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Abstract

We propose a flexible approach to modeling for renewal processes. The model is built

from a structured mixture of Erlang densities for the renewal process inter-arrival density.

The Erlang mixture components have a common scale parameter, and the mixture weights

are defined through an underlying distribution function modeled nonparametrically with a

Dirichlet process prior. This model specification enables non-standard shapes for the inter-

arrival time density, including heavy tailed and multimodal densities. Moreover, the choice

of the Dirichlet process centering distribution controls clustering or declustering patterns

for the point process, which can therefore be encouraged in the prior specification. Using

the analytically available Laplace transforms of the relevant functions, we study the renewal

function and the directly related K function, which can be used to infer about clustering or

declustering patterns. From a computational point of view, the model structure is attrac-

tive as it enables efficient posterior simulation while properly accounting for the likelihood

normalizing constant implied by the renewal process. A hierarchical extension of the model

allows for the quantification of the impact of different levels of a factor. The modeling

approach is illustrated with several synthetic data sets, earthquake occurrences data, and

coal-mining disaster data.
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1 Introduction

Poisson processes are the most frequently used stochastic models for temporal or spatial point

patterns. Their theoretical properties are fully developed, and it is possible to perform likelihood-

based or Bayesian model fitting for Poisson processes with general intensity functions. In partic-

ular, the literature includes several Bayesian nonparametric modeling methods and applications;

see, e.g., Møller et al. (1998), Wolpert and Ickstadt (1998), Ishwaran and James (2004), Kottas

and Sansó (2007), Adams et al. (2009), Taddy (2010), Taddy and Kottas (2012), Kang et al.

(2014), Xiao et al. (2015), and Rodriguez et al. (2017).

To achieve distributional flexibility beyond the Poisson assumption, as well as to model

various clustering behaviors, it is desirable to consider non-Poisson point processes. Flexi-

ble inference for such processes is hampered by the difficulty of handling likelihood functions

with normalizing constants that depend on the parameters of interest in ways that can make

computations prohibitively expensive. One way to extend the temporal Poisson process is to

consider renewal processes. Renewal processes are counting processes where the time intervals

between successive arrivals are independent and identically distributed (i.i.d.) according to the

inter-arrival distribution, a continuous distribution on the positive real line, R+, with finite

expectation. The inter-arrival distribution characterizes the stochastic properties of renewal

processes, including the K function which describes clustering or declustering patterns relative

to the homogeneous Poisson process. More details on relevant definitions for renewal processes

are given in Section 2.1. Renewal processes find a number of applications, such as modeling

of earthquakes occurrences, software reliability, hardware maintenance, and queuing systems,

among others.

A Weibull inter-arrival distribution is commonly used for data that exhibit clustering pat-

terns. For example, for analysis of earthquake data, Alvarez (2005) and Epifani et al. (2014)

used a Weibull distribution to model the time between different types of events (corresponding

to different earthquake magnitude categories). Zhao and Nagaraja (2011) applied renewal the-

ory to longitudinal studies of lupus and its periodical flare-ups, using exponential, gamma and

Weibull inter-arrival distributions. More flexible approaches to model the renewal distribution

have been considered in the literature on queueing systems, where, however, the normalizing
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constant of the likelihood is ignored for the sake of tractability. The problem is thus simplified to

that of density estimation of inter-arrival times. In this context, Wiper et al. (2001) developed a

mixture of gamma distributions for general density estimation. Along similar lines, Auśın et al.

(2007) and Thümmler et al. (2006) use mixtures of Erlang distributions. The Erlang distribution

belongs to the gamma distribution family and is central to the methods proposed in this paper.

In particular, we propose a flexible Bayesian modeling approach for the renewal process inter-

arrival distribution, using mixtures of Erlang distributions with mixing on the integer shape

parameters and with a common scale parameter. Hence, the mixture model requires estimation

of only one parameter for the kernel densities. This is a parsimonious model feature that does

not undermine its flexibility, since the specific class of Erlang mixtures can approximate any

continuous distribution on R+ (see Section 2.2). Such Erlang mixture models have been used

for queueing data analysis (Tijms, 1994), and also applied in actuarial science by Lee and Lin

(2010), where the mixture weights are estimated by an EM algorithm. To our knowledge, Erlang

mixtures have not been used to model inter-arrival times in the point process literature.

Here, we define the mixture weights through a distribution function that is modeled non-

parametrically with a Dirichlet process prior (Ferguson, 1973; Antoniak, 1974). This provides

a novel Erlang mixture formulation for Bayesian nonparametric density estimation on R+. It

extends Bernstein polynomial priors for density estimation on the unit interval, which have been

explored in the Bayes nonparametrics literature following the work by Petrone (1999a,b). A key

feature of our method is that the choice of the Dirichlet process centering distribution controls

clustering or declustering patterns for the point process, which can therefore be informed by

the prior specification. From a computational point of view, the proposed model for the inter-

arrival distribution has the advantage of enabling efficient posterior simulation, while properly

accounting for the renewal process likelihood normalizing constant.

Our key motivation is to develop flexible, model-based estimation for renewal processes which

can adapt to different features suggested by the data, and thus overcome the potential restriction

of relying on a particular parametric form for the inter-arrival distribution. Operating under the

Bayesian paradigm, full uncertainty quantification is available for estimates of renewal process

functionals. Moreover, we seek a modeling framework that can be elaborated to accommodate
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extensions of the basic renewal process stochastic structure. Using earthquake data from four

distinct regions of the Americas as a motivating example, we demonstrate such an elaboration

for estimation of multiple, hierarchically related renewal processes.

The paper is organized as follows. Section 2 begins with a brief review of basic definitions

for renewal processes. We then present the mixture model for the renewal process inter-arrival

density, and explore model properties, focusing on its flexibility in producing general shapes for

the K function. We also discuss a Markov chain Monte Carlo (MCMC) approach to posterior

simulation, model inferences, and a graphical model assessment method. In Section 3, we test

the model with synthetic data sets that include both declustering and clustering patterns, and

in Section 4, we illustrate the methodology with coal mining disaster and earthquake data.

In the context of the earthquake data analysis, we extend the modeling approach to estimate

hierarchically related renewal processes. Our simulated data results show that the model can

successfully capture different clustering patterns for the point process. Model assessment results

also support applicability of the model on the real data sets. Finally, Section 5 concludes with

a summary and discussion of possible extensions of the methodology.

2 Methodology

2.1 Background on renewal processes

A renewal process {N(t) : t ≥ 0} is defined as N(t) = max{n : Tn ≤ t}, with T0 = 0 and Tn =

X1 + X2 + · · · + Xn, for n ≥ 1, where the random variables Xi are i.i.d. from a distribution

F with support in R+, and such that 0 < E(Xi) < ∞. Hence, Tn is the n-th arrival time and

Xn is the n-th inter-arrival time. The distribution of the renewal process at any given time t is

characterized by the inter-arrival distribution F . The special case of F being the exponential

distribution corresponds to a homogeneous Poisson process.

Let Fk be the distribution function of Tk. From the definition of Tk and the independence

of the inter-arrival times, we have Fk+1(t) =
∫ t
0 Fk(t− u)dF (u), for k ≥ 1 (where F1 ≡ F ), and

Pr(N(t) = k) = Fk(t)−Fk+1(t). The expected number of occurrences of the event of interest in

the time interval [0, t], denoted as M(t), is known as the renewal function. It is defined as M(t) =
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E(N(t)) =
∑∞

k=1 Fk(t), and it satisfies the renewal equation, M(t) = F (t) +
∫ t
0 M(t− u)dF (u).

Directly related to the renewal function is the K function, K(t) = λ−1M(t), where λ is the

number of events per unit time interval. As discussed in Section 2.3, the K function can be used

to assess clustering or declustering patterns relative to the homogeneous Poisson process.

Consider a temporal point pattern {0 = t0 < t1 < t2 < · · · < tn < T}, observed in the

time window [0, T ], and assumed to be a realization from a renewal process with inter-arrival

distribution F and inter-arrival density function f . The upper bound, T , of the observation

window is assumed fixed. The renewal process likelihood is given by

Pr(T1 = t1, T2 = t2, . . . , Tn = tn, Tn+1 > T )

= Pr(X1 = t1, X2 = t2 − t1, . . . , Xn = tn − tn−1, Xn+1 > T − tn)

=

{
n∏
i=1

f(ti − ti−1)

}{
1−

∫ T

tn

f(u− tn)du

}
. (1)

The last term in (1) corresponds to the probability of no arrival in [tn, T ], which defines the

likelihood normalizing constant.

2.2 Mixture modeling for the inter-arrival density

Denote by H(t) = tN(t−) the time of the last arrival prior to time point t. (By convention,

H(t) = 0 for time points t before the first arrival.) The inter-arrival density, f(t−H(t)), where

t ∈ (H(t),∞), is modeled as a mixture of Erlang densities with common scale parameter. More

specifically,

f(t−H(t) | J, θ,G) =

J∑
j=1

wj ga(t−H(t) | j, θ−1), t > H(t) (2)

where ga(· | a, b) denotes the density of a gamma(a, b) distribution with mean a/b. Notice that

each component of the mixture is defined by a gamma density with shape parameter given by

a specified integer, that is, an Erlang density. The number of components, J , and the mixture

weights, {wj : j = 1, . . . , J}, are both random. The latter are generated by discretizing a

distribution function G: w1 = G(θ), wj = G(jθ) − G((j − 1)θ), for j = 2, ..., J − 1, and wJ =

1−G((J−1)θ). The common scale parameter, θ, for the Erlang mixture components determines

5



the precision of the distribution function discretization for the weights. As θ decreases, the model

tends to generate more mixture components.

If we let J → ∞, the support of G can be taken to be R+. To apply the model, we need

a truncation for the number of mixture components as in (2) where J is finite, but random.

Such truncation restricts the support of G to (0, Jθ), resulting in a probability vector for {wj :

j = 1, . . . , J}. We model the mixture weights nonparametrically by assigning to G a Dirichlet

process (DP) prior, G ∼ DP(α,G0). Here, α is the DP precision parameter, and G0 is the

centering distribution defined through a Weibull distribution, Weibull(µ, φ), with scale and

shape parameters µ and φ, respectively. We place hyperpriors on all DP parameters, that is, on

α, µ and φ.

Figure 1 shows an example of the generation of weights with µ = 2, φ = 3, θ = 0.2, J = 20,

and two different values for the DP precision parameter, α = 10 (left panel) and α = 1 (right

panel). In the former case, the distribution function sample path from DP(α,G0) is closer to G0,

resulting in weights most of which are greater than 0; only w17 = w20 = 0. In the latter case, the

DP sample path for G involves fewer effective atoms, and it thus produces weights most of which

are nearly 0; only w5, w12 and w20 are significantly greater than 0. Hence, the discreteness of

the DP prior for G allows for a dimension reduction technique, reducing the number of Erlang

mixture components to just those corresponding to the positive weights. This is an important

feature of the model. Sections 2.3 and 2.4 study how different settings of α and G0 impact the

clustering/declustering patterns supported by the model.

Since both J and θ impact the effective support of inter-arrival times, there is a strong

interaction between these model parameters, and it is thus natural to specify a joint prior

distribution for (θ, J). Specifically, we place a gamma(aθ, bθ) prior on θ, and given θ, assign J

a discrete uniform prior distribution on {dS1/θe, . . . , dS2/θe}. Here, dxe denotes the smallest

integer not less than x, and S1 and S2 are proxies for the lower and upper bounds, respectively,

of the support for the inter-arrival times. Our default choice is to set S1 equal to the maximum

observed inter-arrival time, S, and S2 equal to cS for fixed c > 1; for the data examples, we

used values of c that range between 3 and 10.

We note that, for the data examples in Sections 3 and 4, model inferences are largely unaf-
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Figure 1: Mixture weights under two different specifications of the prior model: J = 20, θ = 0.2 and

G ∼ DP(α,Weibull(µ = 2, φ = 3)), with α = 10 (left panel) and α = 1 (right panel). The solid dots

correspond to the distribution function sample paths for G. The dashed lines display the discretization

by θ, and the thick red lines indicate the weights.

fected by fixing J to values compatible with the prior specification approach discussed above.

In particular, to simplify the model fitting, J can be set equal to dS/θ∗e, where θ∗ is the prior

mean (or median) for θ.

The motivation for the Erlang mixture model for the inter-arrival density is twofold: on

one hand we wish to achieve flexibility, and on the other, we seek to facilitate the required

computations for posterior simulation. Flexibility is guaranteed by the fact that, as J →∞ and

θ → 0, the distribution function of the Erlang mixture in (2) can approximate (in a pointwise

sense) any continuous distribution function on R+ (e.g., Lee and Lin, 2010). The DP-based

model specification is particularly well suited for the inference objectives in the context of

renewal processes. More specifically, as discussed in Sections 2.3 and 2.4, the model can support

both clustering and declustering patterns, and this is controlled by the DP centering distribution.

At the same time, the structure of the Erlang mixture model is key for the development

of an efficient MCMC posterior simulation method, which properly accounts for the likelihood
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normalizing constant. Given the observed point pattern {0 = t0 < t1 < t2 < · · · < tn < T},

the first stage of the hierarchical model for the data is written using the mixture form in (2)

for the likelihood components f(ti − ti−1) and f(u− tn) in (1). Then, by introducing auxiliary

variables {y1, · · · , yn, yn+1}, which given G are i.i.d. from G, we can “break” the mixture and

label the component to which each observation is assigned. Of primary importance is the last

configuration variable, yn+1, which allows us to handle the integral in the likelihood normalizing

constant in a similar fashion with the other, more standard density components of the likelihood.

More details are provided in Section 2.5 and in the Appendix.

2.3 Model properties

A flexible model for renewal processes needs to be able to capture different clustering behaviors.

We recall that the K function, introduced by Ripley (1977) for spatial point processes, is used

to determine the clustering properties of a point process. In the context of a temporal renewal

process, the K function is given by K(t) = λ−1M(t). Here, M(t) is the renewal function, and

λ is the number of events per unit time interval given by λ = 1/E(X), where X represents

inter-arrival times. The K function can be used to assess clustering relative to the homogeneous

Poisson process for which K(t) = t; in particular, K(t) > t, corresponds to clustering processes,

while K(t) < t indicates that the point processes has a declustering pattern. Some general

properties of M(t), and thus also of K(t), are reported below.

Result 1. Let µ1 = E(X), µ2 = E(X2) and let cX denote the coefficient of variation of X, where

c2X = Var(X)/(E(X))2 = (µ2/µ
2
1)−1. Then, for sufficiently large t, M(t) ≈ tµ−11 + 0.5(c2X −1).

This result corresponds to Theorem 1.1.9 in Tijms (1994). Direct application to the K function

yields K(t) = µ1M(t) ≈ t + 0.5µ1(c
2
X − 1), for large enough t. Hence, asymptotically, the sign

of c2X − 1 indicates if the point process supports declustering or clustering patterns.

Result 2. Denote by Fn(t) the distribution function of the n-th arrival time, Tn. Then, M(t) =∑∞
n=1 Fn(t), for any t ≥ 0. moreover,

∑∞
n=N+1 Fn(t) ≤ FN (t)F (t)

1−F (t) , implying that,

N∑
n=1

Fn(t) ≤M(t) ≤
N∑
n=1

Fn(t) + ε(t), ε(t) =
FN (t)F (t)

1− F (t)
.
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This result is also found in Tijms (1994). Hence, provided ε(t) is sufficiently small, M(t) can be

approximated by the truncated sum
∑N

n=1 Fn(t).

Result 3. Assume that the inter-arrival density, f , has Laplace transform LX(s) =
∫∞
0 e−suf(u)du.

Then, the Laplace transform of the renewal function, LM (s) =
∫∞
0 e−stM(t)dt, is given by

lM (s) =
LX(s)

s{1− LX(s)}
. (3)

Equation (3) is obtained using standard integration and convolution properties of the Laplace

transform applied to the renewal equation, M(t) =
∫ t
0 f(u)du +

∫ t
0 M(t − u)f(u)du. This is a

key result, as it provides a practical method to calculate the renewal function M(t) using its

inverse Laplace transform.

The results discussed above are applicable to general renewal functions. Next, we discuss

results specific to our model. First, the mean inter-arrival time under the Erlang mixture model

in (2) is given by µ1 ≡ E(X | J, θ,G) = θ
∑J

j=1 jwj . It is clear from this expression that the

required finiteness for µ1 is satisfied. Moreover,

c2X =
{
∑J

j=1wj(j + j2)} − {
∑J

j=1 jwj}2

{
∑J

j=1 jwj}2
. (4)

Hence, the coefficient of variation generated from our model is fully determined by the mixture

weights. Since Erlang mixtures are dense in the space of continuous distributions on R+ (Tijms,

1994; Lee and Lin, 2010), equation (4) can take, in principle, any positive value. This implies that

the model can generate values for c2X that are both below and above one, and therefore, using

Result 1, our model can generate point processes with both clustering and declustering/regularity

patterns, at least asymptotically.

The (approximate) form of the K function can be explored applying Result 2. For a few spe-

cial cases of our model, a closed-form expression for M(t) can be obtained, using the definition

M(t) =
∑∞

n=1 Fn(t). In particular, for a single Erlang distribution with shape parameter equal

to 2 (i.e., the special case of (2) with w2 = 1) we obtain K(t) = t + 0.5θ{exp(−2t/θ)− 1} < t,
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for any t > 0, which results in declustering patterns. From numerical evalution of the approx-

imate K(t), computed using result 2, we observe that a single Erlang distribution with shape

parameter greater than 2 also generates declustering processes. The opposite is observed for the

mixture of an exponential distribution and an Erlang distribution with shape parameter ≥ 4,

as such two-component mixtures generate clustering patterns. Section 2.4 includes results from

a comprehensive empirical investigation of the K functions generated by the general form of

the Erlang mixture model for the inter-arrival density, with the DP-based prior for the mix-

ture weights. These results indicate that the model supports both clustering and declustering

patterns for any t > 0, and not just asymptotically.

Computing the K function requires the renewal function. Using Result 3, we obtain the

Laplace transform of the renewal function corresponding to the Erlang mixture for the inter-

arrival density:

lM (s) =

∑J
j=1wj(1 + θs)−j

s
∑J

j=1wj{1− (1 + θs)−j}
. (5)

This is a key result for the study of K functions arising from our model, since evaluating M(t)

from its definition is computationally intensive under the general version of the Erlang mixture

which typically contains more than 2-3 mixture components. Instead, evaluating the renewal

function of the general model using the inverse Laplace transform of Equation (5) is substantially

more efficient. We use Matlab function “INVLAP” for the numerical inversion of the renewal

function Laplace transform. The application of this approach is illustrated in the next section.

2.4 Investigating the K function for the Erlang mixture model

In this section, we numerically evaluate the K function generated from our model by using

the Laplace transform method. Given J , θ, G0 and α, a realization for the K function can be

simulated from the prior model by: generating a realization for the mixture weights {w1, · · · , wJ}

from the DP(α,G0) prior; evaluating the Laplace transform of the renewal function M(t) using

Equation (5); computing M(t) using the inverse Laplace transform; and computing the K

function as K(t) = µ1M(t), where µ1 = θ
∑J

j=1 jwj .

We used this simulation method to investigate how the DP precision parameter α, and the
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Figure 2: Realizations for the function K(t) − t based on 10 samples from the DP(α,G0) prior for

the mixture weights, with a Weibull centering distribution and α = 200. From left to right: G0 =

Weibull(5, 0.5), G0 = Weibull(5, 1) and G0 = Weibull(5, 2).

parameters of the Weibull DP centering distribution G0 influence the K function, and thus the

clustering patterns generated by the model. We also explored the effect of selecting different

distributions for G0. The results from some of the scenarios we have considered are discussed

next.

The shape parameter of the Weibull DP centering distribution. We fix the values of

α = 200, θ = 2 and µ = 5 and vary the shape parameter, φ, of the Weibull distribution defining

G0. The DP precision parameter α is fixed to a relatively large value, implying realizations for

G that are close to G0, such that we can more effectively explore the role of the DP centering

distribution parameters. The effect of decreasing the value of α is studied later in the section.

Figure 2 shows ten realizations for the K function under three different values for φ. We

plot K(t) − t for easier visual inspection; recall that K(t) > t (< t) corresponds to clustering

(declustering), with K(t) = t for the homogeneous Poisson process. For φ = 0.5, the K function

samples display clustering patterns; see Figure 2a. With φ = 1, clustering and declustering

patterns are generated, as well as K functions that are close to the one corresponding to the

homogeneous Poisson process; see Figure 2b. when φ is increased to 2, declustering patterns are

produced; see Figure 2c. Table 1 summarizes these empirical results.

Note that φ < 1 (> 1) implies that the coefficient of variation for the Weibull distribution
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Table 1: Clustering patterns generated under different centering distributions G0 for the DP prior. C:

clustering; D: declustering; H: homogeneous Poisson process.

G0 Fixed parameters Parameter(s) tested C D H

Weibull(µ, φ) θ = 2, α = 200, µ = 5

φ = 0.5 X

φ = 1 X X X

φ = 2 X

Pareto(a, b) α = 200

θ = 2, a = 2.5, b = 1 X

θ = 2, a = 2.5, b = 5 X

θ = 1, a = 0.01, b = 5 X

is greater than 1 (less than 1), and it also corresponds to a decreasing (increasing) hazard rate

function. Our empirical investigation provides strong indication that, when the DP precision

parameter takes relatively large values, the shape parameter of the Weibull centering distribution

controls clustering (φ < 1) or declustering (φ > 1) patterns for the renewal process.

The scale parameter of the Weibull DP centering distribution. The scale parameter

µ can also affect the point process pattern, albeit less evidently than the shape parameter. For

instance, when φ > 1 and α takes large values, then values of µ such that µ < θ result in

realizations G that concentrate mainly in (0, θ), which further results in w1 → 1. The inter-

arrival density is then close to an exponential distribution with parameter 1/θ, corresponding

to a homogeneous Poisson process. If µ > θ, then G is concentrated mostly in (θ,∞), which

produces declustering patterns.

Alternative choices for the DP centering distribution. In order to explore the influence

of the tails of G0 on the behavior of the K function, we run a set of experiments where G0

is a Pareto distribution, Pareto(a, b), supported on [a,∞). In contrast to the exponential tails

of the Weibull, the Pareto distribution has polynomial tails. The Pareto shape (tail index)

parameter, b, determines the coefficient of variation, in particular, c2X = {b(b− 2)}−1, for b > 2.

Moreover, as b tends to infinity, the Pareto distribution concentrates all its mass at a. Again,

we set α = 200 such that DP prior realizations for G are close to the Pareto G0 distribution,
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Figure 3: Realizations for the function K(t) − t based on 10 samples from the DP(α,G0) prior for

the mixture weights, with a Pareto centering distribution and α = 200. From left to right: G0 =

Pareto(2.5, 1), G0 = Pareto(2.5, 5) and G0 = Pareto(0.01, 5).

and θ = 2. for a = 2.5 and b = 1, G0 is a long-tailed Pareto distribution resulting in point

processes with clustering patterns; see Figure 3a. For a = 2.5 and b = 5, the Pareto distribution

is less dispersed and the point processes show declustering patterns, with substantially reduced

variability in the K function samples; see Figure 3b. as for the Weibull case, we observe that

the mixture model with the Pareto DP centering distribution can generate both clustering and

declustering patterns. It is also possible to produce K functions that resemble the homogeneous

Poisson process case, with very small variability. As an example, Figure 3c corresponds to θ = 1,

a = 0.01 and b = 5, and this is generally the case for θ > a and large b. The parameter settings

and results are summarized in Table 1.

In addition to the two choices of G0 discussed above, we considered gamma, log-normal and

generalized Pareto distributions. From the empirical exploration of the K functions produced by

such distributions, we conjecture that the clustering or declustering behavior of the point process

is determined by the parameter that controls the tails of the DP centering distribution, which

can be quantified through either values for the coefficient of variation or monotonicity of the

hazard function of G0. This observation can be used to guide the selection of G0 for modeling

purposes. Our preferred choice is the Weibull distribution, since the empirical investigation

suggests a clear connection between the shape parameter and clustering/declustering patterns,

and it also has an analytically available distribution function.
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Figure 4: Realizations for the function K(t) − t based on 10 samples from the DP(α,G0) prior for the

mixture weights, where G0 = Weibull(µ = 5, φ = 0.5) and, from left to right, α = 0.2, 2, 50.

The DP precision parameter. Here, we set θ = 2 and take a Weibull(5, 0.5) distribution

for G0, which is the first setting considered in the study for the role of shape parameter φ.

In Figure 4, we plot realizations for the K function under three different values for the DP

precision parameter, α = 0.2, 2, 50. for α = 50, we observe that the model supports only

clustering patterns, which is in accordance with results discussed earlier for large α and Weibull

shape parameter φ < 1; compare Figure 4c and Figure 2a. The variability in the values of

the K function is larger for smaller values of α, which is consistent with its role in controlling

the variance of the DP prior. For small values of α, both clustering and declustering patterns

become possible, although clustering is more strongly favored. Changing G0 to a Weibull(5, 2)

distribution, we observe the same behavior where now declustering patterns are favored.

In the absence of prior information about clustering/declustering patterns, we recommend

using a prior for α that is concentrated on small to moderate values. We also place a prior on

the shape parameter of the Weibull DP centering distribution that supports values both less

than and greater than 1.

2.5 The approach to posterior inference

Here, we discuss the inference methods for the inter-arrival density, as well as for other function-

als of the renewal process, given the observed point pattern {0 = t0 < t1 < t2 < · · · < tn < T}.

As mentioned in Section 2.2, key to posterior simulation is the introduction of latent variables
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that identify the mixture component to which each observation is assigned. In particular, we

consider variables {y1, ..., yn, yn+1}, which given G are i.i.d. from G. The first n of these latent

variables are associated with the likelihood components f(ti − ti−1) that comprise the product

in (1). The connection is given by the following representation of the Erlang mixture model for

the inter-arrival density:
∑J

j=1wj ga(x | j, θ−1) =
∫ {∑J

j=1 1((j−1)θ,jθ](y) ga(x | j, θ−1)
}

dG(y).

Regarding the normalizing constant in (1), under the Erlang mixture model, we can write

1−
∫ T

tn

f(u− tn)du =
J∑
j=1

wj Cj(tn, θ) =

∫ 
J∑
j=1

1((j−1)θ,jθ](y)Cj(tn, θ)

dG(y)

where Cj(tn, θ) = 1−
∫ T
tn

ga(u− tn | j, θ−1)du is defined in terms of gamma distribution function

values and depends on only one of the model parameters. Hence, the last latent variable, yn+1,

is used to represent the integral in the likelihood normalizing constant in a similar fashion with

the more standard density components of the likelihood.

Therefore, conditional on the latent variables {y1, ..., yn, yn+1} and (θ, J), the first stage of

the hierarchical model for the data {t1, ..., tn} can be expressed as

n∏
i=1

J∑
j=1

1((j−1)θ,jθ](yi) ga(ti − ti−1 | j, θ−1)×


J∑
j=1

1((j−1)θ,jθ](yn+1)Cj(tn, θ)

 (6)

where yi | G
i.i.d.∼ G, for i = 1, ..., n, n + 1, and G | α, µ, φ ∼ DP(α,Weibull(µ, φ)). The

full Bayesian model is completed with priors for (θ, J) (given in Section 2.2) and for the DP

parameters. in particular, we assign a gamma(aα, bα) prior to α, an inverse gamma, IG(aµ, bµ),

prior to µ (with mean bµ/(aµ − 1), provided aµ > 1), and a gamma(aφ, bφ) prior to φ.

Since the hierarchical model for the data has the structure of a DP mixture model, we can

utilize any of the available posterior simulation methods for DP mixtures. We opt for a marginal

MCMC algorithm which builds from the Pólya urn based joint prior distribution for the yi that

arises after marginalizing G over its DP prior (e.g., Escobar and West, 1995; Neal, 2000), adding

sampling from the posterior distribution of G (Gelfand and Kottas, 2002) to enable full inference

for renewal process functionals. The MCMC algorithm details are provided in the Appendix.

The conditional posterior distribution for G, given (α, µ, φ) and {y1, ..., yn, yn+1}, is given

by a DP with updated precision parameter α∗ = α + n + 1 and centering distribution G∗0 =
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α(α+n+ 1)−1Weibull(µ, φ) + (α+n+ 1)−1
∑n+1

i=1 δyi . Using the DP definition, this implies that

the conditional posterior distribution for the vector of mixture weights (w1, ..., wJ) is a Dirichlet

distribution (with parameters defined by α∗ and G∗0). Hence, given the posterior samples for

(α, µ, φ) and {y1, · · · , yn, yn+1} (obtained as described in the Appendix), we can readily obtain

posterior samples for the mixture weights in (2). Those posterior samples, combined with the

ones for θ and J , provide full posterior inference for the inter-arrival density over any grid of time

points. Moreover, using the inverse Laplace transform of Equation (5) evaluated at the posterior

samples for θ, J and (w1, ..., wJ), we obtain posterior realizations for the renewal function M(t),

and therefore also for the K function, K(t) = µ1M(t), with µ1 = θ
∑J

j=1 jwj .

In addition to inference for the K function, the posterior realizations for the inter-arrival

density can be used to estimate the hazard rate function:

λ(t | H(t)) =
f(t−H(t))

1− F (t−H(t))
, t > H(t) (7)

where F is the inter-arrival distribution function. This also defines the point process conditional

intensity function. Its value can be interpreted as the probability that the next event will occur

in an infinitesimal interval after time point t, conditional on the history of the process up to

time t. For a renewal process, such history involves only H(t), the time of the last event prior to

t. Moreover, for a homogeneous renewal process, the conditional intensity function depends on

t and H(t) only through the time difference t−H(t). We can therefore visualize the conditional

intensity function in an one-dimensional plot by using t−H(t) as the argument for the horizontal

axis. We illustrate inference for the hazard rate (conditional intensity) function with the real

data examples in Section 4.

It is noteworthy that the approach to posterior inference does not require truncation for the

DP countable representation. This is due to the use of a marginal MCMC algorithm and the fact

that the only functional of random distribution G needed for our inferences is the discretized

version of the corresponding random distribution function that defines the mixture weights.

2.6 Model checking

The modeling approach is based on the renewal process assumption for the observed point

pattern {0 = t0 < t1 < t2 < · · · < tn < T}. A means to check this assumption, as well as
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the model for the inter-arrival distribution, is given by the Time-Rescaling theorem (e.g., Daley

and Vere-Jones, 2003). Assume that the point pattern is a realization from a point process with

conditional cumulative intensity function Λ∗(t), defined through the integral of the conditional

intensity function over (0, t) (the dependence on the history of the process up to time t is

suppressed from the notation). Then, based on the Time-Rescaling theorem, the transformed

point pattern {Λ∗(ti) : i = 1, ..., n} is a realization from a unit rate homogeneous Poisson

process, and thus the random variables Ui = 1 − exp{−(Λ∗(ti) − Λ∗(ti−1))}, where Λ∗(0) ≡ 0,

are independently and uniformly distributed on (0, 1). Therefore, graphical model assessment

can be based on quantile-quantile (Q-Q) plots to evaluate agreement of the estimated Ui with

the uniform distribution on (0, 1).

In the context of a renewal process with conditional intensity function given by (7), we have

Λ∗(ti) − Λ∗(ti−1) =
∫ ti
ti−1

λ(s | ti−1)ds = − log{1 − F (ti − ti−1)}, and thus Ui = F (ti − ti−1) =∫ ti
ti−1

f(s− ti−1)ds. Hence, the posterior realizations for the inter-arrival density can be used to

obtain posterior samples for each Ui, which result in posterior point and interval bands for the

Q-Q graphs. This model assessment technique is applied to the real data examples of Section 4.

Time-rescaling diagnostics involve checking of the fit provided by the renewal process as-

sumption for the stochastic point process mechanism, as well as of the particular model for

the inter-arrival distribution. In cases of discrepancy from the uniform distribution, it is not

straightforward to distinguish which of the two assumptions contributes more to lack of model

fit. The theoretical support for Erlang mixtures, as well as the model flexibility arising from

the nonparametric prior for the mixture weights are practically useful in this regard. A flexible

model, such as the Erlang mixture, that supports general shapes for the inter-arrival distribution

is more suitable than standard parametric models with respect to focusing the goodness-of-fit

evaluation on the renewal process assumption.

3 Synthetic Data Examples

In this section we evaluate our model by fitting it to synthetic data corresponding to both declus-

tering and clustering patterns (Sections 3.1 and 3.2), including comparison with a parametric

Weibull model for the renewal process inter-arrival distribution (Section 3.3).
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3.1 Declustering examples

We first consider two synthetic data examples that correspond to declustering patterns. The

inter-arrival distribution for the first case is Weibull(2, 1.5), whereas for the second it is given by

a mixture of inverse Gaussian distributions, 0.42 InvGaussian(0.5, 1) + 0.58 InvGaussian(2, 6.5).

The Weibull distribution has shape parameter equal to 1.5, corresponding to a coefficient of

variation that is less than 1 and a monotonically increasing hazard function, and resulting in

a renewal process with a declustering pattern. A sequence of 269 data points are generated

within the time window (0, 500). A snap shot of the data points is shown in Figure 5a. The

second inter-arrival density is motivated by the fact that inverse Gaussian distributions are a

popular choice for declustering renewal process models. We generate a sequence of 366 data

points within the time window (0, 500), a snap shot of which is shown in Figure 5d.

In Figure 5, we compare the true K(t) − t function as well as the true density function

of inter-arrival times with the estimates from our model. For both functions and both data

examples, the posterior mean estimate captures the shape of the corresponding function, and

the posterior interval bands contain the true function. For both data examples, our proposed

method accurately estimates the declustering property of the renewal processes, as demonstrated

by the inference results for the corresponding K functions.

We note here that the evaluation of the K function can be a complicated task, even in full

knowledge of the parametric model for the inter-arrival times. For the Weibull inter-arrival

distribution, we first calculate the renewal function M(t), using an approximation method from

Smith and Leadbetter (1963), and then obtain the K function from K(t) = µ1M(t), where µ1

is the mean of the Weibull distribution. For the mixture of inverse Gaussian distributions, we

use the Laplace transform of an inverse Gaussian, which is available in closed form. The inverse

Laplace transform is then obtained numerically.

3.2 Clustering examples

Here, we consider two synthetic data sets from renewal processes that exhibit clustering. The

respective inter-arrival distributions are given by a Pareto(1, 1.98) and a Weibull(2.3, 0.6) distri-

bution. The Pareto distribution has finite mean as its shape parameter is greater than 1. Both
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Figure 5: Declustering synthetic data examples. 5a and 5d: A snapshot of the renewal process re-

alizations based on the Weibull and two-component inverse Gaussian mixture inter-arrival densities,

respectively; 5b and 5e: Histogram of simulated inter-arrival times, true inter-arrival density (black line),

posterior mean estimate (red line), and 95% interval bands (dashed blue lines) for the first and second

example, respectively. 5c and 5f: True K(t)− t function (black line), posterior mean estimate (red line),

and 95% interval bands (dashed blue lines) for the first and second example, respectively.

distributions have decreasing hazard rates, resulting in renewal processes with clustering. For

the Pareto-based example, 556 data points were generated within the time window (0, 500), with

a snapshot shown in Figure 6a. For the Weibull-based example, the simulated point pattern

comprised 664 data points within the time window (0, 2000), with a snapshot plotted in Figure

7a. We select these two distributions to test our model’s ability to handle data arising from
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Figure 6: Clustering synthetic data example with Pareto inter-arrival density. 6a: A snapshot of the

renewal process realization. 6b, 6c, and 6d: histogram of simulated inter-arrival times, true inter-arrival

density function (black line), posterior mean estimate (red line), and 95% interval bands (dashed blue

lines) for the head of the data, the tail of the data, and all data, respectively. 6e: True K(t)− t function

(black line), posterior mean estimate (red line), and 95% interval bands (dashed blue lines).

inter-arrival densities with both polynomial and exponential tail behaviors.

Figures 6 and 7 show posterior mean and interval estimates for the inter-arrival densities and

K(t) − t functions. To compute the true K function for the Pareto-based renewal process, we

used the Laplace transform of the Pareto distribution reported in Nadarajah and Kotz (2006)

and evaluated the Laplace transform of the renewal function using Equation (3). In order to

more effectively visualize results for the inter-arrival density, we plot estimates for the head

and tail of the data, as well as for the density over the full range of the data. As expected

based on the more extreme tails of the true inter-arrival densities, the point estimates for the

densities and the corresponding K functions are less accurate than the declustering examples
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Figure 7: Clustering synthetic data example with Weibull inter-arrival density. 6a: A snapshot of the

renewal process realization. 6b, 6c and 6d: histogram of simulated inter-arrival times, true inter-arrival

density (black line), posterior mean estimate (red line), and 95% interval bands (dashed blue lines) for

the head of the data, the tail of the data, and all data, respectively. 6e: True K(t) − t function (black

line), posterior mean estimate (red line), and 95% interval bands (dashed blue lines).

of the previous section. However, the posterior interval bands contain the true inter-arrival

density and K function for both the Pareto-based and Weibull-based example, thus uncovering

the underlying renewal process clustering structure.

3.3 Comparison with parametric Weibull model

Here, we report results from a small simulation study to compare the Erlang mixture and

Weibull models for the inter-arrival distribution; as discussed in the Introduction, the latter is a

commonly used parametric model for renewal processes. The posterior distribution for the two

parameters of the Weibull model was sampled using a Metropolis-Hastings MCMC algorithm.
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Table 2: Simulation study for comparison between the Erlang mixture and Weibull models. Posterior

mean and 95% interval estimates for the TVD between the true inter-arrival distribution function and

the model estimates. Results are given for the four inter-arrival distributions considered in Sections 3.1

and 3.2 – Weibull(2, 1.5) (DCWeibull), 0.42 InvGaussian(0.5, 1) + 0.58 InvGaussian(2, 6.5) (MixtInvG),

Pareto(1, 1.98) (Pareto), Weibull(2.3, 0.6) (CWeibull) – and for two data sets of different size.

Erlang Mixture Parametric Weibull

true inter-arrival distribution True-Posterior TVD True-Posterior TVD

DCWeibull (T = 500, n = 269) 0.036 (0.010, 0.076) 0.029 (0.004, 0.069)

mixtInvG (T = 500, n = 366) 0.034 (0.015, 0.065) 0.043 (0.032, 0.070)

pareto (T = 500, n = 556) 0.033 (0.012, 0.060) 0.046 (0.032, 0.068)

CWeibull (T = 2000, n = 664) 0.040 (0.021, 0.065) 0.029 (0.006, 0.057)

DCWeibull (T = 1500, n = 856) 0.023 (0.010, 0.043) 0.021 (0.005, 0.042)

mixtInvG (T = 1500, n = 1115) 0.034 (0.013, 0.059) 0.037 (0.032, 0.046)

pareto (T = 1500, n = 1490) 0.025 (0.014, 0.039) 0.050 (0.039, 0.062)

CWeibull (T = 6000, n = 1707) 0.027 (0.018, 0.043) 0.011 (0.002, 0.027)

We work with synthetic data from the four inter-arrival distributions considered in Sections

3.1 and 3.2. For each of the four cases, we provide results for the same data set used in Section 3.1

or 3.2, as well as for a data set with larger sample size (given in Table 2) resulting from expanding

the observation time window from (0, T ) to (0, 3T ). We use the total variation distance (TVD),

supx |Ftrue(x) − F ∗b (x)|, to assess estimation performance. Here, Ftrue denotes the true inter-

arrival distribution function, and F ∗b , for b = 1, ..., B, the posterior realizations under each

model, where B is the posterior sample size. Therefore, we obtain posterior distributions for the

TVD, which are summarized in Table 2 through posterior means and 95% interval estimates.

We use conservative values for the effective support of each true inter-arrival distribution, such

that the supremum in the TVD definition can be accurately approximated.

The results in Table 2 are compatible with results from contrasting Bayesian nonparametric

and parametric models in other settings. In particular, for the cases where the data are simulated

from a Weibull inter-arrival distribution, the Weibull model performs better. However, when the

data generating mechanism is different from the parametric model, the Erlang mixture model
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shows superior performance. Note that in the Pareto case (corresponding to polynomial tails

for the inter-arrival distribution), the Weibull model does not fare better with the larger sample

size. In all cases, the Erlang mixture model performance improves with increasing sample size.

These results suggest that the proposed inference method for renewal processes is more robust

than methods based on standard parametric models.

4 Data Applications

Here, we apply the methodology to two real data examples: the commonly studied coal mining

disasters data, and times of earthquake occurrences from four different regions of the Americas.

In fact, in Section 4.2, we extend the Erlang mixture model to estimate hierarchically related

renewal processes corresponding to the four regions from which earthquake occurrences have

been recorded.

4.1 Coal-mining disasters data

The “coal-mining disasters” data set from Jarrett (1979) is commonly used in the literature of

point processes, with most approaches treating the data as a realization of an inhomogeneous

Poisson process. The point pattern records the times (in days) of 191 explosions of fire-damp or

coal-dust in mines leading to accidents, involving 10 or more men killed, over the time period

from 15 March 1851 to 22 March 1962. To illustrate our methodology, we consider two versions

of the coal-mining disasters data.

The first involves the subset of the data corresponding to the time period from 15 March

1851 to 31 December 1875, which involves 81 events. Graphical exploration of this data subset

indicates the presence of a regular pattern compatible with the assumption of time-homogeneity

(see Figure 8a), which is implicit in the class of renewal processes we study. Here, the priors for

the model parameters are: φ ∼ gamma(4, 2), (θ, J) ∼ gamma(1, 0.02)Unif({800/θ, . . . , 8000/θ}),

µ ∼ IG(6, 800), and α ∼ gamma(2, 4). The Erlang mixture model estimates capture the decreas-

ing inter-arrival density suggested by the data (Figure 8b). in Figure 8c, we plot the posterior

distribution for the largest mixture weight, w(1), and for the sum of the two largest mixture
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Figure 8: 8a: Subset of the coal-mining disasters data from 1851 to 1875. 8b: Posterior mean estimate

(red line) and 95% interval bands (dashed blue lines) for the inter-arrival density, overlaid on the histogram

of observed inter-arrival times. 8c: Posterior distribution of the two largest weights and the corresponding

Erlang mixture component indexes. 8d and 8e: Posterior mean estimate (red line) and 95% interval bands

(dashed blue lines) for the hazard function (8d) and the K(t)− t function (8e).

weights, w(1) +w(2). The respective posterior means are 0.86 and 0.967. Hence, given the data,

the Erlang mixture for the inter-arrival density is mostly concentrated on two components. With

posterior probability 0.98, the index of the largest component corresponds to the first Erlang dis-

tribution. Hence, the model favors an exponential inter-arrival distribution, which corresponds

to a homogeneous Poisson process. The posterior mean estimate of the hazard rate (conditional

intensity) function (Figure 8d) is essentially constant over time, and the posterior mean estimate

for the K function nearly equals t, both of which provide further evidence that the particular

subset of the coal-mining disasters data corresponds to a homogeneous Poisson process.

For a further illustration, we reduce the size of the point pattern by retaining every al-
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Figure 9: 9a: Thinned version of the subset of the coal-mining disasters from 1851 to 1875. 9b: Posterior

mean estimate (red line) and 95% interval bands (dashed blue lines) for the inter-arrival density, overlaid

on the histogram of observed inter-arrival times. 9c: Posterior distribution of the two largest weights and

the corresponding Erlang mixture component indexes. 9d and 9e: Posterior mean estimate (red line) and

95% interval bands (dashed blue lines) for the hazard function (9d) and the K(t)− t function (9e).

ternate event from the 81 coal-mining disasters that occurred between 1851 and 1875; see

Figure 9a. this data set is obtained from thinning the previously analyzed point pattern for

which the Poisson process assumption appears plausible. Therefore, the thinned point pat-

tern should have a declustering property, which is challenging to detect given the relatively

small number of observed events. The prior distributions in this case are: φ ∼ gamma(4, 2),

(θ, J) ∼ gamma(1, 0.1)Unif({1100/θ, . . . , 3300/θ}), µ ∼ IG(3, 200), and α ∼ gamma(2, 1). Here,

the Erlang mixture model estimates a unimodal inter-arrival density, with wider posterior uncer-

tainty bands, as expected given the smaller sample size (Figure 9b). We plot again the posterior
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Figure 10: Coal-mining disasters data. Posterior mean and 95% interval bands for the Time-Rescaling

model checking Q-Q plots for the subset of the data from 1851 to 1875 (left panel), and for the thinned

version of this data subset (right panel).

distribution for the two largest mixture weights; see Figure 9c. In this case, the posterior mean

for w(1)+w(2) is 0.62, and the indexes for the two largest mixture weights are spread over several

Erlang components. The estimates for the conditional intensity function reveal a time varying,

non-monotonic shape (Figure 9d). Finally, Figure 9e shows the estimates for the K(t)− t func-

tion. Although the posterior mean estimate supports declustering, the same conclusion can

not be drawn from the entire posterior distribution as the 95% interval bands for the K(t) − t

function include the line at 0 over almost the entire interval of observed inter-arrival times.

Finally, Figure 10 shows results from the model checking method discussed in Section 2.6.

The plots offer graphical evidence that the renewal process model with the Erlang mixture inter-

arrival distribution provides a reasonable fit for the coal-mining disasters data subsets considered

in this section.

4.2 A hierarchical model for earthquake occurrences data

Some of the early work in seismology on modeling earthquake occurrences was based on Poisson

process assumptions (e.g., Cornell, 1968; Caputo, 1974). In order to model clustering foreshock-

mainshock-aftershock sequences, other stochastic models, such as compound Poisson processes,

Hawkes processes, renewal processes and Markov processes, have been explored (e.g., Anagnos
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and Kiremidjian, 1988; Ogata, 1988; Zhuang et al., 2002; Parsons, 2008).

To motivate a hierarchical extension of the Erlang mixture model that will allow us to study

the effect of the different levels of a factor on the distribution of inter-arrival times, we consider

the times of earthquake occurrences in four distinct regions of the Americas – North America,

Central America, Caribbean, South America – recorded from January 1, 1900 to present. The

data is taken from the “Significant Earthquake Database” of the NOAA, National Centers

for Environmental information (NGDC/WDS, 2019). Occurrences are recorded for destructive

earthquakes that meet at least one of the following criteria: moderate damage (approximately

$1 million or more), 10 or more deaths, magnitude 7.5 or greater, Modified Mercalli Intensity X

or greater, or the earthquake generated a tsunami. The data set includes 357 earthquakes for

South America, 303 for North America, 126 for Central America, and 55 for the Caribbean.

Here, the point patterns are {0 < t1,r < t2,r < · · · < tnr,r < T}, where r = 1, ..., 4 indicates

the region. We extend the Erlang mixture model structure such that the inter-arrival density

for region r is given by (2) with region-specific scale parameters θr and weights generating

distributions Gr, which are assigned hierarchical priors. In particular, we assume

θr | γ
i.i.d.∼ gamma(aθ, γ) and Gr | αr, µ, φ

ind.∼ DP(αr, G0 = Weibull(µ, φ)), r = 1, ..., 4,

where αr | β
i.i.d.∼ gamma(aα, β), for r = 1, ..., 4, with random β and γ. Assuming a common

DP centering distribution, G0, and different precision parameters, αr, leverages the role of the

DP prior parameters in the context of our modeling approach. This model formulation retains

the flexible Erlang mixture inter-arrival density for each region, while allowing for borrowing

of strength across regions through the hierarchical priors for hyperparameters θr and αr. The

model can include also region-specific number of mixture components, although a common J

strikes a good balance between model parsimony and flexibility.

The hierarchical model is implemented with a relatively straightforward extension of the

posterior simulation method presented in Section 2.5 and in the Appendix. Regarding the

specific priors for the earthquake data analysis, we set aα = 2, aθ = 10, and place gamma(5, 28)

and gamma(7, 6) priors on β and γ, respectively. Moreover, we use a gamma(0.08, 0.1) prior for

φ, and an IG(2, 500) prior for µ. Finally, we set J = 200, using the prior specification approach

discussed in Section 2.2.
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Figure 11: Earthquakes data. Posterior mean estimate (red line) and 95% interval bands (dashed blue

lines) for the inter-arrival density (top row), the hazard function (middle row), and the K(t)− t function

(bottom row). The top row panels include the observed inter-arrival times. The columns correspond to

the four different regions of the Americas.

Figure 11 plots estimates for renewal process functionals for each of the four regions. The

model captures well the distinct and non-standard inter-arrival density shapes suggested by

the data, and it also estimates non-linear hazard rate functions across the four regions. Model

inferences support clustering patterns essentially for all four regions, the only possible exception

being the Caribbean for which the posterior mean estimate for the K(t) − t function takes

decisively positive values, but the 95% interval bands include the line at 0 for inter-arrival time

values greater than about 1000 days. Central America stands out in terms of marginal posterior
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Figure 12: Earthquakes data. Posterior mean and 95% interval bands for the Time-Rescaling model

checking Q-Q plots for the data from each of the four regions of the Americas.

densities for the θr and αr parameters (not shown), as they are supported by larger values

compared to the other three regions. This is compatible with the role of these model parameters

noting that the data for Central America suggest a heavier tailed inter-arrival distribution than

North and South America, and at the same time, a more standard inter-arrival density than

the multimodal density for the Caribbean. Finally, the Time-Rescaling model checking method

provides graphical support for good model fit (see Figure 12).

5 Discussion

We have developed a Bayesian nonparametric approach to modeling and inference for renewal

processes. The inter-arrival time density of the renewal process is modeled as a mixture of

Erlang distributions with common scale parameter. The mixture weights are defined through
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increments of a distribution function which is modeled with a Dirichlet process prior. The

nonparametric prior for the mixture weights allows non-standard shapes for the inter-arrival

density, as well as for other key functionals of the renewal process, such as the K function and

the conditional intensity function. In particular, both clustering and declustering patterns of

the renewal processes can be captured by the model. The inferential flexibility of the modeling

approach has been studied through synthetic data sets, as well as two real data examples.

Modeling with renewal point processes provides a means to relax the Poisson process as-

sumption, in particular, in studying temporal point patterns with clustering or declustering

properties. However, the standard form of renewal processes considered in this work is based on

the assumption that all inter-arrival times follow the same distribution. Such time homogeneity

property might apply to, for instance, earthquake data in the long term. However, in practice,

it is more reasonable to assume that the rate of earthquake occurrences varies over time. In

applications of point processes in reliability analysis, the “as good as before, after the repair”

property, implied by homogeneous renewal processes, may be suspect. A class of stochastic

models that has been explored for analysis of repairable systems is the trend-renewal process

(Lindqvist et al., 2003; Lindqvist, 2006; Xu et al., 2017). Trend-renewal processes include both

inhomogeneous Poisson processes and homogeneous renewal processes as special cases.

The scope of renewal process models can also be extended by allowing the conditional in-

tensity function in (7) to depend on both time t and H(t), the time of the last event prior to

t. In a generalized/modulated renewal process (Cox, 1972), the intensity function is typically

written as a function of t and t − H(t). Such point process models have been explored in the

neuronal science literature (e.g., Kass and Ventura, 2001; Barbieri et al., 2001; Koyama and

Kass, 2008), as well as in the literature on systems reliability (e.g., Brown and Proschan, 1983;

Lawless and Thiagarajah, 1996), although inference is typically based on potentially restric-

tive parametric forms for the inter-arrival density and the corresponding conditional intensity

function, λ(t, t−H(t)).

A possible extension of our modeling approach for modulated renewal processes involves

introduction of time-varying weights in the Erlang mixture model for the inter-arrival density.

This can be accomplished with a time-dependent nonparametric prior for the random distribu-
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tion function used to define the mixture weights. Such an extension will allow the inter-arrival

density to depend on the clock time t (in addition to t − H(t)), retaining the model’s ability

to capture general shapes for the renewal function and the conditional intensity function that

are not restricted by a particular parametric form. The challenge involves developing model

formulations for the mixture weights that achieve a good balance between inferential flexibility

and computational feasibility, especially for point patterns of small to moderate size.

Appendix: MCMC posterior simulation

Here, we provide the details of the MCMC algorithm discussed in Section 2.5. Again, key to

posterior simulation is introduction of the latent variables {y1, ..., yn, yn+1}, under which the

augmented likelihood for the data, {0 = t0 < t1 < · · · < tn < T}, assumes the form in (6).

After marginalizing G over its DP prior, the resulting joint prior for the latent variables,

given α, µ and φ, implies the following prior full conditional for each yi, i = 1, ..., n+ 1,

p(yi | {yk : k 6= i}, α, µ, φ) =
α

α+ n
Weibull(yi | µ, φ) +

1

α+ n

∑
k 6=i

δyk(yi).

The posterior full conditional for each yi can be obtained by combining its prior full conditional

above with the relevant term from (6). More specifically, the posterior full conditional for yi,

i = 1, ..., n, is a mixed distribution: yi is set equal to yk, where k 6= i, with probability

ga(xi | dykθ−1e, θ−1)
α
∑J

j=1 q0j ga(xi | j, θ−1) +
∑

k 6=i ga(xi | dykθ−1e, θ−1)
,

where xi = ti−ti−1, and q0j ≡ q0j(θ, µ, φ) = G0(jθ)−G0((j−1)θ) (available in closed form under

the Weibull choice for G0); and, with the remaining probability, yi is drawn from distribution

proportional to
∑J

j=1{q0j ga(xi | j, θ−1)}TWeibj(yi | µ, φ, θ), where TWeibj(yi | µ, φ, θ) denotes

the Weibull(µ, φ) distribution truncated such that (j − 1)θ < yi ≤ jθ. The posterior full

conditional for yn+1 has similar structure with ga(xi | dykθ−1e, θ−1) replaced by Cdykθ−1e(tn, θ),

and ga(xi | j, θ−1) replaced by Cj(tn, θ).

The posterior full conditional for (θ, J) involves conditioning on all the latent variables and

it can therefore be expressed as

p(θ, J | ...,data) ∝ p(θ, J) cIn+1(tn, θ)
n∏
i=1

ga(xi | Ii, θ−1)1(max{I1, ..., In+1} ≤ J) ,
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where p(θ, J) is the prior for (θ, J), given in Section 2.2, and Ii = dyiθ−1e, for i = 1, ..., n + 1.

Based on the DP prior structure, the posterior full conditional for (µ, φ) is given by

p(µ, φ | ...,data) ∝ IG(µ | aµ, bµ) gamma(φ | aφ, bφ)

n∗∏
`=1

Weibull(y∗` | µ, φ) ,

where n∗ is the number of distinct elements of {y1, ..., yn, yn+1}, and y∗` , ` = 1, ..., n∗, are the

distinct values. We use Metropolis-Hastings steps to update µ, φ, and (θ, J). finally, α is

sampled with the data augmentation method developed in Escobar and West (1995).
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