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Abstract

Extreme value theory focuses on the study of rare events and uses asymptotic prop-
erties to estimate their associated probabilities. Easy availability of georeferenced data
has prompted a growing interest in the analysis of spatial extremes. Most of the work
so far has focused on models that can handle block maxima, with few examples of
spatial models for exceedances over a threshold. Using a hierarchical representation,
we propose a spatial process, that is obtained by perturbing a Pareto process. Our ap-
proach uses conditional independence at each location, within a hierarchical model for
the spatial field of exceedances. The model has the ability to capture both, asymptotic
dependence and independence. We use a Bayesian approach for inference of the process
parameters that can be efficiently applied to a large number of spatial locations. We
assess the flexibility of the model and the accuracy of the inference by considering some
simulated examples. We illustrate the model with an analysis of data for temperature
and rainfall in California.
Key Words: Generalized Pareto distribution, Max-Stable process, Bayesian hierar-
chical model, Spatial extremes, MCMC, Asymptotic Dependence.

1 Introduction

The statistical analysis of extreme values focuses on inference for rare events that correspond
to the tails of probability distributions. As such, it is a key ingredient in the assessment of
the risk of phenomena that can have strong societal impacts like floods, heat waves, high
concentration of pollutants, crashes in the financial markets, among others. The fundamental
challenge of extreme value theory (EVT) is to use information, collected over limited periods
of time, to extrapolate to long time horizons. This is possible thanks to theoretical results
that give asymptotic descriptions of the probability distributions of extreme values. The
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development of EVT dates back at least to Fisher and Tippett (1928). Inferential methods
for the extreme values of univariate observations are well established and software is widely
available (see, for example, Coles, 2001). The most traditional approach to analyze extreme
data for one variable, is to consider its maxima over a given period of time. As an example,
we can consider the annual maxima of daily temperature at a given location. The results in
von Mises (1954) and Jenkinson (1955) show that the distribution of the block maxima, as
the number of observations go to infinity, belongs to the family of generalized extreme value
(GEV) distributions. As the density of such family is readily available, likelihood-based
methods can be used to estimate the three parameters that characterize the members of the
family. This method relies on a drastic reduction of the original data to a small set of block
maxima. An alternative, that uses additional information from the data, is to fix a threshold,
say, u, and obtain the exceedances over that threshold. Pickands (1975) shows that, when
u→∞, the exceedance distribution converges to the generalized Pareto distribution (GPD).
This asymptotic result is used for inference, after setting a high threshold and filtering the
original sample with respect to it.

It is typical of environmental data to be collected over networks of geographically scat-
tered locations. In these cases, an extension of the geostatistical methods used for infer-
ence on spatial fields (see, for example, Banerjee et al., 2004) is needed to infer the joint
distribution of extremes at different locations. This requires an extension of the EVT to
multidimensional variables and, more generally, to stochastic processes indexed in space.
Inference for multivariate block maxima relies on multivariate extreme value distributions
that are based on the notion of max-stability. The work of Pickands (1981), Coles and Tawn
(1991) and Heffernand and Tawn (2004) are some examples of the use of these methods. For
exceedance over a threshold in multivariate settings, the work of Rootzen and Tajvidi (2006)
defines the multivariate generalized Pareto distribution. Further analysis of these classes of
distributions is presented in Falk and Guillou (2008). In this context, Michel (2008) provides
a detailed discussion of different inferential approaches.

To tackle the associations that arise when considering observations that are collected
at different spatial locations it is natural to consider hierarchical models. These are based
on assuming that the block maxima at a given site follow a GEV whose location, scale
and shape parameters depend on that site. The second level of the hierarchy consists of
assuming that such parameters correspond to spatial random fields. Geostatistical models
are then used to describe their variability. Examples of this approach are found in Huerta
and Sansó (2007) and Sang and Gelfand (2009). For the exceedances approach, Cooley et al.
(2007) develop a model where the scale parameter of the GPD distribution varies spatially.
The hierarchical approach is very appealing computationally. It has been criticized, though,
for not adequately capturing the spatial dependence structure of complex fields, like the
ones that correspond to rainfall. Comprehensive summaries of the methods used for spatial
extremes can be found in Cooley et al. (2012) and Davison and Gholamreazee (2012), which
include a thorough list of relevant references.
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1.1 Max-stable processes

A fundamental concept in EVT is that of max-stability. A distribution G has the max-stable
property if Gn(y) = G(Any+Bn) for some constants An and Bn. In other words, a collection
of random variables Y1, . . . , Yn, i.i.d. from G is such that the distribution of its maximum is
also G. The central role of GEV distributions in EVT is due to the fact that they correspond
to the only family that satisfies the max-stable property. Max-Stable processes represents
a infinite dimensional extension of multivariate extreme value theory. According to Smith
(1990), they form a natural class when block maxima are observed at each site of a spatial
process. Following Huser and Davison (2013) we say that a spatial process Y (x) defined for
x ∈ X is max-stable if for any finite set D = {x1, ..., xD} ⊂ X , and any function defined on
D we have that

Pr(Y (x)/n ≤ y(x), x ∈ D)n = Pr(Y (x) ≤ y(x), x ∈ D)

for all integers n. As mentioned above in, the univariate case, the family of GEV distri-
butions is the only max-stable class. Thus, the marginals of a max-stable process must
be GEV. These can be transformed to the unit Fréchet distribution, implying that, with-
out loss of generality, Pr(Y (x) ≤ y) = exp(−1/y), y > 0. For D different sites we have
that P (Y (x1) ≤ y1, ..., Y (xD) ≤ yD) = exp{−V (y1, ..., yD)}, where the function V mea-
sures dependence among the different sites. For yi = y for all i, we have that P (Y (x1) ≤
y, ..., Y (xD) ≤ y) = exp{−1/y}V (1,...,1). Letting θ = V (1, ..., 1), we have that θ = D im-
plies complete independence and θ = 1 implies complete dependence. A drawback of the
max-stable processes that have been proposed in the literature is that, typically, only the
bivariate marginals have closed form expressions. As a consequence, standard likelihood-
based approaches to inference are not practical. The most common alternative is the use
of pairwise log-likelihoods (Padoan et al., 2010; Cooley et al., 2010). Spatial analyses of
exceedences over a threshold are presented in Huser and Davison (2013) and Jeon and Smith
(2012), using the relationship between the densities of the GPD and GEV to build pairwise
likelihoods for the exceedances. A restriction of the pairwise likelihood is that the variability
of pairwise estimator is usually underestimated (Pauli et al., 2011). More recent developed,
based on leveraging the link between max-stable processes and Poisson processes, are found
in Wadsworth and Tawn (2014) and Thibaud and Opitz (2015). In those papers, a full likeli-
hood approach is developed for some specific classes of models. The use of censoring, though,
requires dealing with non-trivial normalizing constants. Reich and Shaby (2012) extend the
approach in Stephenson (2009) to a spatial process. The method is based on building a
hierarchical model representation of max stable process that generalizes the multivariate
extreme value distribution with asymmetric logistic dependence function.

In this paper, we propose a hierarchical Bayesian model for excedances in a spatial
domain using a process that results from perturbing a generalized Pareto process (Ferreira
and de Haan, 2014). The hierarchical approach is based on conditional independence, which
allows for efficient inference. Moreover, the model allows for asymptotic dependence as well
as independence between any two points. Section 2 presents the definition of the generalized
Pareto process, and discusses the difficulties to obtain a viable estimation method. We then
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introduce our proposed model and develop the estimation procedure. Section 3 present some
aspects and properties to obtain conditional dependence, and what’s the main approaches
to model the GPP under this feature. Section 4 presents how to perform the inference
considering a perturbed GPP, and the toward to using that by a bayesian paradigm and
the algorithm. Section 5 presents some numerical simulations of the proposed model using
different parameter configurations. Section 6 presents an illustration on data for winter
temperature and rainfall in California during the last five years. Finally, Section 7 discusses
the results obtained with the proposed model, as well as possible future extensions.

2 The Pareto process

To perform inference on the distribution of the exceedances over a threshold, in a univariate
setting, consider a random variable Y and a threshold u, and consider the Fu(y) = Pr(Y ≤
y−u|Y > u). Then, for large enough u, and for the number of observations on Y tending to
infinity, Fu(y) can be approximated by a properly scaled GPD whose cumulative distribution
is given as

H(y|µ, σ, γ) =





1−
(

1 + γ (y−µ)
σ

)−1/γ
+

, if γ 6= 0

1− exp{−(y − µ)/σ}, if γ = 0
, (1)

In the univariate case, the relationship between GEVs and GPDs is made explicit by ob-
serving that, if G is a GEV distribution, then H(y) = 1 + log(G(y)), for all y such that
log(G(y)) ∈ [−1, 0]. In Michel (2008) this relationship is used to generalize the definition of
a GPD distribution to the multivariate setting.

An infinite dimensional generalization of the GPD is given by the Pareto process proposed
in Ferreira and de Haan (2014). A constructive definition of a simple Pareto process is given
as follows:

Definition 1. Let C+(S) the space of continuous non-negative functions in S, a compact
subset of Rd. Let W (s) be a stochastic process in C+(S) and w0 a positive constant. Then
W (s) = Y θ(s), ∀s ∈ S is a simple Pareto Process (SPP) if

1. θ is a stochastic process in C+(S) with sups θ(s) = w0 and E(θ(s)) > 0, ∀s ∈ S,
2. Y is a standard Pareto random variable,

3. Y and θ are independent.

This definition provides a very simple constructive approach to generalize the univariate
GPD to an infinite-dimensional setting. In fact, a Pareto process can be obtained from a
bounded process and a standard Pareto random variable. We will refer to Y as the radius
of W and to θ as its spectral process. The relevance of the Pareto process for a peaks over
threshold approach to spatial extremes is due to the following results, stated in Theorem 3.2
of Ferreira and de Haan (2014):

lim
t→∞

Pr(TtX(s) ∈ A| sup
s∈S

TtX(s) > 1) = Pr(W ∈ A), (2)

4



where W is a SPP. Here X(s) is a process in the domain of attraction of a max-stable process,
and

TtX(s) =

(
1 + γ(s)

X(s)− bt(s)
at(s)

)1/γ(s)

+

is the standardized version of X(s), with at, bt and γ continuous functions in S, and at(s) >
0,∀s. The condition that sups∈S TtX(s) > 1 is equivalent to sups∈S X(s) > bt(s). Thus,
bt(s) can be seen as a sequence of thresholds.

Can these results be used in order to perform likelihood based inference about the pa-
rameters of a Pareto Process? We start by assuming that for a large enough t the limit
in (2) is well approximated and that the threshold and scale processes are fixed at µ(s)
and σ(s) respectively. We then condition on the event TtX(s) ∈ B, where B = {f ∈
C+(S) : sups∈S f(s) > 1}. That is, we focus on the observed trajectories of the process
X(s) whose supremum, after transformation, is larger than 1. These correspond to obser-
vations, say, xj(si), for j = 1, . . . ,m trajectories, observed at i = 1, . . . , n locations. Then
Txj(si) = Yjθj(si), according to the constructive definition of a SPP. Conditioning on Yj, and
postulating a flexible model for θ(s) for which the finite dimensional distribution is tractable,
it is possible to build a hierarchical model for inference on the process of exceedances.

While the approach described in the previous paragraph fits naturally within a hi-
erarchical model formulation, it is subject to two substantial problems. The first one
is that, when data are collected on a finite number of locations it is difficult to assess
the occurrence of the event TtX(s) ∈ B. More commonly, instead of B, we consider
B1 = {f ∈ C+(S) :

∨n
i=1 f(si) > 1}, or B2 = {f ∈ C+(S) : f(si) > 1, i = 1, . . . ,m},

for some m ≤ n or B3 = {f ∈ C+(S) :
∧n
i=1 f(si) > 1}, where ∨ denotes the maximum, and

∧ the minimum. We notice that, in all three cases, Bi ⊆ B, and that B3 = B2 when m = n.
Following Equation (4.1) in Ferreira and de Haan (2014), we obtain

lim
t→∞

Pr(TtX(s) ∈ A|TtX(s) ∈ Bi) =
Pr(W ∈ A ∩Bi)

Pr(W ∈ Bi)
.

This implies that the distribution of W needs to be restricted at the locations where the
thresholds are exceeded. Thus, inference in this case requires accounting explicitly for a
normalizing constant. Thus, as in the case of Wadsworth and Tawn (2014) and Thibaud
and Opitz (2015), this method requires dealing with an intractable likelihood. The second
problem is that the transformation Txj(si) induces a set constraints on the parameters
that are used to describe the processes σ(s) and γ(s), within a hierarchical model. An
effective exploration of the resulting parameter space, for realistically large problems, is
a very challenging task. In fact our attempts to implement this approach have not been
successful.

3 Conditional independence revisited

Hierarchical models for spatial fields are often built on the assumption that the marginal
distributions corresponding to different locations are conditional independent. Cooley et al.
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(2007), for example, consider that exceedances over a field threshold µ(s) follow, at each
location, the distribution in Equation (1), with spatially varying parameters γ(s) and σ(s).
Then impose spatial dependence by assuming that such parameters correspond to spatial
processes. Using this approach for spatial fields of extreme values usually leads to processes
that have asymptotic independence. This is undesirable as it implies that the conditional
probability that the process at one location exceeds a high value, given that it has exceeded
that value at another location, tends to zero. Thus, the model has a built in underestimation
property. Our aim is to consider an approach that uses conditional independence, but
provides a range of extremal dependence properties. For clearness, in what follows we limit
ourselves to a bivariate vector, say, W = (W1,W2). We assume that both components have
the same marginal distribution and thus consider the coefficient

χij = lim
w→∞

Pr(Wi > w|Wj > w).

We note in passing that, while our interest focuses on spatial processes, the models considered
in the following sections have an interest for multivariate extreme value settings.

3.1 Bivariate Pareto distribution

Suppose that W follows a bivariate Pareto distribution with identical univariate marginals.
Then W = Y × (θ1, θ2)

′, where θ1 and θ2 are bounded positive random variables with the
same univariate marginal distributions. For simplicity we assume that the bound is 1. Then

Proposition 1.

χ12 =
E(θ1 ∧ θ2)
E(θ2)

. (3)

This result is established following Ferreira and de Haan (2014). It implies that a bi-
variate Pareto distribution has asymptotic dependence, asymptotic independence can not
be achieved except for degenerate cases, and the asymptotic behavior is determined by the
distributions of the vector θ.

3.2 Independent bivariate Pareto

Consider a modification of the above representation to Wk = Ykθk, where Yk is a standard
Pareto random variable.

Proposition 2. If Y1 and Y2 are independent,

χ12 = lim
w→∞

Pr(Y1 > w/θ1, Y2 > w/θ2)

Pr(Y2 > w/θ2)
= lim

w→∞
1

w

E(θ1θ2)

E(θ2)
= 0.

The result is an immediate consequence of independence of Y1 and Y2, and the fact that
θk ≤ 1. Thus, regardless of the dependence between θ1 and θ2, the distribution of W has
asymptotic independence.
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3.3 Conditional independent bivariate Pareto

Consider a modification of the previous model where the random variables (Y1, Y2) have a
joint distribution given as

p(y1, y2) ∝
(

2∏

i=1

yi

)−1(
b+

2∑

i=1

log yi

)−2+a
.

This distribution is motivated by the idea of considering radial variables having a depen-
dent joint distribution. In fact, the distribution is obtained from a continuous mixture of
conditionally independent generalized Pareto, as

p(y1, y2) =

∫ ∞

0

2∏

i=1

p(yi|β)p(β)dβ

where Pr(Yi > y|β) = 1/yβ, and β ∼ Ga(a, b). That is, the bivariate marginal of (Y1, Y2)
corresponds to assuming conditional independence for two generalized Pareto random vari-
ables, and then postulating a common distribution for their shape parameter. In this case
we have:

Proposition 3.

χ12 = lim
w→∞

(b+ logw)a

(b+ 2 logw)a
=

(
1

2

)a
.

This result is established by expressing the numerator and the denominator as integrals
with respect to β, and then using the dominated convergence theorem. It implies that
the distribution of W has asymptotic dependence, with 0 < χ12 < 1 depending on the
value of a. Thus, the introduction of a dependence structure in the distribution of the
radial variables induces the desired strong dependence property. Nevertheless, asymptotic
dependence is regulated by a only, and not by the dependence in the spectral distribution.
This is somewhat unappealing.

3.4 Perturbed bivariate Pareto

An additional way to develop a model based on conditional independence that produces
asymptotic dependence is to consider a bivariate Pareto vector that is perturbed by a multi-
plicative generalized Pareto noise. Thus, Wk = V ξ

k Y θk, where Vk are independent standard
Pareto random variables. We can think of this as a nugget, or observational error. The
bivariate Pareto distribution is recovered when ξ → 0. For the asymptotic dependence we
have the following results:

Proposition 4. If ξ < 0 then

χ12 =
E(V ξ

1 θ1 ∧ V ξ
2 θ2)

E(V ξ
2 θ2)

,
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where the expectation is taken with respect to V2, V2, θ1 and θ2.
If ξ > 0 then

χ12 =

{
(ξ−1)(Eθξ1θ

ξ
2+2ξ−1)

ξ(2ξ−1)Eθξ2
ξ < 1

0 ξ ≥ 1
,

where the expectation is taken with respect to θ1 and θ2.

The result for ξ < 0 is established following calculations similar to the ones required for
Proposition 1, recalling the fact that 1/(V ξ

k θk) > 1, k = 1, 2. The result for ξ > 0 uses the

distribution of the product V ξ
k Y . We notice that, for ξ < 0, χ12 corresponds to a perturbed

version of the expression in Equation (3). For ξ > 0 we observe that ξ = 1 corresponds
to a break point. Generally, depending on the value of ξ this model has the flexibility of
capturing asymptotic dependence or independence. Moreover, the value of χ12 depends on
both, the exponent of the perturbation and the spectral distribution of the bivariate Pareto.
From an inferential point of view, it is important to notice that, conditional on Y and θk,
Wk/Y θk follows a generalized Pareto distribution. Thus, this model provides the inferential
advantages of conditional independence, as does the model in Section 3.3, but, additionally,
it generates a wide set of possible extreme dependence behaviors. Moreover, it corresponds to
a perturbation of the theoretical limit of distributions in a max-stable domain of attraction.
A natural assumption when considering noisy data.

4 Inference for perturbed Pareto processes

The discussion in the previous section indicates that it is possible to model a spatial process
that has an asymptotic dependence behavior similar to that of a Pareto process, using a
conditional independence assumption. This can be achieved by perturbing a Pareto pro-
cess W (s) with a multiplicative random noise, say V (s)ξ, that is obtained as a power of
independent Pareto random variables. Thus we consider the process H(s) = V (s)ξW (s) =
V (s)ξY θ(s), for Y and θ(s) defined as in Section 2, with ω0 = 1. The perturbation, that can
be interpreted as observational error or nugget, allows to consider each location separately,
simplifying the likelihood based inference.

Consider observations xj(si) as in Section 2. After the standardization Txj(si), we assume
that such observations are realization of H(si), that correspond to perturbations of a simple
Pareto process. To obtain the likelihood we notice that, if V and Y are both distributed as
standard Pareto, then, for u > 0, and conditional on θ,

Pr(V ξY > u/θ) =





1 ξ > 0, 0 < u ≤ θ
ξ
ξ−1(θ/u)1/ξ − 1

ξ−1(θ/u) ξ > 0, ξ 6= 1, u > θ

(log u− log θ + 1)(θ/u) ξ = 1, u > θ
1

1−ξ (θ/u) ξ < 0, u > θ

1 + ξ
1−ξ (θ/u)1/ξ ξ < 0, 0 < u ≤ θ

. (4)
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From (4) we obtain the density of the random variable H = V ξY θ, conditional on θ and on
the event H > 1, as

f(u) =





(ξθ1/ξ−1 − 1)−1((θ/u)1/ξ−1 − 1)u−2 ξ > 0, ξ 6= 1
(log u− 1)(1− log θ)−1u−2 ξ = 1

u−2 ξ < 0
.

Changing variables we have that the contribution to the likelihood for an observation xj(si)
that is above the threshold µ(si) is given as

fT (xj(si)) =
Txj(si)

−1

σ(si)(1 + γ
σ(si)

(xj(si)− µ(si))





((θ(si)/Txj(si))
1/ξ−1−1)

(ξθ(si)1/ξ−1−1) ξ > 0, ξ 6= 1
log Txj(si)−1
(1−log θ(si)) ξ = 1

1 ξ < 0

.

To complete the model we need to specify the processes θ(s), σ(s) and γ(s). A natural
choice for θ(s), that is required to be a bounded process, is a logistic transformations of
a Gaussian process. A possibility is to let u(s) =

∑L
l=1Alkl(s), where Al ∼ N(0, τ 2), and

kl(s), l = 1, . . . , L is a collection of kernels. Thus (u(s1), . . . , u(sn)) ∼ Nn(0, KK ′), where
Kij = kj(si). We then let θ(s) = exp(−u(s))/(1 + exp(−u(s)).

4.1 Posterior distribution

A hierarchical specification of the model is obtained by denoting as Bj(si) a latent variable
that flags the crossing of the thresholds. Thus, Bj(si) equals 1 if TXj(si) > 1 and 0 otherwise.
We have that Bj(si) ∼ Bernoulli(p(si)), where p(si) can be obtained from Equation (4),
letting u = 1. The likelihood can then be written as

L(X|Θ) =
m∏

i=1

ni∏

j=1

fT (xj(si))
I(Txj(si)>1)p(si)

Bj(si)(1− p(si))1−Bj(si)

where I is the indicator function, and Θ denotes the collection of ξ and all the parameters
that define the processes θ(s), σ(s), γ(s). A posterior distribution is obtained by considering
priors on the different components of θ. This is explored using a Monte Carlo method based
on an adaptive Metropolis approach.

4.2 Estimation of return levels

An important product of the analysis of extreme data is the estimation of the quantiles of the
distribution that correspond to rare events. These are traditionally given as return levels.
The return level t, denoted by rt, is the value of the quantile 1− 1/t of the distribution, i.e.,
every t years, it is expected that at least once, the value of the variable of interest would be
equal or higher than qt. For the GPD distribution the return level is given by

rt = µ+
σ

ξ

(
(1/t)−ξ − 1

)
.
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The above formula for the return level assumes that all observations are above a threshold.
Considering the results obtained from the hierarchical model conditioned in Y, our proposed
model incorporates information about the probability of crossing the threshold. Thus, we
need to weigh the return level according to such probability to obtain the correct quantile.
According to our model P (Wj(s) > u) = pu(s). Thus, the return level for t is given by

rt(s) = µ(s) +
σ′(s)

γ′(s)

((
1/t

pµ(s)

)−γ′(s)
− 1

)
. (5)

5 Simulations

To explore the characteristics of the proposed model, as well as the ability of our estimation
approach to recover the true parameter values, we conduct a series of simulations. The
simulation were performed on a 30x30 grid. For each site, we generated 500 replicates.
Thus, n = 900 and m = 500. We used L = 30 regularly spaced kernel knots. We set the
threshold to µ = 50, and σ = 10, both constant in space. We considered three different
values of the perturbation parameter ξ = {−0.3, 0, 0.3}, and considered two different space-
constant values of the shape parameter γ = {−0.2, 0.5}. Notice that ξ = 0 correspond to
the simulation of an actual Pareto process. We simulated using Gaussian kernels kl(s) =
exp(−||s − sl||2/bw)/

√
2πb2w, with b + w = 5. The steps to generate the simulations are as

follows: (1) Recalling that u(s) =
∑L

l=1Alkl(s) generate Al ∼ N(0, τ), l = 1, . . . , L = 30
independently, calculate u(s) for all 900 gridded locations, and set θ(s) = exp(−u(s))/(1 +
exp(−u(s)); (2) Generate Yj iid GPD(1, 1, 1) for j = 1, . . . , 500; (3) Generate Vj(s) iid
GPD(1, 1, 1), for j = 1, . . . , 500 and each location s; (5) For each s compute Hj(s) =
Yjθ(s)Vj(s)

ξ, j = 1, . . . , 500; (7) For each j and each s, compute the transformation xj(s) =
µ+ (σ/ξ)

(
Hj(s)

ξ − 1
)
.

We fit our model using the following priors: for τ and bw we used a Gamma(0.001,0.001);
The joint prior to shape and scale parameters σ and γ was the Jeffreys prior proposed in
Castellanos and Cabras (2007); For ξ we used a Normal with mean 0 and low precision.
Table 1 shows the posterior mean for the different configurations of the parameter values,
together with 95% credibility intervals. The results in the table indicate that the estimation
of the model parameters is performed with high level of accuracy for all configurations. We
notice that results are better when the value of ξ than when it is positive. Interestingly, we
observe that the model parameters are properly estimated even in the case of ξ = 0, which
is a singularity for the proposed model. This illustrates the ability of the perturbed Pareto
model to infer the structure of an actual Pareto process.

Figures 1 and 2 show the fields of posterior expectations for the t = 20 year return levels
corresponding to two different combinations of parameter values. We calculate the true 20-
year return level values using Equation (4.2), and compare the true ones in the left panels to
the estimated ones in the right panels. We can see that the estimation recovers the spatial
distribution of the true returns, with some underestimation of the largest values. Figure

10



Table 1: Posterior mean and 95% credibility intervals. T- True, M - Posterior mean, CI -
Credibility interval.

γ = −0.2
ξ = −0.3 ξ = 0 ξ = 0.3

T M CI T M CI T M CI
γ -0.2 −0.209 (−0.215;−0.204) -0.2 −0.211 (−0.216;−0.204) -0.2 −0.224 (−0.228;−0.220)
ξ -0.3 −0.370 (−0.402;−0.328) 0 −0.067 (−0.075;−0.060) 0.3 0.208 (0.204; 0.210)
σ 10 9.46 (9.38; 9.55) 10 9.55 (9.46; 9.62) 10 9.92 (9.84; 9.98)
bw 5 4.86 (4.73; 5.03) 5 4.89 (4.77; 4.99) 5 4.86 (4.80; 4.92)
τ 1 1.36 (0.89; 2.00) 1 1.49 (1.06; 2.09) 1 1.35 (0.95; 1.89)

γ = 0.5
ξ = −0.3 ξ = 0 ξ = 0.3

T M CI T M CI T M CI
γ 0.5 0.427 (0.417; 0.439) 0.5 0.430 (0.419; 0.439) 0.5 0.427 (0.418; 0.438)
ξ -0.3 −0.309 (−0.405;−0.369) 0 −0.062 (−0.068;−0.057) 0.3 0.216 (0.211; 0.220)
σ 10 9.54 (9.42; 9.66) 10 9.64 (9.53; 9.75) 10 10.10 (9.98; 10.23)
bw 5 4.76 (4.61; 4.89) 5 4.88 (4.80; 4.97) 5 5.00 (4.92; 5.08)
τ 1 1.41 (0.92; 2.03) 1 1.45 (1.01; 1.98) 1 1.42 (0.99; 2.06)

2 shows that the perturbed model is able to estimate the true returns corresponding to a
Pareto process as it present the case where the simulations correspond to ξ = 0.

In Figures 3 and 4 we explore the effect of different parameter values on the estimation
of the return levels. We notice from Figure 3 that when γ increase, the spatial dependence
is unchanged, but the magnitude of the returns is increased. This is to be expected, as the
underlying spatial process is unchanged, and γ controls the tails of the distributions. Figure
4 explores the effect of the perturbation parameter. We observe that when the true field
correspond to a Pareto process perturbed with a positive ξ, the estimation of the spatial
dependece is fuzzier. Overall, our simulation study shows that estimation in this case is
harder than in the ξ < 0 case.

6 California temperature and rainfall

As illustrative examples we analyze two datasets. The first one consists of data for minimum
daily temperature at 665 locations in the State of California, from 2012 to 2014. The second
dataset consists of the daily accumulated volume of precipitation, in the same period in
California, at 992 locations. We limited our analysis to the winter period, and included only
observations for the months of December, January and February. For the analysis of the
minimum daily temperature we considered the transformation x = max(y) − y, where y is
the variable representing temperatureu, and the maximum is taken over the whole available
record. This results in a positive variable whose exceedances over a threshold correspond to
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Figure 1: 20-years return levels in space for simulated data corresponding to � = 0.5,
⇠ = �0.3 and ⌧ = 10. left: True returns; right: estimated returns.
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Figure 2: 20-years return levels in space for simulated data corresponding to � = �0.2, ⇠ = 0
and ⌧ = 10. left: True returns; right: estimated returns.
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Figure 2: 20-years return levels in space for simulated data corresponding to γ = −0.2, ξ = 0
and τ = 10. Left: True returns; Right: estimated returns.
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Figure 3: 20-year return levels in space for the simulated data with ⇠ = 0 and ⌧ = 10. Left:
� = �0.2; Right: � = 0.5.
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Figure 4: 20-year return levels in space for the simulated data with � = 0.5 and ⌧ = 10.
Left: ⇠ = �0.3, Center: ⇠ = 0. Right: ⇠ = 0.3.
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Figure 3: 20-year return levels in space for the simulated data with ξ = 0 and τ = 10. Left:
γ = −0.2; Right: γ = 0.5.
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Figure 4: 20-year return levels in space for the simulated data with γ = 0.5 and τ = 10.
Left: ξ = −0.3, Center: ξ = 0. Right: ξ = 0.3.
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Figure 5: Locations in the State of California where the data were collected. Circle points:
Temperature data; Crossed points: Rainfall data.

during the two years period, is 180 daily data. Figure 5 shows the locations where the data
were collected. The peaks over a threshold for these data are clearly not independent in
time, as threshold excesses often occur in clusters. Following the ideas in Coles (2001), we
tackle this problem by considering cluster maxima. In this example we calculate the max-
ima for blocks of four days, obtaining a total of 45 maxima per station. The threshold for
the temperature application was chosen as 10 · 0 �C Celsius (or equivalently to 50 degrees
Fahrenheit). The threshold chosen for this application was 100 mm. In both cases these
thresholds are close to the corresponding 80% quantile of the declustered data.

In the proposed model, the tail and scale parameters are assumed to be location invariant.
In the applications to the California rainfall and temperature we assume that they are
spatially varying. Following Nascimento et al. (2011) we consider transformations of � and
� and write them as linear functions of elevation and latitude. Those are the two covariates
that our exploratory analysis revealed to be the most influential. More specifically, we let
log(�s) = �T

� zs and log(�s) = �T
� zs, where zs = (1, h(s), l(s)). Here h(s) corresponds to

the elevation of location s and l(s) to its latitude. The estimation of the three dimensional
coe�cients �� and �� follows along the lines of Nascimento et al. (2011).

We fit our proposed model using the prior distributions suggested in Section 4.1. We
use a Gaussian kernel given by k(s � s⇤) = exp(�0 · 5||s � s⇤||2/b2

w)/
p

2⇡b2
w for L = 100

knots distributed on regular grid over the domain. This implies that the distance between
knots is equal to 110km. Table 2 shows the posterior means and credibility interval for the
parameters.

Figure 6 show the map of returns to minimum winter temperature in California state.
Left panel shows a low probability of the observations are higher than the threshold for all

14

Figure 5: Locations in the State of California where the data were collected. Circle points:
Temperature data; Crossed points: Rainfall data.

the left hand tail of the temperature distribution. The data were obtained from the National
Climatic Data Center, and are available on the web at http://www.ncdc.noaa.gov/. The
total number number of observations, for each station, during the two years period, is 180
daily data. Figure 5 shows the locations where the data were collected. The peaks over a
threshold for these data are clearly not independent in time, as threshold excesses often occur
in clusters. Following the ideas in Coles (2001), we tackle this problem by considering cluster
maxima. A more structured approach could be considered by modeling the serial correlation
as in Reich et al. (2014). In this example we calculate the maxima for blocks of four days,
obtaining a total of 45 maxima per station. The threshold for the temperature application
was chosen as 10 · 0 ◦C Celsius (or equivalently to 50 degrees Fahrenheit). For the rainfall
example we chose 100 mm. In both cases the thresholds are close to the corresponding 80%
quantile of the declustered data.

We fit our proposed model using the prior distributions suggested in Section 4.1, with
constant the tail and scale parameters. We use a Gaussian kernel given by k(s − s∗) =
exp(−0 · 5||s − s∗||2/b2w)/

√
2πb2w for L = 100 knots distributed on regular grid over the

domain. This implies that the distance between knots is equal to 110km. Table 2 shows the
posterior means and credibility interval for the parameters.

Figure 6 shows two maps that illustrate the results for the daily minimum winter temper-
ature over California. As expected the probability that the exceedance will be larger than
the 10 ◦threshold is pretty low, with the exception of the southern coastal region and the
south-east corner of the state. The map of the return levels shows a north-south gradient
that is affected by a coastal and a sierra effect. Analogous maps are presented in Figure 7
for winter precipitations. Here the maps indicate a clear north-south split, with a strong
effect of the desertical areas in the south-east of the state, and very high return levels in the
northern coast of the state.

14



Table 2: Means and 95% credibility intervals for the different parameters in the model. M -
Posterior mean, CI - Credibility interval

γ ξ σ bw τ
M CI M CI M CI M CI M CI

Minimum Temperature 0.045 (0.023; 0.068) −0.36 (−0.44;−0.30) 2.30 (2.23; 2.39) 0.54 (0.51; 0.58) 12.06 (10.21; 13.12)
Rainfall 0.102 (0.086; 0.116) 0.022 (−0.082; 0.120) 16.41 (16.05; 16.74) 1.45 (1.40; 1.53) 10.48 (9.08; 11.83)
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Figure 6: 100 ⇥ pr(X(si) > 10 �C) (left) and 20-year return level (right) for the minimum
winter temperature in the State of California.

counties, with exception to the southern coast. The right panel shows the 20-year return level
to minimum temperature, indicating that the northeast region provides lowest temperatures,
around 4 C.

Figure 7 show the map of returns to rainfall. Left panel shows that a probability of a
point is higher than the threshold varies from 0.05 to 0.35, and the right panel shows more
possibility of rainfall to nothern coast region.
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itation over the State of California.
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Figure 6: Minimum winter temperature in the State of California. Left: Probability of an
exceedance larger than 10 ◦C; Right: 20-year return levels
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Figure 7: Winter precipitation over the State of California. Left: Probability of exceeding
the 100 mm threshold; Right: 20-year return levels
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7 Conclusion and discussion

We have presented a new model for the excesses above a threshold of spatially referenced
observations. The model leverages the constructive multiplicative definition of a Pareto
processes. The Pareto process is an infinite-dimensional extension of the Pareto distribution
that is commonly used for the analysis of exceedances over a threshold at a single location.
Inference for a Pareto process is, in principle, possible using a hierarchical approach, but
it is complicated by the need to impose complex restrictions in the parameter space and
estimate a non-trivial normalizing constant. Our model is based on adding a multiplicative
perturbation the Pareto process, in order to facilitate an inferential approach based on
conditional independence. The perturbation can be interpreted as a nugget effect or as an
observational error. The model can flexibly capture wide ranges of spatial dependence. It can
also handle wide ranges of dependence. Moreover, simulations show that the proposed model
is able to capture spatial structures that are typical of fields of extreme values, including the
particular case ξ = 0 which correspond to the Pareto process. The hierarchical structure of
the model, coupled with the kernel representation of the spatial field, allows for computations
to be performed on spatial domains with large numbers of locations. Our Bayesian inferential
approach, uses the full likelihood and avoids splitting the inference for model parameters in a
sequence of steps. It is, thus, able to coherently propagate the uncertainty in the estimation
of all components of the model, using probability distributions.
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