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Abstract

We develop a model for Bayesian selection in high order Markov chains through an extension of the
mixture transition distribution of Raftery (1985). We demonstrate two uses for the model: parsimonious
approximation of high order dynamics by mixing lower order transition models, and model selection
through over-specification and shrinkage via priors for sparse probability vectors. We discuss properties
of the model and demonstrate its utility with simulation studies. We further apply the model to a data
analysis from the high-order Markov chain literature and a novel application to pink salmon abundance
time series.
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1 Introduction

Consider modeling a time series of nominal or ordinal values st ∈ {1, . . . ,K} collected at equally-spaced,

discrete times t = 1, . . . , T . A popular approach for capturing serial correlation is to assume Markovian

dynamics: that the conditional probability distribution of st depends only on the recent past. Time

homogeneity, or time invariance of the transition probabilities, is also typically assumed. These simplifying

assumptions, crucial for replication and inference in small or moderate sample size scenarios, are often

appropriate even if the time series is not truly Markovian. Another common assumption is to condition

only on the single most recent lag. While this avoids exponential growth in the parameter space, first order

dynamics, or even selecting the incorrect lag, can miss important features in the data. As an illustration,

consider a time series of alternating states (1, 1, 2, 2, 1, 1, 2, 2, . . .). A model conditioning on the first lag

only would estimate all transition probabilities to be 0.5 for state 1 and 0.5 for state 2, but conditioning on

the second lag reveals a deterministic system with perfect predictability. In this article, we propose a model

to address our objectives of Bayesian estimation for the relevant time-delay coordinates: the Markovian

order and important lags, as well as parsimonious modeling of high order chains.

Assuming time homogeneity, a full, unrestricted first order model requires estimation of K discrete

distributions, each with K − 1 free parameters. A Markov chain of order R requires estimation of KR

such distributions, severely limiting consideration of all but low order models for moderate length time

series. Typically, order (or lag) is selected by maximizing a (possibly penalized) likelihood (as in Raftery

(1985), Prado and West (2010)), performing trans-dimensional MCMC (Green, 1995; Insua et al., 2012),

using Bayes factors (Zucchini and MacDonald, 2009), predictive criteria, or goodness-of-fit tests (Besag

and Mondal, 2013). Each of these approaches requires either fitting multiple models or complex estimation

methods. Our approach is to build lag inference into a single model.

The first general-purpose, parsimonious model for high order Markov chains was the mixture transition

distribution (MTD) introduced by Raftery (1985). The MTD model was extended in Raftery and Tavaré

(1994) and developed over the subsequent decade. A comprehensive review is given by Berchtold and

Raftery (2002). In the MTD model, lags contribute to the transition probabilities by mixing over a single

transition matrix. Only one new parameter is added for each additional lag. Although it has a simple

form, the MTD is sufficiently flexible to capture features such as “outliers, bursts, and flat stretches in

time series” (Le et al., 1990).

Contemporary with the MTD model, generalized linear models for multinomial outcomes were applied

to categorical time series (Liang and Zeger, 1986; Zeger and Liang, 1986; Fahrmeir and Kaufmann, 1987).
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These models can accommodate varying degrees of complexity by controlling the order of interactions

among the linear predictors (lags), up to and including a full model with KR(K − 1) parameters. These

models can also account for exogenous sources of non-stationarity through covariates. Bayesian estimation

and interpretability become problematic in these models when many lags are considered.

More recently, tree-based methods have allowed for parsimonious high order Markov chains. Variable-

length Markov chains (VLMC, Ron et al. (1994); Bühlmann et al. (1999)) reduce the parameter space by

clustering the KR transition distributions via recursive pruning. Sparse Markov chains (SMC, Jääskinen

et al. (2014)) partition the R-dimensional lag space without hierarchical constraints, resulting in greater

flexibility. They also feature a prior structure which encourages low orders. Although efficient, these

models lack posterior uncertainty quantification, and inferences for order and lag importance are not

readily available.

Most recently, Sarkar and Dunson (2016) proposed a Bayesian nonparametric model for parsimonious

representation of high order chains. They model the KR transition distributions through tensor factoriza-

tion and encourage sparsity in the high dimensional core mixing distribution by clustering its components

with a Dirichlet process prior (Ferguson, 1973). By allowing variable dimensions along the core mixing

distribution, the model further admits inferences for lag importance. This model enjoys a fully Bayesian,

albeit complicated, implementation and performs well against the methods described above in forecasting

when there are up to four states and ten lags.

Each of the reviewed models, with exception of the multinomial regression approach, can be represented

as a mixture of core transition probability distributions and weights with varying complexity (Sarkar and

Dunson, 2016). Our approach is to build on the simplicity and interpretability of the MTD model. We

propose an extension which allows for higher-order interaction between lags and infers the Markovian order.

The remainder of this paper is organized as follows. In Section 2, we develop the proposed extension of

the MTD model together with an approach for Bayesian inference using different structured priors to aid

the model’s intended use. In Section 3, we test the model using two simulation scenarios which reflect our

two objectives, demonstrating improved predictive performance over the original MTD. We then use the

model to analyze a data set which appears in the preceding literature, as well as analyze an annual time

series of pink salmon abundance in Alaska, U.S.A. in Section 4. Finally, we conclude with a summary in

Section 5.
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2 Model

In a full R-order, time-homogeneous Markov chain, the collection of all possible transition probabilities

Pr(st = i0 | st−1 = i1, . . . , st−R = iR) for i` ∈ {1, . . . ,K}, ` ∈ {1, . . . , R}, t ∈ {R + 1, . . . , T} can be

arranged in a (R + 1)-order tensor (Ω)iR,iR−1,...,i2,i1,i0 . If we condition on the first R observations of the

time series, the joint probability distribution for the remaining observations is given by Pr({st}Tt=R+1 |

{st}Rt=1,Ω) =
∏T
t=R+1(Ω)st−R,...,st−1,st , defining the conditional likelihood that we employ hereafter. We

begin by specifying the original MTD model in Section 2.1 and motivating its extension, our proposed

model, in Section 2.2. We discuss Bayesian estimation in Section 2.3 and introduce additional options for

prior specification in Section 2.4.

2.1 Original mixture transition distribution

The mixture transition distribution model constructs the transition probability tensor Ω as linear com-

binations of probabilities from a single row-stochastic matrix Q and adds just one parameter for each

additional lag (λ`), similar to autoregressive models. The transition probabilities in a model of order R

are given as

(Ω)iR,iR−1,...,i2,i1,i0 ≡
R∑
`=1

λ`qi`,i0 , (1)

where qi,j ≡ (Q)i,j , 0 ≤ λ` ≤ 1 and
∑R

`=1 λ` = 1. Although this model is simple and incorporates

information beyond the first lag, it is restrictive in that it cannot capture nonlinear (non-additive) dynamics

in more than one dimension of the lag space.

Form (1) suggests that lags which play a prominent role in the transition probability for st will have

relatively large λ` and lags which are not important to the transition will have λ` near 0. Hence, inferences

for λ potentially yield information about important lags for the Markov process. It is easy to show in the

K = 2 and R = 2 case that if the rows of Q are unique, then the current state is conditionally independent

of Lag ` if and only if λ` = 0. Inferences on λ have been employed to understand lag importance informally

(Raftery and Tavaré, 1994), although the standard method for assessing order has been to compare BIC

values (Berchtold and Raftery, 2002). Heiner et al. (2018) use a single model, relying on inferences on λ

for insight into lag importance. We adopt that approach here as well.
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2.2 Multi-MTD model

The review in Berchtold and Raftery (2002) discusses a number of ways to extend the MTD model. One

avenue for increasing modeling flexibility that has received some attention is to use multiple Q matrices,

one for each lag. They also suggest, but do not pursue the possibility of mixing over higher order tensors.

We propose and build a Bayesian framework for such an extension and refer to it here as the multi-mixture

transition distribution (MMTD).

To define the MMTD model, let J < R be a positive integer representing the highest order transition

tensor over which we will mix. Then we have Q(1), a K × K transition matrix, Q(2), a K × K × K

transition tensor, and so forth up to Q(J), a KJ+1 transition tensor such that
∑K

k=1(Q(J))iJ ,iJ−1,...,i1,k = 1

for all (iJ , iJ−1, . . . , i1) ∈ {1, . . . ,K}J . Next, introduce a mixing probability vector across orders Λ =

(Λ1, . . . ,ΛJ). The MMTD model for transition probabilities is then given by

Pr(st = i0 | st−1 = i1, st−2 = i2, . . . , st−R = iR,Λ, {λ(j)}Jj=1, {Q(j)}Jj=1) = (Ω)iR,iR−1,...,i2,i1,i0

≡ Λ1

R∑
`=1

λ
(1)
` Q(1)(st = i0 | st−` = i`) +

+ Λ2

∑∑
`1<`2

λ
(2)
(`1,`2)Q

(2)(st = i0 | st−`1 = i`1 , st−`2 = i`2) + . . .+ (2)

+ ΛJ
∑

. . .
∑

`1<...<`J

λ
(J)
(`1,...,`J )Q

(J)(st = i0 | st−`1 = i`1 , . . . , st−`J = i`J ) ,

where λ(j) is a probability vector of length
(
R
j

)
for j = 1, . . . , J . This mixture of mixtures is equivalent

to using a single (albeit long) λ probability vector to mix over all possible arrangements of lags and base

transition tensors Q(j). However this parameterization is more informative about important orders (via

inference for Λ) in addition to lags (via inference for λ(j)). If Λ1 = 1, then Λj = 0 for j > 1 and we recover

the original MTD model. Clearly, the transitions associated with Q(j) fully allow nonlinear dynamics in

j dimensions of the lag space. As a discrete mixture of probability distributions, this model produces a

valid probability tensor.

The model in (2) is clearly over-parameterized, and consequently Λ, {λ(j)}Jj=1, and {Q(j)}Jj=1 are not

fully identified. Of primary concern is when the lags with substantial weight (λ high) in lower orders are a

subset of the lags with substantial weight in higher orders. To see this, consider writing the model for J = 2,

R = 3, K = 2. This case is not strictly included in our model definition, but can approximately occur in a

model with R = 3 when λ
(1)
3 , λ

(2)
1,3, and λ

(2)
2,3 are all approximately equal to 0. In this case, Q(2) is sufficient to

model this chain with full flexibility, yet there are effectively four additional, unnecessary parameters. We
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Table 1: Free parameter count for MMTD model under different combinations of state space size K, largest
possible lag R, and largest mixing order J . The total number of parameters estimated is the sum of the
free Λ, λ, and Q parameters. The unrestricted total is the number of parameters required to estimate an
unrestricted transition probability tensor of order R.

K R J Λ λ Q total unrestricted

5 3 2 1 4 120 125 500
5 4 3 2 11 620 633 2,500
2 7 4 3 94 30 127 128
3 5 3 2 22 78 102 486
7 5 3 2 22 2,394 2,418 100,842
7 5 2 1 13 336 350 100,842

note, however, that the resulting transition tensor Ω is still identifiable even if the individual parameters

are not unique. It is also possible for a higher order Q to mimic a lower order tensor through repetition of

transition probabilities across values of a certain lag. Absent complicated constraints, we note that these

issues are detectable through inferences for Λ, {λ(j)}Jj=1, and {Q(j)}Jj=1, and we recommend a modeler

always check for them. We further address the identifiability issue with prior specification in Section 2.4.

We envision two primary uses for this model. The first is to uncover low-order structure from data

whose practical lag dependence horizon is truly smaller than our over-specified R and the order is less than

or equal to our selected J , in which case the true model is contained within the mixture framework. For

example, we might postulate that a time series has second order dependence, but we are unsure which two

lags are important. Assuming a maximal lag horizon of 10, we might fit the MMTD model with R = 10

and J = 2, anticipating Λ2 to carry most posterior weight, and λ(2) to identify the influential lags. In

Section 2.4, we consider using priors which encourage sparsity to assist in shrinking back to the true model.

If the true order of dependence in the time series is greater than J , our second intended use for this

model is analogous to the original MTD model, as we parsimoniously approximate higher order dependence

by mixing lower order transition distributions. Adding these higher order Q tensors could be thought of

as including “interaction” terms in the mixture.

Our proposed model formulation requires estimation of J−1 free Λ parameters,
(
R
1

)
+
(
R
2

)
+. . .+

(
R
J

)
−J

free λ parameters, and K(K − 1) + K2(K − 1) + . . . + KJ(K − 1) = K(KJ − 1) free parameters in the

J base transition tensors Q. Table 1 calculates the total number of parameters to estimate for different

combinations of K, R, and J . The model grows primarily with K and J , which should be kept relatively

small in applications.
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2.3 Bayesian inference and computation

As noted earlier, all inferences are conditional on the first R observations in the time series {st}Tt=1. To

define a Bayesian model, we first break the mixture in (2) by introducing latent indicators Zt such that

Pr(Zt = j) = Λj independently for each time point t = R + 1 to t = T . Then conditional on Zt,

introduce latent indicators zt such that Pr(zt = (`1, . . . , `j) | Zt = j) = λ
(j)
(`1,...,`j), independently for each

t = R+1, . . . , T . The hierarchical formulation for this model is given as follows. For t = R+1, . . . , T, i0, i` ∈

{1, . . . ,K}, ` ∈ {1, . . . , R}, `1 < . . . < `j , j ∈ {1, . . . , J}, we have

(Q(j))ij ,ij−1,...,i1,· ∼ Dir(αQ(j)) ∀ (ij , ij−1, . . . , i1) ∈ {1, . . . ,K}j ,

Λ ∼ Dir(αΛ) , λ(j) ∼ Dir(αλ(j)) , (3)

Pr(Zt = j | Λ) = Λj , Pr(zt = (`1, . . . , `j) | Zt = j,λ(j)) = λ
(j)
(`1,...,`j) ,

Pr(st = i0 |st−1 = i1, st−2 = i2, . . . , st−R = iR, Zt = j, z
(j)
t = (`1, . . . , `j),Q

(j)) = (Q(j))i`j ,i`j−1
,...,i`1 ,i0

,

where all quantities without explicit dependence are considered independent a priori. Given this structure,

all posterior inference can be accomplished entirely through closed-form Gibbs sampling. To simplify com-

putation, we uniquely map all Zt and zt pairs into a single variable ζt ∈
{

1, . . . ,
[(
R
1

)
+
(
R
2

)
+ . . .+

(
R
J

)]}
whose prior probability under the model is equal to the product of the corresponding Λ and λ. Full

conditional distributions for Λ, each λ(j), and each (Q(j))ij ,ij−1,...,i1,· are exactly analogous to multinomial-

Dirichlet conjugate updates where Zt, zt, and observed data transitions supply the multinomial counts.

Full conditional updates for Zt and zt (equivalently ζt) require calculation and sampling from a discrete

distribution.

As is common with mixture models, the joint posterior distribution resulting from (3) is multimodal

and the Gibbs sampler described above is prone to poor mixing. We improve mixing in the sampler

by integrating {Q(j)}Jj=1 from the joint posterior, sampling the collapsed conditional distributions for Λ,

each λ(j), and {ζt}. These are supported by the tractable marginal distributions reported in Appendix

A. Additionally, to encourage occasional jumps between modes of the posterior, we include a hybrid

independence Metropolis step which jointly proposes Λ, each λ(j), and {ζt} from their joint prior every 25

iterations of MCMC.

To obtain results in Sections 3.1, 3.2, and 4 that follow, each model was initialized with random draws

from the Dirichlet priors for Λ and each λ(j), and discrete uniform for {ζt}. Random initialization in these

models necessitated long burn-in periods, on the order of tens to hundreds of thousands of iterations. In

7



our analyses, 100,000 burn-in iterations were followed by another 400,000 iterations, producing (unless

otherwise noted) stable chains suitable for inference. Reported posterior quantities were calculated using a

thinned sample retaining every 10th iteration. Posterior sampling was conducted using the Julia scientific

computing language (Bezanson et al., 2017). Details for the MCMC algorithm are given in Appendix B.

2.4 Order estimation with sparse probability vectors

One intended primary use of this model is to uncover low-order structure from a high-order model by over-

specifying R and possibly J . If the true model is contained within the full MMTD specification, our goal

is to identify that structure through inferences for Λ and λ(j), which should concentrate posterior mass on

particular components. In this case, Λ and λ(j) should be sparse, which we can encourage by replacing

the Dirichlet priors in (3) by the sparse Dirichlet mixture (SDM) or stick-breaking mixture (SBM) priors

proposed by Heiner et al. (2018).

The SDM prior is a fixed-weight mixture of Dirichlet densities, each featuring a “boost” of equivalent

sample size β in one of the categories. If θ is a K-length probability vector, the SDM density is given as

pSDM(θ;α, β) =
K∑
k=1

wk∑K
j=1wj

Dir(θ;α+ βek) , (4)

where wk =
∏K
j=1 Γ(αj + β1(j=k)) and ek is a vector of 0s with a 1 in the kth position, and Γ(·) is

the gamma function. For small sample sizes and relatively large β, the SDM can be characterized as a

“winner-takes-all” prior.

The SBM prior model builds the probability vector θ through an extension of the stick-breaking con-

struction that defines the generalized Dirichlet distribution (Connor and Mosimann, 1969). In particular,

θ1 = X1, θk = Xk

k−1∏
j=1

(1−Xj) for k = 2, . . . ,K − 1, and θK = 1 ·
K−1∏
j=1

(1−Xj) , (5)

with Xk independently drawn from a mixture of two beta distributions, Xk
ind.∼ πBeta(1, η) + (1 −

π)Beta(γ, δ). This allows us to encourage sparsity by setting η large, in which case the first compo-

nent corresponds to small probabilities in θ. While the second mixture component should favor larger

values of Xk, we recommend leaving them relatively non-informative, as the second beta component must

be sufficiently flexible to break various sizes of the “remaining stick” (i.e.,
∏k−1
j=1(1 −Xj)) to provide the

non-negligible elements of θ. Depending on the desired level of sparsity, we recommend using values of π
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in the 0.5 to 0.95 range. The value of π should be chosen with care due to the asymmetry and truncation

of the SBM prior, as discussed in Heiner et al. (2018).

If the hyperparameters of the SDM and SBM priors are fixed, as is usually the case with the original

Dirichlet priors, incorporating these into the model requires minimal effort since posterior Gibbs sam-

pling can proceed with tractable conditional distributions, leaving the updates in Appendix B structurally

unchanged.

In scenarios where the modeler believes only one order/lag combination should dominate, but is unsure

which it is, we recommend replacing the Dirichlet prior for Λ and potentially each λ(j) with the SDM

prior. Because the SBM prior can accommodate more than one non-negligible probability, it may also

provide a compromise between the two objectives of shrinking an over-specified model and mixing in the

spirit of the MTD. Furthermore, if R and J are low and the transition probability tensor is known to be

sparse, it may potentially be advantageous to replace the Dirichlet priors on the transition distributions in

{Q(j)}Jj=1 with independent SBM priors. However, this should be done with care, as the prior produces

strongly biased estimates when no transition counts are observed.

3 Simulation studies

To demonstrate the effectiveness of the MMTD model for both objectives and to compare transition prob-

ability estimation performance with existing methods, we report two simulation studies. Both simulation

scenarios feature time series generated from true Markov chains of different order and lag configuration.

In Simulation 1, the true generating model is a third order chain with three states (K = 3) in which

transition probabilities depend on Lags 1, 3, and 4. In Simulation 2, the true generating model is a fifth

order binary chain (K = 2) for which each of the first five lags contribute to transition probabilities. In

both models, each distribution in the transition tensor Ω was drawn from a uniform distribution on the

simplex (i.e., symmetric Dirichlet distributions with all shape parameters equal to 1). Each chain was

randomly initialized and run for 1,000 steps of burn-in. The first 1,000 samples thereafter were retained

as training data and the next 1,000 for validation.

To evaluate estimation of transition probabilities, each model was fit using the prescribed number of

training samples, and point estimates of the transition distributions were compared to the true transition

distributions for each of the 1,000 validation points. Specifically, for validation time point t′, each model

produced a vector p̂t′ to estimate each p
(k)
t′ = Pr(st′ = k | st′−1, . . . , st′−R) = (Ω)st′−R,...,st′−1,k

for k =

1, . . . ,K. In Bayesian models, the point estimate is the Monte Carlo-computed posterior mean of p̂t′ . In
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non-Bayesian models, p̂t′ is computed from the optimized model fit. For each validation time point, we

computed the L1 loss given by Lt′ =
∑K

k=1|p̂
(k)
t′ − p

(k)
t′ |. The reported loss metric for model comparison is

100×
∑

t′ Lt′/(KT
′) where T ′ = 1000 is the number of validation points.

We fit the MMTD to each training set with various settings. Let MMTD(R, J) denote a model fit with

specified maximum lag horizon R and maximum order J , and MTD(R) = MMTD(R, 1). Unless otherwise

specified, all MMTD models follow (3) with all symmetric Dirichlet priors in which all shape parameters

sum to unity. Specifically, the shape parameters for the Dirichlet prior on Λ are all equal to 1/J ; for λ(j),

the shape parameters are all equal to 1/
(
R
j

)
; and for all Kj Dirichlet priors for Q(j), the shape parameters

are all equal to 1/K. We denote with SDM(Λ) use of the SDM prior on Λ. In all cases, the base shape

parameters in the SDM were set identical to those used in the corresponding Dirichlet priors. We also

used β = T/4 in all cases to encourage sparsity. Results were not sensitive to the alternate specification

β = T/2.

We fit the multinomial generalized linear models with logistic links to each training set using the VGAM

package in R (Yee et al., 2010). To distinguish different settings, we denote model fit as LogitMC(R, J)

with maximum lag horizon R and highest interaction order among the linear predictors J . We also fit

the variable length Markov chain models, denoted VLMC using the VLMC package in R (Maechler, 2015)

using the default model settings.

3.1 Simulation 1 results

All models were fit to the time series from Simulation 1 for two sample sizes, T = 200 and T = 500. Here

we assume that the modeler is considering up to a horizon of six lags, which we use where possible to

promote equitable comparisons. Results of the mean L1 loss across the 1,000 validation points are given

in Table 2. In addition to transition probability estimation, we are interested in inferences for Markovian

order and important lags afforded by the MTD and MMTD models. With exception of the MTD only, we

see improved estimation with the larger sample size across all models.

3.1.1 Sample size 200

In the T = 200 case, the multinomial logistic models produce the best and worst results. Fitting all second-

order interactions for up to six lags is cumbersome in this model, resulting in poor estimates. Fitting the

full-order model to the correct lags only results in good estimation, but clearly this model enjoys an unfair

advantage. It may, however, result from an iterative model selection process. We emphasize here that the

MMTD does not require a model selection process if the modeler specifies the maximum lag horizon R and
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Table 2: Simulation results for transition probability estimation under various models and model settings
using two sample sizes of Simulation 1 data, T = 200 and T = 500. The reported loss is 100 times the
mean L1 loss, computed across 1,000 validation time points. Within each sample size group, the lowest
mean loss is highlighted with bold font.

T = 200
model loss

LogitMC(6, 1) 18.48
LogitMC(6, 2) 36.61
LogitMC(3, 1), Lags 1, 3, 4 only 17.03
LogitMC(3, 2), Lags 1, 3, 4 only 13.44
LogitMC(3, 3), Lags 1, 3, 4 only 12.29

VLMC 19.01

MTD(6) 17.17
MTD(6), SDM(λ) 17.13

MMTD(6, 2) 14.71
MMTD(6, 2), SDM(Λ), SDM(λ) 14.53
MMTD(6, 3) 14.30
MMTD(6, 3), SDM(Λ), SDM(λ) 14.41
MMTD(6, 4) 14.71
MMTD(6, 4), SDM(Λ), SDM(λ) 13.77
MMTD(6, 5) 15.20
MMTD(6, 5), SDM(Λ), SDM(λ) 16.26

T = 500
model loss

LogitMC(6, 1) 16.78
LogitMC(6, 2) 18.88
LogitMC(3, 1), Lags 1, 3, 4 only 16.39
LogitMC(3, 2), Lags 1, 3, 4 only 10.42
LogitMC(3, 3), Lags 1, 3, 4 only 7.60

VLMC 15.24

MTD(6) 17.33
MTD(6), SDM(λ) 17.11

MMTD(6, 2) 13.95
MMTD(6, 2), SDM(Λ), SDM(λ) 13.91
MMTD(6, 3) 7.44
MMTD(6, 3), SDM(Λ), SDM(λ) 7.28
MMTD(6, 4) 7.50
MMTD(6, 4), SDM(Λ), SDM(λ) 7.30
MMTD(6, 5) 7.45
MMTD(6, 5), SDM(Λ), SDM(λ) 7.26

maximum order J , as order and lag inferences are built-in.

The variable length Markov chain model offers no improvement over the older methods, possibly because

Lag 2 plays no role in Simulation 1 and VLMC branches must include Lag 2 because more distant lags are

important, causing it to miss an opportunity at greater parsimony (Jääskinen et al., 2014).

The MTD model offers little help in this scenario because Simulation 1 is third order with nonlinear

interactions. Posterior densities for λ (not shown) reveal that λ3 is favored under the Dirichlet prior and

dominates with the SDM prior. The latter effectively produces a first order Markov chain dependent on

the third lag.

Several MMTD models were fit with increasing maximum order J ranging from 2 to 5. As expected,

estimation performance generally stops improving when J exceeds the true order 3. Surprisingly, the SDM

priors help in only two of four cases. In the J = 2 model, posterior mass slightly favors second order with

the Lag 3,4 combination receiving most posterior weight. Adding the SDM priors on Λ and each λ(j) for

j = 1, 2, more strongly supports the same conclusion. In the J = 3 model, posterior mass slightly favors

third order over first and second, with the correct Lag 1, 3, and 4 combination receiving most posterior

weight. The Lag 3, 4, and 5 combination is also favored over the others. Adding the SDM priors led to
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strong selection of second order dynamics in both of two independent runs, yielding results nearly identical

to those of the J = 2 model with SDM priors. The J = 4 model favors fourth order and Lags 1, 3, 4, and 5.

Here the model overestimates the order, underlining the need for a modeler to examine the estimate of Q(4)

for redundancy along one of the lag dimensions, as we demonstrate in Section 4.2. Adding the SDM prior

tends to favor second order with Lags 3 and 4, although different MCMC runs explore different secondary

modes (first order in one and fourth order in another). The J = 5 model mimics the J = 4 model, except

the fifth order receives some posterior mass under the Dirichlet prior and most mass under the SDM. This

explains the degraded estimation performance. We generally do not advocate considering such high orders

when T = 200, even with a relatively small state space. Overall, the MMTD consistently produces the

most faithful estimates of transition probabilities from a single model without requiring iterative model

selection.

3.1.2 Sample size 500

In the T = 500 case, even the multinomial logistic models with an unfair fit to the correct lags fails to

outperform the MMTD with J ≥ 3. With a larger sample size, the VLMC model is more competitive, but

the MTD is unable to capitalize. The MTD model mixes over Lags 2, 4, and 5 with a Dirichlet prior on λ

and Lags 3 and 4 with the SDM prior.

In all cases of the MMTD, the SDM prior on order and lag structure appears to improve estimation

accuracy. The inferences from J = 2 are similar to those of the J = 2 models fit to T = 200 observations

under their respective prior specifications. The increased sample size especially assists in identifying lag

structure beginning with the J = 3 models, where third order is the clear preference and the correct Lags

1, 3, and 4 are always identified. Under the model with the SDM prior, posterior densities for Λ and each

λ(j) exhibit strong peaks concentrated at the true values. These results hold in the J = 4 and J = 5 cases

as well. Among the models considered in this scenario, the MMTD consistently produces the most faithful

estimates of transition probabilities.

3.2 Simulation 2 results

All models were fit to the time series from Simulation 2 for three sample sizes, T = 100, T = 200 and

T = 500. Here we assume that the modeler is considering up to a horizon of six lags, which we use where

possible to promote equitable comparisons. Results of the mean L1 loss across the 1,000 validation points

are given in Table 3. Again, we examine order and lag inferences from MTD and MMTD models in addition

to estimation performance.
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Table 3: Simulation results for transition probability estimation under various models and model settings
using three sample sizes of Simulation 2 data, T = 100, T = 200 and T = 500. The reported loss is 100
times the mean L1 loss, computed across 1,000 validation time points. Within each sample size group,
the lowest mean loss is highlighted with bold font. Here SDM(Λ, λ) indicates that both Λ and all λ
parameters have SDM priors.

T = 100
model loss

LogitMC(7, 1) 24.30
LogitMC(7, 2) 26.15
LogitMC(7, 3) n/a
LogitMC(5, 1) 24.49
LogitMC(5, 2) 20.86
LogitMC(5, 3) n/a

VLMC 21.28

MTD(7) 24.73
MTD(7), SDM(λ) 24.20

MMTD(7, 4) 21.65
MMTD(7, 4), SDM(Λ) 20.51
MMTD(7, 4), SDM(Λ, λ) 20.62
MMTD(7, 7) 20.67
MMTD(7, 7), SDM(Λ) 18.80
MMTD(7, 7), SDM(Λ, λ) 17.84

T = 200
model loss

LogitMC(7, 1) 20.03
LogitMC(7, 2) 16.26
LogitMC(7, 3) 18.70
LogitMC(5, 1) 20.25
LogitMC(5, 2) 16.24
LogitMC(5, 3) 11.26

VLMC 14.37

MTD(7) 22.47
MTD(7), SDM(λ) 23.56

MMTD(7, 4) 14.76
MMTD(7, 4), SDM(Λ) 14.73
MMTD(7, 4), SDM(Λ, λ) 14.54
MMTD(7, 7) 12.80
MMTD(7, 7), SDM(Λ) 11.29
MMTD(7, 7), SDM(Λ, λ) 9.81

T = 500
model loss

LogitMC(7, 1) 18.53
LogitMC(7, 2) 14.66
LogitMC(7, 3) 13.67
LogitMC(5, 1) 18.90
LogitMC(5, 2) 15.35
LogitMC(5, 3) 8.29

VLMC 12.00

MTD(7) 19.83
MTD(7), SDM(λ) 21.85

MMTD(7, 4) 12.60
MMTD(7, 4), SDM(Λ) 13.32
MMTD(7, 4), SDM(Λ, λ) 12.31
MMTD(7, 7) 7.47
MMTD(7, 7), SDM(Λ) 7.34
MMTD(7, 7), SDM(Λ, λ) 7.26

3.2.1 Sample size 100

In the T = 100 case, high order interactions are not supported by the multinomial logistic model. The

VLMC model is competitive with the MMTD and outperforms the standard models, presumably because

Simulation 2 features no gap in important lags.

Because the simulation follows fifth order dynamics, the MTD(7) and MMTD(7, 4) models are under-

specified and must rely on a lower order sub-model and/or mixing across lags to produce estimates. The

MTD models mix over Lags 2 and 4. The MMTD(7, 4) model with Dirichlet priors switches between all

four orders without favoring a clear lag pattern. Adding the SDM prior on Λ only tends to favor third

and fourth orders while remaining agnostic to lag pattern. Adding the SDM prior on each λ(j) leads the

model to favor first and fourth orders.

The over-specified MMTD(7, 7) does not outperform the J = 4 models without SDM priors encouraging

shrinkage, although it does weakly favor fifth order and the correct configuration of Lags 1 through 5. The

model remains primarily agnostic under the SDM prior on Λ only, although the correct structure begins

to emerge. Adding the SDM prior for each λ(j) further clarifies the inference.

13



3.2.2 Sample size 200

With T = 200, the time series is long enough to include third order interactions in the multinomial logistic

model, which performs well. The VLMC model is again competitive with the MMTD and generally

outperforms the standard models.

As before, the MTD is unable to leverage increased sample size to the extent that the other models

can. The MTD models mix primarily over Lags 1 and 5. The MMTD(7, 4) model with Dirichlet priors

clearly favors fourth order with Lags 1, 2, 3, and 5. Adding the SDM prior on Λ only tends to favor third

and fourth orders, with the same lag pattern as before. Adding the SDM prior on each λ(j) results in clear

preference for fourth order and the same lag pattern as the original MMTD(7, 4).

With this sample size, the correct structure emerges in MMTD(7, 7). With Dirichlet priors, Λ4 carries

some posterior weight. As SDM priors are added, the corresponding inferences are sharpened in support

of the truth (Λ5 and λ
(5)
(1,2,3,4,5) are close to 1). The final model, with the best estimation performance, is

essentially equivalent to fitting a fifth order chain to the correct lags.

3.2.3 Sample size 500

The fifth order binary chain in Simulation 2 has 32 total (univariate) transition distributions which are

easily identified with 500 samples. Therefore, the multinomial logistic models with high order interactions

approach the performance of the over-specified MMTD models. The VLMC is also competitive. Again,

the MTD(7) models lag noticeably behind in estimation performance.

The MMTD(7, 4) behaves similarly to the same model in the T = 200 case, and offers performance on

par with the VLMC. The MMTD(7, 7) decisively identifies the correct order and lag structure with one

exception: the model with the SDM prior on Λ only occasionally supports sixth order. Notice that with

the larger sample size, the advantage of the SDM priors is less pronounced. We require less shrinkage of an

over-specified model to the true subset. As before, we conclude that the MMTD consistently produces the

most faithful estimates of transition probabilities. Furthermore, it offers insight into the lag dependence

structure.

4 Data illustrations

We now apply the MMTD to two data analyses. The first was analyzed with the original MTD and

subsequent literature. The second is a novel analysis of pink salmon population dynamics over the second

half of the twentieth century. We illustrate the use of inferences on order and lag importance available
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from the MMTD model.

4.1 Seizure data

Berchtold and Raftery (2002) demonstrate the MTD model using a binarized time series adapted from

MacDonald and Zucchini (1997), which reports the occurrence of at least one epileptic seizure for a patient

on each of 204 consecutive days. Berchtold and Raftery (2002) fit several Markov chain and MTD models,

using Bayesian information criterion (BIC) to ultimately select a MTD with eight lags. Their estimation

yields λ8 with the greatest magnitude. We note that the MTD model used in Berchtold and Raftery (2002)

allows negative values in λ. To do so requires a complex set of constraints not practical for our approach

in which each λ(j) is a probability vector.

This time series was revisited and fit using the methods in Sarkar and Dunson (2016), who report a

model of maximal order 8 to be most likely, with Lag 8 having the highest posterior inclusion probability.

In contrast with Berchtold and Raftery (2002), they find Lag 1 to be the second most important. They

report the posterior mode for the number of important lags to be three.

In light of these two analyses, we fit the MMTD to the seizure data with R = 10 and J = 3, and

various priors, each with hyperparameter settings equivalent to those in the simulation studies. Trace

plots (not shown) indicate that the posterior over Λ and each λ(j) is multimodal, suggesting that many

combinations of lags could model the dynamics with similar accuracy, but also that the dynamics probably

lack homogeneity (no seizures were reported in the last 29 days).

The MMTD(10, 3) model with all Dirichlet priors mixes across all orders, with the most posterior

weight going to Λ3 which has a posterior mean of 0.425. Among the first order transitions, Lags 4, 8, and 9

are favored with posterior means for their respective λ(1) parameters in the 0.12 to 0.17 range. Among the

second order transitions, no lag combination stands out. However, at least one of Lags 4, 8, and 9 appear

in the lag pairs with the 12 highest posterior means, accounting for .42 of the posterior mean of the λ(2)

vector. The third order component of the model likewise does not select a most important lag combination.

However, Lag 8 appears in lag combinations that account for approximately 0.46 of the posterior mean

of λ(3), with Lags 9 and 4 taking 0.41 and 0.34, respectively. The MMTD(10, 3) model with SDM priors

on Λ and the λ(j)s more heavily favors third order dynamics with Λ3 having a posterior mean of 0.626,

consistent with the findings of Sarkar and Dunson (2016). In contrast with their results, however, Lag

1 is less important in our model, which favors the combination of Lags 3, 4, and 8 (with 0.22 being the

posterior mean for the corresponding λ(3)).

We can also assess overall lag importance by computing a lag inclusion probability as the sum of all
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Figure 1: Posterior mean (with 95% credible interval) probability of inclusion for each lag in the seizure
analysis using the Dirichlet priors (left) and SDM priors (right).

products Λj×λ(j)
r for which lag ` appears in the lag configuration zr. We compute this for each lag at each

MCMC sample. These inclusion plots for the models fit to the seizure data with Dirichlet priors and SDM

priors are shown in Figure 1, with bars reporting the posterior mean and whiskers reaching to the ends

of 95% posterior credible intervals. Note the large uncertainty for this inclusion probability for all lags

except Lag 8, especially in the SDM model. We further note that the plot on the right associated with the

SDM priors resemble a plot with similar interpretation in Figure 6 (e) of Sarkar and Dunson (2016), with

exception that Lags 1 and 2 have lower inclusion probability and Lag 9 has higher inclusion probability in

our model. All four analyses, including our two, agree that Lag 8 is the most important in determining

the transition probability.

4.2 Pink salmon data

We analyze a time series of annual pink salmon abundance (escapement) in Alaska, U.S.A.1 from 1932

to 1985. Population dynamics for pink salmon provide a testing opportunity for out model because pink

salmon have a strict two-year life cycle (Heard, 1991). Thus we expect even lags to have the most influence

in predicting the current year’s population. A time series plot of the natural logarithm of abundance is

given in Figure 2. As with the seizure data, we suspect non-stationarity and lack of homogeneity with long-

term trends. It appears that the even and odd year populations diverged in the late 1940s, with perhaps

some intervention in the early 1960s. Despite these trends, we expect to extract informative inferences on

lag dependence.

Prior to analysis, we imputed the missing value for 1962 as the geometric mean of escapements in 1960

1Data obtained through personal correspondence.
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Figure 2: Time series plot (left) and bivariate lag plots for the natural logarithm of pink salmon abundance
from 1932 to 1985.

and 1964 (the mean of the logarithm for these years). Although this choice will have some impact on

model inferences, it represents only one year of the 54 observations and can be justified given the pink

salmon life cycle. After discretizing the data into sets of K = 4 and K = 7 quantile-based bins using all

54 years, we fit the proposed models with the same prior settings used for the simulation studies. Because

discretization is based on quantiles, results are invariant to monotonic transformations such as the natural

logarithm.

MTD(7) models, both with Dirichlet and SDM priors on λ, favor Lag 4 in the K = 4 case. In the K = 7

models λ mixes over several lags in model with the Dirichlet prior on λ and strongly favors Lag 2 under

the SDM prior. When we consider higher orders (J = 3), the K = 4 discretization favors second or third

order without strongly favoring any particular lag combination. However, Lag 2 has the highest posterior

mean probability of inclusion at 0.43 (<0.001, 0.89), with Lag 4 next at 0.38 (<0.001, 0.85) and Lag 6

close behind at 0.37 (<0.001, 0.86). Under the SDM prior, Lag 2 has a higher posterior mean of inclusion

at 0.78, but the credible interval is not informative because the marginal posterior is bimodal. The K = 7

case, while spreading the data thin, produces interesting results. Both sets of priors favor second order with

the (2, 3) and (2, 4) lag combinations emerging as important. Marginal posterior density plots for Λ and

a few entries in λ(2) in the Dirichlet case are shown in Figure 3. The SDM priors yield the similar results,

with more posterior weight concentrated on Order 2 and the same lag combinations. Lag inclusion plots

for both models are shown in Figure 4. Again, the model which shrinks down the over-specified MMTD

with SDM priors yields more confident inferences for inclusion. Clearly Lag 2 is active, as expected, and

Lags 3 and 4 appear to have a role.

It is important to examine the estimate of Q(2) to verify that the model is not attempting to fit first

order dynamics with a second order chain. If this were the case, estimates of transition probabilities in

Q(2) would repeat across the second lag index (in this case representing Lag 3 and/or 4). The posterior
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Figure 3: Marginal posterior density plots for Λ (top) and selected entries of λ(2) (bottom) in the salmon
analysis with K = 7 using Dirichlet priors.

1 2 3 4 5 6 7

Lag

P
ro

b
. 
o
f 
in

c
lu

s
io

n

0
.0

0
.4

0
.8

1 2 3 4 5 6 7

Lag

P
ro

b
. 
o
f 
in

c
lu

s
io

n

0
.0

0
.4

0
.8

Figure 4: Posterior mean (with 95% credible interval) probability of inclusion for each lag in the salmon
analysis with K = 7 using the Dirichlet priors (left) and SDM priors (right).

mean point estimate of Q(2), shown in Figure 5 for both sets of priors, appears not to have this problem,

as consecutive 7× 7 sub-matrices appear not to repeat, except perhaps after the first and second. This is

consistent under both priors, Lag 2 may not be the only important predictor, and that the second-order

effects are not additive (and positively associated, as required by the positivity of λ).
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Figure 5: Posterior mean point estimate of the matricized Q(2) for the salmon analysis with K = 7 using
the Dirichlet priors (top) and SDM priors (bottom) on order and lag weights. Columns (along the y-axis)
represent states to which the transition occurs, and rows (along the x-axis) represent the lag combinations,
with the most recent lag changing index first. Hence the first row represents State 1 of the first selected
lag and State 1 of the second selected lag, and the second row represents State 2 of the first selected lag
and State 1 of the second selected lag. With K = 7 and j = 2, a second order tensor would come from
stacking each consecutive 7× 7 sub-matrix plotted here.

5 Summary

We have explored an extension of the original mixture transition distribution model for high order Markov

chains which captures higher order interactions and can potentially yield useful inferences for order and lag

importance. To accomplish the latter, the multi-mixture transition distribution model often over-specifies

the true data-generating mechanism. We then dispatch sparsity-inducing priors with the goal of shrinking

back to the truth in a single model without necessitating iterative model selection. Furthermore, our

MCMC algorithm allows us to evaluate uncertainty about the model structure and transition probabilities.

We demonstrated that our model can outperform a few of the standard methods in transition probability

estimation, and shown its practical utility in data analysis.

The over-specified MMTD model can offer insights into order and active lags provided the modeler

approaches analysis attentively. In cases of large sample size or near-determinism, the true structure will

be immediately manifest from inferences for the mixture weight parameters. More often, lag importance

should be aggregated and extracted in post-processing as we demonstrated in Section 4.1. If multiple

lag patterns are prominent in the mixture model or different order components have non-overlapping lag

patterns selected in each, the actual order of the time series may be higher than the highest selected model

order. We also recommend checking the mixture transition tensors for redundancy, a sign of lower order

dependence. Absent a clearly identified lag structure through inferences on the mixture weights, we claim

that this too can be informative.
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The MMTD can approximate high order dynamics by exploiting additivity among lower-order transition

probabilities. However, when this is not the case, a full jump to the next order is required. For example,

in the salmon data analysis with seven states, the first-order mixture has seven components, whereas the

second-order mixture has 21. A parsimonious compromise might rely on some factorization of the second-

order tensor, as in Sarkar and Dunson (2016). We do not pursue this here, but rather choose to emphasize

the straightforward and interpretable structure of our model (2) which showcases a model-averaging flavor,

with added flexibility.
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A Marginal distributions

We report the marginal distributions of observations associated with the Dirichlet, SDM, and SBM models

for probability vectors. These distributions can be useful for computing Bayes factors in addition to

facilitating the MCMC algorithm described in Appendix B.2.

Consider a sequence of independent random variables {st} ∈ {1, . . . ,K}T with common distribution

θ ≡ (θ1, . . . , θK). Given θ, the probability of the sequence is
∏
t θst = θn1

1 · · · θ
nK
K where the sufficient

statistics in n = (n1, . . . , nK) count the occurrences of each category. If the ordering t is not important,

the probability is multiplied by the multinomial coefficient T !/(n1! · · ·nK !).

If θ follows a Dirichlet distribution with shape parameter vector α, then the marginal (prior predictive)

distribution of {st} is given by

p({st}) =

∫
p({st} | θ) p(θ) dθ =

Γ(
∑

k αk)∏
k Γ(αk)

∏
k Γ(αk + nk)

Γ(
∑

k αk + nk)
=

MVB(α+ n)

MVB(α)
, (6)

where MVB(·) denotes the multivariate beta function and the integral is defined on the simplex supporting

θ.

If θ follows a SDM distribution with parameters α and β, and wk =
∏K
j=1 Γ(αj + β1(j=k)), then the

marginal distribution of {st} is given by

p({st}) =
K∑
k=1

wk∑K
j=1wj

MVB(α+ βek + n)

MVB(α+ βek)
, (7)

where ek denotes a vector of 0s with a 1 in the kth entry.

Under the generalized Dirichlet distribution (Connor and Mosimann, 1969) in which the stick-breaking

latent variables are Xk
iid∼ Beta(ak, bk), we have p({st}) =

∏K−1
k=1 gk(ak, bk,n) where

gk(ak, bk,n) =
Γ(ak + bk)

Γ(a∗k + b∗k)

Γ(a∗k)

Γ(ak)

Γ(b∗k)

Γ(bk)
,

with a∗k = ak + nk, and b∗k = bk +
∑K

j=k+1 nj . Using a similar approach, it can be shown that under the

SBM model with parameters π, η, γ, and δ, we have

p({st}) =
K−1∏
k=1

[πgk(1, η,n) + (1− π)gk(γ, δ,n)] . (8)
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B MCMC algorithm details

Following the hierarchical MMTD model outlined in (3), the joint posterior distribution of all unknown

parameters is given up to proportionality:

p
(
Λ, {λ(j)}, {Q(j)}, {Zt}, {zt} | {st}

)
∝ Dir(Λ)

∏
j

Dir(λ(j))
Kj∏
r=1

Dir(Q
(j)
r,· )

 ∏
t

[
ΛZt λ

(Zt)
zt Q

(Zt)
%Zt (s(t−zt),st)

]
,

(9)

where Q
(j)
r,· denotes row r from a matricized version of Q(j), %j(·) uniquely maps each possible combination

of lags to a row of the matrcized Q(j), and s(t−zt) indicates the lags of st selected by zt.

B.1 Original algorithm

MCMC for the original hierarchical MMTD structure entirely with Gibbs updates. This is also the case

when substituting in the SDM and/or SBM priors. A Gibbs sampler cycles through the parameters,

drawing updates from the conditional distributions given below.

• p(Λ | · · · ) ∝ Dir(Λ)
∏
t ΛZt , a standard Dirichlet/multinomial update using the counts of Zt in each

of {1, . . . , J}. A SDM update for Λ is also trivial, as the full conditional remains SDM with the

multinomial counts added to α, analogous to the Dirichlet full conditional.

• p(λ(j) | · · · ) ∝ Dir(λ(j))
∏
t:Zt=j

λ
(j)
zt independently for j ∈ {1, . . . , J}. Again, this is a standard

Dirichlet/multinomial update using the counts of lag configurations zt within order j. SDM up-

dates are also trivial, as the full conditionals remain SDM with the multinomial counts added to α,

analogous to the Dirichlet full conditionals.

• p(Q(j)
r,· | · · · ) ∝ Dir(Q

(j)
r,· )

∏
t:%j(s(t−zt))=r

Q
(j)
r,st independently for j ∈ {1, . . . , J} and r ∈ {1, . . . ,Kj}.

Again, this is a standard Dirichlet/multinomial update using the transition counts. If a SBM prior is

used here, the full conditionals are still available for convenient sampling using the SBM/multinomial

update described in Heiner et al. (2018).

• Pr(ζt = ` | · · · ) ∝ ΛZt λ
(Zt)
zt Q

(Zt)
s(t−zt),st

independently for each t ∈ {R+ 1, . . . , T} with

` ∈
{

1, . . . ,
[(
R
1

)
+
(
R
2

)
+ . . .+

(
R
J

)]}
, where Zt and zt are uniquely mapped to ζt.
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B.2 Modified algorithm

Iterated full-conditional sampling of both {ζt} andQ(j) slows exploration of the joint posterior. To improve

mixing, we instead integrate each Q(j) out of the joint posterior (9) and conduct Gibbs sampling between

{ζt}, Λ and each λ(j). At each iteration, it is then straightforward to draw each Q(j) from the conditional

distributions given in B.1.

For each j ∈ {1, . . . , J}, let N (j) be a matrix containing transition counts for which the (r, k) entry

is the cardinality of {t : %j(s(t−zt)) = r and st = k}. Integrating all Q(j) from the full joint posterior

proportional to (9) yields

p
(
Λ, {λ(j)}, {Zt}, {zt} | {st}

)
∝ Dir(Λ)

∏
j

[
Dir(λ(j))

] ∏
t

[
ΛZt λ

(Zt)
zt

]∏
j

Kj∏
r=1

p
(
N

(j)
r,· | {Zt}, {zt}

) ,
(10)

where p
(
N

(j)
r,· | {Zt}, {zt}

)
takes the form of (6) if the rows of matricized Q(j) are independent Dirichlet,

(7) if they are independent SDM, and (8) if they are independent SBM.

The modified algorithm then proceeds with the standard updates for Λ and each λ(j) given in B.1.

Each ζt is then updated individually using its collapsed conditional

p
(
ζt | · · · ,−{Q(j)}

)
∝ ΛZt λ

(Zt)
zt

∏
j

Kj∏
r=1

p
(
N

(j)
r,· | {Zt}, {zt}

) , (11)

by modifying {N (j)} to reflect each possible value of ζt ∈
{

1, . . . ,
[(
R
1

)
+
(
R
2

)
+ . . .+

(
R
J

)]}
.
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