∼ Ber

(
exp(µ0 + 〈M i,Γ0〉)

1 + exp(µ0 + 〈M i,Γ0〉)

)
, Γ0 = Γ0,1 + Γ0,2 (10)

where Γ0,1 and Γ0,2 are symmetric matrices with zero diagonal entries. µ0 is fixed at 2 in
all simulation scenarios. We consider two different schemes of generating the network M i,
referred to as Simulation 1 and Simulation 2.

Simulation 1. In Simulation 1, the network edges (i.e. the elements of the matrix M i) are
simulated from N(0, 1). Thus, Simulation 1 generates dense networks with all nodes having
inter-connections.
Simulation 2. In Simulation 2, nodes in a simulated network are organized into communities
so that nodes in the same community tend to have stronger connections than nodes belonging
to different communities. This simulation scenario simulates networks which closely mimic
brain connectome networks (Bullmore and Sporns, 2009). To simulate networks with such
community structures, we assign each node a community label, Ak ∈ {1, 2, ..., K}, k =
1, ..., V . The node assignments are the same for all networks in the population. Given
the community labels, the edge weights for ‘active’ edges are simulated from a Gaussian
distribution. More specifically, the (k, k′)th element of M is simulated from N(mAkAk′

, σ2
0),

where mkl = 0.5 when k = l. When k 6= l, i.e. the concerned edges connect nodes belonging
to different clusters, we sample a fixed number of edge locations randomly and simulate the
values from N(0, 1), assigning the values at the remaining locations to be 0. We set σ2

0 = 1
and K = 3 with 8, 9 and 8 nodes in the three communities.
Simulating the network predictor coefficient Γ0,1 and Γ0,2. In both Simulations 1 and 2, Γ0,1

is Γ0,2 assume a low-rank and a sparse structure respectively. Specifically, to simulate Γ0,1,
we draw V latent variables uk,0, each of dimension Rg, from a mixture distribution given by

uk,0 ∼ πNRg(um,g, u
2
s,g) + (1− π)δ0; k ∈ {1, ..., V }, (11)

where δ0 is the Dirac-delta function and π is the probability of any uk,0 being nonzero. The

(k, l)th element of the low-rank coefficient Γ0,1 is given by
u′k,0ul,0

2
, k 6= l. Note that if uk,0 is

zero, then the kth node has no contribution to the mean function in (10), i.e., the kth node
becomes inactive in predicting the response. Since (1− π) is the probability of a node being
inactive, it is referred to as the node sparsity parameter in the context of the data generation
mechanism under Simulations 1 and 2. All elements of um,g are taken to be 0.5 and us,g is
taken to be 1.

To simulate Γ0,2, we set π2, the proportion of nonzero elements of Γ0,2, randomly at
either 0.05 or 0.1. π2 is referred to as the residual edge sparsity. Once the locations of
nonzero entries are simulated, the nonzero entries are drawn using one of the three following
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strategies:
Strategy 1: Nonzero entries are simulated from N(1, 0.1).
Strategy 2: Nonzero entries are simulated from N(0.5, 0.1).
Strategy 3: All nonzero entries are fixed at 0.5.

For a comprehensive picture of Simulation 1 and Simulation 2, we consider different
cases as summarized in Table 1 and Table 2, respectively. In each of these cases, the network
predictor coefficient and the response are generated by changing the node sparsity π, the
residual edge sparsity π2 and the true dimension Rg of the latent variables uk,0’s. The table
also presents the maximum fitted dimension R of the latent variables uk for the logistic
regression model (2). Note that the various cases also allow model mis-specification with
unequal choices of R and Rg.

Cases Rg R Node Residual Edge Strategy
Sparsity (π) Sparsity (π2)

Case - 1 2 2 0.5 0.95 Strategy 1
Case - 2 2 4 0.5 0.95 Strategy 1
Case - 3 2 3 0.5 0.95 Strategy 1
Case - 4 3 4 0.7 0.95 Strategy 1
Case - 5 3 5 0.4 0.95 Strategy 1
Case - 6 2 5 0.5 0.90 Strategy 2
Case - 7 2 5 0.6 0.90 Strategy 3

Table 1: Table presents different cases for Simulation 1 . The true dimension Rg is the
dimension of vector object uk,0 using which data has been generated. The maximum dimen-
sion R is the dimension of vector object uk using which the model has been fitted. Node
sparsity and residual edge sparsity are described in the text.

Cases Rg R Node Residual Edge Strategy
Sparsity (π) Sparsity (π2)

Case - 1 2 2 0.5 0.95 Strategy 1
Case - 2 2 4 0.5 0.95 Strategy 1
Case - 3 2 3 0.3 0.95 Strategy 1
Case - 4 2 5 0.6 0.90 Strategy 3

Table 2: Table presents different cases for Simulation 2 . The true dimension Rg is the
dimension of vector object uk,0 using which data has been generated. The maximum dimen-
sion R is the dimension of vector object uk using which the model has been fitted. Node
sparsity and residual edge sparsity are described in the text.
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Simulation Cases

N
od
es

1 2 3 4 5 6 7

25
22

19
16

13
10

8
6

4
2

0.170
1
1

0.765
1
1

0.133
0.137
0.884
0.999
1

0.176
1

0.159
0.142
1
1

0.140
0.144
0.143
0.187
0.167
0.162
0.166
0.901

1
0.997
0.997
0.317
0.367
0.267
0.217
0.223
1

0.197
0.245
0.228
0.211
1

0.999
0.223
0.697
0.307
1

0.353
0.999
1

0.206
0.274
1

0.966
0.892
0.975
0.149
0.175
1

0.964
0.984
0.165
0.205
0.998
0.789
0.929
0.999
0.282
0.167
0.999
0.165
0.996
0.995
0.183
0.277
0.994
0.714
0.156

0.993
0.018
0.021
0.083
0.017
0.019
0.018
0.017
0.021
0.019
0.023
0.018
0.024
1
1

0.092
0.019
0.035
1

0.996
1

0.049
0.015
0.029
0.041

0.129
0.112
0.107
1
1

0.121
0.992
0.116
1

0.138
0.134
0.996
0.999
0.112
0.417
0.108
0.106
0.702
1

0.108
0.109
0.132
0.279
1

0.139

0.144
0.231
0.150
0.907
0.193
0.198
1

0.142
1
1

0.527
0.160
1
1

0.185
1

0.166
0.251
0.201
0.718
0.187
1

0.899
0.227
0.145

0.228
0.178
0.193
1
1
1

0.968
0.266
0.541
0.207
0.996
0.267
1

0.196
0.257
0.912
0.997
0.166
1
1

0.183
1

0.321
0.192
0.178

Figure 1: Simulation 1 : True activity status of a network node (clear blackground denotes
inactive and dark background denotes active). Note that there are 25 rows (corresponding
to 25 nodes) and 7 columns corresponding to 7 different cases in Simulation 1. The model-
detected posterior probability of the node being active has been super-imposed onto the
corresponding cell.

Competitors: As competitors, we use generic variable selection and shrinkage methods
that treat edges between nodes together as a long predictor vector to run high dimensional
regression, thereby ignoring the relational nature of the predictor. More specifically, we
use Lasso (Tibshirani, 1996), which is a popular penalized optimization scheme, and the
Bayesian Lasso (BLasso for short)(Park and Casella, 2008) and Horseshoe (BHS for short)
priors (Carvalho et al., 2010), which are popular Bayesian shrinkage regression methods, all
three under the logistic regression framework. In particular, the Horseshoe is considered to
be the state-of-the-art Bayesian shrinkage prior and is known to perform well, both in sparse
and not-so-sparse regression settings. We use the glmnet package in R (Friedman et al.,
2010) to implement binary Lasso regression. A thorough comparison with these methods
indicate the relative advantage of exploiting the structure of the network predictor. We
also implement an additional competitor that replaces the Bayesian Lasso shrinkage prior
specification on the elements of Γ2 by a Horseshoe shrinkage prior. Similar to ours, this
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Simulation Cases

N
od
es

1 2 3 4

25
22

19
16
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8
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4
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0.998
0.141
0.179
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0.994
1

0.139
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1
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0.702
0.171
0.141
0.133
0.376
0.191
0.991

1
0.349
0.996
0.965
0.461
0.353
0.442
1
1
1

0.376
0.660
0.750
0.586
1
1

0.394
0.471
0.543
0.978
0.546
1

0.424
0.999
1

1
0.134
0.184
0.139
0.379
0.965
1

0.127
0.139
0.182
1

0.168
0.609
1

0.160
0.152
0.655
0.230
1

0.998
0.141
0.159
0.989
0.156
0.621

0.172
1

0.177
0.223
1

0.161
1

0.994
0.984
0.205
0.827
0.965
0.223
0.637
0.193
0.317
0.199
0.191
0.464
0.329
0.198
0.560
0.179
1
1

Figure 2: Simulation 2 : True activity status of a network node (clear blackground denotes
inactive and dark background denotes active). Note that there are 25 rows (corresponding
to 25 nodes) and 4 columns corresponding to 4 different cases in Simulation 2. The model-
detected posterior probability of the node being active has been super-imposed onto the
corresponding cell.

competitor also proposes a low-rank plus sparse shrinkage prior on the network coefficient.
We refer to this method as the Bayesian Network Horseshoe (BNH for short). This will help
us ascertain if there is any added advantage in replacing the Bayesian Lasso prior on the
elements of Γ2 by a more complex structured shrinkage prior.

Additionally, we compare our method to a frequentist approach that develops network
classification in the presence of a network predictor and binary response (Relión et al.,
2017). Relión et al., 2017 develop a penalty on the network predictor coefficient that enables
important node selection along with classification of the networks. They argue that their
proposed penalty on the coefficient matrix incorporates the network information of the pre-
dictor, thereby yielding superior inference to any ordinary penalized optimization scheme.
Hence comparison with Relión et al., 2017 will potentially highlight the advantages of a care-
fully structured Bayesian network shrinkage prior over the penalized optimization scheme
incorporating network information. In the absence of any open source code, we implement
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Figure 3: Plots showing posterior probability distribution of effective dimensionality in all 7
cases in Simulation 1 . Filled bullets indicate the true value of effective dimensionality.
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(a) Simulation 1
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BNH
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Binary BHS

(b) Simulation 2

Figure 4: Figure shows predictive performance in the form of Area under Curve (AUC) of
ROC for all cases in Simulations 1 and 2 .

the algorithm in Relión et al., 2017 to the best of our ability. All Bayesian competitors
are allowed to draw 50, 000 MCMC samples, out of which the first 30, 000 are discarded as
burn-ins. Convergence is assessed by comparing different simulated sequences of represen-
tative parameters starting at different initial values (Gelman et al., 2014b). All posterior
inference is carried out based on the rest 20, 000 MCMC samples after suitably thinning the
post burn-in chain. We monitor the auto-correlation plots and effective sample sizes of the
iterates, and they are found to be satisfactorily uncorrelated. In all of our simulations, we
set V = 25 nodes and n = 250 samples.

6 Brain Connectome Application

In this section, we present the inferential and predictive ability of Bayesian network classi-
fication in the context of a weighted diffusion tension imaging (DTI) dataset. Our dataset
contains information on the full scale intelligence quotient (FSIQ) for multiple individuals.
Full scale intelligence quotient (FSIQ) is a measure of an individual’s complete cognitive
capacity. It is derived from administration of selected subtests from the Wechsler Intelli-
gence Scales (WIS), designed to provide a measure of an individual’s overall level of general
cognitive and intellectual functioning, and is a summary score derived from an individual’s
performance on a variety of tasks that measure acquired knowledge, verbal reasoning, at-
tention to verbal materials, fluid reasoning, spatial processing, attentiveness to details, and
visual-motor integration (Caplan et al., 2011). We have converted the FSIQ scores into a
binary response variable y, which takes value 0 if FSIQ is less or equal to 120, and value 1
if FSIQ is greater than 120. Thus, we classify the subjects in our study as belonging to the
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Figure 5: Plots showing posterior probability distribution of effective dimensionality in all 4
cases in Simulation 2 . Filled bullets indicate the true value of effective dimensionality.
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MSE
Cases BNC BNH Binary Relión(2017) Binary Binary

Lasso BL Horseshoe
Case - 1 0.164 0.983 1.197 1.387 0.980 1.160
Case - 2 0.132 0.606 0.796 1.004 0.611 0.728
Case - 3 0.109 0.303 0.505 0.757 0.407 0.542
Case - 4 0.064 0.118 0.187 0.386 0.129 0.153
Case - 5 2.349 3.568 3.943 4.368 3.502 3.993
Case - 6 0.106 0.467 0.906 1.056 0.695 0.856
Case - 7 0.166 0.200 0.485 0.617 0.329 0.415

Table 3: Performance of Bayesian Network Regression (BNR) vis-a-vis competitors for cases
in Simulation 1 . Parametric inference in terms of point estimation of edge coefficients
has been captured through the Mean Squared Error (MSE). The minimum MSE among
competitors for any case is made bold.

MSE
Cases BNC BNH Binary Relión(2017) Binary Binary

Lasso BL Horseshoe
Case - 1 0.279 0.418 0.807 0.939 0.712 0.739
Case - 2 0.180 0.388 0.514 0.665 0.423 0.548
Case - 3 0.134 0.549 0.906 1.097 0.748 0.883
Case - 4 0.066 0.106 0.167 0.221 0.097 0.141

Table 4: Performance of Bayesian Network Regression (BNR) vis-a-vis competitors for cases
in Simulation 2 . Parametric inference in terms of point estimation of edge coefficients
has been captured through the Mean Squared Error (MSE). The minimum MSE among
competitors for any case is made bold.

low IQ group if y = 0, and the high IQ group if y = 1.
Along with FSIQ measurements, brain connectome information for n = 114 subjects is

gathered using weighted diffusion tensor imaging (DTI). DTI is a brain imaging technique
that enables measurement of the restricted diffusion of water in tissue in order to produce
neural tract images. The brain imaging data we use has been pre-processed using the NDMG
pre-processing pipeline (Kiar et al., 2016; Kiar et al., 2017a; Kiar et al., 2017b). In the con-
text of DTI, the human brain is divided according to the Desikan atlas (Desikan et al., 2006)
that identifies 34 cortical regions of interest (ROIs) both in the left and right hemispheres
of the human brain, implying 68 cortical ROIs in all.

A ‘brain network’ for each subject is represented by a symmetric adjacency matrix whose
rows and columns correspond to different ROIs and entries correspond to estimates of the
number of ‘fibers’ connecting pairs of brain regions. Thus, there is a weighted adjacency
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matrix of dimension 68×68, with the (k, l)th off-diagonal entry in the adjacency matrix being
the estimated number of fibers connecting the kth and the lth brain regions, representing the
brain network for each individual. Our scientific goals in this setting include identification of
brain regions or network nodes significantly related to FSIQ and classification of a subject
into the low IQ or high IQ group based on his/her brain connectome information.

We fit our proposed model with y as the binary response and the adjacency matrix as the
network predictor. Identical prior distributions for all the parameters as in the simulation
studies have been used. BNC is fitted with R = 4, which is found to be sufficient for
this study. The MCMC chain is run for 50, 000 iterations, with the first 30, 000 iterations
discarded as burn-in. Convergence is assessed by comparing different simulated sequences
of representative parameters started at different initial values (Gelman et al., 2014a). All
inference is based on the remaining 20, 000 post burn-in iterates appropriately thinned.
Additionally, we monitor the auto-correlation plots and effective sample sizes of the iterates.

6.1 Findings from the Brain Connectome Application

As in the simulation studies, we emphasize on identifying influential brain regions of interest
(ROIs) associated with IQ. Figure 6 plots the estimated posterior probability of each ROI
being active. The model estimates posterior probabilities close to 1 for 4 ROIs, namely
the parsopercularis, pericalcarine and supramarginal regions in the left hemisphere, and
parsorbitalis region in the right hemisphere. For 6 more ROIs, the model is somewhat
uncertain, with posterior probabilities of these ROIs being active varying from around 15%
to 20%. The model shows strong conviction about the rest being not influential in the
variation in IQ.

Figure 7 presents a heatmap of the estimated posterior means of γ. As expected, the
figure shows high sparsity with only 22 edge coefficients having estimated absolute value of
the posterior mean greater than 1. Importantly, all “significantly” nonzero edge coefficients
are found to be connected to the ROIs estimated to be influential.

In order to examine the predictive ability of the Bayesian network classification model,
we report the area under curve (AUC) of the ROC curve for BNC as well with all competing
methods. AUC for all competitors is computed using the popular 10-fold cross validation
approach. AUC estimates of all competitors presented in Table 5 indicates better perfor-
mance of BNC. Frequentist binary Lasso turns out to be the second best performer while
BNH, BLasso or BHS all perform very similar to a random classifier. Finally, the distribu-
tion of the effective dimensionality for the model is investigated and it turns out that the
distribution has a mode at 2 with probability ≈ 0.44. Hence, a choice of R = 4 seems to be
sufficient for the analysis.

7 Summary and Future Work

We develop a binary Bayesian network regression that enables classifying multiple networks
with “labeled nodes” into two groups, identifies influential network nodes and predicts the
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Figure 6: Lateral and medial views of the brain (left and right hemispheres) showing all 68
regions of interest (ROIs). The size and color of the ROIs vary according to the value of the
posterior probabilities of them being actively related to the binary response.

Method BNC BNH Binary Relión(2017) Binary Binary
Lasso BL BHS

AUC 0.597 0.484 0.532 0.466 0.461 0.484

Table 5: Predictive performance of Bayesian Network Classification (BNC) vis-a-vis com-
petitors in terms of Area Under Curve (AUC) of the ROC. AUC has been calculated in each
case using a 10-fold cross validation technique.

class to which a newly observed network belongs. Our contribution lies in carefully construct-
ing an additive low-rank and sparse shrinkage prior on the network predictor coefficient, rec-
ognizing the latent network structure in the predictor variable. Another major contribution
of the proposed framework remains theoretically understanding the Bayesian network classi-
fier model. Specifically, we develop theory guaranteeing accurate classification as the sample
size tends to infinity. The theoretical developments allow the number of possible intercon-
nections in the network predictor to grow at a faster rate than the sample size. Empirical
studies reveal advantages of the proposed approach in terms of accurate classification and
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Figure 7: Heatmap showing posterior mean estimates of edge coefficients. Note that the
heatmap is a V × V symmetric matrix, where V = 68 denotes the 68 ROIs or nodes, and
each cell denotes an edge connecting the corresponding pair of nodes. The axis labels are
the abbreviated names of the 68 ROIs in the left (starting with ‘lh -’) and the right (starting
with ‘rh -’) hemispheres of the brain. Full names of the ROIs can be obtained from the
widely available Desikan brain atlas.

influential node identification over traditional high dimensional regression techniques which
vectorize the network predictor to a high dimensional vector predictor. The framework is
employed to analyze a brain connectome dataset that records connectivity between different
regions of interest in the brain for multiple individuals and includes information on whether
an individual has been found to possess low or high IQ. BNC is able to show satisfactory out
of sample classification and identifies important brain regions actively influencing the IQ of
an individual.

In future, we hope to develop a network regression model where the response and network
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predictors share a nonlinear relationship. Another important direction appears to be the
development of a regression framework with the network as the response regressed on a few
scalar/vector predictors. We are currently developing models to address these important
methodological issues.

Appendix A

This section provides full conditionals for all the parameters in the Bayesian binary network
regression presented in Section 2. Assume W = (u′1Λu2, ...,u

′
1ΛuV , ....,u

′
V−1ΛuV )′, D =

diag(s1,2, ..., sV−1,V ) and γ = (γ1,2, ..., γV−1,V )′. Thus, with n data points, the hierarchical
model with the Bayesian Network Lasso prior in the binary setting can be written as

z ∼ N(µ+Xγ,Ω−1)

γ ∼ N(W ,D), uk|ξk = 1 ∼ N(uk |0,M ), uk|ξk = 0 ∼ δ0, ξk ∼ Ber(∆), µ ∼ flat()

sk,l ∼ Exp(θ2/2), θ2 ∼ Gamma(ζ, ι), M ∼ IW (S, ν), ∆ ∼ Beta(a∆, b∆)

p(ωi) ∼ PG(1, 0), λr ∼ Ber(πr), πr ∼ Beta(1, rη), η > 1.

The full conditional distributions of the model parameters are given below.

• µ | − ∼ N
(

1′Ω(z−Xγ)
1′Ω1

, 1
1′Ω1

)
• γ | − ∼ N(µγ | ·,Σγ | ·), where µγ | · = (X ′ΩX +D−1)

−1
(X ′Ω(z − µ1) +D−1W ) and

Σγ | · = (X ′ΩX +D−1)
−1

• sk,l | − ∼ GIG
[

1
2
, (γk,l − u′kΛul)2, θ2

]
, where GIG denotes the generalized inverse

Gaussian distribution.

• θ2 | − ∼ Gamma
[(
ζ + V (V−1)

2

)
,
(
ι+
∑

k<l
sk,l
2

)]
• uk | − ∼ wuk δ0(uk) + (1−wuk)N(uk |muk ,Σuk), where U ∗k = (u1 : · · · : uk−1 : uk+1 :
· · · : uV )′Λ,Hk = diag(s1,k, ..., sk−1,k, sk,k+1, ..., sk,V ),γk = (γ1,k, ..., γk−1,k, γk,k+1, ..., γk,V ),
and

Σuk =
(
U ∗

′

hH
−1
k U

∗
k/τ

2 +M−1
)−1

, muk = ΣukU
∗′
kH

−1
k γk/τ

2

wuk =
(1− π)N(γk |0, τ 2Hk)

(1− π)N(γk |0, τ 2Hk) + πN(γk |0, τ 2Hk +U ∗kMU ∗
′

k )

• ξk|− ∼ Ber(1− wuk)

• ∆ | − ∼ Beta
[
(a∆ +

∑V
k=1 ξk), (b∆ +

∑V
k=1(1− ξk))

]
.

• M | − ∼ IW [(S +
∑

k:uk 6=0 ukΛu
′
k), (ν + {#k : uk 6= 0})].
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• λr | − ∼ Ber(pλr), where pλr = πrN(γ |W 1,τ2D)
πrN(γ |W 1,τ2D)+(1−πr)N(γ |W 0,τ2D)

. Here

W 1 = (u′1Λ1u2, ...,u
′
1Λ1uV , ....,u

′
V−1Λ1uV )′,W 0 = (u′1Λ0u2, ...,u

′
1Λ0uV , ....,u

′
V−1Λ0uV )′,

Λ1 = diag(λ1, .., λr−1, 1, λr+1, .., λR), Λ0 = diag(λ1, .., λr−1, 0, λr+1, .., λR), for r =
1, .., R.

• πr | − ∼ Beta(λr + 1, 1− λr + rη), for r = 1, .., R.

Using the relationship, PG(x | b, c) ∝ exp(− c2x
2

)PG(x | 1, 0) (Polson et al. (2013)), we
obtain

• ωi | − ∼ PG(1, µ+ x′iγ), for i = 1, .., n.

Lemma 7.1 Let γW be a random variable such that

γW | − ∼ N
[
(D−1 +XTΩX)−1XTΩ(z − µ1

¯
−XW ), (D−1 +XTΩX)−1

]
. (12)

Then the following results hold.

(a) γ
D
= γW +W

(b) Let, ∆γ1
∼ N(0,D), ∆γ2

∼ N(0, I), ∆γ3
= Ω

1
2X∆γ1

+ ∆γ2
,

γW = ∆γ1
+DXTΩ

1
2 (Ω

1
2XDXTΩ

1
2 + I)−1

[
Ω

1
2 (z − µ1

¯
−XW )−∆γ3

]
.

Remark: This algorithm ensures that samples from the posterior full conditionals of γ
can be obtained by sampling from the posterior full conditionals of γW . Lemma 7.1 shows
that obtaining samples from the full conditional of γW only requires inverting an n × n
matrix. Assuming n << q, which is typically encountered in the real data applications, the
computational complexity of the proposed approach is substantially mitigated.

As noted in Section 2.3 of the main text, straightforward posterior draw from the full
conditional of γ as above faces substantial computational difficulties. Section 2.3 states
Lemma 7.1 that provides a computational strategy to draw posterior samples of γ efficiently.
Proof of Lemma 7.1 is given below.
Proof of Lemma 7.1

(a) Note that

E(γW +W ) = W + (D−1 +XTΩX)−1XTΩ(z − µ1
¯
−XW )

= W − (D−1 +XTΩX)−1XTΩXW + (D−1 +XTΩX)−1XTΩ(z − µ1
¯
)

= W − (D−1 +XTΩX)−1(D−1 +XTΩX −D−1)W

+ (D−1 +XTΩX)−1XTΩ(z − µ1
¯
)

= W − (I − (D−1 +XTΩX)−1D−1)W + (D−1 +XTΩX)−1XTΩ(z − µ1
¯
)

= (D−1 +XTΩX)−1D−1W + (D−1 +XTΩX)−1XTΩ(z − µ1
¯
)

= (D−1 +XTΩX)−1(D−1W +XTΩ(z − µ1
¯
)) = E(γ).
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Also note that V ar(γW +W ) = V ar(γ) trivially since W is a given in the Gibbs step.

(b) Note that

E(γW ) = E
(
∆γ1

+DXTΩ
1
2 (Ω

1
2XDXTΩ

1
2 + I)−1

[
Ω

1
2 (z − µ1

¯
−XW )−∆γ3

])
= 0 +DXTΩ

1
2 (Ω

1
2XDXTΩ

1
2 + I)−1

[
Ω

1
2 (z − µ1

¯
−XW )− 0

]
= DXTΩ

1
2 (Ω

1
2XDXTΩ

1
2 + I)−1Ω

1
2 (z − µ1

¯
−XW ).

We need to prove that

DXTΩ
1
2 (Ω

1
2XDXTΩ

1
2 + I)−1Ω

1
2 (z − µ1

¯
−XW ) = (D−1 +XTΩX)−1XTΩ(z − µ1

¯
−XW )

i.e. DXTΩ
1
2 (Ω

1
2XDXTΩ

1
2 + I)−1 = (D−1 +XTΩX)−1XTΩ

1
2

Using the Sherman-Morrison-Woodbury matrix identity, we have that (D−1+XTΩX)−1 =

(D−1 +XTΩ
1
2IΩ

1
2X)−1 = D −DXTΩ

1
2 (Ω

1
2XDXTΩ

1
2 + I)−1Ω

1
2XD.

Hence

R.H.S. = (D−1 +XTΩX)−1XTΩ
1
2

= (D −DXTΩ
1
2 (Ω

1
2XDXTΩ

1
2 + I)−1Ω

1
2XD)XTΩ

1
2

= DXTΩ
1
2 −DXTΩ

1
2 (Ω

1
2XDXTΩ

1
2 + I)−1Ω

1
2XDXTΩ

1
2

= DXTΩ
1
2 −DXTΩ

1
2 (Ω

1
2XDXTΩ

1
2 + I)−1

[
Ω

1
2XDXTΩ

1
2 + I − I

]
= DXTΩ

1
2 −DXTΩ

1
2

[
I − (I + Ω

1
2XDXTΩ

1
2 )
−1
]

= DXTΩ
1
2 (I + Ω

1
2XDXTΩ

1
2 )
−1

= L.H.S.

Using the fact that V ar(∆γ1
) = D, V ar(∆γ2

) = I, V ar(∆γ3
) = (Ω

1
2XDXTΩ

1
2 + I)
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and Cov(∆γ1
,∆γ3

) = Ω
1
2XD, we have

V ar
(
∆γ1

+DXTΩ
1
2 (Ω

1
2XDXTΩ

1
2 + I)−1

[
Ω

1
2 (z − µ1

¯
−XW )−∆γ3

])
= V ar(∆γ1

) +DXTΩ
1
2 (Ω

1
2XDXTΩ

1
2 + I)−1V ar(∆γ3

)(DXTΩ
1
2 (Ω

1
2XDXTΩ

1
2 + I)−1)

T

− Cov(∆γ1
,DXTΩ

1
2 (Ω

1
2XDXTΩ

1
2 + I)−1∆γ3

)

−
[
Cov(∆γ1

,DXTΩ
1
2 (Ω

1
2XDXTΩ

1
2 + I)−1∆γ3

)
]T

= D +DXTΩ
1
2 (Ω

1
2XDXTΩ

1
2 + I)−1(Ω

1
2XDXTΩ

1
2 + I)(Ω

1
2XDXTΩ

1
2 + I)−1Ω

1
2XD

− 2DXTΩ
1
2 (Ω

1
2XDXTΩ

1
2 + I)−1Ω

1
2XD

= D +DXTΩ
1
2 (Ω

1
2XDXTΩ

1
2 + I)−1Ω

1
2XD − 2DXTΩ

1
2 (Ω

1
2XDXTΩ

1
2 + I)−1Ω

1
2XD

= D −DXTΩ
1
2 (Ω

1
2XDXTΩ

1
2 + I)−1Ω

1
2XD

= (D−1 +XTΩX)−1 (Using the Sherman-Morrison-Woodbury matrix identity)

= V ar(γW )

Appendix B

Appendix A shows full conditionals for BNC model. This section provides full conditionals for
all the parameters in the Bayesian binary network horseshoe regression used as a competitor
for BNC. Assume W = (u′1Λu2, ...,u

′
1ΛuV , ....,u

′
V−1ΛuV )′, D = diag(τ 2s2

1,2, ..., τ
2s2
V−1,V )

and γ = (γ1,2, ..., γV−1,V )′. Thus, with n data points, the hierarchical model with the Net-
work Horseshoe prior in the binary setting can be written as

z ∼ N(µ+Xγ,Ω−1)

γ ∼ N(W ,D), uk|ξk = 1 ∼ N(uk |0,M ), uk|ξk = 0 ∼ δ0, ξk ∼ Ber(∆), µ ∼ flat()

sk,l ∼ C+(0, 1), τ ∼ C+(0, 1), M ∼ IW (S, ν), ∆ ∼ Beta(a∆, b∆)

p(ωi) ∼ PG(1, 0), λr ∼ Ber(πr), πr ∼ Beta(1, rη), η > 1.

Note that, following Makalic and Schmidt (2015),

sk,l ∼ C+(0, 1), τ ∼ C+(0, 1)

can be written in an augmented form as

s2
k,l | νk,l ∼ IG

(
1

2
,

1

νk,l

)
, νk,l ∼ IG

(
1

2
, 1

)
, τ 2 |σ ∼ IG

(
1

2
,

1

σ

)
, σ ∼ IG

(
1

2
, 1

)
.

The full conditional distributions of the model parameters are given below:

• µ | − ∼ N
(

1′Ω(z−Xγ)
1′Ω1

, 1
1′Ω1

)
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• γ | − ∼ N(µγ | ·,Σγ | ·), where µγ | · = (X ′ΩX +D−1)
−1

(X ′Ω(z − µ1) +D−1W ) and

Σγ | · = (X ′ΩX +D−1)
−1

• s2
k,l | − ∼ IG

[
1, ( 1

νk,l
+

(γk,l−u′kΛul)
2

2τ2
)
]

• τ 2 | − ∼ IG
[(

1
2

+ V (V−1)
4

)
,
(

1
σ

+
∑

k<l

(γk,l−u′kΛul)
2

2s2k,l

)]
• νk,l | − ∼ IG

[
1, (1 + 1

s2k,l
)
]

• σ | − ∼ IG
[
1, (1 + 1

τ2
)
]

• uk | − ∼ wuk δ0(uk) + (1−wuk)N(uk |muk ,Σuk), where U ∗k = (u1 : · · · : uk−1 : uk+1 :
· · · : uV )′Λ,Hk = diag(s1,k, ..., sk−1,k, sk,k+1, ..., sk,V ),γk = (γ1,k, ..., γk−1,k, γk,k+1, ..., γk,V ),
and

Σuk =
(
U ∗

′

hH
−1
k U

∗
k/τ

2 +M−1
)−1

, muk = ΣukU
∗′
kH

−1
k γk/τ

2

wuk =
(1− π)N(γk |0, τ 2Hk)

(1− π)N(γk |0, τ 2Hk) + πN(γk |0, τ 2Hk +U ∗kMU ∗
′

k )

• ξk|− ∼ Ber(1− wuk)

• ∆ | − ∼ Beta
[
(a∆ +

∑V
k=1 ξk), (b∆ +

∑V
k=1(1− ξk))

]
.

• M | − ∼ IW [(S +
∑

k:uk 6=0 ukΛu
′
k), (ν + {#k : uk 6= 0})].

• λr | − ∼ Ber(pλr), where pλr = πrN(γ |W 1,τ2D)
πrN(γ |W 1,τ2D)+(1−πr)N(γ |W 0,τ2D)

. Here

W 1 = (u′1Λ1u2, ...,u
′
1Λ1uV , ....,u

′
V−1Λ1uV )′,W 0 = (u′1Λ0u2, ...,u

′
1Λ0uV , ....,u

′
V−1Λ0uV )′,

Λ1 = diag(λ1, .., λr−1, 1, λr+1, .., λR), Λ0 = diag(λ1, .., λr−1, 0, λr+1, .., λR), for r =
1, .., R.

• πr | − ∼ Beta(λr + 1, 1− λr + rη), for r = 1, .., R.

Using the relationship, PG(x | b, c) ∝ exp(− c2x
2

)PG(x | b, 0) (Polson et al. (2013)), we
obtain

• ωi | − ∼ PG(1, µ+ x′iγ), for i = 1, .., n.

Appendix C

The proof of Theorem 3.1 relies in part on the existence of exponentially consistent sequence
of tests.
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Theorem 7.2 There exists a sequence of test functions for testing H0 : γ = γ0 vs. H1 :
γ ∈ An, which satisfy

Eγ0(Φn) ≤ exp(−hn), sup
γ∈An

Eγ(1− Φn) ≤ exp(−hn). (13)

This sequence of test functions are referred to as the exponential consistent sequence of tests
Φn for testing H0 : γ = γ0 vs. H1 : γ ∈ An.

Proof The construction of the test is provided in the proof of Theorem 2 in Ghosal and
Roy (2006).

We also state another result which will be subsequently used in the proof.

Lemma 7.3 Let u
(0)
k = (u

(0)
k1 , ..., u

(0)
kR)′ for k = 1, .., Vn, and υkl be the only positive root of

the equation

x2 + x(||u(0)
k ||2||+ ||u

(0)
l ||2)− η = 0, k < l. (14)

Assume υ = mink,lυkl. Then, forW = (u′1u2, ...,u
′
Vn−1uVn)′ andW (0) = (u

(0)′

1 u
(0)
2 , ...,u

(0)′

Vn−1u
(0)
Vn

)′

Π(||W −W (0)||∞ < η) ≥ Π(||uk − u(0)
k ||2 ≤ υ, ∀ k = 1, .., Vn). (15)

Proof for k < l,

|u′kul − u
(0)′

k u
(0)
l | = |

R∑
r=1

ukrulr −
R∑
r=1

u
(0)
kr u

(0)
lr |

= |
R∑
r=1

(ukr − u(0)
kr )ulr|+ |

R∑
r=1

(ulr − u(0)
lr )u

(0)
kr |

≤ ||uk − u(0)
k ||2||ul||2 + ||ul − u(0)

l ||2||u
(0)
k ||2

≤ ||uk − u(0)
k ||2

[
||ul − u(0)

l ||2 + ||u(0)
l ||2

]
+ ||ul − u(0)

l ||2||u
(0)
k ||2.

If ||uk − u(0)
k ||2 ≤ υ, ∀ k = 1, .., Vn, the above inequality implies

|u′kul − u
(0)′

k u
(0)
l | ≤ υ(υ + ||u(0)

l ||2) + υ||u(0)
k ||2 ≤ η, ∀ k < l.

Hence Π(||W −W (0)||∞ < η) ≥ Π(||uk − u(0)
k ||2 ≤ υ, ∀ k = 1, .., Vn).

Proof of Theorem 3.1
Suppose yn ∈ En =

{
y : ||∇wγ(0),n(y)||∞ ≤ 2

√
nqn
}

. Then

Pγ(0)(yn ∈ En) ≥ 1− Pγ(0)( max
1≤j≤qn

|
n∑
i=1

(yi −∇z(x′i(γ − γ(0))))xij| > 2
√
nqn) ≥ 1− 2

qn
,
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where the last step follows from the Hoeffding inequality. In what follows, we will assume
that yn ∈ En. It can be observed that

Πn(An) =

∫
An pγ(yn)πn(γ)∫
pγ(yn)πn(γ)

=

∫
An

pγ(yn)

p
γ(0) (yn)

πn(γ)∫ pγ(yn)

p
γ(0) (yn)

πn(γ)
=
Nn
Dn
≤ Φn + (1− Φn)

Nn
Dn

, (16)

where Φn is the exponentially consistent sequence of tests given in Theorem 7.2. In proving
Theorem 3.1, we will proceed in three steps as following.

(a) Step 1 shows that Φn → 0, as n→∞, almost surely.

(b) Step 2 shows that exp(hn/2)(1− Φn)Nn → 0, as n→∞, almost surely.

(c) Finally, step 3 shows that exp(hn/2)Dn →∞, as n→∞, when yn ∈ En.

(a) Step 1
(13) in Theorem 7.2 yields,

Pγ(0) (Φn > exp(−nh/2)) ≤ Eγ(0) (Φn) exp(nh/2) ≤ exp(−nh/2).

Therefore
∑∞

n=1 Pγ(0) (Φn > exp(−nh/2)) <∞.
Applying Borel-Cantelli lemma Pγ(0) (Φn > exp(−nh/2) i.o.) = 0. Thus,

Φn → 0 a.s. (17)

(b) Step 2
We have

Eγ(0)((1− Φn)Nn) =

∫
(1− Φn)

∫
An

pγ(yn)

pγ(0)(yn)
πn(γ)pγ(0)(yn)

=

∫
An

∫
(1− Φn)pγ(yn)πn(γ)

≤ sup
γ∈An

Eγ(1− Φn) ≤ exp(−nh).

Applying Borel-Cantelli lemma, Pγ(0) ((1− Φn)Nn exp(nh/2) > exp(−nh/4) i.o.) = 0 so

exp(nh/2)(1− Φn)Nn → 0 a.s.. (18)
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(c) Step 3∫
pγ(yn)

pγ(0)(yn)
π(γ) =

∫
exp

(
∇wγ(0),n(yn)′(γ − γ(0)) + Cyn,n(γ)

)
π(γ)

≥
∫

exp
(
−||∇wγ(0),n(yn)||∞||γ − γ(0)||2 −

n

8
||γ − γ(0)||22

)
π(γ)

≥
∫

exp
(
−2
√
nqn||γ − γ(0)||2 −

n

8
||γ − γ(0)||22

)
π(γ)

≥ exp

(
−2
√
nqn

η

nρ/2
− nη2

8nρ

)
Π(||γ − γ(0)||2 <

η

nρ/2
),

where the inequality in the second line follows from the Taylor series expansion after taking
into account that ∇2z(·) ≤ 1/4. The inequality in the third line follows from the fact that
yn ∈ En.

Observe that

Π(||γ − γ(0)||2 <
η

nρ/2
) ≥ Π(||γ2 − γ

(0)
2 ||2 <

η

2nρ/2
)Π(||W −W (0)||2 <

η

2nρ/2
),

whereW andW (0) are as defined in Lemma 7.3. We will show sequentially (i) − log Π(||W−
W (0)||2 < η

2nρ/2
) = o(n) and (ii) − log

{
Π(||γ2 − γ

(0)
2 ||2 <

η
2nρ/2

)
}

= o(n).

(i) Note that,

Π(||W −W (0)||2 <
η

2nρ/2
) ≥ Π(||uk − u(0)

k ||2 ≤ υn, ∀ k = 1, .., Vn)

≥ E
[
Π(||uk − u(0)

k ||2 ≤ υn, ∀ k = 1, .., Vn|∆)
]

≥ E

[
Vn∏
k=1

{
exp

(
−1

2
u

(0)′

k u
(0)
k

)
Π(||uk||2 ≤ υn|∆)

}]
, (19)

where the first inequality follows from Lemma 7.3 by considering η as η
2nρ/2

with a slight
abuse of notation, and υn is defined accordingly. The last inequality follows from Anderson
Lemma. We will now make use of the fact that

∫ a
−a exp(−x2/2)dx ≥ exp(−a2)2a to conclude

Π(||uk||2 ≤ υn|∆) ≥
R∏
r=1

Π(|ukr| ≤
υn
R
|∆) =

R∏
r=1

(
(1−∆) +

∆√
2π

∫ υn/R

−υn/R
exp(−x2/2)

)

≥
R∏
r=1

(
(1−∆) +

∆√
2π

exp(−υ2
n/R

2)
2υn
R

)
≥
[
(1−∆) +

∆√
2π

exp(−υ2
n/R

2)
2υn
R

]R
.
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Vn∏
k=1

Π(||uk||2 ≤ υn) ≥ E

[
(1−∆) +

∆√
2π

exp(−υ2
n/R

2)
2υn
R

]RVn
= E

[
RVn∑
h1=1

(
RVn
h1

)
(1−∆)h1∆RVn−h1

(
2υn
R

)RVn−h1
exp(−(RVn − h1)υ2

n/R
2)

]

≥
RVn∑
h1=1

(
RVn
h1

)
Beta(RVn − h1 + 1, h1 + 1)

(
2υn
R

)RVn−h1
exp(−(RVn − h1)υ2

n/R
2)

≥
RVn∑
h1=1

(RVn)!

h1!(RVn − h1)!

h1!(RVn − h1)!

(RVn + 1)!

(
2υn
R

)RVn−h1
exp(−(RVn − h1)υ2

n/R
2)

≥ RVn
RVn + 1

(
2υn
R

)RVn
exp(−Vnυ2

n/R).

Where the last inequality follows from Lemma 7.3 by considering the fact that, υn =

min
k,l

−[||u(0)
k ||+||u

(0)
l ||]+

√
[||u(0)

k ||+||u
(0)
l ||]2+2η/nρ/2

2
≤

√
η√

2nρ/4
. Hence, 0 < 2υn

R
< 1 for large n. It

now follows from (19) that

− log Π(||W −W (0)||2 <
η

2nρ/2
) ≤

Vn∑
k=1

u
(0)′

k u
(0)
k

2
+

Vnη

2Rnρ/2
− (RVn) log

(
2
√
η

√
2Rnρ/4

)
+ log(RVn + 1)

− log(RVn) = o(n),

by the assumptions (A) and (B). This proves (i).
We will now prove (ii). It follows that

Π(||γ2 − γ
(0)
2 ||2 <

η

2nρ/2
) ≥ Π(|γ2j − γ(0)

2j | <
η

2
√
qnnρ/2

, j ∈ S0)Π(
∑
j 6∈S0
|γ2j|2 <

(qn − s0
2,n)η2

4qnnρ
).

(20)

We will lower bound two components of the product in (20) individually. By Chebyshev’s
inequality

Π(
∑
j 6∈S0
|γ2j|2 <

(qn − s0
2,n)η2

4qnnρ
) ≥

(
1−

E[
∑

j 6∈S0 |γ2j|2]4qnn
ρ

(qn − s0
2,n)η2

)

=

(
1− 2λnqnn

ρ

η2

)
. (21)
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Π(|γ2j − γ(0)
2j | <

η

2
√
qnnρ/2

, j ∈ S0) = E

[
Π(|γ2j − γ(0)

2j | <
η

2
√
qnnρ/2

, j ∈ S0|φS0)
]

= E

∏
j∈S0

Π(|γ2j − γ(0)
2j | <

η

2
√
qnnρ/2

|φS0)

 .
Using the fact that

∫ b
a
e−x

2/2dx ≥ e−(a2+b2)/2(b− a), one obtains

∏
j∈S0

Π(|γ2j − γ(0)
2j | <

η

2
√
qnnρ/2

|φS0) ≥
∏
j∈S0

{(
η√

2qnnρπφj

)
exp

(
−
|γ0

2j|2 + η2/(4qnn
ρ)

φj

)}
.

Thus

Π(|γ2j − γ(0)
2j | <

η

2
√
qnnρ/2

, j ∈ S0) ≥ E

∏
j∈S0

{(
η√

2qnnρπφj

)
exp

(
−
|γ0

2j|2 + η2/(4qnn
ρ)

φj

)}
≥
(

ηλn√
2qnnρπ

)s02,n ∏
j∈S0

∫
φj

{
1√
φj

exp

(
−
|γ0

2j|2 + η2/(4qnn
ρ)

φj
− λnφj

2

)
dφj

}
.

Use the change of variable 1
φj

= zj and the normalizing constant from the inverse Gaussian

density to deduce∫
φj

{
1√
φj

exp

(
−
|γ0

2j|2 + η2/(4qnn
ρ)

φj
− λnφj

2

)
dφj

}

=

∫
zj

 1√
z3
j

exp

(
−(|γ0

2j|2 + η2/(4qnn
ρ)zj −

λn
2zj

)
dzj

 =

√(
2π

λn

)
exp

(
−λn

√
2
(
|γ0

2j|2 + η2/(4qnnρ)
))

.

Therefore,

Π(|γ2j − γ(0)
2j | <

η

2
√
qnnρ/2

, j ∈ S0) ≥
(
η
√
λn√

qnnρ

)s02,n
exp

−λn∑
j∈S0

√
2
(
|γ0

2j|2 + η2/(4qnnρ)
) .

(22)

31



Combining results from (21) and (22)

Π(||γ2 − γ
(0)
2 ||2 <

η

2nρ/2
) ≥

(
η
√
λn√

qnnρ

)s02,n
exp

−λn∑
j∈S0

√
2
(
|γ0

2j|2 + η2/(4qnnρ)
)

(
1− 2λnqnn

ρ/2

η2

)
.

Using the fact that λn = 1
qnnρ/2 log(n)

,

− log Π(||γ2 − γ
(0)
2 ||2 <

η

2nρ/2
) ≤ s0

2,n[η + log(qn) + (3ρ/4) log(n) + log(log(n))/2]

+

√
2
(
|γ0

2j|2 + η2/(4qnnρ)
)

qnnρ/2 log(n)
− log

(
1− 2

η2 log(n)

)
= o(n), (23)

under assumptions (B)-(F).
Finally,

− log(Dn) ≤ 2
√
nqn

η

nρ/2
+
nη2

8nρ
− log Π(||γ − γ(0)||2 <

η

nρ/2
)

= 2η
√
qnn

(1−ρ)/2 +
η2

8
n1−ρ − log Π(||γ − γ(0)||2 <

η

nρ/2
).

Using (23), the fact that (1−ρ)/2 ∈ (−1/2, 1/2) and assumption (B), we obtain − log(Dn) =
o(n). Thus (c) follows.
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