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Abstract

A fundamental aspect of relational data, such as data from social network along

with the attributes of its constituent actors, is the possibility of dependence between

network and the attributes over time. This article proposes a time varying stochastic

framework that jointly models co-evolution of the network and the attributes over

time. To be more specific, we propose time varying stochastic latent factor models

with shared latent parameters in modeling the network and the actor attributes. Our

model derives multiple advantages over the existing literature. Unlike the popular co-

evolution models, the proposed framework is flexible enough to allow dynamic actor

attributes to be measured in both ordinal and continuous scale. It specifically provides

model based assessment of the set of predictors jointly influencing relation between

nodes. Additionally, the model is easy to compute and readily yields inference and

prediction for missing link between nodes. We employ our model framework to study

co-evolution of international relations between 22 countries and the country specific

indicators over a period of 11 years.

Keywords: latent factor model, nodal attribute, ROC curve, social network, spike and slab

prior, systemic dimensions.
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1 Introduction

Understanding the coevolution of relational and nodal attributes is a common problem in

fields as diverse as public health (Christakis and Fowler, 2007; Fowler and Christakis, 2008),

finance (Kalyagin et al., 2014) and genomics (Butland et al., 2005). In these types of ap-

plications, data consists of two parts: a time series of dyadic relationship among a common

set of actors, which is encoded in a sociomatrix Y (t) = {yi,j(t) : i, j = 1, .., n; t ∈ N},

and a collection of time series of attributes associated with the actors Z(t) = {zi,k(t) : i =

1, . . . , n; k = 1, . . . , p}, where p is the number of attributes and n is the number of actors in

the network.

Broadly speaking, the literature approaches the study of the association between nodal

and network attributes through two different approaches. One of these approaches focuses

on modeling the structure of the network conditional of the nodal attributes. The goal in this

case is to understand how social relationships are formed based on attributes of individuals, a

process known as “selection”. The other approach consists of models of the nodal attributes

and their association conditional on the network structure. These models are employed to

understand how relationships affect attributes of the individuals in a network, a process

referred to as “influence” or “contagion”.

Typically, models of selection are built by regressing yij(t) on node- or dyad-specific

regressors using Exponential Random Graph Models (ERGMs) (Holland and Leinhardt,

1981; Robins et al., 2007) or mixed-effects generalized linear models (Wasserman and An-

derson, 1987; Holland et al., 1983; Hoff et al., 2002; Hoff, 2005). ERGMs, also known as

p∗ models, express the conditional density proportional to an exponential function of a few

summary statistics of the network and function of nodal covariates. Though naturally ap-

pealing, ERGMs are computationally expensive and weak at capturing local features of a

network resulting in less than satisfactory performances in many real world problems (Sni-

jders, 2002; Handcock et al., 2003). Alternatively, latent variable models regress the network

(or a function of it) on covariates and/or unobserved latent variables. These models are
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computationally efficient and useful in modeling transitivity and homophily. On the other

hand, models of contagion are usually constructed by regressing nodal attributes against

those of other nodes in their network (for example, see Christakis and Fowler, 2007; Fowler

and Christakis, 2008; Shoham et al., 2015 and references therein). Common methodologi-

cal approaches include simultaneous autoregressive (SAR) models (e.g., see Lin, 2010) and

threshold models (e.g., see Watts and Dodds, 2009).

Determining whether selection or contagion are at play (i.e., the direction of the causal

relationship) is typically a difficult problem (Doreian, 2001). Instead, we focus on jointly

modeling the co-evolution of network and nodal attributes through shared latent variables.

The goal of our model is twofold. First, we are interested in developing tests of association

between structural features of the network and individual nodal attributes. In particular,

although our approach does not allow us to distinguish between contagion and selection,

it does allow us to carry out tests of independence between the network and the nodal

attributes. Second, we are interested in developing predictive models that can be used

to jointly predict both future links and future nodal attributes. Joint models of network

and nodal attributes have started to receive increasing attention over the last few years.

In a static setting, Fosdick and Hoff (2015) recently proposed an extension of the bilinear

model of Hoff (2005) in which the nodal attributes and the latent factors used to explain

transitivity in the network are jointly modeled using a multivariate normal distribution. In

their model, testing for association between the network and nodal attributes reduces to

testing whether the cross-covariance matrix between latent factors and the nodal attributes

is the null matrix using a likelihood ratio test. On the other hand, Durante et al. (2017)

proposes joint modeling of a binary/categorical response and a network using latent variable

tensor factorization of the joint probability model. This framework finds its application

in clustering networks into multiple groups and thus has a different focus than ours. In a

dynamic setting, De la Haye et al. (2010) proposed time varying joint models for network and

attributes when the attributes are binary or categorical, while Niezink and Snijders (2016)
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extend the framework to accommodate continuous nodal attributes. In both cases inference

is carried out using the method of moments implemented using a Robbins-Monro stochastic

approximation algorithm.

In this paper we propose a fully Bayesian approach to inference, testing and prediction

for co-evolving networks and nodal attributes. The development of this model is motivated

by the study of the relationship between international relationships and country-specific

economic performance. Our approach is related to, but distinct from, the one presented

in Fosdick and Hoff (2015). In addition to accommodating both discrete and continuous

attributes and considering the more general case of time series data, our approach uses a

common set of latent factors to explain network transitivity and covariation among attributes

and network structure, and provides a fully Bayesian test of association that can be used

to study individual nodal attributes. When the nodal attributes are assumed to follow

conditional Gaussian distribution, our model can be interpreted as a dynamic version of the

model presented in Fosdick and Hoff (2015), but with a structured (and more parsimonious)

prior on the covariance matrix between the latent traits and the nodal attributes. When

the attributes are non-Gaussian, modeling through shared latent traits allows us to include

them in the model in a straightforward fashion, something that the formulation in Fosdick

and Hoff (2015) does not permit. Shared latent factors have been recently employed, among

others, by Rodŕıguez and Moser (2015) to jointly model voting outcomes and abstentions in

roll-call data in the U.S. Congress. Our approach captures the dynamics of the system using

autoregressive priors for the shared latent parameters, in an approach reminiscent to Sarkar

and Moore (2006), Durante and Dunson (2014) and Sewell and Chen (2015). We refer to

our proposed joint modeling framework as Joint Latent Factor Model (JLAFAC).

The remainder of the article flows as follows. Section 2 describes the joint modeling

framework with latent factors and highlights some features of the proposed joint model. This

section details out prior distribution on the model parameters and latent factors. Section 3

explains posterior computation and explains how MCMC samples are used for link and
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attribute prediction and assessments of association between structural features of the network

and individual nodal attributes. Sections 4 and 5 demonstrate performance of the proposed

framework along with the competing models in simulation studies and in a financial trading

network data respectively. Finally, Section 6 concludes the article. Details of MCMC updates

are described in the Appendix.

2 Model formulation

2.1 A joint model for nodal attributes and networks

Assume that a group of n actors is followed over time, and let Y (t) = [yi,j(t)] denote

the n × n binary matrix capturing dyadic interactions between these actors at time t, and

Z(t) = [zi,k(t)] be the n × p matrix of continuous or discrete attributes for these actors at

time t. Although we concentrate here in binary directed relationships between actors, the

model can be easily extended to continuous and other categorical relationships, as well as

to undirected relationships (please see Section 6). The network and actor attributes are

observed at a finite number of time points t1 < t2 < · · · < tT resulting in realizations

Y (t1), . . . ,Y (tT ) of the stochastic network Y (t), and Z(t1), . . . ,Z(tT ) of the stochastic

attributes Z(t).

We propose conditionally random effect models for Y (t) and Z(t) with shared latent

factors to accommodate co-evolution. To be more precise, for the entries of the sociomatrix

Y (t) we consider a bilinear model,

yi,j(t) ∼ Ber (θi,j(t)) , θi,j(t) = G

(
µ(t) +

R∑
r=1

λrui,r(t)vj,r(t)

)
, (1)

where ui(t) = (ui,1(t), . . . , ui,R(t))′ and vj(t) = (vj,1(t), . . . , vj,R(t))′ are both R-dimensional

time-varying latent variables, and G is an appropriate link function. In the sequel we focus

our discussion on the probit link where G(·) corresponds to the cumulative distribution
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function of the standard normal distribution, but more general links such as the logistic can

be easily accommodated with relatively minor changes to our computational approach.

Equation (1) corresponds to the bilinear model proposed in Hoff (2009). The time varying

latent vectors u1(t), . . . ,un(t) and v1(t), . . . ,vn(t) capture transitivity and reciprocity in the

dyadic relationship (Hoff, 2009). The eigenvalues λ1, . . . , λR play a crucial role in determining

the specific form of that relationship, in the sense that similar values ui,r(t), uj,r(t) and vi,r(t),

vj,r(t) contribute positively or negatively to the relationships i → j and j → i, depending

on whether λr > 0 or λr < 0. Furthermore, note that if λr = 0 then the rth dimension of

the latent variables has no impact on the network structure.

The time varying attributes attached to each node can either be continuous, binary or

categorical. To model them, we propose to use a set of conditionally independent generalized

linear models where

E {zi,k(t)} = Hk

(
ηk(t) +

R∑
r=1

ψk,rαk,r(t)ui,r(t) +
R∑
r=1

ξk,rβk,r(t)vi,r(t)

)
, (2)

αk(t) = (αk,1(t), . . . , αk,R(t))′ and βk(t) = (βk,1(t), . . . , βk,R(t))′ are R× 1 vectors, and Hk(·)

is an appropriate link function for the kth outcome of interest. For example, when zi,k(t)

corresponds to a continuous attribute we might set

zi,k(t) = ηk(t) +
R∑
r=1

ψk,rαk,r(t)ui,r(t) +
R∑
r=1

ξk,rβk,r(t)vi,r(t) + ζi,k(t) (3)

where ζi,k(t) corresponds to realizations from a white-noise process with variance φ−1k .

Note that the latent factors u1(t), . . . ,un(t) and v1(t), . . . ,vn(t) we introduced in (1)

reappear as predictors in (2). The static coefficients ψk,r and ξk,r capture the “average”

effect of the kth component of the latent factors on the corresponding nodal attribute, and

the time varying coefficients αk,r(t) and βk,r(t) control how those baseline effects vary over

time. Hence, u1(t), . . . ,un(t) and v1(t), . . . ,vn(t) not only determine the structure of the

network but also control the level of association between nodal attributes, as well as the co-
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evolution between the network and the nodal attributes. Furthermore, just like in the case

of λr, note that setting ψk,r = 0 and ξk,r = 0 simultaneously implies that the rth dimension

of the latent factors has no effect in the evolution of zi,k(t).

Although the previous formulation does not incorporate known covariates that might

impact the evolution structure of the network or the nodal attributes, extending it in this

direction is trivial by including additional regression terms in (1) and (2).

2.2 Modeling the evolution of the nodal attributes and networks

In order to borrow information across time, the stochastic processes {µk(t) : t ∈ R+},

{ui,r(t) : t ∈ R+}, {vi,r(t) : t ∈ R+}, {ηk(t) : t ∈ R+}, {αk,r(t) : t ∈ R+} and {βk,r(t) :

t ∈ R+} for i, j = 1, . . . , n, k = 1, . . . , p and r = 1, . . . , R are modeled using independent

stationary Ornstein-Uhlenbeck processes. For ease of presentation we assume that the times

t1, t2, . . . , tT at which the data is observed are equally spaced, in which case an Euler dis-

cretization of these Ornstein-Uhlenbeck processes leads to first-order autoregressive priors

as described in the next few paragraphs. This discretization can be easily modified in the

case of irregularly spaced observations to provide a time-consistent model.

Let ui,r(tl) = ui,r,l and vi,r(tl) = vi,r,l for all l = 1, . . . , T . Assuming that t1, t2, . . . , tT are

equally spaced, the Ornstein-Uhlenbeck prior implies that

ui,r,l = ρ1ui,r,l−1 + εui,r,l, εui,r,l ∼ N
(
0, σ2

u

)
,

vi,r,l = ρ1vi,r,l−1 + εvi,r,l, εvi,r,l ∼ N
(
0, σ2

v

)
,

where |ρ1| < 1 is the autocorrelation coefficient. The initial states ui,r,0 and vi,r,0 are assigned

the respective stationary distribution, ui,r,0 ∼ N
(

0, σ2
u

1−ρ21

)
and vi,r,0 ∼ N

(
0, σ2

v

1−ρ21

)
, which

implies that the marginal prior distribution for ui,r,l and vi,r,l have a zero mean and the

same constant variance at any l. Furthermore, setting ρ1 = 0 leads to independent priors at

every point in time. Note that we have elected to use the same autocorrelation coefficient
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ρ1 for all latent traits, which substantially reduces the number of parameters. However, this

assumption implies the we expect the mean reversion times of the different variables to be

around the same order of magnitude. We believe that this assumption is reasonable in most

applications (and, in particular, in the illustration discussed in Section 5), but if necessary

it could be relaxed.

We use a similar argument for each of the other four sets of dynamic parameters in our

model. More specifically, letting αk,r(tl) = αk,r,l, βk,r(tl) = βk,r,l, µ(tl) = µl and ηk(tl) = ηk,l,

we have

αk,r,l = ρ2αk,r,l−1 + εαk,r,l, εαk,r,l ∼ N(0, σ2
α),

βk,r,l = ρ2βk,r,l−1 + εβk,r,l, εβk,r,l ∼ N(0, σ2
β),

ηk,l = ρ3ηk,l−1 + εηk,l, εηk,l ∼ N(0, σ2
η),

µl = ρ4µl−1 + εµl , εµl ∼ N(0, σ2
µ),

where, as before, the processes are assumed to start at their respective stationary distribu-

tion, αk,r,0 ∼ N
(

0, σ2
α

1−ρ22

)
, βk,r,0 ∼ N

(
0,

σ2
β

1−ρ22

)
, ηk,0 ∼ N

(
0,

σ2
η

1−ρ23

)
and µ0 ∼ N

(
0,

σ2
µ

1−ρ24

)
. As

before, ρ2, ρ3, ρ4 are autocorrelation coefficients with |ρ2| < 1, |ρ3| < 1 and |ρ4| < 1 to ensure

stationarity.

Without loss of generality, σ2
u and σ2

v are both fixed at 1. The rest of the variance

parameters σ2
α, σ

2
β, σ

2
η, σ

2
µ and φ−1k , k = 1, . . . , p follow proper inverse gamma distributions

with infinite means, IGam(1, 2). Finally, lag parameters ρ1, ρ2, ρ3, ρ4 are assumed to follow a

uniform distribution on the [−1, 1] interval.

2.3 Dimension selection and association testing

As mentioned in Section 3.2, the coefficients λ1, . . . , λR can potentially be used to determine

which components of the latent factor vector affect the structure of the network. To exploit
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this property of the model we propose to use independent Gaussian mixture priors,

λr | γr ∼


N
(

0, 1
τr

)
γr = 1

N
(

0, 1
v0τr

)
γr = 0

(4)

where γr | πλ ∼ Ber(πλ), πλ ∼ Beta(aλ, bλ), and τr ∼ Gam
(
q3(r−1), q2(r−1)

)
, q > 1. This

prior specification on τr ensures fast decay of the precision parameter 1
τr

, so as to safe-

guard the implied prior on the θi,j(t)s from degenerating as R becomes large. In particular,∑R
r=1E {1/τr} =

∑R
r=1 q

2(r−1)/
{
q3(r−1) − 1

}
, so that

∑R
r=1E{1/τr} converges as R → ∞.

In our experiments we work with q = 1.5. On the other hand, allowing the prior inclu-

sion probability πλ to be random allows us to automatically adjust for multiple comparisons

(Scott et al., 2010).

Note that, as v0 → ∞, the mixture component associated with γr = 0 converges to a

Dirac delta function at 0, δ0. Though using a degenerate measure at zero as one component

of mixture distribution is suitable for selecting unimportant dimensions, we instead use a

large value of v0 in (4) to mimic the effect of δ0. Sensitivity of the procedure to the choice

of v0 is explored and discussion is offered in Section 4.

We use a similar approach to identify components of the latent factors that do not affect

the different nodal attributes. In particular, we let

ψk,r | ωk,r ∼


N
(

0, 1
νk,r

)
ωk,r = 1

N
(

0, 1
v0νk,r

)
ωk,r = 0

, ξk,r | ςk,r ∼


N
(

0, 1
κk,r

)
ςk,r = 1

N
(

0, 1
v0κk,r

)
ςk,r = 0

, (5)

where

ωk,r | πψ,k ∼ Ber(πψ,k), πψ,k ∼ Beta(aψ, bψ), νk,r ∼ Gam
(
q3(r−1), q2(r−1)

)
,

ςk,r | πξ,k ∼ Ber(πξ,k), πξ,k ∼ Beta(aξ, bξ), κk,r ∼ Gam
(
q3(r−1), q2(r−1)

)
.
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The indicator variables γ1, . . . , γR, ω1,1, . . . , ωp,R and ς1,1, . . . , ςp,R can be used to inves-

tigate the pattern of association between the network structure and the nodal attributes,

as well as to estimate the effective dimension of the latent space (see Section 3.2 for more

details, as well as for a discussion on the elicitation of the parameters aλ, bλ, aψ, bψ, aξ and

bξ).

3 Posterior Inference

Under a Bayesian framework, parameter estimation can be achieved via Markov chain Monte

Carlo (MCMC) algorithms, in which posterior distributions for the unknown quantities are

approximated with empirical distributions of samples from a Markov chain. To streamline

computation, we follow Albert and Chib (1993) and introduce latent variables wi,j,l for the

network data such that wi,j,l > 0 if yi,j(tl) = 1 and wi,j,l < 0 otherwise. Equation (1) can

now be written in terms of wi,j,l as

wi,j,l = µl +
R∑
r=1

λrui,r,lvj,r,l + εi,j,l, εi,j,l ∼ N(0, 1). (6)

For the nodal attributes we follow a similar approach. In particular, for nodal attributes

that follow Gaussian distributions no data augmentation is required. For binary or ordinal

attributes we follow a similar latent variable augmentation. This approach leads to updates

that mostly use Gibbs sampling steps (see Appendix A for details).

Note that the unknown parameters ui,l = (ui,1,l, ..., ui,R,l)
′, vi,l = (vi,1,l, ..., vi,R,l)

′, αk,l =

(αk,1,l, ..., αk,R,l)
′, βk,l = (βk,1,l, ..., βk,R,l)

′, λ1, . . . , λR, ψk,1, . . . , ψk,R and ξk,1, . . . , ξk,R are not

individually identifiable. In particular, the latent space is invariant to rotations and rescal-

ings. Hence, in our analysis we focus on performing inferences on identifiable functions of

the model parameters.
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3.1 Link and nodal attribute prediction

We can approximate the posterior probability of a directed dyad from node k1 to node k2 at

time tl as an average of M post burn-in, suitably thinned, MCMC samples as

P (yk1,k2(tl) = 1 | data) ≈ 1

M

M∑
s=1

G

(
µ
(s)
l +

R∑
r=1

λ(s)r u
(s)
k1,r,l

v
(s)
k2,r,l

)
.

where the superscript (s) denotes the s-th post burn-in MCMC sample for a parameter after

suitable thinning. Note that this estimated link probability can be used to infer missing links

within observed networks (under the additional assumption of ignorable missingness), or to

predict the structure of the network at a future time. To decide whether a directed dyad

between nodes k1 and k2 is present, one can choose a cut-off c ∈ (0, 1) so that θk1,k2(tl) > c

implies a directed link. By varying c we can construct a receiver characteristic curve for our

network prediction algorithm.

A similar approach can be used to predict the value of nodal attributes. For example,

for the purpose of point prediction,

E {zi,k(tl) | data} ≈ 1

M

M∑
s=1

Hk

(
η
(s)
k,l +

R∑
r=1

ψ
(s)
k,rα

(s)
k,r,lu

(s)
i,r,l +

R∑
r=1

ξ
(s)
k,rβ

(s)
k,r,lv

(s)
i,r,l

)
.

3.2 Association tests

The R dimensions of the latent space can be divided into four groups: systemic dimensions,

which influence both the network structure and at least one of the nodal attributes, two

groups of idiosyncratic dimensions, one group that is associated only with the network

structure, and a second group that solely impacts the association between nodal attributes,

and a set of inactive dimensions that have no effect on either of the outcomes of interest.

More specifically, a given dimension r is systemic if and only if it significantly affects the

structure of the network (i.e., γr = 1) and it also affects at least one of the nodal attributes

(i.e., if there is at least one k for which ωk,r = 1 or ςk,r = 1, or both). Hence, qS, the number
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of systemic dimensions in the latent space is given by

qS =
R∑
r=1

γr

{
1−

p∏
k=1

(1− ωk,r) (1− ςk,r)

}
.

Note that qS is an identifiable quantity even if the individual elements are not. Furthermore,

qS = 0 if and only if the sequence of networks and the time series of nodal attributes are

mutually independent. Hence,

P (qS = 0 | data) ≈ 1

M

M∑
s=1

I
(
q
(s)
S = 0

)
,

where I(·) denotes the indicator function. P (qS = 0 | data) provides us with a mechanism

to test for global association between the network structure and nodal attributes, with high

values of this probability indicating that these are independent. This test is a Bayesian

alternative to the likelihood ratio test discussed in Fosdick and Hoff (2015) that also takes

into account the dynamic nature of our data.

The general association test we just described can be slightly modified to investigate

whether the network structure is associated with a particular nodal attribute. For this

purpose, define

qS,k =
R∑
r=1

γr {1− (1− ωk,r) (1− ςk,r)} .

Again, an estimate of P (qS,k = 0 | data) can be obtained from the samples generated by the

MCMC algorithm. High values for this probability indicate that the network structure and

the kth nodal attribute are (marginally) independent from each other.

A similar approach can be used to define the number of idiosyncratic dimensions associ-

ated only with the network structure,

qN =
R∑
r=1

γr

p∏
k=1

(1− ωk,r)(1− ςk,r),
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and the number of idiosyncratic dimensions associated with the nodal attributes,

qA =
R∑
r=1

(1− γr)

{
1−

p∏
k=1

(1− ωk,r)(1− ςk,r)

}
.

Note that if qA = 0, then all correlations among the nodal attributes is explained by some of

the same factors that explain the network structure. Furthermore, although the model allows

the dimension of the latent space to be as high as R, the effective dimensionally of the space

is R∗ = qS + qN + qA ≤ R, with the number of inactive dimensions being R− qS − qN − qA.

Hence, a posteriori our model is able to learn the dimension of the latent space.

3.2.1 Association tests and hyperparameter selection

The prior distribution on the summaries qS, qN and qA depends critically on the hyper-

parmeters aλ, bλ, aψ, bψ, aξ and bξ, which must be carefully chosen. For example, a priori,

qN | ΥN ∼ Bin(R,ΥN), where ΥN = πλ
∏p

k=1(1 − πψ,k)(1 − πς,k) is a random variable with

expectation,

E {ΥN} =
aλ

aλ + bλ

(
aψ

aψ + bψ

)p(
aξ

aξ + bξ

)p
.

For even moderate p, the usual choice of aψ = bψ = aξ = bξ = 1 (i.e., using uniform

distributions for the inclusion probabilities) will lead to a prior distribution on qN that is

heavily skewed towards 0. Such prior distribution would typically be unappealing since it

would make it difficult to identify components that are idiosyncratic to the network, and

therefore lead to an overestimation of the number of systemic components.

To address this issue, in our own data analysis we set aλ = bλ = 1, which ensures that

the
∑R

r=1 γr follows a uniform distribution on {0, . . . , R}, and then set the values of aψ, bψ,

aξ and bξ so that aψ = aξ, bψ = bξ and the marginal distributions for qS, qN and qA are

(approximately) identical.

13



4 Simulation study

We evaluate the performance of our model using four simulated datasets, each generated

under a different scenario. The purpose of this simulation study is threefold: (a) to assess

predictive performance of JLAFAC in terms of link and nodal attribute predictions, (b) to

investigate the ability of our model to identify dependence and independence relationships

in the data, and (c) to assess the impact of hyperparameters (and, in particular, of the

constant v0 used in our variable selection prior) on model performance. For each of the

four datasets we fitted JLAFAC using R = 5 latent dimensions. All posterior inferences

are based on 40,000 samples from the MCMC iterations obtained after a burn-in period of

10,000 iterations and thinning the chain every 10 samples.

In our first simulation scenario the true dimension of the latent space is R∗ = 5, and

the number of attributes is p = 5. The true vector of eigenvalues takes the form λ =

(0, 0, 0, λ4, λ5), while the matrices of selection coefficients take the form

Ψ =



ψ1,1 ψ1,2 ψ1,3 0 0

ψ2,1 ψ2,2 ψ2,3 ψ2,4 0

0 0 0 ψ3,4 ψ3,5

0 0 ψ4,3 0 0

ψ5,1 ψ5,2 ψ5,3 ψ5,4 ψ5,5


, Ξ =



ξ1,1 ξ1,2 ξ1,3 0 0

ξ2,1 ξ2,2 ξ2,3 ξ2,4 0

0 0 0 ξ3,4 ξ3,5

0 0 ξ4,3 0 0

ξ5,1 ξ5,2 ξ5,3 ξ5,4 ξ5,5


,

Note that, in this case, we have qS = 2, qN = 0 and qA = 3. For our second scenario we

again set the true dimension of the latent space to R∗ = 5, and the number of attributes is

p = 5. However, in this case, the true vector of eigenvalues takes the form λ = (0, 0, 0, 0, λ5)
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and the selection matrices are of the form

Ψ =



ψ1,1 ψ1,2 0 0 0

ψ2,1 ψ2,2 0 0 0

0 0 ψ3,3 ψ3,4 0

0 ψ4,2 ψ4,3 0 0

ψ5,1 ψ5,2 0 0 0


, Ξ =



ξ1,1 ξ1,2 0 0 0

ξ2,1 ξ2,2 0 0 0

0 0 ξ3,3 ξ3,4 0

0 0 ξ4,3 ξ4,4 0

ξ5,1 ξ5,2 ξ5,3 ξ5,4 0


,

In this case qS = 0, qN = 1 and qA = 4, i.e., the network and the nodal attributes are inde-

pendent in this dataset. Note that the second simulation study allows structural mismatch

in terms of positioning of nonzero entries between Ψ and Ξ. We set up the third simulation

study to allow a mismatch between the fitted dimension and the true dimension of latent

variables. Specifically, we set the true dimension of the latent space to R∗ = 3 and the

number of attributes to p = 5. In this case the true vector of eigenvalues is λ = (λ1, λ2, λ3)

and we set

Ψ =



0 ψ1,2 ψ1,3

0 ψ2,2 ψ2,3

0 ψ3,2 ψ3,3

0 ψ4,2 ψ4,3

0 ψ5,2 ψ5,3


, Ξ =



ξ1,1 ξ1,2 0

ξ2,1 ξ2,2 0

ξ3,1 ξ3,2 0

ξ4,1 ξ4,2 0

ξ5,1 ξ5,2 0


,

so that qS = 3, qN = 0 and qA = 0. Finally, for the fourth simulation scenario the true

dimension of the latent space is R∗ = 5, but we increase the number of attributes to p = 10.
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ρ1 σ2
u σ2

v ρ2 σ2
α σ2

β ρ3 σ2
η ρ4 σ2

µ

0.2 1.0 1.0 0.4 1 0.5 0.1 0.25 0.3 0.25

Table 1: True value of the hyperparameters used to generate data for our simulation study.

The true vector of eigenvalues now has the form λ = (0, 0, 0, λ4, λ5) and we set

Ψ =



ψ1,1 ψ1,2 0 0 0

ψ2,1 ψ2,2 0 0 0

0 0 ψ3,3 ψ3,4 0

0 0 ψ4,3 ψ4,4 0

ψ5,1 ψ5,2 ψ5,3 ψ5,4 ψ5,5

ψ6,1 ψ6,2 ψ6,3 ψ6,4 ψ6,5

ψ7,1 ψ7,2 ψ7,3 ψ7,4 ψ7,5

ψ8,1 ψ8,2 ψ8,3 ψ8,4 ψ8,5

ψ9,1 ψ9,2 ψ9,3 ψ9,4 ψ9,5

ψ10,1 ψ10,2 ψ10,3 ψ10,4 ψ10,5



, Ξ =



ξ1,1 ξ1,2 0 0 0

ξ2,1 ξ2,2 0 0 0

0 0 ξ3,3 ξ3,4 0

0 0 ξ4,3 ξ4,4 0

ξ5,1 ξ5,2 ξ5,3 ξ5,4 ξ5,5

ξ6,1 ξ6,2 ξ6,3 ξ6,4 ξ6,5

ξ7,1 ξ7,2 ξ7,3 ξ7,4 ξ7,5

ξ8,1 ξ8,2 ξ8,3 ξ8,4 ξ8,5

ξ9,1 ξ9,2 ξ9,3 ξ9,4 ξ9,5

ξ10,1 ξ10,2 ξ10,3 ξ10,4 ξ10,5



,

In this scenario we have qS = 2, qN = 0 and qA = 3. In all four scenarios we work with

n = 40 nodes and T = 10 time points, and generate the non-zero entries of λ, Ψ and Ξ

from normal distributions with means 2, 2 and −3 and variances 2, 0.5 and 0.5, respectively.

On the other hand, the true value of the random processes {ηk(t)}, {αk,r(t)}, {βk,r(t)}, µ(t),

{ui,r(t)} and {vi,r(t)} are generated using the hyperparaters presented in Table 1. Finally,

all the attribute values are generated from Gaussian distributions according to Equation (3),

with variances φ−11 , .., φ−1p drawn i.i.d from U(0.1, 0.5).

4.1 Link and attribute prediction

In order to evaluate the ability of the model to predict links, we carry out an out-of-sample

crossvalidation exercise. More specifically, we randomly select 400 dyads to hold-out as a
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validation set and then estimate our model treating these dyads as if they were missing at

random. Figure 1 shows the ROC curve and associated area under the ROC curve (AUC)

of JLAFAC for the observations in the validation set. In order to assess the value of jointly

modeling nodal attributes and network features, we also present the results generated by

fitting only the components of the model associated with the network data, referred to as

the marginal model. It is evident that in simulations with qS > 0 (cases 1, 3 and 4), joint

modeling has clear advantages in terms of predicting missing links. This can be attributed

to the fact that the shared latent factors in such cases are estimated based on both the

relational and nodal attribute data, leading to more accurate estimation. The biggest gains in

predictive performance arise in scenarios 1 and 3 (the predictive performance of the marginal

model in the case of scenario 4 is already quite good, which might help explain why the gains

are relatively minor in this case). On the other hand, the predictive performance of both

models is essentially identical when qS = 0, as would be expected.

We also carry out prediction of attribute values based on both JLAFAC and a dynamic

factor model that ignores the relational information. Table 2 presents the root mean squared

error (RMSE) values obtained under each model and for each scenario. Again, the results

suggest that jointly modeling both sources of information leads to much improved predictions

of nodal attributes when qS > 0, and that those advantages disappear in scenario 2 where

qS = 0 and therefore the nodal attributes evolve independently from the relational data.

Note, however, that unlike in the dyad prediction problem, the largest improvement is seen

in scenario 4.

4.2 Association tests

Prior and posterior distributions for qS, qN , qA and R∗ = qS + qN + qA under JLAFAC for

each of the four simulation scenarios are recorded in Table 3. In scenarios 1 and 2 the model

is capable of identifying both the right dimension of the latent space and its breakdown into

systemic and idiosyncratic components. In particular, the model is able to correctly assess
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(c) Scenario 3
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Figure 1: ROC curves and corresponding AUC values for our out-of-sample crossvalidation
in four different simulation scenarios. Continuous curves correspond to the results under
our JLAFAC model, while the dashed curves come from a marginal model that does not
incorporate the attribute data.
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RMSE
Scenario JLAFAC Dynamic Factor

1 1.23 1.88
2 1.05 1.10
3 0.34 0.47
4 0.35 1.45

Table 2: Root mean squared error (RMSE) for the two competitors in simulation cases 1
to 4. RMSE is calculated as the square root of the mean absolute squared deviation of
predicted and true values of all the predictors.

the independence of network and attribute data in scenario 2, and the lack of independence in

scenario 1. In scenario 3 the model is again able to identify the right dimension of the latent

space (which, in this case, is smaller than the maximum dimension allowed by our model),

but somewhat underestimates the dimension of the systemic component while overestimating

the number of idiosyncratic dimensions associated with the network. The performance of

the model deteriorates somewhat for scenario 4. In this case the model correctly identifies

the dimension of the systemic component of the space, but tends to overestimate the number

of idiosyncratic dimensions associated with the network structure while underestimating the

number of idiosyncratic dimensions associated with the attributes.

Figure 2 shows the posterior distributions for qS,1, . . . , qS,p on each of the four simulation

scenarios. Again, the model is capable of correctly identifying the number of systemic com-

ponents associated with each attribute for scenarios 1, 2 and 3, but struggles in the case of

scenario 4. In particular, in scenario 4 the model correctly captures the fact that no systemic

dimension is associated with attributes 1 and 2, but tends to underestimate the number of

systemic components associated with attributes 3 to 10.

4.3 Sensitivity Analysis

All of the results presented above were obtained after fixing v0 = 100. We checked the

sensitivity of the results to this choice by re-running the model with v0 = 1, 000 and v0 =

10, 000 and obtained similar results in every case.
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(d) Scenario 4

Figure 2: Posterior distribution for qS,1, . . . , qS,p under each of our four simulation scenarios.
Filled bullets indicate the true value of the summary. Ak denotes the kth attribute.
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
Prior Post Prior Post Prior Post Prior Post

qS

0 0.31 0.00 0.31 0.64 0.31 0.00 0.31 0.00
1 0.28 0.22 0.28 0.30 0.28 0.00 0.28 0.36
2 0.21 0.63 0.21 0.04 0.21 0.79 0.21 0.45
3 0.13 0.12 0.13 0.00 0.13 0.19 0.13 0.15
4 0.05 0.01 0.05 0.00 0.05 0.01 0.05 0.01
5 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00

qN

0 0.37 0.79 0.37 0.23 0.37 0.11 0.37 0.41
1 0.30 0.17 0.30 0.74 0.30 0.61 0.30 0.50
2 0.19 0.02 0.19 0.02 0.19 0.21 0.19 0.07
3 0.09 0.00 0.09 0.00 0.09 0.04 0.09 0.00
4 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

qA

0 0.31 0.12 0.31 0.00 0.31 0.80 0.31 0.27
1 0.27 0.26 0.27 0.01 0.27 0.18 0.27 0.42
2 0.21 0.29 0.21 0.12 0.21 0.01 0.21 0.23
3 0.12 0.30 0.12 0.44 0.12 0.00 0.12 0.06
4 0.05 0.00 0.05 0.41 0.05 0.00 0.05 0.00
5 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00

R∗

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00
2 0.09 0.07 0.09 0.00 0.09 0.01 0.09 0.12
3 0.19 0.22 0.19 0.05 0.19 0.50 0.20 0.34
4 0.29 0.28 0.29 0.41 0.29 0.37 0.28 0.36
5 0.37 0.42 0.37 0.52 0.37 0.12 0.37 0.16

Table 3: Prior and posterior distributions on qS, qN , qA and R∗ = qS + qN + qA under
JLAFAC for the four datasets in our simulation study. Grey backgrounds indicate the true
value under each scenario.

5 Analysis of Longitudinal International Relationship

Data with Country Specific Indicators of Economic

Performance

In this section we investigate the association between international conflicts and various

economic indicators in a set of 22 countries. The list of countries includes all five permanent

members of the United Nations security council (China, France, Rusia, USA and the UK), a
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few members of the G-20 group (Australia, Germany, India, Japan, South Korea, Turkey), as

well as various countries from the middle East (Egypt, Iran, Iraq, Israel, Lebanon, Palestine,

Sudan), eastern Europe (Ukraine, Georgia) and south Asia (Afghanistan, Pakistan).

Annual networks of interactions among countries between 2004 and 2014 were defined by

linking two countries if there was at least one “positive verbal action” during the first week of

the year (Goldstein, 1992). Examples of positive verbal actions include granting diplomatic

recognition and positive verbal support in international forums. These data on interna-

tional relations is available from http://www.stat.washington.edu/people/pdhoff/Code

and was previously studied in Hoff (2015). In addition to the relational data, we consider

the evolution of three country-specific economic indicators, which are modeled using a con-

ditionally Gaussian model: the growth rate of Gross Domestic Product (GDP) Per Capita,

the level of National Savings as a percentage of GDP, and the amount of International Trade

as a percentage of GDP. Data on these indicators are available from the World Development

Indicators Database, which is published annually by the World Bank. For this dataset we

estimate JLAFAC using R = 5 latent dimensions. All inferences presented below are based

on 50, 000 samples from our MCMC algorithm obtained after a burn-in period of 10, 000

samples and thinning the chain every 10 iterations.

As in Section 4, we first evaluate the ability of JLAFAC to make out-of-sample pre-

dictions. In this case we hold out 500 randomly-chosen dyads, whose values are predicted

using the rest of the data. Figure 3 presents the ROC curve and the AUC value under both

JLAFAC and a dynamic network model that ignores the attribute data (this comparison is

similar to the one we carried out in Section 4). As in the simulation study, it is clear that

jointly modeling the relational and nodal attribute data provides some improvement in the

predictions, although the improvement in this case is relatively minor.

Next we investigate the association structure in the data. Table 4 presents the prior and

posterior distributions for qS, qN , qA and R∗ = R−qS−qN −qA. It is evident from the Table

that the data favors the use of 4 latent dimensions. Furthermore, the model provides strong
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Figure 3: ROC curves and corresponding AUC values for JLAFAC and a dynamic network
model that ignores information about network attributes in the international relations data.
Solid and dashed curves represent ROC curves for JLAFAC and dynamic network model
without network attributes respectively.

evidence for the presence of at least one systemic component (P (qS > 0 | data) ≈ 0.92),

suggesting that the network structure and the nodal attributes are indeed associated. To

investigate this association in more detail we present in Figure 4 the posterior distributions

for qS,1, qS,2 and qS,3, where subscripts 1,2,3 correspond to growth of GDP per capita, ratio

of trade to GDP and ratio of savings to GDP respectively. Note that while there is strong

evidence that the ratio of trade to GDP is associated with the structure of international

relations (P (qS,2 > 0 | data) ≈ 0.90), the evidence for an association with GDP growth

per capita and national savings is weak to non-existant (P (qS,1 > 0 | data) ≈ 0.50 and

P (qS,3 > 0 | data) ≈ 0.14, respectively). A review of the literature suggests that our results

are consistent with previous findings. Indeed, there is a well established relationship between

international trade and conflict, which was first established in the classic paper by Polachek

(1980) (see also Reuveny and Kang, 1996, Morrow, 1999 and Reuveny, 2000). Similarly, there

is some evidence in the literature for an association between GDP growth and international

conflict (e.g., see Rodrik, 1999, Anderton et al., 2003, Miguel et al., 2004 and Polachek and
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Sevastianova, 2012), although the evidence is highly disputed and the direction of the causal

effect often unclear. On the other hand, as far as we could find, an association between

international conflict and the level aggregate national savings has not been proposed or

reported in the literature.

qS qN qA R∗

Prior Posterior Prior Posterior Prior Posterior Prior Posterior
0 0.28 0.08 0.42 0.61 0.29 0.11 0.00 0.00
1 0.26 0.52 0.30 0.28 0.26 0.20 0.02 0.00
2 0.21 0.27 0.17 0.07 0.20 0.27 0.07 0.04
3 0.14 0.09 0.07 0.01 0.14 0.26 0.17 0.18
4 0.07 0.01 0.02 0.00 0.07 0.13 0.29 0.41
5 0.02 0.00 0.00 0.00 0.02 0.00 0.42 0.34

Table 4: Prior and posterior distributions for qS, qN , qA and R∗ = R− qS − qN − qA for the
international relations data.
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Figure 4: Posterior distributions for qS,1, qS,2 and qS,3 for the international relations data.

6 Conclusion

This article introduces the idea of jointly modeling of network and associated nodal attributes

over time. Our proposed framework relied on modeling the network and nodal attributes
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jointly through latent factor representations, with some latent factors shared across both

models to introduce dependence of directional dyad between nodes on nodal attributes.

Evolution of both network and nodal attributes over time is modeled by allowing the latent

factors to vary over time, and inference is carried out using a Bayesian approach.

Because of the application that motivated our work we have assumed that the network

process Y (t) is directed and binary. The model can easily be reformulated to accommodate

undirected networks by replacing equations (1) and (2) with

yi,j(t) ∼ Ber (θi,j(t)) , θi,j(t) = G

(
µ(t) +

R∑
r=1

λrui,r(t)uj,r(t)

)
,

and

E {zi,k(t)} = Hk

(
ηk(t) +

R∑
r=1

ψk,rαk,r(t)ui,r(t)

)
,

respectively. Similarly, situation in which yi,j(t) belong to other members of the exponential

family can be easily accommodated through appropriate generalized linear factor analysis

models.

One important extension of the proposed model would be to scale it for larger datasets

with millions of individuals connected under social networking and observed over a large

number of time points. Computationally convenient time series models are to be used to

specify correlations across time for these models. It is also interesting to extend our method-

ology for online social networks. Some of these constitutes our current work.

A MCMC algorithm

This section details out the MCMC algorithm for the proposed JLAFAC model. It is impor-

tant to emphasize that the algorithm is presented assuming G(·) as the probit link and Hk(·)’s

as identity links, i.e. the nodal attributes are assumed to follow Gaussian distributions.
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Let, ηk = (ηk,1, . . . , ηk,T )′, µ = (µ1, . . . , µT )′, Zi,k = (zi,k(t1), ..., zi,k(tT ))′, and wi,j =

(wi,j,1, ..., wi,j,T )′, for k = 1, . . . , p and i = 1, .., n. Further assume that D1,D2,D3,D4 are

the four T ×T matrix with the (s, s′)-th entry of Dj is given by Dj,ss′ = ρ
|s−s′|
j , j = 1, 2, 3, 4.

Let Λ = diag(λ1, . . . , λR), Ψk = diag(ψk,1, . . . , ψk,R) and Ξk = diag(ξk,1, . . . , ξk,R), k =

1, . . . , p. Further define ũvi,j = (u′i,1Λvj,1, . . . ,u
′
i,TΛvj,T )′ uvi,j = (u′i,1vj,1, . . . ,u

′
i,Tvj,T )′,

uαi,k = (u′i,1αk,1, . . . ,u
′
i,Tαk,T )′, vβ

ik
= (v′i,1βk,1, . . . ,v

′
i,Tβk,T )′, wi,j = (wi,j,1, . . . , wi,j,T )′,

αk = (α′k,1, ..,α
′
k,T )′, βk = (β′k,1, ..,β

′
k,T )′, τ = (τ1, . . . , τR)′, γ = (γ1, . . . , γR)′, νk =

(νk,1, . . . , νk,R)′, ωk = (ωk,1, . . . , ωk,R)′, κk = (κk,1, . . . , κk,R)′, ςk = (ςk,1, . . . , ςk,R)′ for all

i, j = 1, ..., n and k = 1, ..., p. The full conditionals for the parameters are given as following.

• wi,j,l|− ∼ Truncated−Normal(µl + u′i,lΛvj,l, 1, 0,∞), if yi,j,l = yi,j(tl) = 1

wi,j,l|− ∼ Truncated−Normal(µl + u′i,lΛvj,l, 1,−∞, 0), if yi,j,l = yi,j(tl) = 0.

• µ|− ∼ N(Aµ,Σµ), Σµ =
(
n2IT +D−14

(1−ρ24)
σ2
µ

)−1
, Aµ = Σµ

∑n
i,j=1(wi,j − ũvi,j).

• σ2
α|− ∼ IG(1 + TRp/2, 2 + (1− ρ22)

∑p
k=1α

′
k(D

−1
2 ⊗ IR)αk/2).

• σ2
β|− ∼ IG(1 + TRp/2, 2 + (1− ρ22)

∑p
k=1 β

′
k(D

−1
2 ⊗ IR)βk/2).

• σ2
η|− ∼ IG(1 + Tp/2, 2 + (1− ρ23)

∑p
k=1 η

′
kD
−1
3 ηk/2)

• σ2
µ|− ∼ IG(1 + T/2, 2 + (1− ρ24)µ′D−14 µ/2)

• τr|− ∼ Gamma(0.5 + q3(r−1), q2(r−1) + (λ2rγr + λ2rv0(1− γr))/2), r = 1, . . . , R.

• πλ|− ∼ Beta(
∑R

r=1 I(γr = 1) + aλ, R + bλ −
∑R

r=1 I(γr = 1))

• κk,r|− ∼ Gamma(0.5 + q3(r−1), q2(r−1) + (ξ2k,rςk,r + ξ2k,rv0(1− ςk,r))/2), r = 1, . . . , R.

• νk,r|− ∼ Gamma(0.5 + q3(r−1), q2(r−1) + (ψ2
k,rωk,r + ψ2

k,rv0(1− ωk,r))/2), r = 1, . . . , R.

• πψ,k|− ∼ Beta(
∑R

r=1 I(ωk,r = 1) + a,R + b−
∑R

r=1 I(ωk,r = 1))

• πξ,k|− ∼ Beta(
∑R

r=1 I(ςk,r = 1) + a,R + b−
∑R

r=1 I(ςk,r = 1))
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• γr|− ∼ Ber(π̃r), π̃r =
πλN(λr|0, 1

τr
)

πλN(λr|0, 1
τr

)+(1−πλ)N
(
λr|0, 1

v0τr

) .

• ςk,r|− ∼ Ber(π̃ξ,k,r), π̃ξ,k,r =
πξ,kN

(
ξk,r|0, 1

κk,r

)
πξ,kN

(
ξk,r|0, 1

κk,r

)
+(1−πξ,k)N

(
ξk,r|0, 1

v0κk,r

) .

• ωk,r|− ∼ Ber(π̃ψ,k,r), π̃ψ,k,r =
πψ,kN

(
ψk,r|0, 1

νk,r

)
πψ,kN

(
ψk,r|0, 1

νk,r

)
+(1−πψ,k)N

(
ψk,r|0, 1

v0νk,r

) .

• diag(Λ)|− ∼ N(Aλ,Σλ), where Σλ =
(∑n

i,j=1 uvi,j +H
)−1

,

H = diag(τ ′γ + τ ′(1− γ)v0) and Aλ = Σλ

∑n
i,j=1 uvi,j(wi,j − µ).

• diag(Ψk)|− ∼ N(AΨ,k,ΣΨ,k), where ΣΨ,k =
(∑n

i=1 uαi,kφk +H2

)−1
,

H2 = diag(ν ′kωk+ν
′
k(1−ωk)v0) andAΨ,k = ΣΨ,k

∑n
i=1 uαi,k(Zi,k−ηk−vβi,kdiag(Ξk)).

• diag(Ξk)|− ∼ N(AΞ,k,ΣΞ,k), where ΣΞ,k =
(∑n

i=1 vβi,kφk +H3

)−1
,

H3 = diag(κ′kςk+κ
′
k(1−ςk)v0) andAΞ,k = ΣΞ,k

∑n
i=1 vβi,k(Zi,k−ηk−uαi,kdiag(Ψk)).

• αk = (α′k,1, . . . ,α
′
k,T )′|− ∼ N(Aα,k,Σα,k),

where Σα,k =
(∑n

i=1D
′
uΨk,i

DuΨk,iφk +
((1−ρ22)D

−1
2 ⊗IR)

σ2
α

)−1
,

DuΨk,i = Block−diag(u′i,1Ψk, . . . ,u
′
i,TΨk),DvΞk,i = Block−diag(v′i,1Ξk, . . . ,v

′
i,TΞk),

Aα,k = Σα,k

∑n
i=1D

′
uΨk,i

(Zi,k − ηk −DvΞk,iβk).

• βk = (β′k,1, . . . ,β
′
k,T )′|− ∼ N(Aβ,k,Σβ,k),

where Σβ,k =
(∑n

i=1D
′
vΞk,i

DvΞk,iφk +
((1−ρ22)D

−1
2 ⊗IR)

σ2
β

)−1
,

Aβ,k = Σβk

∑n
i=1D

′
vΞk,i

(Zi,k −αk −DuΨk,iαk).

• φk|− ∼ Gamma
(
c+ Tn/2, d+ 1

2

∑n
i=1 ||Zi,k − ηk −DuΨk,iαk −DvΞk,iβk||2

)
• Let vj = (v′j,1, . . . ,v

′
j,T )′, DuΛ,i = Block − diag(u′i,1Λ, . . . ,u

′
i,TΛ), DαΨ,k = Block −

diag(α′k,1Ψk, . . . ,α
′
k,TΨk) andDβΞ,k = Block−diag(β′k,1Ξk, . . . ,β

′
k,TΞk). Then vj|− ∼

N (Av,Σv), where

Σv =
(∑n

i=1D
′
uΛ,iDuΛ,i +

∑p
k=1D

′
βΨ,kDβΨ,kφk + ((1− ρ21)D−11 ⊗ IR)

)−1
,

Av = Σv

[∑n
i=1D

′
uΛ,i (wij − µ) +

∑p
k=1D

′
βΞ,k (Zj,k −DαΨ,kuj)

]
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• ui|− ∼ N (Au,Σu), where

Σu =
(∑n

j=1D
′
vΛ,jDvΛ,j +

∑p
k=1D

′
αΨ,kDαΨ,kφk + ((1− ρ21)D−11 ⊗ IR)

)−1
,

Au = Σu

[∑n
j=1D

′
vΛ,j (wi,j − µ) +

∑p
k=1D

′
αΨ,k (Zi,k −DβΞ,kvi)

]
.

• ρ1, ρ2, ρ3, ρ4 do not admit closed form full conditional distributions and are updated

using the simple random walk Metropolis algorithm within the Gibbs sampler.
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