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Abstract

This article studies the convergence rate of the posterior for Bayesian low rank supervised tensor modeling with
multiway shrinkage priors. Multiway shrinkage priors constitute a new class of shrinkage prior distributions for
tensor parameters in Bayesian low rank supervised tensor modeling to regress a scalar response on a tensor predictor
with the primary aim to identify cells in the tensor predictor which are predictive of the scalar response. This novel and
computationally efficient framework stems from pressing needs in many applications, including functional magnetic
resonance imaging (fMRI) and diffusion tensor imaging (DTI). This article shows that the convergence rate is nearly
optimal in terms of in-sample predictive accuracy of the Bayesian supervised low rank tensor model with a multiway
shrinkage prior distribution when the number of observations grows. The conditions under which this nearly optimal
convergence rate is achieved are seen to be very mild. More importantly, the rate is achieved for an easily computable
method, even when the true CP/PARAFAC rank of the tensor coefficient corresponding to the tensor predictor is
unknown.

Keywords: Multiway shrinkage prior, Posterior convergence rate, Parafac decomposition, Supervised tensor
modeling

1. Introduction

Of late we routinely encounter applications involving predictors having a multidimensional array or tensor struc-
ture. For example, in neuroimaging applications, the predictor is often in the form of 3D brain images of an individual
consisting of 96×96×96 voxels. Another noteworthy application of tensor predictors arises from brain connectomics,
where matrix predictors quantifying connections between different brain regions are used to predict an individual’s
IQ. The most naive approach assesses association between a tensor predictor and a scalar response by fitting cell by
cell independent regression models [11]. Although this approach is widely used for its simplicity, it misses out on
important information regarding the way in which multiple cells in a tensor predictor jointly impact a response.

A more sophisticated approach vectorizes the tensor predictor and uses existing high-dimensional regression tech-
niques with the scalar response and the vectorized tensor. Such vectorization fails to capture spatial dependence
between tensor cells and suffers in terms of learning the tensor coefficient for small samples. To give an example, in
the context of fMRI applications with 963 ≈ 1 million image predictors, state-of-the-art Bayesian high-dimensional
regression [1, 3] proposes vectorizing the tensor predictor into a vector of dimension 963 before regressing it on the
scalar response. Gibbs sampling implementation of this high-dimensional regression requires inverting a 963 × 963

matrix, which is infeasible. From the inferential point of view, Bayesian high-dimensional regressions are deemed to
be statistically inefficient when the number of predictors exceeds the sample size [2]. In the context of fMRI applica-
tions with 963 image predictors, this condition demands that consistent estimation of the posterior by vectorizing the
tensor predictor is only possible if the sample size exceeds 963, an impractical situation in biomedical applications.
There is an alternative literature based on functional regression that treats the vectorized tensor as the discretization
of a functional predictor [5, 15, 16], though it is not accompanied by proper theoretical guarantee.

It is noteworthy that there is a considerable body of literature both in the theory and application in unsupervised
“low rank” tensor modeling on decomposing a tensor into a few factors and identifying the rate at which the distance
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between true and estimated tensor decays. Here “rank” refers to the PARAFAC or CP-rank [9]. A naive approach
to low-rank decomposition of a tensor requires complicated non-convex optimization [9]. Several proposals have
been made in the literature to alleviate the computational difficulties caused by the non-convex optimization [6, 12,
18], though they achieve computational efficiency at the expense of a “suboptimal” learning rate. There is a growing
literature on Bayesian unsupervised low rank tensor models [4, 8, 20] that constructs a generative model of the tensor
decomposition and places a prior probability on low rank decomposed components of the tensor. Though these
methods are tailored to model efficiently the low rank decomposition of massive tensors, only a few of them [20] are
supported by theoretical results.

Our problem is fundamentally different from estimating unsupervised low rank decomposition of the tensor ob-
jects. Rather, we focus on theoretically investigating computationally efficient supervised Bayesian low rank tensor
regression models. Our supervised tensor regression framework expresses a regression model in which a tensor coeffi-
cient embodies the impact of every cell of the tensor predictor in predicting the scalar response. The prior probability
considered on the tensor coefficient is the recently proposed novel Multiway-Dirichlet Generalized Double Pareto
Prior (M-DGDP) [7]. It is argued in Guhaniyogi et al. [7] that supervised Bayesian tensor modeling with the M-DGDP
prior carefully imparts shrinkage on the tensor coefficient in three different ways: at a global level, at a local level of
individual parameters, and by providing shrinkage towards low rank decomposition (in the sense of PARAFAC rank)
of the tensor coefficient. A multiway shrinkage prior thus constructed, naturally induces sparsity within and across
components in the tensor factorization of the tensor coefficient and exhibits excellent empirical performance in terms
of prediction and region selection. Moreover, the M-DGDP prior allows auto tuning of all the hyperparameters with
Markov chain Monte Carlo chains showing rapid mixing. Guhaniyogi et al. [7] provide sufficient methodological and
applied motivation behind the framework and establish results on posterior consistency for the proposed model.

The major contribution of this article is to offer a stronger theoretical result in estimating the learning rate of the
posterior density of the tensor coefficient under mild assumptions. We relax the key assumption in Guhaniyogi et
al. [7] that both the tensor predictor coefficient generating the data (also referred to as the true tensor coefficient)
and the fitted tensor coefficient have rank R PARAFAC decompositions. In practice, the rank of the true tensor
coefficient is never known. Instead, the current article is based upon a more realistic assumption that the rank of the
fitted tensor coefficients is merely greater than the rank of the true tensor coefficients. Additionally, Guhaniyogi et
al. [7] concentrate exclusively on proving consistency of the posterior distribution, while the present article carefully
devises techniques to derive the rate at which the posterior distribution of the tensor coefficient converges to the
truth. Roughly speaking, we provide a “near optimal” learning rate of the order of n−1/2 up to a ln(n) factor for
the posterior distribution. As a corollary, the Bayes estimate is also shown to have a near optimal convergence rate.
These results are considerably stronger than those of Guhaniyogi et al. [7] and also require different proof techniques.
Most importantly, to the best of our knowledge, the rate of convergence for coefficients under Bayesian shrinkage
priors is not well developed even in the context of ordinary high-dimensional regression. This article provides a
posterior concentration rate for shrinkage priors in a tensor regression scenario which is arguably more challenging
than ordinary high-dimensional regression with scalar predictors.

Recently, theoretical results on supervised tensor modeling in the frequentist literature [21] have determined the
rank of tensor beforehand and therefore, have a different setting from ours. To the best of our knowledge, there
is only one prior work [17] that presents a near optimal convergence rate for the posterior distribution of Bayesian
supervised tensor modeling with low rank structure on the tensor coefficient. The prior probability considered in
Suzuki [17] is the most basic one, which places Gaussian priors on decomposed components of the tensor coefficient
and an exponentially decaying prior on the rank. While this prior has optimal theoretical properties, it faces inevitable
computational and mixing issues when tensor dimensions are sufficiently large. In contrast, the M-DGDP prior
provides a practically useful, computationally efficient posterior with optimal convergence rate.

2. Problem setting

2.1. Notations and definitions

Let β1 = (β11, . . . , β1p1 )> and β2 = (β21, . . . , β2p2 )> be p1 × 1 and p2 × 1 vectors, respectively. The vector outer
product β1◦β2 is a p1×p2 array with (i, j)th entry β1i β2 j. A D-way outer product between vectors β j = (β j1, . . . , β jp j )

>,
j ∈ {1, . . . ,D}, is a p1 × · · · × pD multi-dimensional array denoted by B = β1 ◦ · · · ◦ βD with entries (B)i1,...,iD =
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β1i1 × · · · × βDiD . Define a vec(B) operator as stacking elements of this D-way tensor into a column vector of length
p1 × · · · × pD. From the definition of outer products, it is easy to see that vec(β1 ◦ · · · ◦ βD) = βD ⊗ · · · ⊗ β1. A tensor
B ∈ ◦D

j=1R
p j is known as a D-way tensor.

2.2. Tensor regression
Consider data (y1, X1), . . . , (yn, Xn) where, for each i ∈ {1, . . . , n}, yi is the scalar response and Xi is the tensor pre-

dictor in Rp1×···×pD . It is assumed that the scalar response yi is generated from the tensor predictor Xi = (xi,i1,...,iD )p1,...,pD
i1,...,iD=1

following the model

yi = 〈Xi, B0
n〉 + εi, εi ∼ N(0, σ2),

where B0
n = (b0

i1,...,iD,n
)p1,...,pD
i1,...,iD=1 is the true and unknown tensor coefficient in Rp1×···×pD . The inner product between two

tensors B0
n and Xi is defined by 〈Xi, B0

n〉 =
∑

i1,...,iD
xi,i1,...,iD b0

i1,...,iD,n
. The errors ε1, . . . , εn form a random sample from a

N(0, σ2) distribution with mean 0 and variance σ2.
This article assumes a “low rank” decomposition on the true tensor coefficient B0

n. Here “rank” refers to the rank
of the CP or PARAFAC-decomposition. We say that B0

n follows a rank-R0 PARAFAC decomposition if B0
n can be

expressed as

B0
n =

R0∑
r=1

β0(r)
1,n ◦ · · · ◦ β

0(r)
D,n ,

for some β0(r)
j,n ∈ R

p j , j ∈ {1, . . . ,D} and r ∈ {1, . . . ,R0}, where R0 is the minimum number to yield such decomposition.
The set

{β0(r)
j,n ∈ R

p j : 1 ≤ j ≤ D, 1 ≤ r ≤ R0}

is known as the set of tensor margins of B0
n. Let B0

j,n = [β0(1)
j,n : · · · : β0(R0)

j,n ] be a p j × R0 matrix.
A rank R0 PARAFAC decomposition of tensor B0

n is also presented as B0
n = [[B0

1,n, . . . , B
0
D,n]]. On a similar note,

we fit a tensor regression model to the data (y1, X1), . . . , (yn, Xn) as follows

yi = 〈Xi, Bn〉 + εi, εi ∼ N(0, σ2) (1)

where Bn is the fitted tensor coefficient in Rp1×···×pD . Similar to the true tensor coefficient, the fitted tensor coefficient
Bn is assumed to follow a rank-R PARAFAC decomposition with Bn = [[B1,n, . . . , BD,n]] and B j,n = [β(1)

j,n : · · · : β(R)
j,n ], a

p j × R matrix. In what follows, we assume for the sake of simplicity that σ2 is known, and more specifically σ2 = 1
without loss of generality. Finally, assume that for all j ∈ {1, . . . ,D} and i j ∈ {1, . . . , p j},

β̃ ji j,n = (β(1)
ji j,n
, . . . , β(R)

ji j,n
)>, β̃0

ji j,n = (β0(1)
ji j,n
, . . . , β0(R0)

ji j,n
)>.

Evidently, the rank of the true tensor (R0) and the fitted tensor (R) are assumed to be different.

Example 1 (fMRI studies). In neuroscience, often the interest lies in predicting a phenotypic characteristic of an in-
dividual based on the functional magnetic resonance imaging (fMRI) obtained from brain scans. fMRI measurements
for each individual come in the form of a 3D tensor composed of a large number of cubic cells, known as brain voxels.
Typically, a full scale fMRI measurement generates a tensor image consisting of p1 × p2 × p3 voxels. This acts as a
tensor predictor

Xi = ((xi,i1,i2,i3 ))p1,p2,p3
i1,i2,i3=1

for the ith individual with xi,i1,i2,i3 corresponding to the fMRI intensity in the (i1, i2, i3)th voxel. The true and unknown
tensor coefficient B0

n signifies the weight of each voxel in predicting the phenotypic characteristic. Please refer to
Guhaniyogi et al. [7], who investigated tensor regression with fMRI data in detail with the proposed model and prior
distributions.

Example 2 (DTI studies). In many neuroscience applications, it is of common interest to build a prediction model
of IQ on the brain connectivity. To quantify brain connectivity, important regions of interest (ROI) in the brain
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are identified and the number of neurons connecting different ROIs is measured from the brain white matter using
diffusion tensor imaging (DTI). Let Xi be a matrix of dimension p × p, where p is the number of ROIs. The (t, s)th
entry in Xi, denoted by xi,t,s, is given by the number of neurons connecting ROI s to ROI t. The goal is to predict
IQ (a scalar response) based on the p × p connectivity matrix. Here the true tensor B0

n quantifies the effect of neuron
connectivity between two ROIs in predicting the IQ. For more details, please see Guhaniyogi et al. [7], who present a
detailed analysis of the tensor regression model with the M-DGDP prior on the tensor coefficients for the DTI data.

The goal in these examples is to estimate the unknown tensor coefficient B0
n and to facilitate the accurate prediction

of y based on X. Note that estimation of a higher-dimensional tensor B0
n in Example 1 is much more complex than

estimating a matrix. Zhou et al. [21] proposed a theoretically optimal frequentist procedure to estimate B0
n under the

assumption that R0 is known.
Instead of convex regularized point estimation, this article provides a Bayesian procedure to estimate the posterior

distribution of Bn. It will be shown in due course that the posterior predictive loss (defined in Section 2.4) of our
procedure decays at the “near” optimal rate to 0 under weak assumptions. Moreover, the posterior is easily computable
with standard Markov chain Monte Carlo updates for all the parameters.

2.3. Prior and posterior distributions of Bn

This section discusses the choice of prior and the induced posterior distribution on Bn. Note that there has been
a growing interest, in high-dimensional regression with vector predictors, in choosing priors on predictor coefficients
which shrink small coefficients towards zero while maintaining minimum shrinkage for large coefficients. Many of
these priors design shrinkage through a global parameter and a set of local parameters. The global parameter imposes
shrinkage globally while local parameters carefully balance shrinkage for large and small coefficients [14].

The literature on the vector shrinkage priors provides an excellent starting point for studying multiway shrinkage
prior on tensor coefficient Bn, though the latter presents a lot more hurdles. Assuming that Bn admits a rank-R
PARAFAC decomposition, proposing a prior on Bn is equivalent to specifying priors over tensor margins β(r)

j,n. Given
that every cell coefficient in Bn is a nonlinear function of the tensor margins, care should be taken while imposing prior
shrinkage on them. To this end, Guhaniyogi et al. [7] characterize multiple restrictions on putting prior distributions
on β(r)

j,n’s to facilitate desirable shrinkage for the posterior distribution of bi1,...,iD,n and propose one multiway shrinkage
prior satisfying all the restrictions.

This article provides a theoretical analysis of the proposed multiway shrinkage prior over Bn deemed the multiway
Dirichlet generalized double Pareto (M-DGDP) prior [7]. The M-DGDP prior induces shrinkage across components
in an exchangeable way, setting τr = φrτ as the global scale for component r ∈ {1, . . . ,R}, with τ ∼ GA(aτ, bτ) and
Φ = (φ1, . . . , φR) ∼ DIR(α1, . . . , αR). The hierarchical margin-level prior is given by

β(r)
j,n ∼ N

[
0, (φrτ)W jr

]
, w jr,k ∼ E(λ2

jr/2), λ jr ∼ G(aλ, bλ). (2)

Additional flexibility in estimating {β(r)
j,n : 1 ≤ j ≤ D} is accommodated by modeling heterogeneity within margins

via element-specific scaling w jr,k. Above, W jr = diag(w jr,1, . . . ,w jr,p j ) are local (margin and component-specific)
scale parameters for each margin j ∈ {1, . . . ,D} and every component r ∈ {1, . . . ,R}. A common rate parameter λ jr

encourages sharing of information between the marginal elements. Collapsing over the element-specific scales, one
has, for all k ∈ {1, . . . , p j},

β(r)
j,k,n | λ jr, φr, τ

iid
∼ DE(λ jr/

√
φrτ).

Prior (2) leads to a generalized double pareto (GDP) shrinkage prior having the form of an adaptive Lasso penalty on
the individual margin coefficients.

Let the likelihood of (1) be denoted by f (y1:n | Bn, X1:n) so that

f (y1:n | Bn, X1:n) ∝ exp
{
−

n∑
i=1

(yi − 〈Xi, Bn〉)2/2
}
.

Denoting the prior distribution of Bn by π(Bn), the posterior distribution of Bn is given by

Π(Bn ∈ Bn | y1:n, X1:n) =

∫
Bn

f (y1:n | Bn, X1:n)π(Bn)dBn∫
f (y1:n | Bn, X1:n)π(Bn)dBn

,
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where Bn is a subset of Rp1×···×pD . It is easy to see that the conditional posteriors for all parameters are in closed form.
Therefore, Gibbs sampling [7] can readily be employed to estimate the marginal posterior distribution of Bn.

2.4. Convergence rate analysis
This section presents a convergence rate analysis for the posterior distribution of Bn. We first start by defining a

few quantities. Let the Lp, L∞ and empirical distance between two tensors Bn and B′n be given by

||Bn − B′n||p =

 p1,...,pD∑
i1,...,iD=1

|bi1,...,iD,n − b′i1,...,iD,n|
p

1/p

,

||Bn − B′n||∞ = max
i1,...,iD

|bi1,...,iD,n − b′i1,...,iD,n|,

||Bn − B′n||n =

1
n

n∑
i=1

〈Xi, Bn − B′n〉
2

1/2

,

respectively, where Bn = ((bi1,...,iD,n))p1,...,pD
i1,...,iD=1 and B′n = ((b′i1,...,iD,n

))p1,...,pD
i1,...,iD=1.

It is argued by van der Vaart & Van Zanten [19] that the predictive accuracy of (1) can readily be assessed by
investigating the rate of convergence with respect to n of the risk

1
n

n∑
i=1

EB0
n

∫
KL{ f (yi | Xi, Bn), f (yi | Xi, B0

n)}π(Bn | y1:n, X1:n).

The KL divergence of two normal densities f (yi | Xi, Bn) and f (yi | Xi, B0
n) with means 〈Xi, Bn〉 and 〈Xi, B0

n〉 and
variance 1 is equal to (〈Xi, Bn − B0

n〉)
2/2. Therefore, the risk reduces to

1
n

n∑
i=1

EB0
n

∫
KL{ f (yi | Xi, Bn), f (yi | Xi, B0

n)}π(Bn | y1:n, X1:n) =
1
2

EB0
n

∫
||Bn − B0

n||
2
nπ(Bn | y1:n, X1:n). (3)

If the above risk is bounded by ε2
n for some εn → 0, then by applying Jensen’s inequality one can see that the Bayes

estimator satisfies EB0
n
||E(Bn | y1:n, X1:n)−B0

n||
2
n ≤ ε

2
n . Thus the Bayes estimator converges at the same rate εn to the true

tensor coefficient B0
n. In the rest of the article we focus on obtaining εn for the supervised Bayesian tensor modeling.

One of the key quantities in proving posterior convergence rate results is the concentration of the prior distribution.
The prior concentration can be quantified by E, defined, for each δ > 0, by

E(δ) = − ln{π(Bn : ||Bn − B0
n||n < δ)}.

For the posterior to have an “optimal” rate of convergence, one expects the prior to put considerable mass around B0
n.

Again, B0
n is unknown, and so it is not desirable to have lots of prior mass around a point or a few points. Rather the

prior mass should be spread judiciously, taking into account the wide range of possible B0
n values. Lemma 1 below

presents an upper bound on the prior concentration of the M-DGDP prior.

Lemma 1. Let C−1 = Γ(Rα){Γ(α)}−R{Γ(α+aλD/2)}R{Γ(Rα+RaλD/2)}−1 exp(−bτ)b
aτ
τ bDRaλ

λ (bτ+aλRD/2)−1. Further,
assume that ∆i1,...,iD is a positive root of the equations given, for all i j ∈ {1, . . . , p j} and j ∈ {1, . . . ,D}, by

x(x + ||β̃0
2i2,n||) · · · (x + ||β̃0

DiD,n||) + ||β̃0
1i1,n||x(x + ||β̃0

2i2,n||) · · · (x + ||β̃0
DiD,n||) + · · · + x||β̃0

2i2,n|| · · · ||β̃
0
D−1iD−1,n|| − δ = 0, (4)

and ∆ = mini1,...,iD∆i1,...,iD . Then, for R > R0,

E(δ) ≤

R D∑
j=1

p j

 ln
{
(2πR)1/2/(2∆)

}
− ln(C) + R

D∑
j=1

ln
{
Γ(aλ)/Γ(aλ + p j)

}
+

D∑
j=1

R0∑
r=1

(aλ + p j) ln

bλ +

p j∑
i j=1

{(β0(r)
ji j,n

)2 + 2∆2}1/2

 + (R − R0)
D∑

j=1

(aλ + p j) ln
(
bλ + p j21/2∆

)
.

Evidently, E(δ1) ≤ E(δ2) for 0 < δ2 < δ1.
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2.5. Analysis of the in-sample predictive accuracy
This section discusses bounds on the in-sample predictive accuracy of (1). Assuming n sample points (y1, X1),

. . ., (yn, Xn) with Xi’s fixed, Theorem 2 provides the rate at which the posterior of Bn converges to the data generating
tensor coefficient B0

n under the metric (3). The proof of the theorem is given in the Appendix.

Theorem 2. Assume that (i) ||Xi||2 ≤ 1; (ii) there exists a constant M such that ||β̃0
ji j,n
||2 < M, for all i j ∈ {1, . . . , p j},

j ∈ {1, . . . ,D}, r ∈ {1, . . . ,R0}; (iii) there exists another constant L such that p j < L for all j ∈ {1, . . . ,D}; (iv)
aλ > R(p1 + · · · + pD). Under these assumptions, the in sample predictive accuracy is upper bounded by a quantity
given below

EB0
n

∫
||Bn − B0

n||
2
nπ(Bn | y1:n, X1:n) ≤ AHn/n,

where Hn = o{ln(n)d} and A are constants depending on n,D, L, aλ, bλ, aτ,M,R for any d.

By the discussion provided after Eq. (3), it is evident that Theorem 2 proposes a much stronger result than the
mere convergence rate of the posterior mean estimator. In the frequentist literature, it is usually a common practice
to assume a variant of strong convexity such as restricted strong convexity or restricted eigenvalue property [13] to
derive fast convergence rates for sparse estimators. However, Theorem 2 does not require assuming strong convexity
in the design. Similar to ours, the convergence rate result presented in Suzuki [17] also avoids assuming any strong
convexity. However, the strongest point of our analysis remains in deriving convergence rate results for an easily
implementable multiway shrinkage prior for large tensors.

3. Discussion

This article investigates the convergence rate of the posterior distribution for the supervised Bayesian low rank
tensor model proposed in Guhaniyogi et al. [7]. The convergence rate is found to be “near optimal”, is obtained
under very mild conditions and without any assumption of strong convexity. In contrast with the frequentist tensor
regression, our analysis does not assume that the true rank R0 is known. Most importantly, the bound on the predictive
accuracy is achieved for a novel multiway shrinkage prior distribution that leads to an easily computable posterior.

Several future directions of research emerge from this article. Note that this article assumes an upper bound on
the tensor dimensions. Sometimes it might be of interest to assess the rate of convergence when the dimension of
the tensor grows with the sample size. To this end, one assumes p j as a function of n, say p j,n, and investigates the
convergence rate. Similarly, one might also allow ||β̃0

ji j,n
||2 to vary slowly as a function of n and investigate the change

in the rate of convergence. Another interesting future direction constitutes extending this theoretical set up to a more
general low rank supervised tensor model with Tucker decomposition of the tensor coefficient.

Appendix

Proof of Lemma 1. First note that for all r ∈ {R0 + 1, . . . ,R},

|bi1,...,iD,n − b0
i1,...,iD,n| =

∣∣∣∣∣∣∣
R∑

r=1

β(r)
1i1,n
· · · β(r)

DiD,n
−

R∑
r=1

β0(r)
1i1,n
· · · β0(r)

DiD,n

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
R∑

r=1

(β(r)
1i1,n
− β0(r)

1i1,n
)
∏
j,1

β(r)
ji j,n

+ · · · + (β(r)
DiD,n
− β0(r)

DiD,n
)
∏
j,D

β0(r)
ji j,n


∣∣∣∣∣∣∣∣

≤||β̃1i1,n − β̃
0
1i1,n||2

∏
j,1

||β̃ ji j,n||2 + · · · + ||β̃DiD,n − β̃
0
DiD,n||2

∏
j,D

||β̃0
ji j,n||2,

where β0(r)
ji j,n

= 0. Note that (4) can be written as gi1,...,iD (x) = 0, where

gi1,...,iD (x) = aD,i1,...,iD xD + · · · + a1,i1,...,iD x − a0,i1,...,iD
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and the ai,i1,...,iD ’s are suitably chosen to match the coefficient of xi in (4). By Cauchy’s bound on the roots of polyno-
mials, Eq. (4) has only one positive root, namely the real ∆i1,...,iD that satisfies ∆i1,...,iD ≤ 1 + maxi=0,...,D|ai,i1,...,iD |, for all
i1, . . . , iD. From (4), the fact that ||β̃ ji j,n − β̃

0
ji j,n
|| < ∆ for all i j ∈ {1, . . . , p j} and j ∈ {1, . . . ,D} implies

|bi1,...,iD,n − b0
i1,...,iD,n| ≤ gi1,...,iD (∆) + δ ≤ gi1,...,iD (∆i1,...,iD ) + δ = δ,

which leads to ||Bn − B0
n||∞ < δ. Hence

Π(Bn : ||Bn − B0
n||n < δ) ≥ Π(Bn : ||Bn − B0

n||∞ < δ) ≥ Π(∀ j∈{1,...,D} ∀i j∈{1,...,p j} ||β̃ ji j,n − β̃
0
ji j,n||2 < ∆).

Therefore, it is enough to bound the right-hand side from below. One has

Π
(
∀ j∈{1,...,D} ∀i j∈{1,...,p j} ||β̃ ji j,n − β̃

0
ji j,n||2 < ∆ | {φr}, τ, {W jr}

)
=

D∏
j=1

p j∏
i j=1

exp

− R∑
r=1

(β0(r)
ji j,n

)2/(2w jr,i jφrτ)

 Π
(
||β̃ ji j,n|| < ∆/2 | {φr}, τ, {W jr}

)
≥

D∏
j=1

p j∏
i j=1

[
exp

− R∑
r=1

(β0(r)
ji j,n

)2/(2w jr,i jφrτ)

 R∏
r=1

[
exp{−∆2/(φrτw jr,i j )}(2∆)/(2πRφrτw jr,i j )

1/2
]]

≥

D∏
j=1

p j∏
i j=1

R∏
r=1

[
(2∆)/(2πRφrτw jr,i j )

1/2 exp
[
−{∆2 + (β0(r)

ji j,n
)2/2}/(φrτw jr,i j )

]]
,

where Step 2 follows from Anderson’s lemma. Integrating out the w jr,i j ’s, we obtain

Π
(
∀ j∈{1,...,D} ∀i j∈{1,...,p j} ||β̃ ji j,n − β̃

0
ji j,n|| < ∆ | τ, {φr}, {λ jr}

)
≥

R∏
r=1

D∏
j=1

{(2∆λ jr)/(Rφrτ)1/2}p j exp
[
−λ jr

p j∑
i j=1

{(β0(r)
ji j,n

)2 + 2∆2}1/2/(φrτ)1/2
] .

Integrating out the λ jr’s, we then get

Π
(
∀ j∈{1,...,D} ∀i j∈{1,...,p j} ||β̃ ji j,n − β̃

0
ji j,n|| < ∆ | τ, {φr}

)
≥

R∏
r=1

D∏
j=1

{(2∆)/(Rφrτ)1/2}p jΓ(aλ + p j)/

bλ +

p j∑
i j=1

{(β0(r)
ji j,n

)2 + 2∆2}1/2(φrτ)−1/2


aλ+p j

 {baλ
λ /Γ(aλ)}RD

≥

R∏
r=1

D∏
j=1

{(2∆)/(Rφrτ)1/2}p j {baλ
λ /Γ(aλ)}

Γ(aλ + p j)(φrτ)(aλ+p j)/21{τ ∈ (0, 1)}[
bλ +

∑p j

i j=1{(β
0(r)
ji j,n

)2 + 2∆2}1/2
]aλ+p j


Finally, integrating out τ, leads to

Π(∀ j∈{1,...,D} ∀i j∈{1,...,p j} ||β̃ ji j,n − β̃
0
ji j,n|| < ∆)

≥

D∏
j=1

{Γ(aλ + p j)/Γ(aλ)}R
D∏

j=1

R∏
r=1

bλ +

p j∑
i j=1

{(β0(r)
ji j,n

)2 + 2∆2}1/2


−aλ−p j

{2∆/(2πR)1/2}R
∑D

j=1 p jC−1.

This completes the proof of Lemma 1. �

Next we prove two lemmas which will be central in proving Theorem 2. In what follows,

Fs =
{
Bn = [[B1,n, . . . , BD,n]] : max

i j=1:p j, j=1:D
||β̃ ji j,n||2 ≤ M1/2

s

}
.
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Lemma 3. Assume thatD(g,G, || · ||) is the minimum number of disjoint balls of radius g under || · || norm to completely
cover G, also known as the packing number of G. Then ln{D(n1/2δ,Fs, n1/2|| · ||n)} ≤ {R(p1 + · · ·+ pD)} ln{(5DMD/2

s )/δ}.

Proof. Note that

||Bn − B′n||
2
2 =

p1,...,pD∑
i1,...iD=1

 R∑
r=1

(
β(r)

1i1,n
· · · β(r)

DiD,n
− β(r)′

1i1,n
· · · β(r)′

DiD,n

)
2

=

p1,...,pD∑
i1,...iD=1

 R∑
r=1

(β(r)
1i1,n
− β(r)′

1i1,n
)
∏
j,1

β(r)
ji j,n

+ · · · + (β(r)
DiD,n
− β(r)′

DiD,n
)
∏
j,D

β(r)′

ji j,n




2

≤ D
p1,...,pD∑
i1,...iD=1

{
||β1i1,n − β

′
1i1,n||

2
2

∏
j,1

||β ji j,n||
2
2 + · · · +

∏
j,D

||β′ji j,n||
2
2||βDiD,n − β

′
DiD,n||

2
2

}
≤ DMD−1

s

p1,...,pD∑
i1,...iD=1

(||β1i1,n − β
′
1i1,n||

2
2 + · · · + ||βDiD,n − β

′
DiD,n||

2
2).

From the above results we get

ln{D(n1/2δ,Fs, n1/2|| · ||n)} ≤ ln{D(δ,Fs, || · ||2)}

≤ ln{D(δ/(DM(D−1)/2
s ),BR

∑D
j=1 p j

(M1/2
s ), || · ||2)}

≤
(
R

D∑
j=1

p j

)
ln[{4 + δ/(DMD/2

s )}/{δ/(DMD/2
s )}] ≤

(
R

D∑
j=1

p j

)
ln{(5DMD/2

s )/δ}.

This completes the proof of Lemma 3. �

Lemma 4. The prior probability of F {
s is bounded above by (RD)aλ+1baλ

λ M−aλ/2
s b−aλ/2

τ {Γ(aτ + aλ/2)/Γ(aτ)}.

Proof. We have

Π(F {
s ) = Π({Bn = [[B1,n, . . . , BD,n]] : max

i j=1:p j,n, j=1:D
||β̃ ji j,n||2 > M1/2

s })

≤ Π
( R∑

r=1

D∑
j=1

p j,n∑
i j=1

|β(r)
ji j,n
| > M1/2

s

)
=

R∑
r=1

D∑
j=1

E
[
Π

{ p j,n∑
i j=1

|β(r)
ji j,n
| > M1/2

s /(RD)|{λ jr}, {φr}, τ
}]

≤

R∑
r=1

D∑
j=1

E[exp[−(M1/2
s λ jr)/{16RD(φrτ)1/2}]|{λ jr}, {φr}, τ].

The above uses the fact that
∑p j

i j=1 |β
(r)
ji j,n
| ∼ GA(p j, λ jr/(φrτ)1/2) given λ jr, φr, τ, and Lemma 1 in [10]. Further,

D∑
j=1

R∑
r=1

E[exp[−M1/2
s λ jr/{16RD(φrτ)1/2}]|{λ jr}, {φr}, τ]

=

D∑
j=1

R∑
r=1

E[baλ
λ /[bλ + {1/(16RD)}{Ms/(φrτ)}1/2]aλ |{φr}, τ]

≤

D∑
j=1

R∑
r=1

E[baλ
λ /[bλ + {1/(16RD)}(Ms/τ)1/2]aλ |τ] ≤ (RD)aλ+1baλ

λ M−aλ/2
s E(τaλ/2)

= (RD)aλ+1baλ
λ M−aλ/2

s b−aλ/2
τ {Γ(aτ + aλ/2)/Γ(aτ)}.

8



This completes the proof of Lemma 4. �

Proof of Theorem 2 For a test function φs, eventAs and set of tensors Fs (all of them depending on s), we have

E
{∫
||Bn − B0

n||
2
nΠ(Bn | y1:n, X1:n)

}
= E

{
32ε2

n

∫
s>0

sΠ(||Bn − B0
n||n > 4sεn | y1:n, X1:n)

}
≤ 32ε2

n

∫
s>0

s (As + Bs + Cs + Ds) ds = 32ε2
n + 32ε2

n

∫
s>1

s (As + Bs + Cs + Ds) ds,

where As = E(φs), Ts = Pr(A{
s ), Cs = E{(1 − φs)1AsΠ(Bn ∈ F

{
s | y1:n, X1:n)} and

Ds = E{(1 − φs)1AsΠ(Bn ∈ Fs : ||Bn − B0
n||n > 4εns | y1:n, X1:n)}.

a) Bounding As: For any arbitrary s′ > 0, define H j,s′ = {Bn ∈ Fs : js′ ≤ n1/2||Bn − B0
n||n ≤ ( j + 1)s′}. Let

C j,s′ ⊂ H j,s′ be the maximum cardinality set such that Bn, B′n ∈ C j,s′ ⇒ n1/2||Bn − B′n||n ≥ js′/2. The cardinality of
C j,s′ isD( js′/2,H j,s′ , n1/2|| · ||n). Using similar arguments as in [17, 19], there exists a test function φ j,s such that

EB0
n
(φ j,s) ≤ 9 exp(−s′2/8),

sup
Bn∈H j,s′ ,n1/2 ||Bn−B0

n ||n≥s′
EBn (1 − φ j,s) ≤ D(s′/2,Fs, n1/2|| · ||n) exp(− j2s′2/8).

Construct φs = max j≥1 φ j,s and take s′ = 4n1/2εns. Then the above equations lead to

EB0
n
(φs) ≤ 9 exp(−2nε2

n s2), (5)

sup
||Bn−B0

n ||n≥4εn s
EBn (1 − φs) ≤ D(2n1/2εns,Fs, n1/2|| · ||n) exp(−2s2nε2

n ). (6)

b) Bounding Ts: From the proof of [19], there exists an eventAs such that

PrB0
n
(A{

s ) ≤ exp(−nε2
n s2/8), (7)

and on the eventAs, the following inequality holds:∫
{ f (y1:n | Bn)/ f (y1:n | B0

n)}Π(Bn) ≥ exp(−nε2
n s2)Π(Bn : ||Bn − B0

n||n < εns). (8)

c) Bounding Cs: Note that for any event B onAs,

Π(B | y1:n) =

{∫
B

f (y1:n | Bn)/ f (y1:n | B0
n)Π(Bn)

} / {∫
f (y1:n | Bn)/ f (y1:n | B0

n)Π(Bn)
}

≤ exp{nε2
n s2 + E(εns)}

∫
B

f (y1:n | Bn)/ f (y1:n | B0
n)Π(Bn),

which follows from (8). Thus

Cs = EB0
n
{Π(F {

s | y1:n)1As (1 − φs)}

≤ exp
{
nε2

n s2 + E(εns)
} ∫
F {

s

∫
Rn

f (y1:n | Bn)(1 − φs)Π(Bn)

≤ exp
{
nε2

n s2 + E(εns)
}
Π(F {

s ) ≤ exp
{
nε2

n s2 + E(εns)
}
(RD)aλ+1baλ

λ E(τaλ/2)M−aλ/2
s

9



d) Bounding Ds:

Ds = EB0
n

{
(1 − φs)1AsΠ(Bn ∈ Fs : ||Bn − B0

n||n > 4εns | y1:n)
}

≤ exp
{
nε2

n s2 + E(εns)
} ∞∑

j=1

∫
Rn

∫
Bn∈H j,s

(1 − φs) f (y1:n | Bn)Π(Bn)

≤ exp{nε2
n s2 + E(εns)}D(2n1/2εns,Fs, n1/2|| · ||n) exp(−2s2nε2

n ),

where the last line follows from (6).
Choose Ms = exp(ncε2

n s2), where 2/{R(p1 + · · · + pD)} ≥ c ≥ 2/aλ. Then∫
s>1

sAsds ≤
∫

s>1
s exp(−2nε2

n s2)ds =

∫
s>1

exp(−2nε2
n s)ds ≤ 1/(2nε2

n ). (9)

Similarly, from (7) ∫
s>1

sTsds ≤
∫

s>1
sPrB0

n
(A{

s )ds ≤ 8/(nε2
n ). (10)

Furthermore, one has∫
s>1

sCsds ≤
∫

s>1
s exp{nε2

n s2 + E(εns)}(RD)aλ+1baλ
λ E(τaλ/2)M−aλ/2

s

=

∫
s>1

s exp{−nε2
n s2(aλc/2 − 1)}(RD)aλ+1baλ

λ Γ(aτ + aλ) exp{E(sεn)}{baλ
τ Γ(aτ)}−1

= {5D/(2n1/2εn)}R
∑D

j=1 p jC−1(2πR)R
∑D

j=1 p j/2
D∏

j=1

{Γ(aλ)/Γ(aλ + p j)}R

×

∫
s>1

s{1/(2∆)}R
∑D

j=1 p j

D∏
j=1

R0∏
r=1

bλ +

p j∑
i j=1

{(β0(r)
ji j

)2 + 2∆2}1/2


aλ+p j

(RD)aλ+1

× baλ
λ b−aλ

τ

D∏
j=1

(
bλ + 21/2 p j∆

)(aλ+p j)(R−R0)
exp{−nε2

n s2(aλc/2 − 1)}ds{Γ(aτ + aλ)/Γ(aτ)}

≤ {5D/(2n1/2εn)}R
∑D

j=1 p jC−1(2πR)R
∑D

j=1 p j/2
D∏

j=1

{Γ(aλ)/Γ(aλ + p j)}R

×

[∫
s{1/(2∆)}2R

∑D
j=1 p j exp{−nε2

n s2(aλc/2 − 1)}ds
]1/2

baλ
λ b−aλ

τ (RD)aλ+1

×

[ ∫
s

D∏
j=1

R0∏
r=1

[
bλ +

p j∑
i j=1

{(β0(r)
ji j

)2 + 2∆2}1/2
]2aλ+2p j

D∏
j=1

(
bλ + 21/2 p j∆

)2(aλ+p j)(R−R0)

× exp{−nε2
n s2(aλc/2 − 1)}ds

]1/2

{Γ(aτ + aλ)/Γ(aτ)}. (11)

Using the Cauchy bound on ∆ and Lagrange bound on 1/∆, one obtains

∆ ≤ 1 + εns + D(M + 1)D, 1/∆ ≤ 1 + D(M + 1)D + εns.
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Next,

C1 =

∫
s

D∏
j=1

R0∏
r=1

bλ +

p j∑
i j=1

{(β0(r)
ji j

)2 + 2∆2}1/2


2aλ+2p j D∏

j=1

(bλ + 21/2 p j∆)2(aλ+p j)(R−R0)

× exp{−nε2
n s2(aλc/2 − 1)}ds

≤

∫
s>1

s exp{−nε2
n s2(aλc/2 − 1)}{bλ + 21/2L(M + 1 + D(M + 1)D + εns)}2(aλ+L)RDds

≤

2RD(aλ+L)∑
`=0

(
2RD(aλ + L)

`

)
(bλ + 21/2LM̃)2RD(aλ+L)−`(21/2Lεn)`

Γ(`/2 + 1)
{nε2

n (aλc/2 − 1)}`/2+1

= Γ{2RD(aλ + L)}/{nε2
n (aλc/2 − 1)}[bλ + 21/2LM̃ + 21/2L/{n(aλc/2 − 1)}1/2]2RD(aλ+L),

where M̃ = M + 1 + D(M + 1)D. Furthermore,

C2 =

∫
s>1

s {1/(2∆)}2R
∑D

j=1 p j exp{−nε2
n s2(aλc/2 − 1)}ds

≤

∫
D(M+1)D≤εn s

s {1/(2∆)}2R
∑D

j=1 p j exp{−nε2
n s2(aλc/2 − 1)}ds

+

∫
D(M+1)D/εn>s>1

s {1/(2∆)}2R
∑D

j=1 p j exp{−nε2
n s2(aλc/2 − 1)}ds.

Observe that D(M + 1)D ≤ εns implies ∆ ≥ 1. Hence∫
D(M+1)D≤εn s

s{1/(2∆)}2R
∑D

j=1 p j exp{−nε2
n s2(aλc/2 − 1)}ds ≤ 1/{nε2

n (aλc/2 − 1)}.

On the other hand,∫
D(M+1)D/εn>s>1

s {1/(2∆)}2R
∑D

j=1 p j exp{−nε2
n s2(aλc/2 − 1)}ds

≤

∫
D(M+1)D/εn>s>1

s{1 + D(M + 1)D + εns}2R
∑D

j=1 p j exp{−nε2
n s2(aλc/2 − 1)}ds

=

2R
∑D

j=1 p j∑
`=0

(
2R

∑D
j=1 p j

`

)
{1 + D(M + 1)D}2R

∑D
j=1 p j−`(εn)`

Γ(`/2 + 1)
{nε2

n (aλc/2 − 1)}`/2+1

×

∫
sCsds ≤ {5D/(2n1/2εn)}R

∑D
j=1 p jC−1(2πR)R

∑D
j=1 p j/2

D∏
j=1

{Γ(aλ)/Γ(aλ + p j)}R

× b−aλ
τ baλ

λ

Γ{2RD(aλ + L)}1/2

{nε2
n (caλ/2 − 1)}1/2

[
bλ + 21/2LM̃ +

21/2L
{n(caλ/2 − 1)}1/2

]RD(aλ+L)

×

 1
nε2

n (caλ/2 − 1)
+ {1 + D(M + 1)D + n−1/2}2R

∑D
j=1 p j

Γ(2R
∑D

j=1 p j){
nε2

n (caλ/2 − 1)
}

1/2

× (RD)aλ+1{Γ(aτ + aλ)/Γ(aτ)}.
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Using similar calculations and by invoking Lemma 2, we get∫
sDsds ≤

∫
s exp{nε2

n s2 + E(εns)}D(2n1/2εns,Fs, n1/2|| · ||n) exp(−2s2nε2
n )

≤ {5D/(2n1/2εn)}R
∑D

j=1 p jC−1(2πR)R
∑D

j=1 p j/2
D∏

j=1

{Γ(aλ)/Γ(aλ + p j)}R(5D)RD
∑D

j=1 p j

×

∫ s {1/(2∆)}2R
∑D

j=1 p j exp
{
− nε2

n s2
(
1 − cDR

D∑
j=1

p j/2
)}

ds


1/2

×

[ ∫
s

D∏
j=1

R0∏
r=1

[
bλ +

p j∑
i j=1

{(β0(r)
ji j

)2 + 2∆2}1/2
]2aλ+2p j

D∏
j=1

(bλ + 21/2 p j∆)2(aλ+p j)(R−R0)

× exp
{
− nε2

n s2
(
1 − cDR

D∑
j=1

p j/2
)}

ds
]1/2

≤ {5D/(2n1/2εn)}R
∑D

j=1 p jC−1(2πR)R
∑D

j=1 p j/2
D∏

j=1

{Γ(aλ)/Γ(aλ + p j)}R(5D)RD
∑D

j=1 p j

×
[ Γ{2RD(aλ + L)}
{nε2

n (1 − cDR
∑D

j=1 p j/2)}

[
bλ + 21/2LM̃ +

21/2L
{n(1 − cDR

∑D
j=1 p j/2)}1/2

]2RD(aλ+L)]1/2

×

[
1

nε2
n (1 − cRD

∑D
j=1 p j/2)

+ {1 + D(M + 1)D + n−1/2}2R
∑D

j=1 p j

×
Γ(2R

∑D
j=1 p j){

nε2
n (1 − cDR

∑D
j=1 p j/2)

} ]1/2

. (12)

Choosing εn = n−1/2, we get
∫

sAsds ≤ 1/2,
∫

sTsds ≤ 8. Furthermore,

∫
sCsds ≤ (5D/2)dR

∑D
j=1 p jC−1(2πR)R

∑D
j=1 p j/2

D∏
j=1

{Γ(aλ)/Γ(aλ + p j)}R

× Γ(aτ + aλ)b−aλ
τ Γ(aτ)−1Γ{2RD(aλ + L)}1/2{(caλ/2 − 1)}−1/2(RD)aλ+1baλ

λ

× [bλ + 21/2LM̃ + 21/2L{n(caλ/2 − 1)}]RD(aλ+L)

×
[
(caλ/2 − 1)−1/2 + {1 + D(M + 1)D + n−1/2}2R

∑D
j=1 p j

× Γ
(
2R

D∑
j=1

p j

)
/{caλ/2 − 1)}

]1/2

= Cn

12



and ∫
sDsds ≤ (5D/2)dR

∑D
j=1 p jC−1(2πR)R

∑D
j=1 p j/2

D∏
j=1

{Γ(aλ)/Γ(aλ + p j)}R

× Γ{2RD(aλ + L)}1/2
{(

1 − cDR
D∑

j=1

p j/2
)}−1/2

(5D)RD
∑D

j=1 p j

×

bλ + 21/2LM̃ + 21/2L
{
n
(
1 − cDR

D∑
j=1

p j/2
)}−1/2


RD(aλ+L)

×
[(

1 − cRD
D∑

j=1

p j/2
)−1

+ {1 + D(M + 1)D + n−1/2}2R
∑D

j=1 p j

Γ
(
2R

D∑
j=1

p j

)
/
{
1 − cDR

D∑
j=1

p j/2
}]1/2

= Dn.

This concludes the proof of Theorem 2. �
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