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1 Introduction

The file system metadata service is the scalability bot-
tleneck for many of today’s workloads [24, 2, 3, 4, 31].
Common approaches for attacking this “metadata scaling
wall” include: caching inodes on clients and servers [9,
29, 13, 10, 33], caching parent inodes for path traver-
sal [21, 23, 6, 32, 23], and dynamic caching policies that
exploit workload locality [34, 36, 17]. These caches re-
duce the number of remote procedure calls (RPCs) but
the effectiveness is dependent on the overhead of main-
taining cache coherence and the administrator’s ability
to select the best cache size for the given workloads. Re-
cent work reduces the number of metadata RPCs to 1
without using a cache at all, by letting clients “decou-
ple” the subtrees from the global namespace so that they
can do metadata operations locally [35, 26]. Even with
this technique, we show that file system metadata is still
a bottleneck because namespaces for today’s workloads
can be very large. The size is problematic for reads be-
cause metadata needs to be transferred and materialized.

The management techniques for file system metadata
assume that namespaces have no structure but we ob-
serve that this is not the case for all workloads. We pro-
pose Tintenfisch, a file system that allows users to suc-
cinctly express the structure of the metadata they intend
to create. If a user can express the structure of the names-
pace, Tintenfisch clients and servers can (1) compact
metadata, (2) modify large namespaces more quickly,
and (3) generate only relevant parts of the namespace.
This reduces network traffic, storage footprints, and the
number of overall metadata operations needed to com-
plete a job.

Figure 1 provides an architectural overview: clients
first decouple the file system subtree they want to oper-
ate on1 then clients and metadata servers lazily generate

1This is not a contribution. This functionality and details on merg-
ing updates (e.g., when to merge, how to merge, and how to manage
conflicts) were presented in DeltaFS [35] and Cudele [26].

Figure 1: In (1), clients decouple file system subtrees and
interact with their copies locally. In (2), clients and meta-
data servers generate subtrees, reducing network/storage
usage and the number of metadata operations.

subtrees as needed using a “namespace generator”. The
namespace generator is stored in the root inode of the de-
coupled subtree and can be used later to efficiently merge
new metadata (that was not explicitly stated up front) into
the global namespace. The fundamental insight is that
the client and server both understand the final structure
of the file system metadata. Our contributions:

• observing namespace structure in high performance
computing, high energy physics, and large fusion
simulations (§2)
• based on these observations, we define names-

pace schemas for categorizing namespaces and their
amenability to compaction and generation (§3.1)
• a generalization of existing file system services

to implement namespace generators that efficiently
compact and generate metadata (§3.2)

2 Motivating Examples
We look at the namespaces for 3 large-scale applications.
Each is from a different domain and this list is not meant
to be exhaustive. Large lists of metadata are a problem
in each of these domains, so building a file system with
just general metadata (e.g., extended attributes) would re-
duce the size of the metadata but the architecture would
still suffer from managing a large number of names. To



make our results reproducible, this paper adheres to The
Popper Convention [14] so experiments can be examined
in more detail, or even re-run, by visiting the [source]
link next to each figure.

2.1 High Performance Computing: PLFS
Checkpointing performs small writes to a single shared
file but because file systems are optimized for large
writes, performance is poor. PLFS [5] solved the
checkpoint-restart problem by mapping one logical file
to many physical files on the underlying file system. The
solution targets N-1 strided checkpoints, where many
processes write small IOs to offsets in the same logi-
cal file. Each process sequentially writes to its own, un-
shared data file in the hierarchical file system and records
an offset and length in an index file. Reads aggregate in-
dex files into a global index file, which it uses as a lookup
table for identifying offsets into the logical file.

Namespace Description: when PLFS maps a single
logical file to many physical files, it deterministically
creates the namespace in the backend file system. For
metadata writes, the number of directories is dependent
on the number of clients nodes and the number of files is
a function of the number of client processes. A directory
called a container is created per node and processes write
data and index files to the container assigned to their host.
So for a write workload (i.e. a checkpoint) the underly-
ing file system creates a deep and wide directory hier-
archy, as shown in Figure 2a. The host* directory and
data*/index files (denoted by the solid line) are created
for every node in the system. The pattern is repeated
twice (denoted by the dashed blue line) in the Figure,
representing 2 additional hosts each with 1 process.

Namespace Size: Figure 2b scales the number of
clients and plots the total number of files/directories
(text annotations) and the number of metadata operations
needed to write and read a PLFS file. The number of files
is 2× (# of processes). So for 1 million processes each
checkpointing a portion of a 3D simulation, the size of
the namespace will be 2 million files. RPC-based ap-
proaches like IndexFS [23] have been shown to struggle
with metadata loads of this size but decoupled subtree
approaches like DeltaFS [35] report up to 19.69 million
creates per second, so writing checkpoints is largely a
solved problem.

For reading a checkpoint, clients must coalesce index
files to reconstruct the PLFS file. Figure 2b shows that
the metadata read requests (“readdir” and “open”) out-
number the create requests by a factor of 4×. Metadata
read requests are notoriously slow [8, 11], so like cre-
ate requests, RPCs are probably untenable. If the check-
point had been written with the decoupled namespace ap-
proach, file system metadata would be scattered across
clients so metadata would need to be coalesced before

restarting the checkpoint. If the metadata had already
been coalesced at some point they would still need to be
transferred to the client. Regardless, both decoupled sub-
tree scenarios require moving and materializing the file
system subtree. Current efforts improve read scalability
by reducing the space overhead of the index files them-
selves [12] and transferring index files after each write
but these approaches target the transfer and materializa-
tion of the index file data, not the index file metadata.

Takeaway: the PLFS namespace scales with the num-
ber of client processes so RPCs are not an option for
reading or writing. Decoupling the namespace helps
writes but then the read performance is limited by the
speed of transferring file system metadata across the net-
work to the reading client in addition to reading the con-
tents of the index files themselves.

2.2 High Energy Physics: ROOT
The High Energy Physics (HEP) community uses a
framework called ROOT [7] to manipulate, manage, and
visualize data about proton-proton collisions collected at
the large hadron collider (LHC). The data is used to re-
simulate phenomena of interest for analysis and there
are different types of reconstructions each with various
granularities. The data is organized as nested, object
oriented event data of arbitrary type (e.g., particle ob-
jects, records of low-level detector hit properties, etc.).
Physicists analyze the data set by downloading interest-
ing events, which are stored as a list of objects in ROOT
files. ROOT file data is accessed by consulting metadata
in the header and seeking to a location in the bytestream,
as shown in Figure 3a. The ROOT file has both data and
ROOT-specific metadata called Logical Record Headers
(LRH). For this discussion, the following objects are of
interest: a “Tree” is a table of events, listed sequentially
and stored in a flat namespace; a “Branch” is a column
of a Tree, composed of a set of values called “Entries”;
and Entries are grouped into ordered sets called “Bas-
kets” [18]. Clients request Branches and data is trans-
ferred as Baskets; so Branches are the logical view of the
data for users and Baskets are the compression, paral-
lelization, and transfer unit. The advantages of the ROOT
framework is the ability to (1) read only parts of the data
and (2) easily ingest remote data over the network.

Namespace Description: the HEP community is run-
ning into scalability problems. The current effort is to in-
tegrate the ROOT framework with Ceph [31]. But naive
approaches such as storing ROOT files as objects in an
object store or files in a file system have IO read ampli-
fication (i.e. read more than is necessary); storing as an
object would pull the entire GB-sized blob and storing as
a file would pull more data than necessary because the
file stripe size is not aligned to Baskets. To reduce IO
read amplification the namespace approach [22] views



(a) PLFS file system tree (b) [source] PLFS metadata size and operations.
Figure 2: PLFS file system metadata. (a) shows that the namespace is structured and predictable; the pattern (solid
line) is repeated for each host. In this case, there are three hosts so the pattern is repeated two more times. (b) shows
that the namespace scales linearly with the number of clients. This makes reading and writing difficult using RPCs so
decoupled subtrees must be used to reduce the number of RPCs.

(a) file approach (b) namespace approach (c) [source] ROOT metadata size and operations
Figure 3: ROOT file system metadata. (a) file approach: stores data in a single ROOT file, where clients read the header
and seek to data or metadata (LRH); a ROOT file stored in a distributed file system will have IO read amplification
because the striping strategies are not aligned to Baskets. (b) namespace approach: stores Baskets as files so clients
read only data they need. In (c), “Namespace” is the runtime of reading a file per Basket and “File” is the runtime of
reading a single ROOT file. RPCs are slower because of the metadata load and the overhead of pulling many objects.
Decoupling the namespace uses less network (because only metadata and relevant Baskets get transferred) but incurs
a metadata materialization overhead.

a ROOT file as a namespace of data. Physicists ask for
Branches, where each Branch can be made up of multiple
sub-Branches (i.e. Events/Branch0/Branch1), similar
to pathname components in a POSIX IO file name. The
namespace approach partitions the ROOT file onto a file
system namespace, as shown in Figure 3b. File system
directories hold Branch metadata, files contain Baskets,
and clients only pull Baskets they care about.

Namespace Size: storing this metadata in a file sys-
tem would overwhelm most file systems in two ways:
(1) too many inodes and (2) per-file overhead. To quan-
tify (1), consider the Analysis Object Dataset which has
a petabyte of data sets made up of a million ROOT files
each containing thousands of Branches, corresponding
to a billion files in the namespace approach. To quan-
tify (2), the read and write runtime over six runs of re-
playing a trace of Branch access from the NTupleMaker
application is shown in Figure 3c, where the x-axis is
approaches for storing ROOT data. We use the RootU-
tils [19] library to translate Branch requests into Baskets.
Using the namespace approach with RPCs is far slower

because of the metadata load and because many small
objects are pulled over the network. Although the file ap-
proach reads more data than is necessary since the stripe
size of the file is not aligned to Baskets, the runtime is
still 16.6× faster. Decoupling the namespace is much
faster for the namespace approach but the cost of mate-
rializing file system metadata makes it slower than the
file approach. Note that this is one (perhaps pessimistic)
example workload; the ROOT file is 1.7GB and 65% of
the file is accessed so the namespace approach might be
more scalable for workloads that access fewer Baskets.

Takeaway: the ROOT namespace stores billions of
files and we show that RPCs overwhelm a centralized
metadata server. Decoupling the namespace helps writes
but then the read performance is limited by (1) the speed
of transferring file system metadata across the network
and (2) the cost of materializing parts of the namespace
that are not relevant to the workload.

https://github.com/michaelsevilla/tintenfisch-popper/blob/master/experiments/n1/vizualize.ipynb
https://github.com/michaelsevilla/tintenfisch-popper/blob/master/pipelines/hep/visualize/viz.ipynb


2.3 Large Scale Simulations: SIRIUS
SIRIUS [15] is the Exascale storage system being de-
signed for the Storage System and I/O (SSIO) initia-
tive [25]. The core tenant of the project, similar to other
projects in HPC like PDC [?], is application hints that
allow the storage to reconfigure itself for higher perfor-
mance using techniques like tiering, management poli-
cies, data layout, quality of service, and load balancing.
SIRIUS uses a metadata service called EMPRESS [16],
which is an SQLite instance that stores user-defined
metadata for bounding boxes (i.e. a 3-dimensional co-
ordinate space). EMPRESS is designed to be used at any
granularity, which is important for a simulation space
represented as a 3D mesh. By granularity, we mean that
metadata access can be optimized per variable (e.g., tem-
perature, pressure, etc.), per timestamp, per run, or even
per set of runs (which may require multiple queries). At
this time, EMPRESS runs on a single node but it is de-
signed to scale-out via additional independent instances.

Namespace Description: the global space is parti-
tioned into non-overlapping, regular shaped cells. The
EMPRESS database has columns for the application ID,
run ID, timestamp, variable name, feature name, and
bounding box coordinates for these cells. Users can also
add custom-defined metadata. The namespace we are
referring to here is the list of objects containing simu-
lation data associated to a bounding box (or row in the
database). Variables affect how the space is partitioned
into objects; temperature may be computed for every cell
while pressure is computed for every n cells. For most
simulations, there are a minimum of 10 variables.

Namespace Size: we calculate 1∗1012 (1 trillion) ob-
jects for a simulation space of 1K× 1K× 1K cells con-
taining 8 byte floats. We use 1 million processes, each
writing 8GB of data for 10 variables over 100 timesteps
and an object size of 8MB (the optimal object size of
Ceph’s object store). The data per process and number of
variables are scaled to be about 1/10 of each process’s lo-
cal storage space, so about 80GB. 100 timesteps is close
to 1 timestep every 15 minutes for 24 hours.

As we integrate EMPRESS with a scalable object
store, mapping bounding box queries to object names for
data sets of this size is a problem. Clients query EM-
PRESS with bounding box coordinates and EMPRESS
must provide the client with a list of object names. One
potential design is to store coordinates for variables in
a database and calculate object name lists using a parti-
tioning function at read time. The problem is that ob-
ject name lists can be very large when applications query
multiple runs each containing trillions of objects, result-
ing in long transfer times as the metadata is sent back to
the client. Even after receiving the object name list, the
client may need to manage and traverse the list, doing
things like filtering for object names at the “edge” of the

feature of interest.
Takeaway: SIRIUS stores trillions of objects for a sin-

gle large scale simulation run and applications often ac-
cess multiple runs. These types of queries return a large
list of object names so the bottleneck is managing, trans-
ferring, and traversing these lists. The size of RPCs is the
problem, not the number. POSIX IO hierarchical names-
paces may be a good model for applications to access
simulation data but another technique for handling the
sheer size of these object name lists is needed.

3 Methodology: Compact Metadata
Namespace schemas and generators help clients and

servers establish an understanding of the final file system
metadata shape and size.

3.1 Namespace Schemas
Namespace schemas describe the structure of the names-
pace. A “balanced” namespace means that subtree pat-
terns (files per directory) are repeated and a “bounded”
namespace means that the range of file/directory names
can be defined a-priori (before the job has run but after
reading metadata). Traditional shared file systems are de-
signed for general file system workloads, like user home
directories, which have an unbalanced and unbounded
namespace schema because users can create any number
of files in any pattern. PLFS has a balanced and bounded
namespace because the distribution of files per directory
is fixed (and repeated) and any subtree can be gener-
ated using the client hostnames and the number of pro-
cesses. ROOT and SIRIUS are examples of unbalanced
and bounded namespace schemas. The file per directory
shape is not repeated (it is determined by application-
specific metadata, LRH for ROOT or variables for SIR-
IUS) but the range of file/directory names can be deter-
mined before the job starts.

3.2 Namespace Generators
A namespace generator is a compact representation of a
balanced or bounded namespace that lets clients/servers
generate file system metadata. Tintenfisch supports
namespace generators and is built on Cudele [26] so
the centralized, globally consistent metadata service can
decouple subtrees. The generator is stored in the di-
rectory inode of the decoupled subtree using a “file
type” interface [30] and our prototype is built using
a programmable storage approach [27, 20]. Names-
pace generators are integrated into file system metadata
servers and clients instead of the application itself be-
cause namespace schemas are common across domains.
We designed these generators by matching the patterns
of the namespace to the application source code.



For n processes on m servers:

# of dirs = m×mkdir()
# of file = 2×n
# of file per dir = n/m

(a) Function generator for PLFS

local box require ’box2d’

for i=_x,_x+x do for j=_y,_y+y do

if t>30 then

obj_list.insert(box(x,y,z))

else

b0,b1,b2,=box.nsplit(4)

obj_list.insert(b0,b1,b2)

end end end

return obj_list

(b) Code generator for SIRIUS

void recurseBranch(TObjArray *o){

TIter i(o);

for(TBranch *b=i.Next();

i.Next()!=0;

b=i.Next()){

processBranch(b);

recurseBranch(b->GetListOfBranches());

}

}

(c) Code generator for HEP

Figure 4: Generators for 3 motivating examples. The code generator in Figure 4c is coupled with a pointer generator.

Formula Generator: takes domain-specific informa-
tion as input and produces a list of files and directories.
For example, PLFS creates files and directories based on
the number of clients, so administrators can use the for-
mula in Figure 4a, which takes as input the number of
processes and hosts in the cluster and outputs the number
of directories, files, and files per directory. The formula
assumes that hostnames can be generated (e.g., a range
of hosts named host.[1, 2, 3, 4]). The namespace drawn
in Figure 2a can be generated using an input of 3 hosts
each with 1 process.

Code Generator: gives users the flexiblity to write
programs that generate the namespace. This is useful if
the logic is too complex to store as a formula or requires
external libraries to interpret metadata. For example,
SIRIUS constructs the namespace using domain-specific
partitioning logic written in Lua. Figure 4b shows how
the namespace can be constructed by iterating through
bounding box coordinates and checking if a threshold
temperature is eclipsed. If it is, extra names are gener-
ated using the box2d package. Although the partitioning
function itself is not realistic, it shows how code gen-
erators can accommodate namespaces that are complex
and/or require external libraries.

Pointer Generator: references metadata in scalable
storage and avoids storing large amounts of metadata in
inodes, which is a frowned upon in distributed file sys-
tem communities [1]. This is useful if there is no formal
specification for the namespace. For example, ROOT
uses self-describing files so headers and metadata need
to be read for each ROOT file. A code generator is in-
sufficient for generating the namespace because all nec-
essary metadata is in objects scattered in the object store.
A code generator containing library code for the ROOT
framework and a pointer generator for referencing the in-
put to the code can be used to describe a ROOT file sys-
tem namespace. Figure 4c shows a code generator exam-
ple where clients requesting Branches follow the pointer
generator (not pictured) to objects containing metadata.

Discussion: generators compact metadata, which
speeds up network transfers and reduces storage foot-
prints. This also gives clients/servers the ability to mod-
ify large namespaces (e.g., PLFS namespaces can be

scaled from 1 to 2 million processes just by sending a
new input to the formula generator). Metadata com-
paction also gives clients/servers the ability to generate
relevant parts of the namespace because only a fraction
of the metadata is needed (e.g., generating object names
for SIRIUS based on a prefix). The generator types work
well for namespaces that are balanced/bounded, so use
cases outside POSIX IO, such as network namespaces,
should also benefit. Although the generator types may
not generalize to other schemas, our approach works for
jobs with definable namespace access patterns.

4 Conclusion and Future Work
We show that some of today’s specialized applications
have large, structured namespaces and propose a new
way for the file system to facilitate this domain-specific
knowledge. By leveraging the bounded/balanced nature
of these namespaces, clients/servers can exchange com-
pact representations of metadata instead of the meta-
data in its entirety. This work shares many of the risks
of programmable storage [27, 28], namely introducing
poorly designed generators (e.g., non-deterministic nam-
ing) into the file system. Proper sandboxing techniques
for security/correctness are future work. Also, our gen-
erators may not work for applications that make use of
metadata that cannot be specified at create time, such
as permissions (e.g, workflows), size of the file (e.g.,
Hadoop), or dates (e.g., garbage collectors). Another
avenue of future work will supplement these generators
with more metadata information.
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