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Abstract

An atmospheric release of hazardous material, whether accidental or intentional, can
be catastrophic for those in the path of the plume. Predicting the path of a plume based
on characteristics of the release (location, amount and duration) and meteorological con-
ditions is an active research area highly relevant for emergency and long-term response to
these releases. As a result, researchers have developed particle dispersion simulators to
provide plume path predictions that incorporate release characteristics and meteorological
conditions. However, since release characteristics and meteorological conditions are often
unknown, the inverse problem is of great interest, that is, based on all the observations
of the plume so far, what can be inferred about the release characteristics? This is the
question we seek to answer using plume observations from a controlled release at the Diablo
Canyon Nuclear Power Plant in Central California. With access to a large number of evalu-
ations of an expensive particle dispersion simulator that includes continuous and categorical
inputs and spatio-temporal output, building a fast statistical surrogate model (or emula-
tor) presents many statistical challenges, but is an essential tool for inverse modeling. We
achieve accurate emulation using Bayesian adaptive splines to model weights on empirical
orthogonal functions. We use this emulator as well as appropriately identifiable simulator
discrepancy and observational error models to calibrate the simulator, thus finding a pos-
terior distribution of characteristics of the release. Since the release was controlled, these
characteristics are known, making it possible to compare our findings to the truth.

Keywords: model calibration, inverse problem, multivariate emulation, categorical inputs, func-
tional outputs, uncertainty quantification, atmospheric dispersion models
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1 Introduction

Less than one year after California’s Diablo Canyon Nuclear Power Plant became operational

in 1985, a catastrophic nuclear accident occurred in Chernobyl, then part of the Soviet Union,

resulting in large amounts of radioactive material being released into the atmosphere and prov-

ing fatal for many emergency responders and reactor staff. Radioactive plumes, which drifted

over much of the western Soviet Union and Europe, necessitated the evacuation and long-term

resettlement of many local people and have had lasting effects on public health (United Nations

Scientific Committee on the Effects of Atomic Radiation, 2008).

Pacific Gas and Electric Company, which operates the Diablo Canyon Nuclear Power Plant,

performed a series of experimental releases of sulfur hexafluoride, a benign gas, from the Cal-

ifornia plant soon after the 1986 Chernobyl accident. The purpose of these experiments was

to gather concentration data at downwind observation sites after each release to be used for

validation of established particle dispersion models in the presence of complex terrain (Thuillier,

1992). The inverse problem, to determine if the release characteristics can be inferred based

on observations of the plume, was of less interest. However, the latest large-scale radioactive

release that happened after an accident in Fukushima, Japan, has prompted renewed interest

in the experimental release data from 1986 as a testbed for particle dispersion forward and in-

verse modeling (Lucas et al., 2017). Highly complex systems of this nature rarely allow for well

controlled experiments, making the 1986 experimental release data a rare asset.

Particle dispersion models have improved in the past three decades, and statistical calibration

of computer models has become a well developed field, especially following the work of Kennedy

and O’Hagan (2001). Our interest lies in developing non-intrusive uncertainty quantification

methods, specifically emulation and inverse modeling methods, suitable for use with the 1986

atmospheric release observations and many evaluations of a state-of-the-art particle dispersion

model. This is a difficult task due to the complexity of both the observed and simulated data.

The experimental release observations form a spatio-temporal field that includes measurement

error, background noise and missing values. Each of our many evaluations of the simulator has

both continuous and categorical inputs and outputs a spatio-temporal field, resulting in massive

amounts of simulated data. We note that, in general, uncertainty quantification has become

an essential step in much of modern scientific exploration, and many fields are consistently

increasing their computational capacity, making analysis of large amounts of simulated data a

relevant topic.

The primary innovation in this work that can be extended to other large computer exper-

iments is our emulation methodology. An emulator is a fast statistical surrogate for the more

complex simulator, which is a necessary tool when the simulator is expensive to evaluate. One

of the most commonly used models for emulation is the Gaussian process (GP) (Sacks et al.,

1989). However the GP is difficult to use because we employ a large number of evaluations of

the simulator, each with spatio-temporal output. Scalability is not a strength of the GP, though

more scalable versions are discussed in Kaufman et al. (2011) and Gramacy and Apley (2015).

Instead, we use Bayesian multivariate adaptive regression splines (BMARS), recently used for

emulation with small numbers of model runs in Chakraborty et al. (2013), Stripling et al. (2013)

and Francom et al. (2016). While BMARS can be used on its own for functional emulation

(Francom et al., 2016), we opt for a different approach in this application. We use BMARS

to model weights on spatio-temporal empirical orthogonal functions (EOFs) that are linearly
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combined to yield a spatio-temporal emulator. This has commonalities with the approach of

Higdon et al. (2008), which emulates simulators with highly multivariate output by using GPs

to model weights when linearly combining principle components. In our application, we also

require an emulator that can handle categorical inputs. We develop a way for BMARS to in-

corporate categorical inputs that is true to its adaptive nature. The result is an emulator that

(1) can flexibly and accurately model complicated functional response surfaces; (2) quantifies

emulator uncertainty; and (3) is scalable in the number of inputs, the number of model runs and

the dimension of the functional response. This is all fairly easy to reproduce via the R package

BASS (Francom, 2017).

Inverse modeling, or calibration, for this particular dataset presents its own set of unique

challenges. In addition to emulation for simulators that are expensive to evaluate, other essential

parts of calibration are building the simulator discrepancy model and the observational error

model. We combine these models with a modularized Bayesian approach similar to that of Liu

et al. (2009) to ensure identifiability and to simplify computations. We use a BMARS model for

the discrepancy. The scalability and flexibility of the combined framework could be valuable for

other computer experiments with large amounts of observational and simulation data.

We introduce our data, methods and findings as follows. In Section 2, we introduce the

experimental release data and our simulations. In Section 3, we detail the construction of our

emulator and evaluate the fit. In Section 4, we describe our calibration framework, detailing

simulator discrepancy and observational error models. We also demonstrate the inversion capa-

bility of the framework on synthetic data. In Section 5, we show the results of our calibration

technique using the Diablo Canyon plume observations and discuss the accuracy. In Section 6,

we summarize and detail future work.

2 Data

As is common in computer experiments, we have two sources of data: observations and simula-

tions (evaluations of the simulator). In this section, we describe each of these.

2.1 Observations

The 1986 experimental release we analyze is one of eight releases performed on different days be-

tween August 31 and September 17. We focus on a release of 146 kilograms of sulfur hexafluoride

(SF6) on September 4. Starting at 8:00AM local time, the SF6 gas was released continuously

for eight hours from a location at the base of the southmost containment unit at the Diablo

Canyon Nuclear Power Plant. Air sampling was performed automatically at 150 sites in the

surrounding area. At each site, air was pumped into a tedlar bag over the course of one hour,

at which point the bag was sealed and air was pumped into a new bag. Sampling was done

from the hours of 7:00AM to 7:00PM, yielding 12 measurements at each site. The quantity of

interest, the concentration of SF6, is reported as an hourly average for each site. Roughly 24%

of the samples are missing for unknown reasons.

The first sample at each site (the 7-8am average) was taken prior to the beginning of the

experimental release, thus measuring the background level of SF6. Investigation of the back-

ground level shows moderate amounts near the plant switchyard, where SF6 is used for electrical

insulation. A map of the background level is shown in Figure 1, along with the time series of
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the period after the release for a few sites. The time series are noisy, show orders of magnitude

in variation (even in the background level) and missing values. The large background level at

sites near the switchyard complicate the task of determining the controlled release characteris-

tics based on our plume observations, since this fugitive release plays a confounding role. To

minimize this confounding, for the 12 measurements at each site we subtract the site background

level (the first measurement). Any negative values are truncated to zero. This is an effort to

remove the background, but it makes the assumptions that the background level (1) is constant

over time, (2) is small enough that it has negligible effect on down-wind measurements (i.e. it

mostly disperses before reaching other sites) and (3) is not subject to large measurement error.

The latter two assumptions are likely to be valid, but the first is difficult to justify. Still, in

the absence of unconfounded temporal data to characterize the switchyard release, we proceed

under these assumptions. For sites that are missing a background measurement (shown with

slightly smaller dots in Figure 1), we do not subtract a background value from the measurements.

While we could try to impute the background level from neighboring sites, we assume that the

background level does not exhibit strong spatial correlation. Further, there are no missing back-

ground readings that we believe would be significantly large (i.e., there are no missing values

very near the switchyard). Because of the many orders of magnitude difference in observations,

small background errors are unlikely to have much effect on our ability to identify release char-

acteristics. Even the largest background measurements are orders of magnitude smaller than the

largest post-release measurements later in the time series.
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Figure 1: On the left, background SF6 levels are shown (corresponding to 7:00 local time) for
137 of the 150 sites. Slightly smaller back dots are sites missing the 7:00 observation. On the
right, observed time series for a few of the sites are shown. Lines connect adjacent observations
in time, with missing values excluded.

2.2 Simulations

The simulator used in this work is a Lagrangian particle dispersion model called FLEXPART

(“FLEXible PARTicle dispersion model”) (Stohl et al., 2005). An in-depth discussion of the
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Table 1: FLEXPART continuous parameter ranges

parameter lower bound upper bound true value
latitude 35.1977 35.2250 35.2111
longitude -120.8708 -120.8384 -120.8543
altitude (meters) 1 10 2
start time 7:00 9:00 8:00
duration (hours) 6 10 8
amount (kg) 10 1000 146.016

simulator and simulations can be found in Lucas et al. (2017), while we only introduce the

simulations briefly here. The FLEXPART model requires six inputs detailing characteristics of

the release (latitude, longitude, altitude, start time, duration, and amount) as well as a wind

field. We use the Weather Research and Forecasting Model (WRF) to generate wind fields while

varying only a few of WRF’s many inputs. The inputs we vary are pre-release initialization

time (9 or 15 hours), planetary boundary layer physics model used (YSU, MYJ TKE, or MYNN

TKE), land surface model used (thermal diffusion, Noah, or RUC), FDDA nudging amount

(none, low, or high), and type of reanalysis data used (NARR, ECMWF, or CFSR). We use a

series of five nested domains for evaluating WRF, so that the innermost domain resolves winds to

300 meters. More about these parameters and nesting can be found in Skamarock et al. (2008).

A combination of the five categorical variables yields a wind field, which, along with a setting of

the six continuous variables detailing the release characteristics, yields a simulated plume.

We obtain an ensemble of 18000 evaluations of FLEXPART with the 11-dimensional inputs

sampled from a Latin Hypercube using the ranges in Table 1 for the six continuous parame-

ters. We note that 18000 model evaluations is uncommonly large in the computer experiment

literature, though there are some recent applications with many evaluations (Gramacy and Ap-

ley, 2015; Kaufman et al., 2011). Our computational budget allowed for this large number of

evaluations, though each is still expensive to obtain. As discussed above, this large number of

simulations makes emulation difficult, since traditional emulation techniques do not scale well.

The output from one evaluation of the simulator is spatio-temporal on a grid of 400 × 400

spatial locations and 34 time points, as shown in Figure 2. The 34 time points are 30-minute

averages starting at 6:00 local time, thus extending to 23:00. We use only a subset of the 160,000

spatial locations when building the emulator, though the methods we present are scalable to

moderately large spatial grids. Specifically, we use the 137 spatial locations that correspond to

the sites shown in Figure 1, which are sites where we collect measurements. We exclude 13 of

the 150 measurement sites from the analysis because they fall outside the region considered in

the simulations, and are far enough away from the release that they are likely to only measure

background levels.

Both simulation and observation data are transformed to be on the log10 scale after adding

a constant of 20 to all values. The log scale makes modeling the many orders of magnitude

difference in concentrations easier. Adding 20, determined in consultation with field experts,

minimizes the amount of attention we give to small (in this case unimportant) concentration

values.

5



35.0

35.1

35.2

35.3

−120.8 −120.6 −120.4
longitude

la
tit
ud
e

101
102
103
104
105

site 317

site 317

site 342

site 342

site 507 site 507

●●●●

●●●●●
●●

●
●
●●

●●●●

●●●●●●●●●●●●●●●

local time

101

102

103

104

105

Time Series

●●●●●●●

●

●
●●

●

●

●

●●●●●
●

●

●●●●

●

●
●

●●●●●●

local time

101

102

103

104

105

SF
6 

 c
on

ce
nt

ra
tio

n 
 (n

g
m

3 )

●●●●●●●

●

●
●

●●
●
●

●
●
●

●
●

●●

●
●●

●●
●
●●

●

●●●●

10 15 20

local time

101

102

103

104

105

local time

Figure 2: We show the simulated SF6 plume for one of the 18000 simulations on the left (cor-
responding to 9:30 local time). On the right, we show simulation time series for a few of the
sites.

3 Emulator

A usable emulator in this case needs to be able to produce a reasonably close approximation to the

computer model for any possible combination of the 11 inputs. That is, given the characteristics

of the release and the wind field characteristics, it should produce the spatio-temporal plume.

Obtaining an estimate of emulation error is also a necessary task in order to allow us to propagate

the error into calibration uncertainty. If this error is disregarded, we leave open the possibility of

being too confident in our estimates of release and wind characteristics that could have generated

the calibration data. This case also requires an emulator that can use the large number of model

runs available.

Our model runs provide us with 18000 plumes in space and time. We use these plumes

to obtain empirical orthogonal functions (EOFs) in space and time jointly, and we model the

weights in this EOF decomposition using adaptive splines.

3.1 Empirical Orthogonal Functions

Let yc(s, t,x) denote computer model output at spatial location s, time t and 11-dimensional

input setting x. The model output is on a grid of ns spatial locations and nt times. We define

the vector of model output for input setting xj as

yc(xj) = (yc(s1, t1,xj), y
c(s2, t1,xj), . . . , y

c(sns
, t1,xj), y

c(s1, t2,xj), . . . , y
c(sns

, tnt
,xj))

′ (1)

and define the matrix of model run output Yc = [yc(x1), . . . ,yc(xnx)] for the nx model runs,

which has dimensions nsnt×nx. We obtain discretized EOFs using the singular value decompo-

sition, yielding Yc = UDV′. The matrix U is the nsnt×nsnt matrix that has EOFs as columns

and DV′ is the nsnt×nx matrix of weights. To reduce the dimension in the problem, we use only
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the first k EOFs, where k < nsnt, resulting in the truncated decomposition Ŷc = ÛD̂V̂′ where

Û has dimension nsnt × k and D̂V̂′ has dimension k × nx. For modeling purposes, we write

the non-truncated EOF decomposition as yc(s, t,xj) =
∑nsnt

i=1 Ki(s, t)wij where Ki(s, t) is the

ith EOF at spatial location s and time t and wij is the corresponding weight for xj , specifically

(DV′)ij .

We specify our emulator as the truncated decomposition

yc(s, t,x) =

k∑
i=1

Ki(s, t)wi(x) + u(s, t) (2)

where u(s, t) is the truncation error. We replace wij with wi(x) in order to allow us to predict

computer model output for x not in our training sample {x1, . . . ,xnx}. We model the weight

functions using adaptive splines with

wi(x) = ηi(x) + εi, εi ∼ N(0, σ2
i ) (3)

using the values of {wi1, . . . , winx} to train wi(·). We discuss the form of the function ηi(·) in

the next section. We assume that the weights on the EOFs are independent a priori.

Regarding the truncation, we need k, the number of EOFs used, to be sufficiently large to

yield a suitable approximation, but small enough to be computationally feasible. Assuming a

parametric distribution for the truncation error, u(s, t), for which it is independent and iden-

tically distributed for all s and t is likely to improperly characterize the emulation uncertainty

because of the large variation in plume characteristics in space and time. Instead we assume

truncation error for a particular (s, t) combination comes from the distribution of nx = 18000

truncation errors we have seen already,

u(s, t) ∼ Unif

{
yc(s, t,xj)−

k∑
i=1

Ki(s, t)wij

}nx

j=1

. (4)

Since the EOFs are fixed, there is little interest in the truncation error after we have chosen k,

other than to make sure it is propagated during calibration. Hence, we see no value in trying

to estimate a parametric distribution. The large value of nx makes our discrete distribution for

the truncation error accurate without making any limiting assumptions about distribution tails

and symmetry. Further, since this distribution has no unknown parameters and because the

weights wi(x) and wj(x) have no a priori correlation, the weights will also have no a posteriori

correlation. This means that the adaptive spline models for wi(x) and wj(x) can be fit completely

in parallel, which is a significant computational benefit.

3.2 Adaptive Splines

BMARS models are a Bayesian version of the more traditional MARS models introduced in

Friedman (1991b). These models can be a powerful tool for emulation for a number of reasons

(Denison et al., 1998; Chakraborty et al., 2013; Francom et al., 2016): (1) they are adaptive

because knots and variables are only included in basis functions if they are necessary; (2) they

perform implicit variable selection, as basis functions only include variables that are useful; (3)

they scale well, especially when compared to Gaussian process models; (4) they can flexibly pick
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up localized signal when the data suggest such signal exists; (5) they yield analytical Sobol’

sensitivity indices; and (5) they can be used to emulate simulators with functional response.

The model for the adaptive spline mean function ηi(x), used in Equation 3, is a linear

combination of tensor product basis functions. We drop the index as we describe this model,

since it is fit independently for i = 1, . . . , k. Thus, η(x) = a0 +
∑M

m=1 amBm(x) where the basis

function Bm(x) is of the form

Bm(x) =


∏Jm

j=1 gjm[sjm(xvjm − tjm)]+ if Jm > 0

1 if Jm = 0.
(5)

When Jm > 0, the basis function is a tensor product of polynomial splines where tjm is a

knot, vjm indexes a variable, and sjm ∈ {−1, 1}. The function [·]+ is defined as max(0, ·). The

constant gjm scales the basis function to have maximum of one, which helps with computational

stability. Without loss of generality, if xvjm ∈ [0, 1], then gjm = [(sjm + 1)/2 − sjmtjm]−1. A

basis function has Jm elements in the tensor product where each is required to involve a different

variable. Hence, Jm is the degree of interaction for basis function m. The piecewise structure

of the basis function will become important in the next section, where we will discuss the case

when Jm = 0.

The unknowns associated with η(x) are the number of basis functions, M , the basis function

weights a, and the basis function parameters. The value of σ2 from Equation 3 is also unknown

(again, we drop the index for notational simplicity). We assign priors to all of these parameters

following the specifications of Francom et al. (2016). To keep the number of basis functions small,

we use M |λ ∼ Poisson(λ) with λ ∼ Gamma(1, 1×105). We also regularize the basis coefficients

by using a g-prior (Zellner, 1986; Liang et al., 2008) such that a|σ2, τ,B ∼ N(0, σ2(B′B)−1/τ)

with p(σ2) ∝ 1/σ2 and τ ∼ Gamma(1, 1/nx). Here, B is the nx × (M + 1) matrix of basis

functions (including an intercept) conditional on the number of basis functions and the basis

function parameters {Jm, (tjm, vjm, sjm)Jm
j=1}Mm=1. These basis function parameters are given a

discrete uniform prior with the constraint that each resulting basis function have at least 20

non-zero points to help prevent edge effects (Francom et al., 2016).

3.3 Categorical Predictors

As we have discussed, our emulator needs to be able to handle categorical inputs. This requires an

extension of the traditional adaptive splines models that follows an approach similar to Friedman

Friedman (1991a), but modified to fit into our Bayesian framework. Specifically, if the inputs to

the simulator are (x, z) where z is a vector of categorical variables, we define the portion of the

basis function due to the categorical variables as

Bm(z) =


∏Lm

l=1 1(zulm
∈ Dlm) if Lm > 0

1 if Lm = 0.
(6)

where ulm indexes a categorical variable, Dlm is a proper subset of the categories of variable

ulm, and Lm is the degree of interaction of categorical variables. This approach to handling

categorical variables is somewhat similar to Storlie et al. (2015) and Ma et al. (2015). We

combine this portion of the basis function with Equation 5 so that the mth basis function is
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Bm(x, z) = Bm(x)Bm(z). The purpose of allowing for Lm = 0 or Jm = 0 is to allow for

basis functions that involve only the continuous predictors, or only the categorical predictors,

respectively. In our case study, we permit up to third-order interactions of each variable type

(Jm = 3 and Lm = 3) maximally resulting in six-way interactions if the data dictates that such

interactions are useful. Allowing Dlm to be a subset of categories rather than a single category is

useful for cases when two or more categories exhibit similar behavior, as it allows us to use fewer

basis functions to describe the behavior. We again use a discrete uniform prior for the categorical

basis function parameters {Lm, (ulm, Dlm)Lm
j=1}Mm=1, and we alter the constraint discussed above

to apply to the new set of basis functions that include both categorical and continuous variables.

That is, each resulting basis function must have at least 20 non-zero points.

Because the resulting posterior is transdimensional (since M is unknown), we use reversible

jump Markov chain Monte Carlo (Green, 1995) to obtain samples of the posterior model space.

We use the steps detailed in Denison et al. (1998) with the improvements of Nott et al. (2005)

to add a basis function, delete a basis function, or make a small change to a basis function.

3.4 Performance

We demonstrate the performance of the emulator by comparing emulator and simulator output

at input settings not used to fit the surrogate or to build the EOFs. We use the R package

BASS (Francom, 2017) to fit the BMARS models. Figure 3 shows the performance at 15 of

the 137 spatial locations for two different holdout simulator runs. In addition to the emulator

mean, posterior predictive uncertainty is shown. The prediction uncertainty varies with space

and time because (1) the homoscedastic BMARS error from Equation 3 is multiplied by the

corresponding spatio-temporal EOF in Equation 2, thus producing spatio-temporal noise and (2)

the truncation error varies in space and time. The models corresponding to the most important

EOFs use around 200 BMARS basis functions to fit the data, while the least important EOFs,

which correspond to higher frequencies, use around 50 basis functions.

These holdout predictions demonstrate reasonable emulator performance, especially consid-

ering the complexity of this simulator. Predictions of a number of other randomly chosen holdout

simulations also show good performance. By using a large number of EOFs in our emulator, we

are able to capture subtle variation in the shape of the time series for different input settings.

For instance, the difference in the shapes of the two time series for the Whalers Island location

(top right in Figure 3 (a) and (b)) could be attributed to “random” variation if a less accurate

emulator was used. Instead, we can attribute the difference to parameter variation. Because

the simulator is deterministic, there is technically no “random” variation, though there may be

numerical variation that is difficult to attribute to any parameter.

Our efforts to build an emulator for a single location (using the 34 time points) resulted in

poor emulation compared to those that utilize the spatio-temporal plume information. We also

achieved better emulation performance using spatio-temporal EOFs than we did using EOFs that

were separable in space and time. While separable EOFs have the benefit of easier interpretation,

we have little interest in interpretation, and separability ends up being a poor assumption for

this plume model.

The only case we foresee where we may be interested in interpretation of the EOFs is when

doing sensitivity analysis. We can easily obtain the Sobol’ decomposition for each EOF adaptive

spline model, extending the work of Francom et al. (2016) to include the categorical framework
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we have introduced. BMARS emulators are useful tools for global sensitivity analysis because

the integrals necessary in the Sobol’ decomposition can be obtained in closed form, yielding

no Monte Carlo error. However, if the EOF lacks interpretability, so too does the sensitivity

analysis. Because the first EOF is generally interpretable as the average and accounts for most

of the variance, sensitivity analysis of that EOF model may be interesting (shown in Figure

4). That sensitivity analysis shows that variable three, which is the release altitude, plays no

role in the weight for the first EOF. Hence, we would expect to learn very little about that

parameter during calibration, since it is also unimportant in all of the other EOF models. We

note that a more interpretable functional sensitivity analysis can be performed analytically

using our emulator (i.e. the Sobol’ decomposition integrals are analytical), but it bears a large

computational burden and will not be further explored in this paper.

4 Calibration Model

Our strategy for calibration differs from that of Kennedy and O’Hagan (2001) in a few important

ways. Rather than the GP emulator, we use BMARS. We also opt to fit the emulator before

calibrating, independent of the observational data. While we do this primarily for computational

reasons, it marks a general difference in strategy. A similar approach was used in Gramacy et al.

(2015), with the justification that with a large number of simulations the observational data is

not going to significantly influence the emulator. Others justify this strategy on philosophical

grounds, because the emulator is meant only to replicate the computer model and thus should

not be influenced by observational data (Liu et al., 2009).

Let yF (s, t) denote the log concentration data gathered from sensors at location s and time

t. Let ζ(s, t) denote the true concentration at the same location and time. Then we set up the

calibration model as follows:

yF (s, t) = ζ(s, t) + ν, ν ∼ N(0, σ2
F ) (7)

ζ(s, t) = yc(s, t,θ) + δ(s, t) (8)

where ν is the observation error, σ2
F is the observation error variance and yc(s, t,θ) denotes the

estimated computer model output at location s, time t and input setting θ. The δ(s, t) term

denotes the systematic model discrepancy. Hence, θ is the unknown setting of the simulator that

best matches reality when jointly considered with simulator discrepancy and observational error.

While the observations are hourly averages, the emulator gives 30-minute averages. Thus, we

average 30-minute averages in the emulator output to match the observation time scale. We also

exclude emulator and discrepancy values at (s, t) where the corresponding yF (s, t) is missing.

A potential problem with the introduced modeling framework is that the observations can

be produced in a number of different ways. For instance, we might get good prediction if we

get as close as we can to the observations by only altering θ, and then consider δ(·) to be the

leftover spatio-temporal structure in combination with ν, the observational error. However, we

could achieve equally good prediction by fixing θ at a particular value and only altering δ(·).
These two examples represent the extremes in overfitting, but we may attain equally misleading

combinations of these. Hence, we need restrictions in order to make all the terms identifiable.

The most satisfying restrictions we can introduce are in the form of an informative prior for
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(b) Holdout Sample 2

Figure 3: Demonstration of emulator fit at 15 locations. The top plots (a) show the time series
simulator output (dotted lines) for a particular set of inputs not used to train the emulator.
The bottom plots show a different input setting, to demonstrate variation in the model out-
put shape. Emulator posterior predictive means (dashed lines) and pointwise 95% probability
intervals (shaded region).
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Figure 4: Sensitivity analysis for the adaptive spline model corresponding to the first EOF.
Variable numbers 1-6 are the continuous inputs while variables 7-11 are the categorical inputs.

the shape of the discrepancy, rather than an informative prior for the parameters θ (Liu et al.,

2009). While there may be some applications where the shape of the discrepancy are somewhat

understood, we do not have an informative prior for our discrepancy model.

Following Liu et al. (2009), we make the quantities of interest identifiable by modularizing the

analysis further. Particularly, we fix the shape of the model discrepancy before trying to infer θ.

We get an estimate of the model discrepancy by estimating the computer model output at the

prior mean parameter settings (Bayarri et al., 2007) and subtracting that from the observations.

We then fit a BMARS model to that discrepancy as a function of s and t, effectively smoothing

it out. While we fix this discrepancy shape, we allow for its influence to vary by multiplying the

discrepancy by a scale factor, γ. Our prior for γ is uniform between zero and two. If γ is near

zero, the influence of the discrepancy is minimal. If it is near two, then the discrepancy plays a

larger role. We limit the upper bound to two because anything larger would give the discrepancy

similar magnitude to the simulator output, which we hope is not the case. While we introduce

a scale parameter to the discrepancy, we do not introduce an intercept parameter because doing

so would likely confound our ability to learn one of the simulator parameters (release amount),

which explains much of the magnitude variation. Without a priori knowledge of systematic

magnitude discrepancy, we refrain from including an intercept (or a multiplicative discrepancy

term for yc(·), included in Kennedy and O’Hagan (2001)). Thus, we alter Equation 8 to be

ζ(s, t) = yc(s, t,θ) + γδ(s, t).

While the functional forms of yc(·) and δ(·) are fixed in advance, we incorporate their uncertain-

ties in calibration by sampling their posterior predictive distributions, rather than using their

mean functions.

Under this calibration framework, our likelihood is yF |θ, σ2 ∼ N(yc(θ) + γδ, σ2
F I) and our

12



posterior is

π(θ, σ2
F , γ|yF ) ∝ N(yF |yc(θ) + γδ, σ2

F I)IG(σ2
F |a, b)1(θ ∈ D)1(γ ∈ [0, 2]) (9)

where D is the hypercube based on the prior ranges identified in Table 1 that also allows for all

the discrete parameter combinations. We obtain samples from the posterior by using Markov

chain Monte Carlo (MCMC) methods (Gelman et al., 2013). We sample σ2
F and γ from their

Inverse Gamma and Truncated Normal full conditionals, respectively. We use the Metropolis-

Hastings algorithm to sample the six continuous parameters in θ from their joint full conditional.

We sample the five categorical parameters jointly from their discrete full conditional. Specifically,

there are 162 combinations of the categorical parameters. We take a sample from the emulator

posterior predictive distribution for each of the 162 combinations and evaluate the posterior up

to a constant. This is reweighted to produce a posterior (full conditional) probability for each

setting of the categorical parameters. We then sample one of the 162 combinations according to

that probability distribution.

The computational bottleneck to this algorithm is sampling the emulator posterior predictive

distribution, as it requires building the BMARS basis functions for all EOF models. A single

sample takes 0.2 seconds when the tasks for the 100 models are split between four cores. To

obtain 162 samples, one for each categorical combination, a naive approach would require more

than 30 seconds for each MCMC iteration. We overcome the bottleneck in sampling the posterior

predictive 162 times by building all of the possible categorical basis functions in advance. For

each EOF model and each emulator posterior sample, we obtain the basis functions used in each

of the 162 predictive combinations. The resulting basis functions, which are combinations of ones

and zeros, are multiplied (pointwise) by the portions of the basis functions from the continuous

predictors. This allows us to obtain the 162 posterior predictive samples in less than 0.1 seconds

on four cores, in contrast to the naive approach that takes more than 30 seconds. Though the

categorical basis functions may seem like they would have a large memory footprint, they are

combinations of ones and zeros and thus can be stored efficiently in memory.

4.1 Synthetic Calibration

To test our methods, we can calibrate to data where we know the truth. Particularly, we use

two of the holdout model runs to perform two synthetic calibrations. That is, we treat each

of the two holdout model runs as the true data. Hence, we exclude the simulator discrepancy

portion of the model. The goal is to see if the parameters used to generate the model runs can be

reasonably identified. One- and two-way marginal posterior distributions for the six continuous

parameters are shown in Figure 5. These show that we are able to learn five of the six parameters

well. However, we are unable to learn the altitude from these data. This is not surprising, given

that our sensitivity analyses showed that altitude played little to no role in the emulator, so the

output cannot constrain this particular input. Upon closer investigation, we found that the grid

used in the simulations was too coarse to learn anything about the altitude parameter in the

range that was specified a priori (see Table 1).

Regarding the five categorical parameters that are inputs to WRF, we are able to identify

these well in the two synthetic examples (these results are not shown). Most posterior probability

(86% and 87% in the two examples) is given to the particular combination of five variables that

13



(a) Synthetic Calibration 1 (b) Synthetic Calibration 2

Figure 5: Marginal posterior distributions of continuous parameters in two synthetic calibration
problems where we calibrate to model run output. True values are marked with vertical lines
and X’s. 95% contours are shown in the two-way marginal plots.

are the true settings. Other synthetic calibrations using holdout data have shown that the land

surface model can be difficult to identify in some cases (results not shown).

5 Inferring the Source of a Diablo Canyon Release

In this section, we present the results of the case study. We first discuss calibration results under

two different discrepancy settings: (1) assuming no discrepancy (i.e., δ = 0) and (2) that the

modularized discrepancy discussed above. Figure 6 shows the one- and two-dimensional marginal

posterior distributions of the continuous parameters for the no discrepancy and modularized

discrepancy cases. The true values of the parameters are also shown in Figure 6, from which we

see that latitude and longitude are well identified under both discrepancy models. As can be

seen from its nearly uniform posterior distribution, altitude is not well identified for the reason

discussed in the previous section. The differences between these calibrated release location

parameters are negligible under the two different discrepancy models. However, the release

timing parameters (start time and duration) exhibit a fairly significant shift. The discrepancy

model helps to reduce the bias of the timing parameters. While both models result in a biased

amount parameter, the bias is reduced when a discrepancy model is included.

The bias in the calibrated amount parameter is most likely due to the fact that the amount

is highly correlated with the maximum (over space and time) of a model run. The maximum is

important because we are using the log scale, so other measurements may be orders of magnitude

smaller and thus would not reflect much difference in the amount. Since the emulator is more

smooth than the observations, the emulator maximum tends to be smaller than that seen in the

observational data. Hence, we did not have a bias in our calibrated amount under the synthetic

calibrations discussed earlier, as the synthetic data are more smooth, and maximum values tend

14



(a) Calibration Without Discrepancy (b) Calibration With Discrepancy

Figure 6: Marginal posterior distributions of continuous parameters obtained from calibrating
to real data. True values are shown with vertical lines and X’s. The left panel does not use
discrepancy while the right panel does. 95% contours are shown in the two-way marginal plots.

to be well predicted by the emulator.

In Figure 7, the posterior marginal distributions of the categorical variables are shown for

the two discrepancy cases. These distributions show significant change when a discrepancy

model is used. The distribution of each parameter becomes less varied when the discrepancy is

included. Notably, the reanalysis parameter strongly favors the North American model over the

European model when the discrepancy is included. The distribution of the planetary boundary

layer physics parameters is altered to give little mass to the YSU setting. There is also a much

stronger preference for no nudging when discrepancy is included.

While the original goal of this analysis were to test the calibration methodology on an ex-

perimental release where many of the release characteristics were known, the field study was

conducted over three decades ago at a time when global positioning satellites were not available.

As a result, there is a discrepancy between the coordinates of the release location in the origi-

nal field study documentation (UTM 695368 Easting, 3898440 Northing, and zone 10) and the

qualitative description of the release site in the paper by Thuillier (1992). Our initial analysis

showed that our estimate (posterior mean) of the location of the release (latitude and longitude)

was biased by about 100 meters and more consistent with location described in Thuillier (1992),

which indicates that the release occurred at the base of Containment Unit 2 (the southmost

containment unit). The corrected release location is supported by our calibration analysis, indi-

cating it is much more probable than the originally reported release location, as shown in Figure

8.

As discussed previously, our calibration approach fixed the shape of the model discrepancy

before inferring the calibration parameters. The scale parameter γ, which would inflate or deflate

the effect, preferred a deflated discrepancy (95% probability interval of (0.58, 1.02) for γ). The

model discrepancy inferred from the data can be a useful tool in understanding what parts of the
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(b) Calibration With Discrepancy

Figure 7: Marginal posterior distributions of categorical parameters obtained from calibrating
to real data. The top panel does not use discrepancy while the bottom panel does. Unlike the
continuous parameters, the true values of these parameters are unknown.

model could be explored further to improve predictive accuracy. We perform an exploratory data

analysis of the discrepancy to try to determine its meaning. We see common shapes in groups

of the discrepancy time series. When we cluster these time series, we partition our spatial field

into areas where the discrepancy time series look similar. The clustered time series and the

accompanying locations are shown in Figure 9. Clustering was performed using the fdakma R

package (Parodi et al., 2015) with a K-means (but using the medians) type of algorithm that

calculated the L2 distance between the first derivatives (approximated by differencing) of the

time series. Thus, cluster membership was determined based on similarity of the shape, rather

than amplitude of the curves. The number of clusters was selected based on visual assessment

of the clustering results. The more interesting parts of our discrepancy are in clusters three and

five, shown in Figure 9. Cluster three corresponds to locations that would be in the early path

of the plume under the meteorological conditions we observe. The shape of the time series in

cluster three seems to indicate a discrepancy in the timing of the plume reaching those locations,

implying that the simulator’s early concentrations are too high and late concentrations are too

low. This matches the fact that our inference regarding the timing parameters was improved

when we included this discrepancy model. As shown in Figure 6, excluding a discrepancy results

in later inferred start time. Cluster five corresponds to the spatial locations closest to the

release. These have largest discrepancy likely because of the high concentration of the plume

just after the release. With only a slight perturbation of the wind conditions, the early plume

predictions can be in completely different locations because the plume is so concentrated. Thus,

if wind predictions are only slightly inaccurate, the early plume predictions yield a large model

discrepancy.

Our calibrated predictions with and without discrepancy for the locations in cluster five
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Figure 8: The marginal posterior distribution of the latitude and longitude parameters, as well
as the reported location (see text for details).

are shown in Figure 10. These show that including discrepancy brings a significant benefit at

those locations while not being overly complex in shape. These also show that the extrapolated

predictions including discrepancy can be fairly inaccurate. Indeed, the curves shown in Figure 9

show that the temporal extrapolation is linear. As in all discrepancy functions that are motivated

by data rather than scientific input, this extrapolation should not be trusted. Note that one of

the locations, site 326, is missing all of the observations. Because site 326 is located such that it

is not much of a spatial extrapolation (not shown), this prediction may be trustworthy.

To see the broader effect of including discrepancy on calibrated prediction, we show the

predicted (posterior mean) versus observed data in Figure 11. This shows that the discrepancy

model, while simple, generally improves prediction. The improvement is most significant for

large values, corresponding to the location clusters closest to the release.

6 Conclusion

We have presented an analysis of a computer experiment with important applications to locating

and assessing an atmospheric release. In the process, we have developed emulation methodology

that can be scaled for use with large numbers of model runs when each has functional output.

We have extended existing BMARS methodology to allow for categorical inputs and to model

in a reduced dimension space. In building this emulator, we have detailed how to keep track

of different sources of uncertainty. We have extended modular approaches to computer model
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Figure 9: Clusters of discrepancy time series according to shape. The bottom right plot shows
locations marked by cluster membership. The vertical dotted lines in the time series represent
interval limits outside of which extrapolation begins.

calibration for use with a BMARS emulator and a BMARS discrepancy function, paying special

attention to identifiability.

The immediate applications of this work are for research and development purposes rather

than emergency response. In an actual emergency, there would be limited time to run WRF

(in forecast mode) to get the wind fields for use in FLEXPART. However, an approach that

uses weather analogues (Delle Monache et al., 2011) rather than WRF runs may be feasible. An

ensemble of FLEXPART simulations could be obtained in parallel, and emulation and calibration

models could be fit thereafter. In order to be useful, emulation and calibration need to be done

quickly and accurately. Hence, the emulation and calibration methodology outlined here has

potential to be useful.

A possible extension of the proposed model would be to include functional input. That is,

rather than parameterizing WRF with five categorical parameters, we could include the entire

spatio-temporal wind field as input for the emulator. This may be possible by decomposing

wind fields onto a set of basis functions and including the basis function weights as inputs to the

BMARS emulator.

18



Index

●

●

●
●

●

●

●

● ●

●
●

315

101

102

103

104

Index

●

●

●

●

●

●

● ●

316

Index

● ●

●

●

●

●

● ● ●

317

Index

●

●

●

●

●

●
● ●

●

●
●

318

Index

●

●

●

●

●

●
●

●

●

●

319

Index

●

● ● ●
● ●

●

●

320

101

102

103

104

Index

●

●
● ●

●

● ●

●

●
●

321

Index

●

●

●

● ●
●

●

●

●

●

322

Index

●

●

●

● ● ● ●
●

●

●

323

Index

●

●
●

●

●

●

●

●

● ●

324

Index

● ●

●

●

●

●

●

●

●

325

101

102

103

104

06
:0

0

08
:0

0

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

20
:0

0

22
:0

0

Index

326

06
:0

0

08
:0

0

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

20
:0

0

22
:0

0

Index

● ● ● ●

● ●
● ●

●

●

328

06
:0

0

08
:0

0

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

20
:0

0

22
:0

0

Index

● ● ● ●
●

329

06
:0

0

08
:0

0

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

20
:0

0

22
:0

0

time

co
nc

en
tr

at
io

n

● observations
mean predictions

(a) Prediction Excluding Discrepancy

Index

●

●

●
●

●

●

●

● ●

●
●

315

101

102

103

104

Index

●

●

●

●

●

●

● ●

316

Index

● ●

●

●

●

●

● ● ●

317

Index

●

●

●

●

●

●
● ●

●

●
●

318

Index

●

●

●

●

●

●
●

●

●

●

319

Index

●

● ● ●
● ●

●

●

320

101

102

103

104

Index

●

●
● ●

●

● ●

●

●
●

321

Index

●

●

●

● ●
●

●

●

●

●

322

Index

●

●

●

● ● ● ●
●

●

●

323

Index

●

●
●

●

●

●

●

●

● ●

324

Index

● ●

●

●

●

●

●

●

●

325

101

102

103

104

06
:0

0

08
:0

0

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

20
:0

0

22
:0

0

Index

326

06
:0

0

08
:0

0

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

20
:0

0

22
:0

0

Index

● ● ● ●

● ●
● ●

●

●

328

06
:0

0

08
:0

0

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

20
:0

0

22
:0

0

Index

● ● ● ●
●

329

06
:0

0

08
:0

0

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

20
:0

0

22
:0

0

time

co
nc

en
tr

at
io

n

(b) Prediction Including Discrepancy

Figure 10: Calibrated prediction for the locations in cluster 5. The top panel shows prediction
excluding discrepancy, while the bottom panel includes discrepancy. The 95% pointwise proba-
bility intervals do not include the observational error, which is Normal with posterior standard
deviation near 0.39 (95% probability interval (0.35, 0.43) for σF , symmetry coincidental).
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Figure 11: Calibrated prediction versus the observations, with and without the discrepancy in
prediction.
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