
Cudele: An API and Framework for Programmable
Consistency and Durability in a Global Namespace

Michael A. Sevilla, Ivo Jimenez, Noah Watkins, Jeff LeFevre
Peter Alvaro, Shel Finkelstein, Patrick Donnelly*, Carlos Maltzahn

University of California, Santa Cruz; *Red Hat, Inc.
{msevilla, ivo, jayhawk, jlefevre}@soe.ucsc.edu, {palvaro, shel, carlosm}@ucsc.edu, pdonnell@redhat.com

Abstract—HPC and data center scale application developers
are abandoning POSIX IO because file system metadata syn-
chronization and serialization overheads of providing strong
consistency and durability are too costly – and often unnecessary
– for their applications. Unfortunately, designing file systems with
weaker consistency or durability semantics excludes applications
that rely on stronger guarantees, forcing developers to re-write
their applications or deploy them on a different system. We
present a framework and API that lets administrators specify
their consistency/durability requirements and dynamically assign
them to subtrees in the same namespace, allowing administrators
to optimize subtrees over time and space for different workloads.
We show similar speedups to related work but more importantly,
we show performance improvements when we custom fit subtree
semantics to applications such as checkpoint-restart (91.7×
speedup), user home directories (0.03 standard deviation from
optimal), and users checking for partial results (2% overhead).

I. INTRODUCTION

File system metadata services in HPC and large-scale data
centers have scalability problems because common tasks, like
checkpointing [1] or scanning the file system [2], contend for
the same directories and inodes. Applications perform better
with dedicated metadata servers [3], [4] but provisioning a
metadata server for every client1 is unreasonable. This problem
is exacerbated by current hardware and software trends; for
example, HPC architectures are transitioning from complex
storage stacks with burst buffer, file system, object store, and
tape tiers to more simplified stacks with just a burst buffer
and object store [5]. These types of trends put pressure on
data access because more requests from different nodes end
up hitting the same software layers in parallel and latencies
cannot be hidden while data migrates across tiers.

To address this, developers are relaxing the consistency
and durability semantics in the file system because weaker
guarantees are sufficient for their applications. For example,
many HPC batch jobs do not need the strong consistency that
the file system provides, so BatchFS [2] and DeltaFS [6] do
more client-side processing and merge updates when the job
is done. Developers in these domains are turning to these
non-POSIX IO solutions because their applications are well-
understood (e.g., well-defined read/write phases, synchroniza-
tion only needed during certain phases, workflows describing

1In this paper, “client” is a storage client or application that interacts with
the metadata server, “administrator” is a system administrator that configures
the storage, and “end-users” interact with the file system via home directories
or runtimes.

Fig. 1: Illustration of subtrees with different semantics co-
existing in a global namespace. For performance, clients relax
consistency/durability on their subtree (e.g., HDFS) or decou-
ple the subtree and move it locally (e.g., BatchFS, RAMDisk).

computation, etc.) and because these applications wreak havoc
on file systems designed for general-purpose workloads (e.g.,
checkpoint-restart’s N:N and N:1 create patterns [1]).

One popular approach for relaxing consistency and dura-
bility is to “decouple the namespace”, where clients lock
the subtree they want exclusive access to as a way to tell
the file system that the subtree is important or may cause
resource contention in the near-future [2], [4], [6]–[8]. Then
the file system can change its internal structure to optimize
performance. For example, the file system could enter a mode
where clients with decoupled directories perform operations
locally and bulk merge their updates at completion. This
delayed merge (i.e. a form of eventual consistency) and relaxed
durability improves performance and scalability by avoiding
the costs of remote procedure calls (RPCs), synchronization,
false sharing, and serialization. While the performance benefits
of decoupling the namespace are obvious, applications that
rely on the file system’s guarantees must be deployed on an
entirely different system or re-written to coordinate strong
consistency/durability themselves.

To address this problem, we present an API and framework
that lets administrators dynamically control the consistency
and durability guarantees for subtrees in the file system
namespace. Figure 1 shows a potential setup in our proposed
system where a single global namespace has subtrees for
applications optimized with techniques from different state-of-
the-art architectures. The BatchFS and RAMDisk subtrees are
decoupled from the global namespace and have similar consis-

Fig. 2: [source] For the CephFS metadata server, create-heavy
workloads (e.g., untar) incur the highest disk, network, and
CPU utilization because of consistency/durability demands.

tency/durability behavior to those systems; the HDFS subtree
has weaker than strong consistency because it lets clients read
files opened for writing [9], which means that not all updates
are immediately seen by all clients; and the POSIX IO subtree
retains the rigidity of POSIX IO’s strong consistency. Subtrees
without policies inherit the consistency/durability semantics
of the parent and future work will examine embeddable or
inheritable policies.

Our prototype system, Cudele, achieves this by exposing
“mechanisms” that administrators combine to specify their
preferred semantics. Cudele supports 3 forms of consistency
(invisible, weak, and strong) and 3 degrees of durability
(none, local, and global) giving the administrator a wide range
of policies and optimizations that can be custom fit to an
application. We make the following contributions:

1) A framework/API for assigning consistency/durability
policies to subtrees in a global namespace; this lets
administrators navigate trade-offs of different metadata
protocols on the same storage system.

2) We show that letting different semantics co-exist in a
global namespace scales further and performs better than
systems that use one strategy.

3) A prototype that lets administrators custom fit subtrees
to applications dynamically.

The results in this paper confirm the assertions of “clean-
slate” research of decoupled namespaces; specifically that
these techniques drastically improve performance. We go a
step further by quantifying the costs of traditional file system
approaches to maintaining consistency (3.37× slowdown) and
durability (2.4× slowdown). In our prototype, we also show
the benefits of assigning subtree semantics to certain applica-
tions such as checkpoint-restart (91.7× speedup if consistency
is fully relaxed), user home directories (within a 0.03 standard
deviation from optimal), and end-users checking for partial
results (only a 2% overhead). We use Ceph as a prototyping
platform because it is used in cloud-based and data center
systems and has a presence in HPC [10].

II. POSIX IO OVERHEADS

In our examination of the overheads of POSIX IO we
benchmark and analyze CephFS, the file system that uses

Ceph’s object store (RADOS) to store its data/metadata and a
metadata server cluster to service client requests more quickly.
During this process we discovered, based on the analysis and
breakdown of costs, that durability and consistency have high
overhead but we urge the reader to keep in mind that this file
system is an implementation of one set of design decisions and
our goal here is to highlight the effect that those decisions have
on performance. At the end of each subsection we compare the
approach to “decoupled namespaces”, the technique in related
work that detaches subtrees from the global namespace to relax
consistency/durability guarantees.

We use a create-heavy workload for this study because it has
high resource utilization, as shown by the trace of compiling
the Linux kernel in a CephFS mount in Figure 2. The untar
phase, which is characterized by many creates, has the highest
resource usage (combined CPU, network, and disk) on the
metadata server because of the number of RPCs needed for
consistency and durability.

A. Durability

While durability is not specified by POSIX IO, administra-
tors expect that files they create or modify survive failures.
We define three types of durability: global, local, and none.
Global durability means that the client or server can fail at
any time and metadata will not be lost because it is “safe”
(i.e. striped or replicated across a cluster). Local durability
means that metadata can be lost if the client or server stays
down after a failure. None means that metadata is volatile and
that the system provides no guarantees when clients or servers
fail. None is different than local durability because regardless
of the type of failure, metadata will be lost when components
die in a None configuration.

CephFS Design: A journal of metadata updates that streams
into the resilient object store. Similar to LFS [11] and
WAFL [12] the metadata journal is designed to be large (on
the order of MBs) which ensures (1) sequential writes into the
object store and (2) the ability for daemons to trim redundant
or irrelevant journal entries. The journal is striped over objects
where multiple journal updates can reside on the same object.
There are two tunables, related to groups of journal events
called segments, for controlling the journal: the segment size
and the dispatch size (i.e. the number of segments that can be
dispatched at once). Unless the journal saturates memory or
CPU resources, larger values for these tunables result in better
performance.

In addition to the metadata journal, CephFS also represents
metadata in RADOS as a metadata store, where directories
and their file inodes are stored as objects. The metadata
server applies the updates in the journal to the metadata store
when the journal reaches a certain size. The metadata store
is optimized for recovery (i.e. reading) while the metadata
journal is write-optimized.

Figure 3a shows the effect of journaling with different
dispatch sizes, normalized to 1 client that creates 100K files
with journaling off (about 654 creates/sec). In this case a
dispatch size of 30 degrades performance the most because

https://github.com/michaelsevilla/cudele-popper/blob/master/experiments/baseline-compile/visualize/viz.ipynb

(a) [source] effect of journal (b) [source] interference hurts variability (c) [source] interference increases RPCs
Fig. 3: The durability and strong consistency slowdown of the existing CephFS implementation increases as the number of
clients scales. Results in (a) and (b) are normalized to 1 client that creates 100K files in isolation. (a) shows the effect
of journaling metadata updates; “segment(s)” is the number of journal segments dispatched to disk at once. (b) shows the
slowdown when another client interferes by creating files in all directories and (c) highlights the cause: when another client
interferes, capabilities are revoked and metadata servers do more work.

the metadata server is overloaded with requests and cannot
spare cycles to manage concurrent segments. Tuning and
parameter sweeps show that a dispatch size of 10 is the worst
and that larger sizes approach a dispatch size of 1; for all
future journal experiments we use a dispatch size of 40 which
is a more realistic configuration. Although the “no journal”
curve appears flat, it is actually a slowdown of about 0.3×
per concurrent client; this slowdown is a result of the peak
throughput of a single metadata server, which we found to
be about 3000 operations per second. The trade-off for better
performance is memory consumption because a larger dispatch
size uses more space for buffering.

Comparison to decoupled namespaces: For BatchFS, if
a client fails when it is writing to the local log-structured
merge tree (implemented as an SSTable [13]) then unwritten
metadata operations are lost. For DeltaFS, if the client fails
then, on restart, the computation does the work again – since
the snapshots of the namespace are never globally consistent
and there is no ground truth. On the server side, BatchFS
and DeltaFS use IndexFS [4]. IndexFS writes metadata to
SSTables, which initially reside in memory but are later
flushed to the underlying distributed file system.

B. Strong Consistency

Access to metadata in a POSIX IO-compliant file system
is strongly consistent, so reads and writes to the same inode
or directory are globally ordered. The synchronization and
serialization machinery needed to ensure that all clients see
the same state has high overhead.

CephFS Design: Capabilities keep metadata strongly con-
sistent. To reduce the number of RPCs needed for consistency,
clients can obtain capabilities for reading and writing inodes,
as well as caching reads, buffering writes, changing the file
size, and performing lazy IO. To keep track of the read caching
and write buffering capabilities, the clients and metadata
servers agree on the state of each inode using an inode cache.
If a client has the directory inode cached it can do metadata
writes (e.g., create) with a single RPC. If the client is not

caching the directory inode then it must do an extra RPC to
determine if the file exists. Unless the client immediately reads
all the inodes in the cache (i.e. ls -alR), the inode cache is
less useful for create-heavy workloads.

Figure 3b shows the slowdown of maintaining strong con-
sistency when scaling the number of clients. We plot the
slowdown of the slowest client, normalized to 1 client that
creates 100K files (about 513 creates/sec because the journal
is turned back on). For the “interference” curve, each client
creates files in private directories and at 30 seconds we launch
another process that creates files in those directories. 20
clients has an asterisk because the maximum number of clients
the metadata server can handle for this metadata-intensive
workload is actually 18; at higher client load, the metadata
server complains about laggy and unresponsive requests.

The cause for this slowdown is shown in Figure 3c. The
colors show the behavior of the client for two different runs. If
only one client is creating files in a directory (“no interference”
curve on y1 axis) then that client can lookup the existence
of new files locally before issuing a create request to the
metadata server. If another client starts creating files in the
same directory then the directory inode transitions out of read
caching and the first client must send lookup()s to the
metadata server (“interference” curve on y2 axis). These extra
requests increase the throughput of the “interference” curve on
the y1 axis because the metadata server can handle the extra
load but performance suffers.

Comparison to decoupled namespaces: Decoupled names-
paces merge batches of metadata operations into the global
namespaces when the job completes. In BatchFS, the merge
is delayed by the application using an API to switch between
asynchronous and synchronous mode. The merge itself is
explicitly managed by the application but future work looks
at more automated methodologies. In DeltaFS, snapshots of
the metadata subtrees stays on the client machines; there is
no ground truth and consistent namespaces are constructed
and resolved at application read time or when a 3rd party
system (e.g., middleware, scheduler, etc.) needs a view of

https://github.com/michaelsevilla/cudele-popper/blob/master/experiments/baseline-durability/visualize/viz.ipynb
https://github.com/michaelsevilla/cudele-popper/blob/master/experiments/baseline-creates/visualize/viz.ipynb
https://github.com/michaelsevilla/cudele-popper/blob/master/experiments/baseline-interfere/visualize/viz.ipynb

Fig. 4: Illustration of the mechanisms used by applications
to build consistency/durability semantics. Descriptions are
provided by the underlined words in Section §III-A.

the metadata. As a result, all the overheads of maintaining
consistency that we showed above are delayed until the merge
phase.

III. METHODOLOGY: GLOBAL NAMESPACE, SUBTREE
CONSISTENCY/DURABILITY

In this section we describe our API and framework that lets
administrators assign consistency and durability semantics to
subtrees in the global namespace. A mechanism is an ab-
straction and basic building block for constructing consistency
and durability guarantees. The administrator composes these
mechanisms together to construct policies. These policies are
assigned to subtrees and they dictate how the file system
should handle operations within that subtree. Below, we de-
scribe the mechanisms (which are underlined), the policies,
and the API for assigning policies to subtrees.

A. Mechanisms: Building Guarantees

Figure 4 shows the mechanisms (labeled arrows) in Cudele
and which daemon(s) they are performed by. Decoupled
clients use the Append Client Journal mechanism to append
metadata updates to a local, in-memory journal. Clients do
not need to check for consistency when writing events and the
metadata server blindly applies the updates because it assumes
the events were already checked for consistency. The trade-
off here is fast performance; it is a dangerous approach but
could be implemented safely if the clients or metadata server
are configured to check the validity of events before writing
them. Once the job is complete, the system calls mechanisms
to achieve the desired consistency/durability semantics. Cudele
provides a library for clients to link into and all operations are
performed by the client.

1) Mechanisms Used for Consistency: RPCs send remote
procedure calls for every metadata operation from the client
to the metadata server, assuming the request cannot be sat-
isfied by the inode cache. This mechanism is part of the
default CephFS implementation and is the strongest form of
consistency because clients see metadata updates right away.
Nonvolatile Apply replays the client’s in-memory journal into
the object store and restarts the metadata servers. When the
metadata servers re-initialize, they notice new journal updates
in the object store and replay the events onto their in-memory
metadata stores. Volatile Apply takes the client’s in-memory

C →
D ↓ invisible weak strong
none append client journal append client journal RPCs

+volatile apply
local append client journal append client journal RPCs

+local persist +local persist +local
+volatile apply persist

global append client journal append client journal RPCs
+global persist +global persist +stream

+volatile apply

TABLE I: Users can explore the consistency (C) and durability
(D) spectrum by composing Cudele mechanisms.

journal on the client and applies the updates directly to the in-
memory metadata store maintained by the metadata servers.
We say volatile because – in exchange for peak performance
– Cudele makes no consistency or durability guarantees while
Volatile Apply is executing. If a concurrent update from a
client occurs there is no rule for resolving conflicts and if
the client or metadata server crashes there may be no way to
recover.

The biggest difference between Volatile Apply and Non-
volatile Apply is the medium they use to communicate.
Volatile Apply applies updates directly to the metadata servers’
metadata store while Nonvolatile Apply uses the object store
to communicate the journal of updates from the client to the
metadata servers. Nonvolatile Apply is safer but has a large
performance overhead because objects in the metadata store
need to be read from and written back to the object store.

2) Mechanisms Used for Durability: Stream, the default
setting in CephFS, saves a journal of metadata updates in the
object store. Using existing configuration settings we can turn
Stream on and off. For Local Persist, clients write serialized
log events to a file on local disk and for Global Persist, clients
push the journal into the object store. The overheads for both
Local Persist and Global Persist is the write bandwidth of
the local disk and object store, respectively. These persist
mechanisms are part of the library that links into the client.

B. Defining Policies in Cudele

The spectrum of consistency and durability guarantees that
administrators can construct is shown in Table I. The columns
are the different consistency semantics and the rows cover the
spectrum of durability guarantees. For consistency: “invisible”
means the system does not handle merging updates into
a global namespace and it is assumed that middleware or
the application manages consistency lazily; “weak” merges
updates at some time in the future (e.g., when the system has
time, when the number of updates reaches a certain threshold,
when the client is done writing, etc.); and updates in “strong”
consistency are seen immediately by all clients. For durability,
“none” means that updates are volatile and will be lost on
a failure. Stronger guarantees are made with “local”, which
means updates will be retained if the client node recovers and
reads the updates from local storage, and “global”, where all
updates are always recoverable.

Existing, state-of-the-art systems in HPC can be represented
by the cells in Table I. POSIX IO-compliant systems like
CephFS and IndexFS have global consistency and durability2;
DeltaFS uses “invisible” consistency and “local” durability
and BatchFS uses “weak” consistency and “local” durability.
These systems have other features that could push them into
different semantics but we assign labels here based on the
points emphasized in the papers. To compose the mechanisms
administrators inject which mechanisms to run and which to
use in parallel using a domain specific language. Although
we can achieve all permutations of the different guarantees
in Table I, not all of them make sense. For example, it
makes little sense to do append client journal+RPCs
since both mechanisms do the same thing or stream+local
persist since “global” durability is stronger and has more
overhead than “local” durability. The cost of each mecha-
nism and the semantics described above are quantified in
Sections §V-A.

In our prototype, the consistency and durability properties
in Table I are not guaranteed until all mechanisms in the
cell are complete. The compositions should be considered
atomic and there are no guarantees while transitioning between
policies. For example, updates are not deemed to have “global”
durability until they are safely saved in the object store. If
a failure occurs during Global Persist or if we inject a new
policy that changes a subtree from Local Persist to Global
Persist, Cudele makes no guarantee until the mechanisms are
complete. Despite this, production systems that use Cudele
should state up-front what the transition guarantees are for
subtrees. This is not a limitation of our approach; it just lead
to the simplest implementation.

C. Cudele Namespace API

Users control consistency and durability for subtrees by
contacting a daemon in the system called a monitor, which
manages cluster state changes. Users present a directory
path and a policies configuration that gets distributed and
versioned by the monitor to all daemons in the system.
For example, (msevilla/mydir, policies.yml) would decouple
the path “msevilla/mydir” and would apply the policies in
“policies.yml”.

The policies file supports the following parameters (default
values are in parenthesis): which consistency model to use
(RPCs), which durability model to use (stream), number of
inodes to provision to the decoupled namespace (100), and
which interfere policy to use, i.e. how to handle a request
from another client targeted at this subtree (allow). The
“Consistency” and “Durability” parameters are compositions
of mechanisms; they can be serialized (+) or run in parallel
(||). “Allocated Inodes” is a way for the application to specify
how many files it intends to create. It is a contract so that the
file system can provision enough resources for the incumbent
merge and so it can give valid inodes to other clients. The
inodes can be used anywhere within the decoupled namespace

2 IndexFS also has bulk merge which is a form of “weak consistency”

(i.e. at any depth in the subtree). “Interfere Policy” has two
settings: block and allow. For block, any requests to this
part of the namespace returns with “Device is busy”, which
will spare the metadata server from wasting resources for
updates that may get overwritten. If the application does not
mind losing updates, for example it wants approximations for
results that take too long to compute, it can select allow.
In this case, metadata from the interfering client will be
written and the computation from the decoupled namespace
will take priority at merge time because the results are more
accurate. Given these default values decoupling the namespace
with an empty policies file would give the application 100
inodes but the subtree would behave like the existing CephFS
implementation.

IV. IMPLEMENTATION

We use a programmable storage approach [14] to design
Cudele; namely, we try to leverage components inside CephFS
to inherit the robustness and correctness of the internal sub-
systems. Using this “dirty-slate” approach, we only had to
implement 4 of the 6 mechanisms from Figure 4 and just 1
required changes to the underlying storage system itself. In
this section, we first describe a CephFS internal subsystem or
component and then we show how we use it in Cudele.

A. Metadata Store

In CephFS, the metadata store is a data structure that
represents the file system namespace. This data structure is
stored in two places: in memory (i.e. in the collective memory
of the metadata server cluster) and as objects in the object
store. In the object store, directories and their inodes are stored
together in objects to improve the performance of scans. The
metadata store data structure is structured as a tree of directory
fragments making it easier to read and traverse. In Cudele,
the RPCs mechanism uses the in-memory metadata store to
service requests. Using code designed for recovery, Volatile
Apply and Nonvolatile Apply replay updates onto the metadata
store in memory and in the object store, respectively.

B. Journal Format and Journal Tool

The journal is the second way that CephFS represents the
file system namespace; it is a log of metadata updates that can
materialize the namespace when the updates are replayed onto
the metadata store. The journal is a “pile system”; writes are
fast but reads are slow because state must be reconstructed.
Specifically, reads are slow because there is more state to read,
it is unorganized, and many of the updates may be redundant.
In Cudele, the journal format is used by Stream, Append
Client Journal, Local Persist, and Global Persist. Stream is
the default implementation for achieving global durability in
CephFS but the rest of the mechanisms are implemented by
writing with the journal format. By writing with the same
format, the metadata servers can read and use the recovery
code to materialize the updates from a client’s decoupled
namespace (i.e. merge). These implementations required no
changes to CephFS because the metadata servers know how to

read the events the library is writing. By re-using the journal
subsystem to implement the namespace decoupling, Cudele
leverages the write/read optimized data structures, the formats
for persisting events (similar to TableFS’s SSTables [13]), and
the functions for replaying events onto the internal namespace
data structures.

The journal tool is used for disaster recovery and lets
administrators view and modify the journal. It can read the
journal, export the journal as a file, erase events, and apply
updates to the metadata store. To apply journal updates to the
metadata store, the journal tool reads the journal from object
store objects and replays the updates on the metadata store
in the object store. In Cudele, the external library the clients
link into is based on the journal tool. It already had functions
for importing, exporting, and modifying the updates in the
journal so we re-purposed that code to implement Append
Client Journal, Volatile Apply, and Nonvolatile Apply.

C. Inode Cache and Large Inodes

In CephFS, the inode cache reduces the number of RPCs
between clients and metadata servers. Without contention
clients can resolve metadata reads locally thus reducing the
number of operations (e.g., lookup()s). For example, if a
client or metadata server is not caching the directory inode,
all creates within that directory will result in a lookup and
a create request. If the directory inode is cached then only
the create needs to be sent. The size of the inode cache is
configurable so as not to saturate the memory on the metadata
server – inodes in CephFS are about 1400 bytes [15]. The
inode cache has code for manipulating inode numbers, such
as pre-allocating inodes to clients. In Cudele, Nonvolatile
Apply uses the internal inode cache code to allocate inodes
to clients that decouple parts of the namespace and to skip
inodes used by the client at merge time.

In CephFS, inodes already store policies, like how the file
is striped across the object store or for managing subtrees for
load balancing. These policies adhere to logical partitionings
of metadata or data, like Ceph pools and file system namespace
subtrees. To implement this, the namespace data structure has
the ability to recursively apply policies to subtrees and to iso-
late subtrees from each other. In Cudele, the large inodes also
store consistency and durability policies. This approach uses
the File Type interface from the Malacology programmable
storage system [14] and it tells clients how to access the
underlying metadata. The underlying implementation stores
executable code in the inode that calls the different Cudele
mechanisms. Of course, there are many security and access
control aspects of this approach but that is beyond the scope
of this paper.

V. EVALUATION

Cudele lets administrators construct consistency/durability
guarantees using well-established research techniques from
other systems; so instead of evaluating the scalability and
performance of the techniques themselves against other file
systems, we show that (1) the mechanisms we propose are

Fig. 5: [source] Overhead of processing 100K create events
for each mechanism in Figure 4, normalized to the runtime
of writing events to client memory. The far right graph shows
the overhead of building semantics of real world systems.

useful for constructing semantics used by real systems and (2)
the techniques can work side-by-side in the same namespace
for common use cases.

We graph standard deviations for three runs (sometimes
error bars are too small to see) and normalize results to
make our results more generally applicable to different hard-
ware. We use a CloudLab cluster of 34 nodes connected
with 10Gbit ethernet, each with 16 2.4 GHz CPUs, 128GB
RAM, and 400GB SSDs. Each node uses Ubuntu 14.04 and
we develop on Ceph’s Jewel release, version 10.2.1, which
was released in May 2016. We use 1 monitor daemon, 3
object storage daemons, 1 metadata server daemon, and up
to 20 clients. We scope the evaluation to one metadata server
and scale the number of parallel clients each doing 100K
operations because 100K is the maximum recommended size
of a directory in CephFS. We scale to 20 clients because,
as shown in Section §II, 20 clients is enough to saturate the
resources of a single metadata server. This type of analysis
shows the capacity and performance of a metadata server with
superior metadata protocols, which should be used to inform
metadata distribution across a cluster. Load balancing across
a cluster of metadata servers with partitioning and replication
can be explored with something like Mantle [3]. To make
our results reproducible, this paper adheres to The Popper
Convention [16] so experiments can be examined in more
detail, or even re-run, by visiting the [source] link next
to each figure. The source code for Cudele is available on a
branch [17] of our Ceph fork.

A. Microbenchmarks

We measure the overhead of each Cudele mechanism by
having 1 client create 100K files in a directory for various
subtree configurations. Figure 5 shows the time that it takes
each Cudele mechanism to process all metadata events. Results
are normalized to the time it takes to write updates to the
client’s in-memory journal (i.e. the Append Client Journal

https://github.com/michaelsevilla/cudele-popper/blob/master/experiments/cudele-mechanisms/visualize/viz.ipynb

mechanism), which is about 11K creates/sec. The first graph
groups the consistency mechanisms, the second groups the
durability mechanisms, and the third has compositions repre-
senting real-world systems.

Poorly Scaling Data Structures: Despite doing the same
amount of work, mechanisms that rely on poorly scaling data
structures have large slowdowns. For example, RPCs has a
17.9× slowdown because this technique relies on internal
directory data structures, which is a well-known problem [4].
Other mechanisms that write events to a journal experience a
much less drastic slowdown because the journal data structure
does not need to be scanned for every operation. Events are
written to the end of the journal without even checking the
validity (e.g., if the file already exists for a create), which is
another form of relaxed consistency because the file system
assumes the application has resolved conflicting updates in a
different way.

Overhead of Consistency: RPCs is 19.9× slower than
Volatile Apply because sending individual metadata updates
over the network is costly. While RPCs sends a request for ev-
ery file create, Volatile Apply writes directly to the in-memory
data structures in the metadata server. While communicating
the decoupled namespace directly to the metadata server with
Volatile Apply is faster, communicating through the object
store with Nonvolatile Apply is 78× slower. Nonvolatile Apply
was not implemented as part of Cudele – it was a debugging
and recovery tool packaged with CephFS. It works by iterating
over the updates in the journal and pulling all objects that may
be affected by the update. This means that two objects are
repeatedly pulled, updated, and pushed: the object that houses
the experiment directory and the object that contains the root
directory (i.e. /). Nonvolatile Apply (78×) and composing
Volatile Apply + Global Persist (1.3×) end up with the same
final metadata state but using Nonvolatile Apply is clearly
inferior.

Parallelism of the Object Store: Stream, which is an ap-
proximation (journal on minus journal off), has the highest
slowdown at 2.4× because the overhead of maintaining and
streaming the journal is incurred by the metadata server.
Comparing Local and Global Persist demonstrates the band-
width advantages of storing the journal in a distributed object
store. The Global Persist performance is only 0.2× slower
than Local Persist because Global Persist is leveraging the
collective bandwidth of the disks in the cluster. This benefit
comes from the object store itself but should be acknowledged
when making decisions for the application; the bandwidth of
the object store can help mitigate the overheads of globally
persisting metadata updates. The storage per journal update is
about 2.5KB. So the storage footprint scales linearly with the
number of metadata creates and suggests that updates for a
million updates in a single journal would be 2.38GB

Composing Mechanisms: The graph on the right of Figure 5
shows how applications can compose mechanisms together to
get the consistency/durability guarantees they need in a global
namespace. We label the x-axis with systems that employ these
semantics, as described in Figure 1. We make no guarantees

during execution of the mechanisms or when transitioning
semantics – the semantics are guaranteed once the mechanism
completes. So if servers fail during a mechanism, metadata
or data may be lost. This graph shows how we can build
application-specific subtrees by composing mechanisms and
the performance of coupling well-established techniques to
specific applications over the same file system.

B. Use Cases

Next we present three uses cases: creates in the same direc-
tory, interfering clients, and read while writing. For each use
case, we provide motivation from HPC and cloud workloads;
specifically, we look at users using the file system in parallel to
run large-scale experiments in HPC and parallel runtimes that
use the file system, such as Hadoop and Spark. The synthetic
benchmarks model scenarios where these workloads co-exist
in a global namespace and we provide insight into how the
workload benefits from Cudele.

1) Creates in the Same Directory: We start with clients
creating files in private directories because this workload is
heavily studied in HPC [2]–[4], [18], [19], mostly due to
checkpoint-restart [1]. A more familiar example is uncom-
pressing an archive (e.g., tar xzf), where the file system
services a flash crowd of creates across all directories as
shown in Figure 2. But the workload also appears in cloud
workloads: Hadoop/Spark use the file system to assign work
units to workers and the performance is proportional to the
open/create throughput of the underlying file system [20]–[22];
Big Data Benchmark jobs examined in [23] have on the order
of 15,000 file opens or creates just to start a single Spark
query and the Lustre system they tested on did not handle
creates well, showing up to a 24× slowdown compared to
other metadata operations. Common approaches to solve these
types of bottlenecks is to change the application behavior or to
design a new file system, like BatchFS or DeltaFS, that uses
one set of metadata optimizations for the entire namespace.

Cudele setup: accommodate these workloads in the global
namespace by configuring three subtrees with the following
semantics: one with strong consistency and global durability
(RPCs), one with invisible consistency and local durability
(decoupled: create), and one with weak consistency and local
durability (decoupled: create + merge).

In Figure 6a we scale the number of clients each doing 100K
file creates in their own directories. Results are normalized
to 1 client that creates 100K files using RPCs (about 549
creates/sec). As opposed to earlier graphs in Section §II that
plotted the throughput of the slowest client, Figure 6a plots
the throughput of the total job (i.e. from the perspective of
the metadata server). Plotting this way is easier to understand
because of how we normalize but the speedups over the RPC
approach are the same, whether we look at the slowest client
or not.

When the metadata server is operating at peak efficiency at
20 clients, the performance of the “RPCs” and “decoupled:
merge + create” subtrees is bottlenecked by the metadata

(a) [source] parallel creates on clients (b) [source] block interference (c) [source] syncing to global namespace
Fig. 6: Cudele performance. (a) shows the speedup of decoupled namespaces over RPCs; create is the throughput of clients
creating files in-parallel and writing updates locally; create+merge includes the time to merge updates at the metadata
server. Decoupled namespaces scale better than RPCs because there are less messages and consistency/durability code paths
are bypassed. (b) shows how the allow/block API isolates directories from interfering clients. (c) is the slowdown of a single
client syncing updates to the global namespace. The inflection point is the trade-off of frequent updates vs. larger journal files.

server processing power, so the curves flatten out at a slow-
down of 4.5× and 15×, respectively. On the other hand, the
“decoupled: create” subtree performance scales linearly with
the number of concurrent clients because clients operate in
parallel and write updates locally. At 20 clients, we observe a
91.7× speedup for “decoupled: create” over RPCs.

“Decoupled: merge + create” outperforms “RPCs” by 3.37×
because “decoupled: merge + create” uses a relaxed form of
consistency and leverages bulk updates just like DeltaFS [6].
Decoupled namespaces (1) place no restrictions on the validity
of metadata inserted into the journal (e.g., never checking for
the existence of files before creating files), (2) avoid touching
poorly scaling data structures, and (3) allow clients to batch
events into bulk updates. Had we implemented the client
to send updates one at a time and to include lookup()
commands before open() requests, we would have seen
performance closer to the “RPC” subtree. The “decoupled:
merge + create” curve is also pessimistic because it models a
scenario in which all client journals arrive at the same time. So
for the 20 clients data point, we are measuring the operations
per second for 20 client journals that land on the metadata
server at the same time. Had we added infrastructure to overlay
journal arrivals or time client sync intervals, we could have
scaled more closely to “decoupled: create”.

2) Interfering Clients: Next we show how Cudele can
be programmed to block interfering clients, which lets ap-
plications control isolation to get better and more reliable
performance. Clients create 100K files in their own directories
while another client interferes by creating 1000 files in each
directory. The workload introduces false sharing and the
metadata server revokes capabilities on directories touched by
the interfering client. While HPC tries to avoid these situations
with workflows [2], [6], it still happens in distributed file
systems when users unintentionally access directories in a
shared file system. In the cloud, Spark and Hadoop stacks
use HDFS, which lets clients ignore this type of consistency
completely by letting interfering clients read files opened for
writing [9].

Cudele setup: enable global durability with Stream and
strong consistency with RPCs to mirror the setup from the
problem presented in Figure 3b. We configure one subtree
with an interfere policy of “allow” and another subtree with
“block” so -EBUSY is returned to interfering clients. The
former is the default behavior in file systems and the latter
isolates performance from interfering clients.

Figure 6b plots the overhead of the slowest client, normal-
ized to 1 client that creates 100K files in isolation (about
513 creates/sec). “Interference” and “no interference” is the
performance with and without an interfering client touching
files in every directory, respectively. The goal is to explicitly
isolate clients so that performance is similar to the “no interfer-
ence” curve, which has lower slowdowns (on average, 1.42×
per client compared to 1.67× per client for “interference”)
and less variability (on average, a standard deviation of 0.06
compared to 0.44 for “interference”). “Block interference”
uses the Cudele API to block interfering clients and the
slowdown (1.34× per client) and variability (0.09) look very
similar to “no interference” for a larger number of clients. For
smaller clusters the overhead to reject requests is more evident
when the metadata server is underloaded so the slowdowns
are similar to “interference”. We conclude that administrators
can block interfering clients to get the same performance as
isolated scenarios but there is a non-negligible overhead for
rejecting requests when the metadata server is not operating
at peak efficiency.

3) Read while Writing: The final use case shows how the
API gives administrators fine-grained control of the consis-
tency semantics to support current practices and scientific
workflows in HPC. Users often leverage the file system to
check the progress of jobs using ls even though this operation
is notoriously heavy-weight [24], [25]. The number of files or
size of the files is indicative of the progress. This practice
is not too different from cloud systems that use the file
system to manage the progress of jobs; Spark/Hadoop writes
to temporary files, renames them when complete, and creates
a “DONE” file to indicate to the runtime that the task did not

https://github.com/michaelsevilla/cudele-popper/blob/master/experiments/cudele-mergescale/visualize/viz.ipynb
https://github.com/michaelsevilla/cudele-popper/blob/master/experiments/cudele-blockapi/visualize/viz.ipynb
https://github.com/michaelsevilla/cudele-popper/blob/master/experiments/cudele-partialreads/visualize/viz.ipynb

fail and should not be re-scheduled on another node. So the
browser interface lets Hadoop/Spark users check progress by
querying the file system and returning a % of job complete
metric.

Cudele setup: in this scenario, Cudele end-users will not
see the progress of decoupled namespaces since their updates
are not globally visible. To provide the performance of decou-
pled namespaces and to help end-users judge the progress of
their jobs, Cudele clients have a “namespace sync” that sends
batches of updates back to the global namespace at regular
intervals. We configure a subtree as a decoupled namespace
with invisible consistency, local durability, and partial updates
enabled.

Figure 6c shows the performance degradation of a single
client writing 1 million updates to the decoupled namespace
and pausing to send updates to the metadata server. We scale
the namespace sync interval to show the trade-off of frequently
pausing or writing large logs of updates. We use an idle core to
log the updates and to do the network transfer. The client only
pauses to fork off a background process, which is expensive
as the address space needs to be copied. The alternative is to
pause the client completely and write the update to disk but
since this implementation is limited by the speed of the disk,
we choose the memory-to-memory copy of the fork approach.

As expected, syncing namespace updates too frequently has
the highest overhead (up to 9% overhead if done every sec-
ond). The optimal sync interval for performance is 10 seconds,
which only incurs 2% overhead, because larger intervals must
write more updates to disk and network. For the 25 second
interval, the client only pauses 3-4 times but each sync writes
about 278 thousand updates at once, which is a journal of size
678MB.

VI. RELATED WORK

The bottlenecks associated with accessing POSIX IO file
system metadata are not limited to HPC workloads and the
same challenges that plagued these systems for years are find-
ing their way into the cloud. Workloads that deal with many
small files (e.g., log processing and database queries [26])
and large numbers of simultaneous clients (e.g., MapReduce
jobs [27]), are subject to the scalability of the metadata service.
The biggest challenge is that whenever a file is touched the
client must access the file’s metadata and maintaining a file
system namespace imposes small, frequent accesses on the
underlying storage system [28]. Unfortunately, scaling file
system metadata is a well-known problem and solutions for
scaling data IO do not work for metadata IO [28]–[31].

POSIX IO workloads require strong consistency and many
file systems improve performance by reducing the number
of remote calls per operation (i.e. RPC amplification). As
discussed in the previous section, caching with leases and
replication are popular approaches to reducing the overheads
of path traversals but their performance is subject to cache
locality and the amount of available resources, respectively; for
random workloads larger than the cache extra RPCs hurt per-
formance [4], [18] and for write heavy workloads with more

resources the RPCs for invalidations are harmful. Another
approach to reducing RPCs is to use leases or capabilities.

High performance computing has unique requirements for
file systems (e.g., fast creates) and well-defined workloads
(e.g., workflows) that make relaxing POSIX IO sensible.
BatchFS assumes the application coordinates accesses to the
namespace, so the clients can batch local operations and merge
with a global namespace image lazily. Similarly, DeltaFS elim-
inates RPC traffic using subtree snapshots for non-conflicting
workloads and middleware for conflicting workloads. MarFS
gives users the ability to lock “project directories” and allocate
GPFS clusters for demanding metadata workloads. TwoTiers
eliminates high-latencies by storing metadata in a flash tier;
applications lock the namespace so that metadata can be ac-
cessed more quickly. Unfortunately, decoupling the namespace
has costs: (1) merging metadata state back into the global
namespace is slow; (2) failures are local to the failing node;
and (3) the systems are not backwards compatible.

For (1), state-of-the-art systems manage consistency in non-
traditional ways: IndexFS maintains the global namespace
but blocks operations from other clients until the first client
drops the lease, BatchFS does operations on a snapshot of the
namespace and merges batches of operations into the global
namespace, and DeltaFS never merges back into the global
namespace. The merging for BatchFS is done by an auxiliary
metadata server running on the client and conflicts are resolved
by the application. Although DeltaFS never explicitly merges,
applications needing some degree of ground truth can either
manage consistency themselves on a read or add a bolt-on
service to manage the consistency. For (2), if the client fails
and stays down, all metadata operations on the decoupled
namespace are lost. If the client recovers, the on-disk struc-
tures (for BatchFS and DeltaFS this is the SSTables used in
TableFS) can be recovered. In other words, the clients have
state that cannot be recovered if the node stays failed and any
progress will be lost. This scenario is a disaster for checkpoint-
restart where missed cycles may cause the checkpoint to bleed
over into computation time. For (3), decoupled namespace
approaches sacrifice POSIX IO going as far as requiring the
application to link against the systems they want to talk to.
In today’s world of software defined caching, this can be a
problem for large data centers with many types and tiers of
storage. Despite well-known performance problems POSIX IO
and REST are the dominant APIs for data transfer.

VII. CONCLUSION AND FUTURE WORK

Relaxing consistency/durability semantics in file systems
is a double-edged sword. While the technique performs and
scales better, it alienates applications that rely on strong
consistency and durability. Cudele lets administrators assign
consistency/durability guarantees to subtrees in the global
namespace, resulting in custom fit semantics for applications.
We show how applications can co-exist and perform well in
a global namespace and our prototype enables studies that
adjust these semantics over time and space, where subtrees
can change without ever moving the data they reference.

Cudele prompts many avenues for future work. First is to
co-locate HPC workflows with real highly parallel runtimes
from the cloud in the same namespace. This setup would
show how Cudele reasonably incorporates both programming
models (client-driven parallelism and user-defined workflows)
at the same time and should show large performance gains.
Second is dynamically changing semantics of a subtree from
stronger to weaker guarantees (or vice versa). This reduces
data movement across storage cluster and file system bound-
aries so the results of a Hadoop job do not need to be migrated
into CephFS for other processing; instead the administrator
can change the semantics of the HDFS subtree into a CephFS
subtree, which may cause metadata/data movement to ensure
strong consistency. Third is embeddable policies, where child
subtrees have specialized features but still maintain guarantees
of their parent subtrees. For example, a RAMDisk subtree is
POSIX IO-compliant but relaxes durability constraints, so it
can reside under a POSIX IO subtree alongside a globally
durable subtree.

REFERENCES

[1] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate, “PLFS: a checkpoint filesystem for parallel
applications,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09.

[2] Q. Zheng, K. Ren, and G. Gibson, “BatchFS: Scaling the File System
Control Plane with Client-funded Metadata Servers,” in Proceedings of
the Workshop on Parallel Data Storage, ser. PDSW ’14.

[3] M. A. Sevilla, N. Watkins, C. Maltzahn, I. Nassi, S. A. Brandt,
S. A. Weil, G. Farnum, and S. Fineberg, “Mantle: A Programmable
Metadata Load Balancer for the Ceph File System,” in Proceedings of
the Conference on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’15.

[4] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “IndexFS: Scaling File Sys-
tem Metadata Performance with Stateless Caching and Bulk Insertion,”
in Proceedings of the Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’14, 2014.

[5] J. Bent, B. Settlemyer, and G. Grider, “Serving Data to the Lunatic
Fringe.”

[6] Q. Zheng, K. Ren, G. Gibson, B. W. Settlemyer, and G. Grider,
“DeltaFS: Exascale File Systems Scale Better Without Dedicated
Servers,” in Proceedings of the Workshop on Parallel Data Storage,
ser. PDSW ’15, 2015.

[7] G. Grider, D. Montoya, H.-b. Chen, B. Kettering, J. Inman, C. De-
Jager, A. Torrez, K. Lamb, C. Hoffman, D. Bonnie, R. Croonenberg,
M. Broomfield, S. Leffler, P. Fields, J. Kuehn, and J. Bent, “MarFS - A
Scalable Near-Posix Metadata File System with Cloud Based Object
Backend,” in Work-in-Progress at Proceedings of the Workshop on
Parallel Data Storage, ser. PDSW’15, November 2015.

[8] S. Faibish, J. Bent, U. Gupta, D. Ting, and P. Tzelnic, “Slides: 2 tier
storage architecture.” [Online]. Available: http://www.pdl.cmu.edu/SDI/
2015/slides/Faibish-CMU-PDL-Spring-2015-final.pdf

[9] J. D. Kamal Hakimzadeh, Hooman Peiro Sajjad, “Scaling HDFS with
a Strongly Consistent Relational Model for Metadata,” in Proceedings
of the International Conference on Distributed Applications and Inter-
operable Systems, ser. DAIS ’14.

[10] F. Wang, M. Nelson, S. Oral, S. Atchley, S. Weil, B. W. Settlemyer,
B. Caldwell, and J. Hill, “Performance and Scalability Evaluation of the
Ceph Parallel File System,” in Proceedings of the Workshop on Parallel
Data Storage Workshop, ser. PDSW ’13.

[11] M. Rosenblum and J. Ousterhout, “The Design and Implementation
of a Log-Structured File System,” in ACM Transactions on Computer
Systems, ’92.

[12] D. Hitz, J. Lau, and M. Malcolm, “File system design for an nfs file
server appliance,” in Proceedings of the USENIX Technical Conference,
ser. WTEC ’94.

[13] K. Ren and G. Gibson, “TABLEFS: Enhancing Metadata Efficiency in
the Local File System,” in Proceedings of the USENIX Annual Technical
Conference, ser. ATC ’13, 2013.

[14] M. A. Sevilla, N. Watkins, I. Jimenez, P. Alvaro, S. Finkelstein,
J. LeFevre, and C. Maltzahn, “Malacology: A Programmable Storage
System,” in Proceedings of the European Conference on Computer
Systems, ser. Eurosys ’17, Belgrade, Serbia.

[15] “Ceph Documentation,” http://docs.ceph.com/docs/jewel/dev/mds
internals/data-structures/, December 2017.

[16] I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, J. Lofstead, K. Mohror,
R. Arpaci-Dusseau, and A. Arpaci-Dusseau, “Popper: Making Repro-
ducible Systems Performance Evaluation Practical,” UC Santa Cruz,
Technical Report UCSC-SOE-16-10, May 2016.

[17] “Cudele Source Code,” https://github.com/michaelsevilla/ceph/tree/
cudele, December 2017.

[18] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dynamic
Metadata Management for Petabyte-Scale File Systems,” in Proceedings
of the Conference on High Performance Computing Networking, Storage
and Analysis, ser. SC ’04.

[19] S. V. Patil and G. A. Gibson, “Scale and Concurrency of GIGA+:
File System Directories with Millions of Files,” in Proceedings of the
Conference on File and Storage Technologies, ser. FAST ’11.

[20] L. Xiao, K. Ren, Q. Zheng, and G. A. Gibson, “ShardFS vs. IndexFS:
Replication vs. Caching Strategies for Distributed Metadata Manage-
ment in Cloud Storage Systems,” in Proceedings of the Symposium on
Cloud Computing, ser. SoCC ’15.

[21] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and
F. Özcan, “Clash of the Titans: MapReduce vs. Spark for Large Scale
Data Analytics,” Proceedings of the VLDB Endowment.

[22] K. o. V. Shvachko, “HDFS Scalability: The Limits to Growth.”
[23] N. Chaimov, A. Malony, S. Canon, C. Iancu, K. Z. Ibrahim, and

J. Srinivasan, “Scaling Spark on HPC Systems,” in Proceedings of
the 25th International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’16.

[24] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and T. Ludwig,
“Small-file Access in Parallel File Systems,” in Proceedings of the
Symposium on Parallel and Distributed Processing, ser. IPDPS ’09.

[25] M. Eshel, R. Haskin, D. Hildebrand, M. Naik, F. Schmuck, and
R. Tewari, “Panache: A Parallel File System Cache for Global File
Access,” in Proceedings of the Conference on File and Storage Tech-
nologies, ser. FAST ’10.

[26] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma,
R. Murthy, and H. Liu, “Data Warehousing and Analytics Infrastructure
at Facebook,” in Proceedings of the SIGMOD International Conference
on Management of Data, ser. SIGMOD ’10.

[27] K. McKusick and S. Quinlan, “GFS: Evolution on Fast-forward,”
Commununications ACM, vol. 53, no. 3, pp. 42–49, Mar. 2010.

[28] D. Roselli, J. R. Lorch, and T. E. Anderson, “A Comparison of File
System Workloads,” in Proceedings of the USENIX Annual Technical
Conference, ser. ATC ’00.

[29] C. L. Abad, H. Luu, N. Roberts, K. Lee, Y. Lu, and R. H. Campbell,
“Metadata Traces and Workload Models for Evaluating Big Storage
Systems,” in Proceedings of the International Conference on Utility and
Cloud Computing, ser. UCC ’12.

[30] S. R. Alam, H. N. El-Harake, K. Howard, N. Stringfellow, and F. Verzel-
loni, “Parallel I/O and the Metadata Wall,” in Proceedings of the
Workshop on Parallel Data Storage, ser. PDSW ’11.

[31] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A Scalable, High-Performance Distributed File System,” in
Proceedings of the Symposium on Operating Systems Design and
Implementation, ser. OSDI ’06.

http://www.pdl.cmu.edu/SDI/2015/slides/Faibish-CMU-PDL-Spring-2015-final.pdf
http://www.pdl.cmu.edu/SDI/2015/slides/Faibish-CMU-PDL-Spring-2015-final.pdf
http://docs.ceph.com/docs/jewel/dev/mds_internals/data-structures/
http://docs.ceph.com/docs/jewel/dev/mds_internals/data-structures/
https://github.com/michaelsevilla/ceph/tree/cudele
https://github.com/michaelsevilla/ceph/tree/cudele

	Introduction
	POSIX IO Overheads
	Durability
	Strong Consistency

	Methodology: Global Namespace, Subtree Consistency/Durability
	Mechanisms: Building Guarantees
	Mechanisms Used for Consistency
	Mechanisms Used for Durability

	Defining Policies in Cudele
	Cudele Namespace API

	Implementation
	Metadata Store
	Journal Format and Journal Tool
	Inode Cache and Large Inodes

	Evaluation
	Microbenchmarks
	Use Cases
	Creates in the Same Directory
	Interfering Clients
	Read while Writing

	Related Work
	Conclusion and Future Work
	References

