
 1

Performance Investigation of Multi-tier Web Applications in Xen
Virtualized Environment

Reza NasiriGerdeh★, UNIVERSITY OF CALIFORNIA, SANTA CRUZ

Negin Hosseini✚, IRAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Rohollah Ehsani ✚, IRAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Keyvan RahimiZadeh⌘, IRAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Morteza AnaLoui⌘, IRAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

★ rnasirig@ucsc.edu
✚ {negin.ho3ini, rohollah.ehsani}@gmail.com
⌘ {rahimizadeh, analoui}@iust.ac.ir

Abstract. Server virtualization comforts deployment of Internet services and enables cloud service pro-
viders to improve resource utilization, fault tolerance, and energy efficiency by consolidating virtual servers
within a shared environment. Although deploying services in virtualized environment brings benefits to ser-
vice providers in terms of service agility, functionality, and reusability in comparison to traditional architec-
ture, overhead of mediating hypervisor and contention amongst hosted virtual machines to possess virtual-
ized resources can adversely affect the performance of applications in virtualized environments. In this pa-
per, we provide a detailed profiling-based performance investigation of Web application in Xen virtualized
environment to recognize the major sources of performance degradation of Web application in Xen. Our ex-
perimental results indicate that the main cause of the performance degradation of a single Web application
in Xen is higher CPU utilization not higher disk utilization of the system; detailed profiling of the perfor-
mance events occurred at the system-level identifies the most CPU consuming and the highest L3 cache
miss functions of Xen and Dom0 kernels that contribute the most to this performance degradation. Addi-
tionally, the experiments show that by increasing the number of cores in Xen environment, the number of L3
cache misses occurred at the system decreases significantly which leads to response time improvement of the
Web application in Xen. Moreover, the results demonstrate that when multiple Web applications are run-
ning in a Xen consolidated environment, not only the high CPU utilization but also the high disk utilization
causes the performance degradation. The dramatic increase of L3 cache misses of the system is another
cause of this performance degradation. The functions of Xen and Dom0 kernels that handle I/O operations of
domains have the most contribution to this considerable increase of L3 cache misses.

Keywords: Virtualization, Cloud Computing, Xen, Performance Profiling, Performance Evaluation, Web
Application

1 Introduction

Virtualization technology is experiencing a renewed interest to improve resource utilization and energy
efficiency. It is a key technology for cloud computing and green IT. The cloud computing platforms use
various virtualization technologies such as Xen [1], VMWare [2], and KVM [3] for server consolidation
[4]. The cornerstone of virtualization technologies is Virtual Machine Monitor (VMM) or hypervisor that
abstracts the physical machine resources into virtual resources and assigns them to a number of isolated
execution environments, known as, Virtual Machines (VMs). In this way, VMM provides an environment
to consolidate multiple VMs into a single physical machine and leads to more resource utilization, energy
efficiency improvement, and cost reduction [5,6].

Although virtualization technology provides the mentioned benefits, it has faced some challenges.
First of all, none of the current virtualization technologies can guarantee performance isolation even
though they provide resource isolation [4]. The hypervisor that mediates VMs to access resources can
affect the performance of applications running in VM; moreover, the functionality of VMs can have an
impact on each other performance [6-8]. Therefore, the performance of applications running in virtual-
ized environment might remarkably degrade compared to native environment because of the VMM over-
head itself and interference among VMs.

 2

Secondly, none of the current virtualization technologies is alone suitable for all workload types.
Thus, it is important to choose a suitable VMM, operating system, and resource allocation scheme re-
garding each workload type. Resource configuration has a direct effect on hypervisor performance, which
in turn affects the quality of service of submitted workloads [9-10]. Thirdly, predicting the performance
of applications is more complicated in virtualized environments because of the complexity inherent in
these environments; moreover, the impact of hardware events such as cache misses can have a contribu-
tion toward the difficulty of performance prediction in such environments [11].

In this paper, we extend our work from [12] to evaluate the performance of consolidated Web applica-
tions in Xen. In our previous work [12], we investigated the performance of a single Web application in
Xen through detailed performance profiling of hardware events occurred at the system-level to identify
the possible causes of performance degradation of Web application in Xen. In this paper, we do the same
analysis, but for consolidated Web applications in which multiple Web applications are running concur-
rently in Xen. Moreover, we evaluate the effect of increasing the number of cores on the performance of a
single Web application in Xen.

To these ends, we measure the throughput and response time of Web application(s) under different
scenarios. Meanwhile, we monitor the CPU and disk utilizations of system as well as the hardware per-
formance events occurred at the system-level for each scenario. Afterwards, we present the results based
on quantitative and qualitative analyses to show the performance degradation and to identify the major
sources of performance degradation in Xen.

The remainder of this paper is organized as follows. The next section reviews the previous related
work. Section 3 presents a brief overview of the main architectural aspects of Xen hypervisor and de-
scribes the experimental environments and tools we have used in our experiments. Section 4 provides
experimental results as well as the detailed analysis of these results to elaborate the main sources of
performance degradation in Xen. Finally, section 5 concludes the paper and provides direction for future
works.

2 Related Work

Some of the works on performance evaluation of Xen mainly deal with analyzing the performance over-
head of Xen or comparing its performance to other virtualization technologies [14,15,16,17]. Barham et
al. [1] presented Xen as a new virtualization technology and compared its performance and scalability
with VMware, native Linux, and User-Mode Linux (UML). They illustrated that Xen performance is
near to native Linux and it is scalable so that it is able to host one hundred operating systems simulta-
neously. Cherkasova and Gardner [13] evaluated the CPU overhead of Web server workloads submitted
to DomUs on the CPU overhead of Dom0 in Xen. They indicated that as the workload rate increases and
the request size becomes larger, the CPU overhead of Dom0 increases. They argued that Dom0 handles
the I/O operations of DomUs and Xen hypervisor employs page-flipping technique to exchange data be-
tween Dom0 and DomUs. As the workload rate or request size increases, the number of page-flippings
increases accordingly and leads to more CPU overhead of Dom0.

Menon et al. [18] modified Oprofile [19] and presented a valuable performance analysis tool Xenoprof
that enables the detailed analysis of Xen virtualized environment. They used this tool to recognize cer-
tain kernel functions that causes the most overhead for network-intensive applications running on Xen.
Menon et al. [20] used the results obtained from the work [18] to identify the sources of network virtual-
ization overhead in Xen and proposed three methods to optimize Xen network virtualization. Du et al.
[21] investigated the requirements for guest-wide and system-wide profiling in virtualized environments.
They also developed a guest-wide and a system-wide profiler for KVM, a hypervisor based on hardware-
assisted virtualization and a guest-wide profiler for QEMU [22], a hypervisor based on binary transla-
tion. Padala et al. [23] evaluated the performance of various virtualization technologies for server consol-
idation. They compared the performance of Xen 3.0.3 and OpenVZ [24] to base Linux on a single-core
system. They illustrated that virtualization overhead of OpenVZ is limited while the overhead of Xen
virtualization is high. Jang et al. [25] explored the performance overhead of processing the networking
operations in Xen environment. They also redesigned a networking mechanism to decrease the overhead
while keeping the performance level.

Pu et al. [26] empirically evaluated the effect of collocating the network-intensive and CPU-intensive
workloads on the performance interference among Xen domains under different scenarios and for three
different platforms. They also investigated the impact of allocated resources on domains and showed that
pinning more cores to Dom0 leads to lower performance of CPU-intensive workloads. Mei et al. [27] pro-
vided a detailed performance study of network-intensive workloads in cloud virtualized environments.

 3

They illustrated that none of the current virtualization technologies provides acceptable performance
isolation in order to guarantee the effectiveness of resource sharing among virtual machines which are
running in a single physical machine.

Our work is orthogonal to this group of works and focuses on investigating the performance overhead of Xen.
Similar to [18], [20], and [23], we use Oprofile/Xenoprof to monitor the hardware performance events occurred at the
system level in order to identify the causes of performance overhead in Xen. Additionally, we carry out a similar de-
tailed analysis at micro level but apply it to different scenarios and configurations in the context of multi-tiered Web
application.

Some other works on performance evaluation of Xen deal with the performance prediction and model-
ing of applications in Xen environment [28, 29, 30, 31]. Menascé [32] used queueing network theory to
model the performance of applications in virtualized environments. Hong et al. [33] proposed a theoreti-
cal performance model to predict the performance of parallel applications in different virtualized envi-
ronments based on KVM, Xen, and VMware hypervisors. They evaluated the performance prediction
model and showed that it is accurate and reliable. We [34] recently evaluated the performance of Web
server in Xen-based virtualized environment and proposed some performance models based on queueing
network theory to predict the performance of a Web server running on Xen.

3 Overview

In this section, we present a brief overview of Xen architecture. Next, we describe the testbed envi-
ronment and the tools we used in our experiments. Finally, we explain the methods employed to gener-
ate the workload in the conducted experiments.

3.1 Xen Architecture

Xen, named from neXt generation, is an open source, bare-metal VMM which supports two operation
modes: hardware-assisted virtualization and para-virtualization. In the former mode, the guest operat-
ing system does not require to be modified and guest architecture can be different from the host architec-
ture. In the latter mode, the kernel of the guest operating system requires modification. The modification
facilitates faster running of para-virtualized guest operating system.

Fig. 1 demonstrates the general architecture of Xen-based virtualized environment. The Xen VMM
runs directly on hardware layer and is able to issue privileged requests to physical resources. It runs a
special domain, called Domain0 (Dom0) that is an isolated driver domain (IDD) and has a direct access to
the physical resources. The other unprivileged domains (DomUs) can indirectly access to hardware re-
sources through Dom0. In the other words, Dom0 provides access of DomUs to hardware resources. Do-
mUs run device drivers known as Frontend drivers to communicate with Dom0 which in turn runs
Backend drivers. Unprivileged domains exchange data with Dom0 over an I/O channel. In order to avoid
the overhead of copying I/O data itself to and from DomUs, memory references to buffers are transferred
over the I/O channel instead of I/O data [13].

Fig. 1. Xen architecture

 4

3.2 Testbed Environment

In order to investigate the performance degradation of Web application in Xen, we have conducted in-
depth experiments in different environments. We have used the hardware testbed consisting of two same
HP Proliant DL380 machines, which one of them acts as a server and the other acts as a client. The ma-
chines are equipped with two six-core Intel Xeon E5-2620 CPUs running at 2 GHZ with 15 MB L3 cache
memory, 64 GB DDR-III of main memory, one 600 GB SCSI hard disk drive, and four Broadcom gigabit
Ethernet cards. They are connected together via four Cat6 Ethernet cables. We have performed experi-
ments in four different environments described below.

• Environment I: Server machine runs a multi-tier Web application which includes MySQL database
system, Apache Tomcat application server, and Nginx Web server in vanilla Centos Linux with ker-
nel version 2.6.18. In this environment, we have activated two CPU cores and limited the main
memory of system to 6 GB.

• Environment II: In this environment, we have installed the Xen hypervisor in server machine. The
Xen hypervisor runs three domains: the first domain acts as backend that runs MySQL database sys-
tem as well as Apache Tomcat application server, the second domain acts as frontend that runs
Nginx Web server, and the third domain is Dom0 which handles the I/O of backend and frontend do-
mains; in addition, we have activated two CPU cores and assigned 4 GB of main memory to Dom0.

• Environment III: This environment is the same as the Environment II except that the server ma-
chine has four activated CPU cores.

• Environment IV: In this environment, Xen runs eight domains as well as Dom0. Half of them are
backend domains and the other half are frontend domains; moreover, we have activated four CPU
cores and assigned 16 GB of main memory to Dom0.
Client machine runs Xen hypervisor, too. It runs domain(s) which generate(s) Web requests using
Faban [35] workload generator. In environments I, II, and III, it runs only one Faban workload gen-
erator whereas in Environment IV, it runs four.
It is worth mentioning that we have installed the latest version of Xen, namely, Xen 4.4.1 in server

and client machines and used the Credit-based CPU scheduler of Xen in all experiments; moreover, all
domains including Dom0 run XenoLinux derived from Centos Linux with kernel version 2.6.18. All the
backend and frontend domains have one virtual core, 1 GB of main memory, and run in the para-
virtualized mode. Backend domains have 15 GB of storage while frontend domains have 50 GB of stor-
age. Furthermore, we have disabled the Intel hyper-threading technology. Fig. 2, Fig. 3, and Fig. 4 show
the experimental environments. We call Environment I native environment and refer to environments
II, III, and IV as Xen environments.

Fig. 2. Environment I

3.3 Workload Description

To investigate the performance degradation caused by Xen, we have employed CloudStone benchmark
[36]. CloudStone benchmark consists of Apache Olio [37] as a Web application and Faban [35] as a work-
load generator. Olio is a Web 2.0 application which represents a social-events website. It allows users to
perform several actions such as loading the homepage, adding new events, logging into the site, attend-

 5

ing events and browsing events by tag or date. It currently has implementations using three technolo-
gies: PHP, J2EE, and Ruby on Rails. In our experiments, we have used PHP implementation of Olio.

Faban is an open-source workload generator consisting of a master program that spawns one or more
multi-threaded processes to simulate actual users. It provides a web interface to submit customized
benchmark runs and observe their results. Faban enables us to change the load level driven against the

Fig. 3. Environment II and Environment III

Fig. 4. Environment IV

application by changing the number of concurrent users to be served by the application; furthermore, it
allows us to configure total time for each benchmark run by adjusting three different durations: ramp-
up, steady state and ramp-down. Faban only takes into account the steady state period to calculate the
resulting metrics.

3.4 Monitoring Framework

To evaluate the performance impact of Xen, we require to measure some well-known performance met-
rics in native and Xen environments. These performance metrics are the throughput and response time
of Web application, CPU and disk utilizations of system, and hardware performance events occurred at
the system. Faban reports the throughput and response time of Web application at the end of each
benchmark run. Therefore, we have relied on the results reported by Faban for these performance met-
rics.

In native environment, we have employed top tool to measure the CPU utilization of the system. It
reports the average CPU utilization per core for user, kernel, and nice processor states. If UCPU, User, UCPU,

Kernel, and UCPU, Nice are the CPU utilization in user, kernel, and nice states, respectively, then the total
CPU utilization per core in native environment is calculated using Eq. 1.

 , , , ,CPU Native CPU User CPU Kernel CPU NiceU U U U= + +
 (1)

 6

In Xen environments, we have used Xentop tool to measure CPU utilization. It reports the CPU utili-
zation of all domains running in Xen. If domains Dom0, Dom1, ..., and DomN are running in Xen, then
the average CPU utilization per core in Xen environments is calculated using Eq. 2.

,0

,

N
CPU DomKK

CPU Xen

U
U

M
==

∑
 (2)

where UCPU, DomK is the CPU utilization of DomK and M is the number of physical CPU cores.
To measure the disk utilization in native and Xen environments, we have employed the information

in stat file which is located in /sys/block/sda directory. This file includes the total busy time of disk
from the system boot time. If BDisk, T1 is the busy time of disk from the system boot time until the begin-
ning of the experiment and BDisk, T2 is the disk busy time from the system boot time till the end of the
experiment, then disk total utilization is calculated using Eq. 3.

 , 2 , 1

2 1
Disk T Disk T

Disk

B B
U

T T
−

=
−

 [12] (3)

where T1 and T2 are the beginning and end times of the experiment, respectively.
To monitor the hardware performance events, we have used Oprofile/Xenoprof tool. Oprofile monitors

particular hardware performance events using CPU performance counters. For instance, it can monitor
the number of unhalted CPU clocks consumed by a particular binary image or symbol (function).
Xenoprof is the modified version of Oprofile tool to support Xen. It is able to monitor hardware events
for certain binaries or symbols inside Xen domains as well as Xen kernel. In our experiments, we have
monitored three performance counters:

• CPU_CLK_UNHALTED: The number of CPU clocks outside of the halt state. It provides an approx-
imate estimate of the CPU time consumed by a certain binary image or symbol.

• INST_RETIRED: The number of instructions which are retired. It is an approximate estimate of the
number of instructions executed by a particular binary image or symbol.

• LLC_MISSES: The number of Last Level Cache (L3) misses. It measures the number of times that a
particular binary image or symbol caused L3 miss and must access main memory.

4 Experimental Results

In this section, we present the results of different experiments we have performed. We have conducted
the experiments in three different scenarios. Scenario I evaluates the performance degradation of a sin-
gle web application running in Xen compared to native environment. The target of the scenario II is to
elaborate the effect of increasing the CPU cores on the performance of a single Web application in Xen
environment. Scenario III investigates the performance degradation of multiple consolidated Web ap-
plications running in Xen.

In all scenarios, we first show the performance difference in terms of the web application throughput
and response time, then we elaborate the possible sources of this performance difference through the
CPU and disk utilization, and most importantly, through the hardware events occurred at the system-
level. It is necessary to mention that we have performed the experiments of the scenario I in native envi-
ronment and Xen environment II, scenario II in Xen environments II and III, and scenario III in Xen
environments III and IV, respectively; moreover, the duration of all experiments is 15 minutes and we
repeated each experiment three times. The results reported are the average of the results from the ex-
periments (The difference between the minimum and maximum of the results was less than 1%).

4.1 Scenario I: Performance profiling of a single Web application

In this section, we evaluate the performance impact of Xen on a single Web application. Fig. 5 and Fig. 6
illustrate the throughput and response time of the Web application as a function of workload that is the
number of concurrent users served by the application in native and Xen environments. It is necessary to
remind that Apache Olio Web application provides several functionalities to users and we have reported
the results of the throughput and response time only for search by tag functionality herein because of the
space limitations. As Fig. 5 illustrates, there is very little difference between the throughput of the Web
application in native environment and Xen. This is due the fact that the system is not saturated and is
able to process every request arriving to the system. Therefore, no request is lost in the system and the

 7

throughput is equal to the arrival rate which is the same in both environments. However, there is re-
markable difference between the response time of the Web application in Xen and native environment,
as Fig. 6 shows. For 300 concurrent users, the response time in Xen is approximately six and one-half
times of that in native environment. This indicates that the performance considerably degrades in Xen
environment; furthermore, as the number of concurrent users increases, the response time in Xen envi-
ronment grows more quickly compared to the native environment.

Fig. 7 and Fig. 8 demonstrate the disk utilization and CPU utilization per core as a function of work-
load for native and Xen environments, respectively. Fig. 7 shows that disk utilization is very low in both
environments (at most 3.8% in Xen and 0.3% in native). This denotes that Web requests does not engage
disk so much. Therefore, the performance degradation of Web application in Xen is not due to the more
disk utilization of the system in Xen. Unlike disk utilization, CPU utilization is very high in Xen com-
pared to the native environment as Fig. 8 illustrates. CPU utilization in Xen is almost two times of that
in native environment which indicates that CPU is much more engaged in Xen than in native environ-
ment to process the Web requests. In addition, CPU utilization increases linearly in both environments
as the number of concurrent users increases. However, the slope of increase in Xen is higher than the
native environment. This denotes that as the workload increases, Xen leads to more overhead and this
can be related to the higher response time and quicker increase of response time in Xen environment.

Now, we take a deeper look at the possible causes of higher response time of the Web application in
Xen environment by providing the detailed analysis of the hardware performance counter values from
Oprofile/Xenoprof tool. Fig. 9, Fig. 10, and Fig. 11 respectively show the aggregate
CPU_CLK_UNHALTED, LLC_MISSES, and INST_RETIRED hardware performance counter values as
a function of workload in Xen and native environment. As the figures show, all performance counter
values in Xen are higher than native environment. The results indicate that total CPU clocks consumed
by processes and total number of instructions executed by CPU are higher in Xen environment. This is
consistent with the higher CPU utilization in Xen from Fig. 8; moreover, higher number of L3 cache
misses in Xen environment is in agreement with the higher CPU consumption in Xen. This is due to the
fact that more L3 cache misses causes more memory reference overhead and puts more pressure on the
CPU.

Fig. 7. Scenario I: Disk utilization

Fig. 8. Scenario I: CPU utilization

Fig. 5. Scenario I: Throughput for tag by search func-

tionality

Fig. 6. Scenario I: Response time for tag by search

functionality

 8

Fig. 9. Scenario I: Aggregate count of

CPU_CLK_UNHALTED event
Fig. 10. Scenario I: Aggregate count of INST_RETIRED

event

Fig. 11. Scenario I: Aggregate count of LLC_MISSES event

Table 1, Table 2, and Table 3 list the percentage of CPU_CLK_UNHALTED counter values for top five
CPU consuming binaries in frontend, backend, and Dom0 domains of Xen, respectively. As the tables
show, the percentage of CPU clocks consumed by kernel is low in frontend and backend domains (1.6% in
frontend and 6.8% in backend) but this value is high in Dom0 (37.1%).

Binary Name Percentage of CPU Clocks

php-fpm 73.9
nginx 22.6
kernel 1.6

oprofiled 0.6
xennet 0.4

Binary Name Percentage of CPU Clocks
mysqld 87.4
kernel 6.8
java 2.1

oprofiled 0.9
xennet 0.8

Table 1. Scenario I: Percentage of
CPU_CLK_UNHALTED values for top five binaries in

frontend

Table 2. Scenario I: Percentage of
CPU_CLK_UNHALTED values for top five binaries in

backend

Binary Name Percentage of CPU Clocks

kernel 37.1
netback 9.1
bridge 4.4

tg3 4.9
ip_tables 1.1

Table 3. Scenario I: Percentage of CPU_CLK_UNHALTED
values for top five binaries in Dom0

Tables 4, 5, and 6 denote the percentage of retired instructions for top five binaries that executed
most CPU instructions in frontend, backend and Dom0. The results are similar to the results for
CPU_CLK_UNHALTED counter values. In frontend and backend domains, kernel executes very low

 9

number of instructions (1.2% and 2.3%) on CPU whereas it executes high number of instructions in
Dom0 (30.9%).

Binary Name
Percentage of Retired In-

structions
php-fpm 81.3

nginx 15.1
kernel 1.2

modprobe 1.1
oprofiled 0.4

Binary Name
Percentage of Retired In-

structions
mysqld 94.4
kernel 2.3
java 1.7

oprofiled 0.4
xennet 0.3

Table 4. Scenario I: Percentage of INST_RETIRED
counter values for top five binaries in frontend

Table 5. Scenario I: Percentage of INST_RETIRED
counter values for top five binaries in backend

Binary Name Percentage of Retired Instructions

kernel 30.9
bridge 7.1

netback 6.3
tg3 2.5

ip_tables 2.4

Table 6. Scenario I: Percentage of INST_RETIRED counter values
for top five binaries in Dom0

Table 7, Table 8, and Table 9 show the percentage of LLC_MISSES counter values for top five binari-
es which caused most L3 cache misses in frontend, backend and Dom0. The kernels of frontend and
backend domains cause relatively low number of L3 cache misses (4.5% and 10.8%) while the kernel of
Dom0 causes high number of cache misses (29%).

It is worth describing the functionality of some binaries listed in the tables. xennet in frontend and
backend domains and netback in Dom0 handle the network related events. bridge is a software entity
in Dom0 that connects the virtual network interfaces of frontend, backend, and Dom0 to the physical
network interface. tg3 is the Broadcom Ethernet card driver installed in Dom0.

Binary Name
Percentage of L3 Cache Miss-

es
php-fpm 63.8

nginx 27
kernel 4.5
xennet 0.9

modprobe 0.4

Binary Name
Percentage of L3 Cache Miss-

es
mysqld 74.6
kernel 10.8
java 9.2

xennet 2.8
pcscd 1

Table 7. Scenario I: Percentage of LLC_MISSES coun-
ter values for top five binaries in frontend

Table 8. Scenario I: Percentage of LLC_MISSES coun-
ter values for top five binaries in backend

Binary Name Percentage of L3 Cache Misses

kernel 29
netback 15.7

tg3 2.9
bridge 1.6
python 1.5

Table 9. Scenario I: Percentage of LLC_MISSES counter values
for top five binaries in Dom0

Now, we consider the Xen kernel itself. Table 10 denotes the percentage of hardware performance
counter values for Xen kernel. As the table results show, Xen VMM consumes low number of CPU clocks
and executes low number of instructions on CPU whereas it causes relatively high number of L3 cache
misses. Xen kernel and Dom0 which handles the I/O of other domains are overhead sources in Xen vir-
tualized environment. In addition, the kernel of Dom0 consumes the most CPU clocks and causes the
most L3 cache misses in Dom0. Therefore, we focus on the Xen and Dom0 kernels to get much more in-
sight into the main sources of performance degradation in Xen environment. Tables 11 through 14 list
the top five functions of Xen and Dom0 kernels that consumes the most CPU clocks and causes most L3
cache misses.

 10

Performance Counter Percentage for Xen Kernel

CPU_CLK_UNHALTED 4.9
INST_RETIRED 6.1

LLC_MISSES 11.6
Table 10. Scenatio I: Percentage of performance counter values for Xen kernel

Symbol Name

Percentage of CPU
Clocks

 Symbol Name
Percentage of L3 cache

misses
_spin_lock 6.5 set_status 12.2

page_get_owner_and_reference 4.4 evtchn_set_pending 12.2
flush_area_local 3.8 memcpy 11

_set_status 3.5 _put_page_type 10.4
csched_schedule 3.3 page_get_owner_and_reference 8.7

Table 11. Scenario I: Percentage of
CPU_CLK_UNHALTED counter values for top five

functions in Xen kernel

 Table 12. Scenario I: Percentage of
LLC_MISSES counter values for top five functions

in Xen kernel

Symbol Name
Percentage of CPU

Clocks
 Symbol Name

Percentage of L3 cache
misses

hypercall_page 4.1 skb_copy_bits 13.7
kmem_cache_zalloc 3.9 kmem_cache_zalloc 5.6

nf_iterate 3.8 spin_lock_irqsave 4.8
evtchn_do_upcall 3.6 netif_rx 4.5

_copy_from_user_ll 2.9 evt_chn_do_upcall 4
Table 13. Scenario I: Percentage of

CPU_CLK_UNHALTED counter values for top five
functions in Dom0 kernel

 Table 14. Scenario I: Percentage of
LLC_MISSES counter values for top five functions

in Dom0 kernel

We observe that the most CPU consuming and the highest cache miss functions of Xen kernel relates

to the scheduling of domains by Xen. For instance, _spin_lock function implements the spinlock mutual
exclusion mechanism to schedule virtual CPUs on physical CPUs, page_get_owner_and_reference func-
tion gets domain which is the owner of a particular memory page, and set_status function set the status
of a particular domain. The functions of Dom0 kernel are related to the processing the I/O of DomUs by
Dom0. For instance, skb_copy_bits copies data from socket buffer to kernel buffer or _copy_from_user_ll
copies data from user-mode memory pages to kernel mode memory pages.

In conclusion, the major sources of performance degradation of a Web application in Xen environ-
ment relates to more CPU clocks that consumed by processes, more instructions executed by CPU, and
most importantly, more L3 cache misses that occurred at the system in this environment; moreover, the
most percentage of CPU clocks and L3 cache misses in Xen and Dom0 kernels are associated with the
functions that schedule the domains on physical CPUs and perform the I/O operations of DomUs.

4.2 Scenario II: The effect of increasing CPU cores

In this section, we evaluate the impact of increasing CPU cores on the performance of a single Web ap-
plication in Xen environment. Fig. 12 and Fig. 13 show the throughput and response time of the Web
application for search by tag functionality in dual core and quad core configurations of Xen environ-
ment, respectively. As we can see, the throughput is equal in two configurations but the response time
in quad core configuration is almost 11 percent lower compared to dual core configuration. This indica-
tes that increasing CPU cores in Xen environment has no effect on the throughput of the Web applicati-
on but it decreases its response time.

Fig. 14 and Fig. 15 illustrate the disk and CPU utilizations of the system for dual core and quad core
configurations, respectively. Both configurations have the same disk utilization as we expect. However,
the CPU utilization in quad core configuration is approximately half of that in dual core configuration.
This is because the degree of concurrency in quad core configuration is higher than that in dual core
configuration. This allows Xen to schedule the domains on more physical CPU cores concurrently and
leads to lower CPU utilization per core.

 11

Fig. 12. Scenario II: Throughput for tag by search func-

tionality
Fig. 13. Scenario II: Response time for tag by search

functionality

Fig. 14. Scenario II: Disk utilization Fig. 15. Scenario II: CPU utilization

Now, we evaluate the possible causes of response time reduction in quad core configuration in more
detail by comparing the performance event counter values of two configurations. Fig. 16 and Fig. 17
denote the aggregate CPU_CLK_UNHALTED and INST_RETIRED performance counter values for
these configurations. As we can observe, the number of CPU clocks consumed and the number of in-
structions executed per CPU core is lower in quad core configuration. This is in agreement with the
lower CPU utilization of this configuration from Fig. 15.

Fig. 18 shows the aggregate count of LLC_MISSES performance counter value for two configurations.
As the figure illustrates, quad core configuration leads to less L3 cache misses compared to dual core
configuration. This is due the fact that the number of domains is less than the number of physical cores
in quad core configuration. Therefore, Xen can schedule and run any domain on physical cores without
needing to suspend the other domains. This leads to less context switches, and as a result, less L3 cache
misses. Unlike quad core configuration, in dual core configuration, the number of domains is more com-
pared to the number of physical cores. Consequently, Xen can run only two domains concurrently and it
must suspend one of them if it requires to run another domain. This causes much more context switches
and L3 cache misses.

In summary, increasing the number of physical cores in Xen environment decreases the response ti-
me of the Web application because it allows Xen to run domains more concurrently, which leads to less
CPU clocks consumed per core, and most importantly, less L3 cache misses.

 12

Fig. 16. Scenario II: Aggregate count of

CPU_CLK_UNHALTED event Fig. 17. Scenario II: Aggregate count of
INST_RETIRED event

Fig. 18. Scenario II: Aggregate count of LLC_MISSES event

4.3 Scenario III: Performance profiling of multiple consolidated Web applications

In this section, we assess the performance of multiple consolidated Web applications in Xen environ-
ment. Here, not only Xen but also the functionality of the domains running other Web applications can
have an impact on the performance of a particular Web application. Fig. 19 compares the throughput of
the Web application in Xen unconsolidated environment with the throughput of the Web applications in
Xen consolidated environment for tag by search functionality. As we can see, there is very little differ-
ence between the throughput of Web applications. Fig. 20 compares the response time of the Web appli-
cations in these two environments. As the figure shows, the response time of consolidated Web applica-
tions is much higher than the response time of unconsolidated Web application. For 250 concurrent
users, the average response time of Web applications in consolidated environment is almost two and a
half times of that in unconsolidated environment.

Fig. 21 illustrates the disk utilization of the system for two environments. We expected that the disk
utilization in consolidated environment would be almost four times of that in unconsolidated one becau-
se we quadrupled the number of concurrent Web applications in consolidated environment. However, as
the figure denotes, the disk utilization is much more higher in consolidated environment. For 250 con-
current users, it is approximately eight times higher compared to the unconsolidated environment. This
indicates that one of the causes of higher response time in Xen consolidated environment is the higher
disk utilization of this environment. Fig. 22 compares the CPU utilization of two environments. The
CPU utilization in consolidated environment is approximately four times of that in unconsolidated en-
vironment as expected.

 13

Fig. 19. Scenario III: Throughput for tag by search

functionality
Fig. 20. Scenario III: Response time for tag by search

functionality

Fig. 21. Scenario III: Disk Utilization Fig. 22. Scenario III: CPU Utilization

 Fig. 23 and Fig. 24 illustrate the aggregate CPU_CLK_UNHALTED and INST_RETIRED perfor-
mance counter values for two environments, respectively. The value of both counters in consolidated en-
vironment is almost four times of that in unconsolidated one. This is in consistent with the results of
CPU utilization from Fig. 22.

Fig. 25 shows the LLC_MISSES performance counter value for two environments. As the figure il-
lustrates, the number of L3 cache misses is much more higher in consolidated environment. For 250
concurrent users, the L3 cache misses in consolidated environment is almost eighteen times of that in
unconsolidated one. This denotes that another cause of higher response time in consolidated environ-
ment is very high L3 cache misses in this environment. The higher cache misses in consolidated en-
vironment comes back to the fact that the number of running domains is more than the number of phy-
sical cores (nine domains vs. four physical cores) in this environment. This makes Xen suspend some
running domains in order to run the other domains and leads to more context switching, and conse-
quently, more L3 cache misses. This results are consistent with the results of disk utilization from Fig.
21 because more disk utilization means more memory accesses and more L3 cache misses.

Table 15 lists the percentage of performance event counter values for Xen kernel. As the table shows,
about five percent of counter values relates to Xen kernel. Now, we look at the functions that have the
most proportions of the performance event counter values in Xen and Dom0 kernel. Tables 16 through
19 list the top five functions of Xen and Dom0 kernel that consumed most CPU clocks and caused the
most cache misses. According to the Table 16, function spin_lock that implements the spinlock mutual
exclusion mechanism to schedule virtual cores on physical cores has consumed the most CPU clocks in
Xen kernel. In addition, as the Table 17 shows, functions page_get_owner_and_reference, memcpy, and
put_page_type caused totally about thirty-five percent of L3 cache misses in Xen kernel. These functions
are engaged to handle the I/O of frontend and backend domains. Moreover, as we can see in Table 19,

 14

function skb_copy_bits leads to almost twenty percent of L3 cache misses in Dom0 kernel. This function
also is engaged to process the I/O operations of frontend and backend domains.

Fig. 23. Scenario III: Aggregate count of

CPU_CLK_UNHALTED event
Fig. 24. Scenario III: Aggregate count of

INST_RETIRED event

Fig. 25. Scenario III: Aggregate count of LLC_MISSES event

Performance Counter Percentage for Xen Kernel

CPU_CLK_UNHALTED 4.8
INST_RETIRED 4.6

LLC_MISSES 5.8
Table 15. Scenatio III: Percentage of performance counter values

for Xen kernel

Symbol Name

Percentage of CPU
Clocks

 Symbol Name
Percentage of L3 cache

misses
spin_lock 7.4 page_get_owner_and_reference 13.2

page_get_owner_and_reference 6.3 memcpy 11.4
gnttab_map_grant_ref 3.9 put_page_type 10.7

csched_schedule 3.3 set_status 8.9
flush_area_local 3.1 evtchn_set_pending 5.5

Table 16. Scenario III: Percentage of
CPU_CLK_UNHALTED counter values for top five

functions in Xen kernel

 Table 17. Scenario III: Percentage of
LLC_MISSES counter values for top five functions

in Xen kernel

 15

Symbol Name
Percentage of CPU

Clocks
 Symbol Name

Percentage of L3 cache
misses

hypercall_page 5.5 skb_copy_bits 19.1
evt_chn_do_upcall 5.4 copy_skb_header 7.4

kmem_cache_zalloc 4.8 put_page 6.5
nf_iterate 4.4 spin_lock_irqsave 6.1

spin_lock_irqsave 3.9 swiotlb_unmap_single 5.8
Table 18. Scenario III: Percentage of

CPU_CLK_UNHALTED counter values for top five
functions in Dom0 kernel

 Table 19. Scenario III: Percentage of
LLC_MISSES counter values for top five functions

in Dom0 kernel

In summary, when multiple Web applications are consolidated in Xen environment, not only high

CPU utilization but also high disk utilization of the system cause the performance degradation of the
Web applications. In addition, detailed analysis of the performance counter values indicates that the
number of L3 cache misses is much more higher in consolidated environment compared to unconsoli-
dated one. It is another cause of performance degradation in Xen consolidated environment. Moreover,
the functions which are responsible for handling the I/O operations of frontend and backend domains
cause the most L3 cache misses in Xen and Dom0 kernels.

5 Conclusion

In this paper, we provided in-depth performance analysis and profiling of the Web application(s) in Xen
environment to recognize the major sources of performance degradation in Xen. For different scenarios,
we first measured the throughput and response time of the web application(s) to illustrate the perfor-
mance degradation. Meanwhile, we monitored the CPU and disk utilizations of the system as well as
the hardware performance events occurred at the system.

We illustrated that the main causes of performance degradation of a single Web application in Xen
compared to native environment are the higher CPU clocks consumed by processes, higher instructions
executed by CPU, and most importantly, higher L3 cache misses in Xen environment. Furthermore, the
most proportion of the performance event counter values in Xen and Dom0 kernel relates to the func-
tions that schedule the domains and process the I/O operations of the frontend and backend domains. In
addition, we indicated that by increasing the physical CPU cores of the system, performance degradati-
on decreases in Xen environment because it leads to higher concurrency degree and less L3 cache mis-
ses. We also showed that in Xen consolidated environment, the performance of the Web applications
degrades dramatically because not only CPU utilization but also disk utilization considerably increases
in this environment. Moreover, very high number of L3 cache misses is another cause of performance
degradation in this environment. Most of these cache misses in Xen and Dom0 kernel are associated
with the functions that handle the I/O operation of the backend and frontend domains.

As a next step, we intend to evaluate and profile the performance of Web application in other virtua-
lized environments such as those based on VMWare, KVM, or OpenVZ and compare the results. Moreo-
ver, we can repeat our experiments for other configurations including pinning virtual cores to physical
cores or assigning more virtual cores to the backend and frontend domains and assess the effect of them
on the performance of Web application. Most importantly, we identified the functions of Xen and Dom0
kernels which have the most contribution to the performance degradation of Web application. We plan
to optimize some of these functions and make Xen environment more appropriate for running Web ap-
plications.

References

1. Barham P, Dragovic B, Fraser K, et al. (2003) Xen and the art of virtualization. ACM SIGOPS Oper
Syst Rev 37:164–177. DOI: 10.1145/1165389.945462.

2. VMware. Available online at: http://www.vmware.com/, (accessed on 08.20.2017).
3. Kivity A, Kamay Y, Laor D, et al. kvm: the Linux Virtual Machine Monitor, 2007.
4. Kim S, Eom H, Yeom H (2013) Virtual machine consolidation based on interference modeling. J Su-

percomput 66:1489–1506. DOI: 10.1007/s11227-013-0939-2.

 16

5. Benevenuto F, Fernandes C, Santos M, et al. (2006) Performance models for virtualized applications.
In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics).
pp 427–439

6. Chiang RC, Huang HH (2011) TRACON: Interference-aware scheduling for data-intensive applica-
tions in virtualized environments. Int Conf of High Perform Comput Networking, Storage Anal (SC),
2011, pp 1–12.

7. Koh Y, Knauerhase R, Brett P, et al. (2007) An Analysis of Performance Interference Effects in Vir-
tual Environments. Perform Anal Syst Software, 2007 ISPASS 2007 IEEE Int Symp 200–209. DOI:
10.1109/ISPASS.2007.363750.

8. Kundu S, Rangaswami R, Dutta K, Zhao M (2010) Application performance modeling in a virtualized
environment. High Perform Comput Archit (HPCA), 2010 IEEE 16th Int Symp 1–10. DOI:
10.1109/HPCA.2010.5463058.

9. Galán F, Fernández D, Fuertes W, et al. (2009) Scenario-based virtual network infrastructure man-
agement in research and educational testbeds with VNUML. Ann Telecommun - Ann des télécom-
munications 64:305–323. DOI: 10.1007/s12243-009-0104-3.

10. Che J, Shi C, Yu Y, Lin W (2010) A Synthetical Performance Evaluation of OpenVZ, Xen and KVM.
In: Proc. 2010 IEEE Asia-Pacific Serv. Comput. Conf. IEEE Computer Society, Washington, DC,
USA, pp 587–594. DOI: 10.1109/APSCC.2010.83.

11. Tikotekar A, Vallée G, Naughton T, et al. (2009) An Analysis of HPC Benchmarks in Virtual Ma-
chine Environments. In: César E, Alexander M, Streit A, et al. (eds) Euro-Par 2008 Work. - Parallel
Process. SE - 8. Springer Berlin Heidelberg, pp 63–71. DOI: 10.1007/978-3-642-00955-6_8.

12. NasiriGerdeh, R., Hosseini, N., RahimiZadeh, K., & AnaLoui, M. (2015, October). Performance
analysis of Web application in Xen-based virtualized environment. In Computer and Knowledge
Engineering (ICCKE), 2015 5th International Conference on (pp. 256-261). IEEE.
DOI: 10.1109/ICCKE.2015.7365837

13. Cherkasova L, Gardner R (2005) Measuring CPU Overhead for I/O Processing in the Xen Virtual
Machine Monitor. In: Proc. Annu. Conf. USENIX Annu. Tech. Conf. USENIX Association, Berkeley,
CA, USA, p 24.

14. Chung, H., & Nah, Y. (2017, March). Performance Comparison of Distributed Processing of Large
Volume of Data on Top of Xen and Docker-Based Virtual Clusters. In International Conference on
Database Systems for Advanced Applications (pp. 103-113). Springer, Cham. DOI: 10.1007/978-3-
319-55753-3_7

15. Voron, G., Thomas, G., Quéma, V., & Sens, P. (2017, April). An interface to implement NUMA poli-
cies in the Xen hypervisor. In EuroSys (pp. 453-467)

16. Patel, M., Chaudhary, S., & Garg, S. (2016, April). Performance modeling of skip models for VM
migration using Xen. In Computing, Communication and Automation (ICCCA), 2016 International
Conference on (pp. 1256-1261). IEEE. DOI: 10.1109/CCAA.2016.7813909

17. Kaneko, Y., Ito, T., & Hara, T. (2016, September). A measurement study on virtualization overhead
for applications of industrial automation systems. In Emerging Technologies and Factory Automa-
tion (ETFA), 2016 IEEE 21st International Conference on (pp. 1-8). IEEE.
DOI: 10.1109/ETFA.2016.7733507

18. Menon A, Santos JR, Turner Y, et al. (2005) Diagnosing Performance Overheads in the Xen Virtual
Machine Environment. In: Proc. 1st ACM/USENIX Int. Conf. Virtual Exec. Environ. ACM, New
York, NY, USA, pp 13–23. DOI: 10.1145/1064979.1064984.

19. Oprofile: A system profiler for Linux, http://oprofile.sourceforge.net/, (accessed on 08.20.2017).
20. Menon A, Cox AL, Zwaenepoel W (2006) Optimizing Network Virtualization in Xen. In: Proc. Annu.

Conf. USENIX ’06 Annu. Tech. Conf. USENIX Association, Berkeley, CA, USA, p 2.
21. Du J, Sehrawat N, Zwaenepoel W (2011) Performance Profiling of Virtual Machines. SIGPLAN Not

46:3–14. DOI: 10.1145/2007477.1952686.
22. Bellard F (2005) QEMU, a Fast and Portable Dynamic Translator. In: Proc. Annu. Conf. USENIX

Annu. Tech. Conf. USENIX Association, Berkeley, CA, USA, p 41.
23. Padala P, Zhu X, Wang Z, et al. (2007) Performance evaluation of virtualization technologies for

server consolidation, HP Labs Tec. Report.
24. OpenVZ: http://openvz.org/, (accessed on 08.20.2017).
25. Jang J-W, Seo E, Jo H, Kim J-S (2012) A low-overhead networking mechanism for virtualized high-

performance computing systems. J Supercomput 59:443–468. DOI: 10.1007/s11227-010-0444-9.
26. Pu X, Liu L, Mei Y, et al. (2013) Who is your neighbor: Net I/O performance interference in virtual-

ized clouds. IEEE Trans Serv Comput 6:314–329. DOI: 10.1109/TSC.2012.2.

 17

27. Mei Y, Liu L, Pu X, et al. (2013) Performance Analysis of Network I/O Workloads in Virtualized Da-
ta Centers. Serv Comput IEEE Trans 6:48–63. DOI: 10.1109/TSC.2011.36.

28. Zhang, W., Shi, Y., Zheng, Y., Liu, L., & Cui, L. (2017, January). Resource and performance predic-
tion at high utilization for N-Tier cloud-based service systems. In Proceedings of the Australasian
Computer Science Week Multiconference (p. 43). ACM. DIO: 10.1145/3014812.3014857

29. Li, Z., Zhang, B., Ren, S., Liu, Y., Qin, Z., Goh, R. S. M., & Gurusamy, M. (2017, May). Performance
Modelling and Cost Effective Execution for Distributed Graph Processing on Configurable VMs.
In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (pp. 74-83). IEEE Press. DIO: 10.1109/CCGRID.2017.85

30. Patel, M., Chaudhary, S., & Garg, S. (2016, April). Performance modeling of skip models for VM
migration using Xen. In Computing, Communication and Automation (ICCCA), 2016 International
Conference on (pp. 1256-1261). IEEE. DIO: 10.1109/CCAA.2016.7813909

31. Dehsangi, M., Asyabi, E., Sharifi, M., & Azhari, S. V. (2015, August). cCluster: a core clustering
mechanism for workload-aware virtual machine scheduling. In Future Internet of Things and Cloud
(FiCloud), 2015 3rd International Conference on (pp. 248-255). IEEE. DOI: 10.1109/FiCloud.2015.56

32. Menascé DA (2005) Virtualization: Concepts, Applications, and Performance Modeling. Proc Int
Conf Comput Meas Group’s. DOI: 10.1.1.61.6680.

33. Hong C-H, Kim B-J, Kim Y-P, et al. (2014) Performance Prediction and Evaluation of Parallel Ap-
plications in KVM, Xen, and VMware. In: Silva F, Dutra I, Santos Costa V (eds) Euro-Par 2014 Par-
allel Process. SE-9. Springer International Publishing, pp 99–110. DOI: 10.1007/978-3-319-09873-
9_9.

34. RahimiZadeh K, Nasiri Gerde R, AnaLoui M, Kabiri P (2015) Performance evaluation of Web server workloads in
Xen-based virtualized computer system: analytical modeling and experimental validation. Concurr Comput Pract
Exp. DOI: 10.1002/cpe.3454.

35. Sun Microsystems: Project Faban, http://faban.sunsource.net, (accessed on 08.20.2017).
36. Sobel W, Subramanyam S, Sucharitakul A, et al. (2008) Cloudstone: Multi-platform, multi-language benchmark

and measurement tools for web 2.0. Proc of the 1st Workshop on Cloud Computing.
37. Apache Software Foundation: Olio, http://incubator.apache.org/olio, (accessed on 08.20.2017).

