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Abstract

The mean residual life function is a key functional for a survival distribution. It has a practi-

cally useful interpretation as the expected remaining lifetime given survival up to a particular

time point, and it also characterizes the survival distribution. However, it has received limited

attention in terms of inference methods under a probabilistic modeling framework. We seek

to provide general inference methodology for mean residual life regression. Survival data often

include a set of predictor variables for the survival response distribution, and in many cases it

is natural to include the covariates as random variables into the modeling. We thus employ

Dirichlet process mixture modeling for the joint stochastic mechanism of the covariates and

survival responses. This approach implies a flexible model structure for the mean residual life of

the conditional response distribution, allowing general shapes for mean residual life as a function

of covariates given a specific time point, as well as a function of time given particular values of

the covariate vector. To expand the scope of the modeling framework, we extend the mixture

model to incorporate dependence across experimental groups, such as treatment and control

groups. This extension is built from a dependent Dirichlet process prior for the group-specific

mixing distributions, with common locations and weights that vary across groups through latent

bivariate Beta distributed random variables. We develop properties of the regression models,

and discuss methods for prior specification and posterior inference. The different components

of the methodology are illustrated with simulated data examples, and the model is also applied

to a data set comprising right censored survival times.
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1 Introduction

The mean residual life (MRL) function of a continuous positive-valued random variable, T , provides

the expected remaining lifetime given survival up to time t, m(t) = E(T − t | T > t). Its definition

requires that T has finite mean, which is given by E(T ) = m(0). The MRL function can be defined

through the survival function, S(t) = Pr(T > t), in particular, m(t) =
[∫∞
t S(u)du

]
/S(t), with

m(t) ≡ 0 when S(t) = 0. Conversely, the survival function is defined through the MRL function via

S(t) = {m(0)/m(t)} exp[−
∫ t

0{1/m(u)}du] (Hall and Wellner, 1981), and thus the MRL function

characterizes the survival distribution. Given this property and its useful interpretation, the MRL

function is of practical importance in a variety of fields, such as reliability, medicine, and actuarial

science.

Often associated with the survival times is a set of covariates, x. The MRL regression function

at a specified set of covariate values is given by:

m(t | x) = E(T − t | T > t,x) =

∫∞
t S(u | x)du

S(t | x)
(1)

provided E(T | x) <∞. In the regression setting, it is of interest to develop modeling that allows

flexible MRL function shapes over the covariate space. Note that MRL regression goes beyond

standard regression problems in that it involves study of covariate effects on a function over time.

It is of interest to study how MRL regression relationships change across different time points

(mean regression corresponds to t = 0), as well as how the MRL function evolves across different

covariate values. To our knowledge, there is no work in the Bayes nonparametrics literature that

explores modeling and inference for the MRL function in the presence of covariates.

Classical estimation methods for MRL regression have been primarily derived from the propor-

tional MRL model, m(t) = γ m0(t), where γ > 0 and m0(t) is a baseline MRL function (Oakes and

Dasu, 1990). If γ < 1, the survival function, S(t), associated with m(t) is proper for any proper

MRL function m0(t). Alternatively, S(t) is proper for all γ > 0 if and only if m0(t) is nondecreas-

ing. Maguluri and Zhang (1994) extend the proportional MRL model to incorporate covariates,

such that the MRL regression function is given by m0(t) exp(βTx), where β are the regression

coefficients and m0(t) is the unknown baseline MRL function. They propose two estimators for

β in the case of fully observed survival responses. Chen and Cheng (2005) expand the estimation
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methods under the semiparametric proportional MRL model to include censored responses, Chen

and Wang (2015) address the case with the censoring indicators missing at random, and Bai et al.

(2016) account for right censored length-biased data. Alternative to the proportional MRL model

structure, Chen (2006) and Chen and Cheng (2006) develop a class of additive MRL models, under

which the MRL regression function is given by m0(t) + βTx. Sun and Zhang (2009) generalize

the class of additive MRL models by applying a pre-specified transformation g to the regression

function, where g must be such that g(m0(t) + βTx) is a proper MRL function for all x. This

model is further extended in Sun et al. (2012) to incorporate time-dependent regression parame-

ters in a linear fashion. While these methods are more general than the basic approach of linking

covariates through parameters of a fully parametric MRL function, they are still restricted by the

proportional or additive form of the MRL regression function, by the parametric introduction of

covariate effects, and by the fact that inference is not based on a fully probabilistic model setting.

Our objective is to develop a modeling framework that lends full and flexible inference for MRL

regression within and across the covariate space. To accommodate the regression setting, we extend

our earlier work on inference for MRL functions, based on Dirichlet process (DP) mixture priors for

the survival distribution (Poynor and Kottas, 2018). To this end, we propose nonparametric DP

mixture modeling for the joint stochastic mechanism of the covariates and survival responses, from

which inference for MRL regression emerges through the implied conditional response distribution.

This DP mixture density regression approach was proposed by Müller et al. (1996) for real-valued

responses, and has been more recently elaborated under different settings; see, e.g., Müller and

Quintana (2010), Taddy and Kottas (2010), Wade et al. (2014), Papageorgiou et al. (2015), and

DeYoreo and Kottas (2018). For problems with a small to moderate number of random covariates,

this modeling approach is attractive in terms of its inferential flexibility. At the same time, survival

data typically comprise responses (and associated covariates) from subjects assigned to different

experimental groups, such as control and treatment groups. The treatment indicator can not

be meaningfully incorporated into the joint response-covariate mixture model as an additional

component of the mixture kernel. We thus extend the model to allow distinct mixing distributions

for the different groups, which are however dependent in the prior with the dependence built in a

nonparametric fashion. We develop this extension in the context of two groups, using a dependent

Dirichlet process (DDP) prior for the group-specific mixing distributions. A key aspect of the
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modeling approach is the choice of the mixture kernel that corresponds to the survival responses.

Moreover, even though we do not model directly the MRL function of the response distribution,

the implied model for the MRL function given the covariates has an appealing structure as a locally

weighted mixture of the kernel MRL functions, with weights that depend on both time and the

covariates.

The outline of the paper is as follows. Section 2 develops the approach to modeling and inference

for MRL regression, including illustrations with synthetic data sets. In Section 3, we present the

model elaboration to incorporate survival data from different experimental groups. We study

properties of the proposed DDP prior model (with technical details included in Appendix A), and

present results from two simulation data examples. In Section 4, we provide a detailed analysis of

a standard data set from the literature on right censored survival times for patients with small cell

lung cancer. Finally, Section 5 concludes with a summary.

2 Mean residual life regression

2.1 Model formulation

For survival regression problems with a small/moderate number of random covariates, it is mean-

ingful to model the joint distribution of covariates and survival responses. A key benefit of this

modeling approach for MRL regression revolves around the interpretable implied form for the MRL

function of the conditional response distribution, which allows for general shapes within and across

the covariate space.

Let x be a vector of random covariates and T the positive-valued survival response variable.

We model the joint response-covariate density using a DP mixture model:

f(t,x | G) =

∫
k(t,x | θ) dG(θ); G ∼ DP(α,G0) (2)

where k(t,x | θ) is the joint kernel density for survival time and covariates, and the mixing dis-

tribution, G, is assigned a DP prior (Ferguson, 1973). The model is completed with hyperpriors

for the DP precision parameter, α, and for (some of) the parameters of the baseline (centering)

distribution G0. Under the DP constructive definition (Sethuraman, 1994), a realization G from

DP(α,G0) is almost surely of the form
∑∞

l=1wlδθl , where the atoms are independently and iden-
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tically distributed (i.i.d.) from the baseline distribution, θl
i.i.d.∼ G0, with the weights constructed

through stick-breaking: w1 = v1 and wl = vl
∏l−1
r=1(1 − vr), for l ≥ 2, where vl

i.i.d.∼ Beta(1, α)

(independently of the θl).

Hence, the density in (2) can be re-written as f(t,x | G) =
∑∞

l=1wlk(t,x | θl). Directly from

their definitions, the conditional response density can be expressed as f(t | x, G) =
∑∞

l=1 ql(x;θl) k(t |

x,θl), and the conditional survival function as

S(t | x, G) =
∞∑
l=1

ql(x;θl)S(t | x,θl) (3)

where ql(x;θl) = wlk(x | θl)/{
∑∞

r=1wrk(x | θr)}. Therefore, the conditional density and sur-

vival functionals are represented as mixtures of the corresponding kernel functions with covariate-

dependent mixture weights. Analogously, the mean regression function is E(T | x, G) =
∑∞

l=1 ql(x;θl)E(T |

x,θl) (a sufficient condition for finiteness of the conditional expectation is provided later). The

covariate-dependent mixture weights allow for local adjustment over the covariate space, thus en-

abling general shapes for the conditional response distribution and for the mean regression func-

tional.

Importantly for our objective, this local mixture structure extends to the MRL functional.

Using the form for the conditional survival function in (3) and the definition of the MRL regression

function from (1), we obtain

m(t | x, G) =

∫∞
t S(u | x, G) du

S(t | x, G)
=
∞∑
l=1

q∗l (t,x;θl)m(t | x,θl) (4)

where q∗l (t,x;θl) = wlk(x | θl)S(t | x,θl)/{
∑∞

r=1wrk(x | θr)S(t | x,θr)}, and m(t | x,θ) is

the MRL function of the conditional response distribution under the kernel. (Implicit here is the

assumption that, under the kernel distribution, E(T | x,θ) < ∞, for any x). Therefore, our prior

model for the MRL regression function admits a representation as a weighted sum of the conditional

MRL functions associated with the kernel components, with weights that are dependent on both

time and the covariate values. Important to note in the form of the mixture weights is that there

are separate functions controlling the local adjustment over covariate values and time. Aside from

the useful interpretation, expression (4) suggests the capacity of the model to capture non-standard
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MRL regression relationships over time, as well as general MRL function shapes across the covariate

space.

We next turn to the choice of the DP mixture kernel, k(t,x | θ). A structured approach to

specifying dependent kernel densities involves a marginal density for the covariates, k(x | θ1), and

a parametric regression model for k(t | x,θ2), where θ = (θ1,θ2). For our data illustrations,

we use the simpler form for the kernel density that corresponds to independent components for

the survival response and the covariates, k(t,x | θ) = k(x | θ1)k(t | θ2). In this case, the prior

model in (4) becomes a mixture of the marginal kernel MRL functions, with weights that are

still dependent on both time and covariate values through distinct functions, here, S(t | θl) and

k(x | θl), respectively. As can be seen from the model structure and also demonstrated with the

data examples, such a kernel density form strikes a good balance between inference flexibility and

model complexity with respect to the dimensionality of the mixing parameter vector θ. Regarding

k(x | θ1), when all the covariates are continuous, the multivariate normal density is a convenient

choice, possibly after transformation for the values of some of the covariates. A normal kernel

density can also accommodate ordinal categorical covariates through latent continuous variables

(e.g., DeYoreo and Kottas, 2018). Alternatively, categorical covariates (whether ordinal or nominal)

can be incorporated by adding a corresponding component to the kernel in a product form, or if

relevant, through marginal and conditional densities for the continuous and categorical covariates

(e.g., Taddy and Kottas, 2010).

A key consideration for the specification of k(t | θ2) is to ensure that the MRL function m(t |

x, G) is well defined, that is, we require that E(T | x, G) is (almost surely) finite, for any x. The

following lemma (whose proof is given in Appendix A) provides a sufficient condition for finiteness

of this conditional expectation.

Lemma. Consider the DP mixture model in (2) with kernel of the general form k(x | θ1)k(t | x,θ2),

and with DP centering distribution G0(θ1,θ2) = G10(θ1)G20(θ2), and let x be a generic set of

covariate values. If E(T | x,θ2) =
∫
R+ u k(u | x,θ2) du < ∞, and

∫
E(T | x,θ2) dG20(θ2) < ∞,

then, E(T | x, G) <∞, almost surely.

Note that defining G0 through independent components for θ1 and θ2 is a natural modeling

strategy. Also, under independent kernel components for the response and covariates, E(T | x,θ2)

simplifies to the expectation of the kernel for survival time, and the second lemma condition becomes
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∫
E(T | θ2) dG20(θ2) < ∞. For this model version, it is straightforward to verify the lemma

conditions for the gamma density under a particular selection for G20. The gamma choice is unique

in this respect among standard lifetime distributions in that it suffices for existence of the mixture

MRL function without the need for awkward restrictions on the parameter space for θ2. Further

support for the gamma kernel choice is provided by the fact that it generates both increasing and

decreasing MRL functions (for shape parameter < 1 and > 1, respectively), its MRL function can

be expressed in a form that is easy to compute (see Section 2.2), as well as by a denseness result for

MRL functions corresponding to gamma mixture distributions, obtained under the setting without

covariates (Poynor and Kottas, 2018). We use the following parameterization for the gamma density,

k(t | θ2) ≡ k(t | η, φ) ∝ te
η−1exp(−eφt), with (η, φ) ∈ R2, to facilitate selection of a dependent

G20(η, φ) distribution, taken to be bivariate Gaussian. Finally, we note that the lemma conditions

remain generally easy to verify if one wishes to extend the gamma kernel density to depend on

covariates, for instance, such that its mean is extended to exp(η − xTβ).

2.2 Posterior inference

We obtain samples from the posterior distribution of the DP mixture model using the blocked

Gibbs sampler (Ishwaran and James, 2001). In particular, the Markov chain Monte Carlo (MCMC)

posterior simulation method builds from a truncation approximation to the mixing distribution,

GL =
∑L

l=1 plδθl , with θl
i.i.d.∼ G0, for l = 1, ..., L, pl = wl, for l = 1, ..., L−1, and pL = 1−

∑L−1
l=1 pl.

The truncation level L can be chosen to any desired level of accuracy, using DP properties. For

instance, the prior expectation for the partial sum of the original DP weights, E(
∑L

l=1 pl | α) =

1− {α/(α+ 1)}L, can be averaged over the hyperprior for α to estimate E(
∑L

l=1 pl) for any value

of the truncation level. Appendix B includes details of the MCMC algorithm for the DDP mixture

model developed in Section 3, an algorithm that includes as a special case the one for the DP

mixture model used for the simulation examples of Section 2.3.

Posterior inference for the density, survival, and mean regression functionals can be obtained

by evaluating the corresponding conditional response distribution functional under model (2) at

any time t and covariate values x of interest. The expressions for f(t | x, G), S(t | x, G), and

E(T | x, G) are computed using the posterior samples for GL, thus involving finite sums at the

inference stage. Posterior samples for the MRL regression function can be efficiently computed
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using expression (4), provided the kernel MRL function can be readily computed. This is indeed

the case for the gamma kernel distribution whose MRL function can be expressed in terms of the

Gamma function, Γ(a), and the gamma distribution survival function, SΓ(t) (Govilt and Aggarwal,

1983). More specifically, under the gamma density parameterization given in Section 2.1,

m(t | η, φ) =
te
η

exp(−eφt) exp{φ(eη − 1)}
Γ(eη)SΓ(t | η, φ)

+ exp(η − φ)− t.

This expression suffices for the model built from independent kernel components for the survival

response and covariates, and it can be easily extended to accommodate a gamma kernel density

that depends on covariates.

2.3 Simulation examples

We provide two simulation examples to demonstrate the model’s capacity to capture a variety of

MRL functional shapes. Both examples involve a single continuous covariate. For the first example,

we work with a finite mixture for the joint response-covariate distribution, specified such that the

MRL function takes on various non-standard shapes at different parts of the covariate space. In

the second example, we consider an exponentiated Weibull distribution (Mudholkar and Strivasta,

1993) for the survival responses. This is a three-parameter extension of the Weibull distribution

that achieves more general shapes for the hazard rate and MRL function. The regression model for

the simulation truth is built by defining the three response distribution parameters through specific

functions of covariate values, which are drawn from a uniform distribution. The two simulation

scenarios are designed to correspond to a setting similar to the model structure, as well as a much

more structured parametric setting for the data generating stochastic mechanism. We work with

relatively large sample sizes (1500 and 500 for the first and second example) so that the data sets

provide reasonably accurate representations of the simulation truth, thus rendering comparison

with true MRL functions meaningful. The synthetic data examples of Section 3.3 and the analysis

of the real data in Section 4 illustrate model inferences under smaller sample sizes.

We apply the same DP mixture model to both synthetic data sets, with mixture kernel defined

through the product of the gamma density for the survival response, k(t | η, φ) ∝ te
η−1exp(−eφt),

and a normal density for the covariate, N(x | β, κ2) ∝ exp(−0.5κ−2(x − β)2). The DP centering
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Figure 1: Simulated data from the finite mixture. The left panel plots the data. The right panel
shows point (dotted line) and interval estimates (gray bands) of E(T | x,G), overlaid on the true
conditional expectation (solid line).

distribution is defined by G0(η, φ, β, κ2) = N2((η, φ) | µ,Σ) N(β | λ, τ2) Γ−1(κ2 | a, ρ), where

Γ−1(c, d) denotes the inverse-gamma distribution with mean d/(c−1) (provided c > 1). The model

is completed with the following hyperpriors: µ ∼ N2(aµ, Bµ), Σ ∼ IWish(aΣ, BΣ), λ ∼ N(aλ, bλ),

τ2 ∼ Γ−1(aτ , bτ ), ρ ∼ Γ(aρ, bρ), and α ∼ Γ(α | aα, bα), where Γ(c, d) denotes the gamma distribution

with mean c/d. For both examples, we set aα = 3, bα = 0.1, and L = 80 for the DP truncation

level.

2.3.1 Simulation 1

We simulate 1500 observations from a population with density: f(t, x) =
∑6

l=1 qlΓ(t | al, bl)N(x |

ml, s
2
l ), where {al} = (45, 3, 125, 0.4, 0.5, 4), {bl} = (3, 0.2, 3.8, 0.2, 0.3, 5), {ml} = (−12,−8, 0, 12, 18, 21),

{sl} = (6, 5, 4, 5, 3, 2), and {ql} = (0.28, 0.1, 0.25, 0.21, 0.11, 0.05). The simulated data is shown

in the left panel of Figure 1. The following hyper priors were assumed: aµ = (0.59,−2.12),

Bµ = BΣ = ((0.019, 0)′, (0, 0.019)′), aλ = 0, aτ = 2, aρ = 1, bλ = bτ = 88, bρ = 1/88.

The mean of the survival times across a grid of covariate values is shown in Figure 1 (right

panel). In general, the model is able to capture the non-linear trend of the mean over the covariate

values. The truth is captured within the 95% interval estimate save for a small sliver barely outside

the interval near the right tail of the covariate space where data is sparse. The results for MRL

functional inference is shown in Figure 2. We provide point and 95% interval estimates for the

MRL function at four different covariate values. The model is able to capture the overall shape of

the true MRL functions, despite the variety of and often complexity of the shapes. At covariate

values where the data is most dense, such as x = −5 and x = 0, the inference is more precise as is
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Figure 2: Simulated data from the finite mixture. Point (dashed line) and 95% interval estimates
(gray bands) of the MRL function for the specified covariate value overlaying the true MRL function
of the population (solid line).

seen in the narrow interval bands. As we move to covariate values where data is more sparse, the

wide interval bands reflect the uncertainty of the MRL functional shape.

2.3.2 Simulation 2

The exponentiated Weibull population has survival function, S(t | α′, θ′, σ′) = 1−[1−exp{−(t/σ′)α
′}]θ′ .

The MRL function associated with this distribution can take on increasing, decreasing, constant,

upside-down bathtub, and bathtub shapes depending on the shape parameters, α′ and θ′, as well as

their product (σ′ is a scale parameter). We sample 500 observations from an Exponentiated Weibull

population with α′ = X, θ′ = exp(2.93−1.96X), and σ′ = 14log(X3 +1), where X ∼ Unif(0.5, 2.8).

The simulated data is shown in the left panel of Figure 3. The following hyper priors were as-

sumed: aµ = (2.0,−0.8), Bµ = Bσ = ((0.11, 0)′, (0, 0.11)′), aλ = 0, aτ = 2, aρ = 1, bλ = bτ = 4.6,

bρ = 1/4.6.

The mean of the survival times across a grid of covariate values is shown in Figure 3 (right

panel). Once again, the true mean regression exhibits a non-linear trend that is increasing until

about x = 1.5 then decreases. The is captured well within the 95% interval estimate and the
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Figure 3: Simulated data from the exponentiated Weibull regression model. The left panel plots the
data. The right panel shows point (dotted line) and interval estimates (gray bands) of E(T | x,G),
overlaid on the true conditional expectation (solid line).
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Figure 4: Simulated data from the exponentiated Weibull regression model. Point (dotted line) and
95% interval estimates (gray bands) of the MRL function for the specified covariate value overlaying
the true MRL function of the population (solid line).

parabolic shape is clearly mimicked by the point estimate. The results for MRL functional inference

is shown in Figure 4 at four covariate values. In all four scenarios, the truth is captured within the

95% interval bands while the general shapes are mimicked by the point estimates.

11



3 Dependent DP mixture model for MRL regression

3.1 The DDP mixture model formulation

Often in clinical trials, researchers are interested in modeling survival times of patients under

treatment and control groups. Since the underlying population pre treatment is typically the same,

it is reasonable to expect that the survival distributions of the two groups exhibit similarities. Thus

modeling groups jointly is a natural choice, offering potential learning for the correlation as well as

borrowing inferential strength across groups. We propose to do so by generalizing the DP mixture

model described in Section 2 to a dependent DP (DDP) mixture model. Under this framework, we

achieve non-standard shapes in the MRL regression functions, that may even differ across groups

contingent on the strength of the dependence across experimental groups.

Let s ∈ S represent in general the index of dependence. In our case, this indicates the experi-

mental group, that is S = {T,C} where (T ) is the treatment group and (C) is the control group.

The model in (2) can be extended to f(t,x | Gs) =
∫
Θ k(t,x | θ)dGs(θ) for s ∈ S, where now we

are modeling a pair of dependent random mixing distributions {Gs : s ∈ S}. We seek to model

the distributions in such a way as to incorporate dependencies across experimental groups, while

maintaining marginally the DP prior, Gs ∼ DP, for each s ∈ S. MacEachern (2000) develops

the dependent DP prior in generality with both the weights and atoms under the stick-breaking

definition dependent on experimental group: Gs =
∑∞

l=1 ωlsδθls . Marginally, Gs ∼ DP(αs, G0s)

for each s ∈ S. MacEachern (2000) goes on to describe the computational difficulties in modeling

dependencies in the weights across groups, thus motivating development of the common weights

model. In this model, the weights do not change over the groups, only the locations vary, Gs =∑∞
l=1 ωlδθls . Applications of common weights DDP models include DeIorio et al. (2004), Rodriguez

and ter Horst (2008), DeIorio et al. (2009), Kottas et al. (2012), and Fronczyk and Kottas (2014).

While computationally convenient and a useful extension of the basic DP prior, assuming the

same weights has potential disadvantages in our setting. A practical disadvantage of the common

weights DDP construction involves applications with a moderate to large number of covariates.

For such cases, the common weights prior requires building dependence across s ∈ S for a large

number of kernel parameters, whereas modeling dependence through the weights is not affected by

the dimensionality of the mixture kernel. In situations where we might expect similar locations
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across groups, modeling dependence through the weights is more attractive. In our context, we

may expect the two groups to be comprised of similar components which however exhibit different

prevalence across survival time.

We thus use mixing distributions of the form Gs =
∑∞

l=1wlsδθl , for s ∈ {T,C} representing the

treatment and control groups, respectively, and the DDP mixture model becomes

f(t,x | Gs) =

∫
Θ
k(t,x | θ)dGs(θ); Gs ∼ DDP(Φ, G0) (5)

where Φ represents the parameters associated with the construction of the dependent weights of

Gs. The common atoms are defined, as usual, arising i.i.d. from the baseline distribution, G0. It

follows that the conditional response density can be written as f(t | x, Gs) =
∑∞

l=1wlsk(t | x,θl),

and the conditional survival function as

S(t | x, Gs) =

∞∑
l=1

qls(x;θl)S(t | x,θl) (6)

where qls(x;θl) = wlsk(x | θl)/{
∑∞

r=1wrsk(x | θr)}. Likewise, the mean regression function is

E(t | x, Gs) =
∑∞

l=1 qls(x;θl)E(t | x,θl). Thus, the conditional density, conditional survival, and

mean regression functions are weighted mixtures of the corresponding kernel functions with weights

dependent on the covariate as well as the group. This structure implies that general shapes are

tractable not only across the covariate space, but also across the groups.

Using the conditional survival form of (6) under definition (1), the MRL regression function is

written as

m(t | x, Gs) =

∫∞
t S(u | x, Gs)du
S(t | x, Gs)

=

∞∑
l=1

q∗ls(t,x;θl)m(t | x,θl) (7)

where q∗ls(t,x;θl) = wlsk(x | θl)S(t | x,θl)/{
∑L

l=1wlsk(x | θl)S(t | x,θl)}. Here, we see that the

local weighted mixture structure is again extended to the MRL regression, and the local adjustments

over the covariates, time, and (now) groups each have separate controlling terms in the mixture

weights. We have already demonstrated the flexibility of the MRL regression function within and

across the covariate space under form (4). We preserve that same flexibility under the form in (7)

for a specific group s with the addition of the model’s ability extract information across groups
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while maintaining the unique features within groups. Indeed, the MRL regression function can

vary in shape across the groups at the same covariate value if the data suggests.

Next, we turn to the construction of the dependent weights of Gs. Under the stick-breaking

method in obtaining the weights, we sample independently the latent parameters, υl ∼ Beta(1, α),

which is equivalent to using ζl = (1 − υl) ∼ Beta(α, 1) for l ∈ {1, 2, ...}. If we use a bivariate

beta distribution for (ζT l, ζCl) having Beta(α, 1) marginals, we can incorporate the dependence

between the two groups while maintaining the DP prior marginally for each group. Specifically,

the weights are defined as follows: w1s = 1 − ζ1s, wls = (1 − ζls)
∏l−1
r=1 ζrs for l ∈ {2, 3, ...}, with

(ζlC , ζlT ) | Φ ind∼ Biv-Beta(· | Φ), a bivariate beta distribution such that marginally the ζlC and ζlT

are Beta(α, 1) distributed.

We work with a bivariate beta distribution from Nadarajah and Kotz (2005), defined con-

structively through products of independent beta distributed random variables. In particular, to

define the bivariate beta distribution for (X,Y ), start with independent random variables, U ∼

Beta(a1, b1), V ∼ Beta(a2, b2), and W ∼ Beta(b, c), subject to the constraint, c = a1 + b1 = a2 + b2.

Then, define X = UW and Y = VW . The marginals are given by X ∼ Beta(a1, b1 + b) and

Y ∼ Beta(a2, b2 + b). We can obtain the desired beta marginals for ζCr and ζTr by setting b1 + b =

b2 +b = 1. We also take a1 = a2 such that the random mixing distributions have the same marginal

DP prior. The joint density of (X,Y ) has a complicated form, but it can be sampled from using

latent variables. The correlation has an analytic expression, and it can be shown to be positive.

Induced correlations in the model under this bivariate beta distribution are discussed in Section 3.2

below.

3.2 Properties of the DDP mixture model

In this section, we study the correlation structure induced by the bivariate beta distribution given

in the previous section. Under this bivariate beta construction, the correlation is driven by both

parameters, α and b. The construction is based off of the product of independent beta distributions.

Recall, we start with sampling the independent latent variables: U ∼ Beta(α, 1−b), V ∼ Beta(α, 1−

b), W ∼ Beta(α+1− b, b). Let ζC = UW and ζT = VW . The weights are defined by ws1 = 1− ζ1s,

wls = (1− ζls)
∏l−1
r=1 ζrs, for l ∈ {2, 3, ...}. The correlation structures for the latent variables a well

as the weights are detailed in the Appendix.
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We are interested in obtaining the correlation between the two mixing distributions, GC and GT ,

implied under this bivariate beta distribution. Let B ∈ Θ represent a subset of the space of the mix-

ing parameters. In the model we present, Θ is equivalent to R2, so B is simply a subset of R2. Recall

that the mixing distribution for group s has form Gs(B) =
∑∞

l=1wlsδθl(B). Marginally, Gs(B) fol-

lows a DP, so the expectation and variance of Gs(B) is G0(B) and G0(B)[1−G0(B)]/(α+1), respec-

tively. The covariance betweenGC(B) andGT (B) is given by Cov (
∑∞

l=1wlCδθl(B),
∑∞

l=1wlT δθl(B)),

which boils down to the expression, G0(B)
∑∞

l=1wlCwlT + 2G2
0(B)

∑∞
l=1

∑∞
m=l+1wlCwmT −G2

0(B).

The infinite series converges under geometric series, and the covariance simplifies to be:

Cov(GC(B), GT (B)) = G0(B)(1−G0(B))

(
(α− 2)b+ α+ 2

α(2α− 3b+ 5)− 2b+ 2

)

The correlation, therefore, does not depend on the choice of B or G0, it is driven by α and b alone:

Corr(GC(B), GT (B)) =
(α+ 1)((α− 2)b+ α+ 2)

α(2α− 3b+ 5)− 2b+ 2
(8)

The correlation of the mixing distribution lives on the interval (1/2, 1). As α → 0 and/or

b → 1, the correlation tends to 1. When α → ∞ the correlation tends to (b + 1)/2 and as b → 0

the correlation tends to (α + 1)/(2α + 1), so when α → ∞ and b → 0 the correlation goes to

1/2. Although this correlation space is limited, it is a typical range seen in the literature (e.g.

McKenzie (1985)). It can easily be shown that the correlation of the survival distributions between

the two groups given GC and GT also live on (1/2, 1), which demonstrates the importance of prior

knowledge of the relationship between the distributions of the two group survival times. While the

possible values of correlation on the distributions of the survival times are restricted to (1/2, 1),

the correlation between the survival times across the two groups, Corr(TC , TT ), takes on values in

(0, 1); see Appendix A for details.

3.3 Synthetic data examples

In this section, we construct two sets of populations to investigate the performance of the DDP

mixture model without covariates. The first set of populations is constructed using a mixture of

Weibull distributions having the same atoms and different weights. We would expect the DDP
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Figure 5: Simulation 1 population densities (left) and Simulation 2 population densities (right).
The red dashed curve represents the first population (T1) while the purple solid represents the
second (T2) in each simulation.

mixture model perform well under this scenario since the population shares the same structure as

the DDP in the model. The populations for the first simulation is shown in the left panel in Figure

5. The panel shows how the two populations look similar having modes at the same locations just

differing prevalences. The second set of populations is also constructed using a mixture of Weibull

distributions, however, this time we use both different weights and atoms. The intention is to test

the model’s inferential ability for populations that have quite different features. Figure 5 shows the

density populations of the second simulation in the right panel. The second population exhibits a

single mode in between the two modes of the first population. The panel indicates that the two

densities are quite dissimilar.

We assume the same distributional specifications in the DDP mixture model for both simula-

tions. Namely, assume a gamma kernel density for k(t | θ) = Γ(t | η, φ) with baseline distribution

G0(η, φ) = N2((η, φ) | µ,Σ). We specify the following priors: µ ∼ N2(µ | aµ, Bµ),Σ ∼ IWish(Σ |

aΣ, BΣ), α ∼ Γ(α | aα, bα), b ∼ Unif(b | 0, 1). We obtain posterior samples using the blocked

Gibbs sampler (Ishwaran and James, 2001) and working with the latent parameters of the bivariate

beta distribution. Posterior samples are based on a truncation approximation, GLs, to Gs. See

Appendix B for details on the posterior sampling algorithm.

3.3.1 Simulation 1

In Simulation 1, we demonstrate the model’s ability to perform under circumstances in which resem-

bles the structure of our model. Specifically, we simulate from two Weibull mixture distributions
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Figure 6: Simulation 1. Simulation 2. Posterior point and 95% interval estimates for density (left),
survival (middle), and MRL (right) functions. The truth is given by the dashed red (Group 1) and
solid purple (Group 2).

that share mixture locations, but have different weights: T1 ∼ 0.7Weib(2, 8) + 0.1Weib(3, 10) +

0.05Weib(4, 30) + 0.15Weib(8, 40) and T2 ∼ 0.5Weib(2, 8) + 0.05Weib(3, 10) + 0.025Weib(4, 30) +

0.425Weib(8, 40). The populations are comprised of four components each. We sample 250 survival

times from the first population and 100 survival times from the second population. We do not con-

sider censoring or covariates here. We place a uniform prior on the b parameter and a gamma prior

on α with shape parameter 2 and rate parameter 0.8. The number of components is conservatively

set at 40. We assume aµ = (1.87, 0.25)′, Bµ = bΣ = ((0.27, 0)′, (0, 0.27)′), and aΣ = 4. After burn

in and thinning, we obtain 2000 independent posterior samples.

The 95% posterior credible intervals for α, b, and Corr(GC , GT ) are given by (1.89, 14.45),

(0.15, 0.78), and (0.59, 0.88), respectively. Inference for the density, survival, and MRL functions

are provided in Figure 6. The model is able to express the features of the functionals, and the true

population density is captured within the 95% interval estimates save for the very tail where data

is very sparse. In particular, the flexibility of the model is demonstrated in the MRL function. The

true MRL is non-standard in both groups: initially decreasing, followed by an increase after about
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time 5, and then decreasing again after about time 12. The difference in sample size between the

two groups is indicated by the slightly larger interval bands in Group 2 for the majority of the

support of the data.

3.3.2 Simulation 2

The second simulation example is intended to be more of a challenge to the model. The populations

consist of mixtures of Weibull distributions, however, here we use different weights, locations, and

number of components. Group 1 is comprised of four components, while Group 2 is comprised

of five: T1 ∼ 0.5Weib(2, 4) + 0.05Weib(0.6, 4) + 0.025Weib(5, 15) + 0.425Weib(8, 30) and T2 ∼

0.02Weib(0.6, 1) + 0.02Weib(2, 4) + 0.66Weib(5, 15) + 0.2Weib(2, 8) + 0.1Weib(4, 30). We simulate

250 observations from each population. All observations are fully observed, and no covariates are

considered. Once again, we use a uniform prior on b, and gamma prior on α with shape parameter

2 and rate parameter 0.8. The number of components is set at 40, which is a conservative value for

these data. We assume aµ = (3.02, 0.54)′, Bµ = BΣ = ((0.1, 0)′, (0, 0.1)′), and aΣ = 4. After burn

in and thinning, we obtain 2000 independent posterior samples.

The 95% posterior credible intervals for α, b, and Corr(GC , GT ) are given by (0.76, 3.88),

(0.12, 0.72), and (0.62, 0.84), respectively. The posterior results for the density, survival, and MRL

functions are shown in Figure 7. Despite the difference in the features of the functionals between

the two groups, the model is able to capture the features of each group with accuracy. This is es-

pecially exciting for the MRL functions. The MRL functions are quite different from one another,

and both are non-standard shapes. The model has no problem capturing both shapes of the MRL

functions. The only area where we can see struggle in the model for the MRL function inference

is in the tails of the functionals. The true MRL function of Group 1 is slightly above the upper

interval estimate of the model. This may be just due to the random nature of simulated data; this

simulated data may suggest a lower MRL function in the tail. Another possibility is the extreme

difference between the MRL functions of the two groups in the tails. Group 1 shoots up sharply,

while Group 2 remains gradually decreasing. A third contributor to the tail struggle is that the

sparsity of the data in this area, so models in general a have a tougher time achieving accuracy.

Even with these elements against the model, the struggle is not significant.

The results from the two simulations demonstrate the practical utility of the DDP mixture
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Figure 7: Simulation 2. Posterior point and 95% interval estimates for density (left), survival
(middle), and MRL (right) functions. The truth is given by the dashed red (Group 1) and solid
purple (Group 2).

model. The model is able to incorporate dependence across two populations to achieve accurate

inference in the functionals of each population. In particular, the model provides flexible MRL

inference for two groups that exhibit MRL functions with different features across the range of

survival.

4 Small cell lung cancer data example

We consider a dataset that comprises survival times, in days, of patients with small cell lung cancer

under two treatment groups (Ying et al., 1995). The patients were randomly assigned to one of

two treatments referred to as Arm A and Arm B. Arm A patients received cisplatin (P) followed

by etoposide (E), while Arm B patients received (E) followed by (P). Arm A consists of 62 survival

times, 15 of which are right censored. Arm B consists of 59 survival times, 8 of which are right

censored. The age of each patient upon entry is also available, however, in Section 4.1, we will work

with the treatment as the only covariate. We later incorporate the age covariate in Section 4.2.
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4.1 Comparison of experimental groups

4.1.1 Results under DDP mixture model

We fit a DDP mixture model with gamma kernel to these data. Priors were specified using an

analogous approach as described in Poynor and Kottas (2018), i.e., using the range and midrange

of the observed survival times, which, in practice, would be specified by the expert. We place a

uniform prior on b and a gamma prior with shape parameter 2 and rate parameter 0.5 is placed

on α, and set L = 80. The posterior 95% credible intervals for α and b are given by (1.5, 11.9)

and (0.22, 0.72), respectively. We achieve some learning for α and a bit more for b. Consequently,

the model is able to learn about the correlation between the mixing distributions. Using (8), we

can obtain the posterior 95% credible interval for Corr(GC , GT ) to be (0.63, 0.85). The posterior

densities for both α and b indicate learning for these parameters. These data imply a fairly strong

correlation between the mixing distributions as well as between the population distributions of the

survival times under Arm A and Arm B.

Inference for the density, survival, and MRL functions are provided in Figure 8. The point

estimates for the density have the same general shape to the point estimates obtained by Kottas

and Krnjajić (2009), who employ a semiparametric regression model. Both models indicate a mode

at about 450 days for Arm A and 350 days for Arm B. However, the point estimates under the DDP

mixture model are smoother than under the semi-parametric regression model for both groups. The

difference is seen more obviously in the Arm B treatment. The point estimates for the two survival

curves indicates that Arm A has a higher survival rate across the range of the data starting from

about 200 days. The MRL regression exhibits a non-linear trend with Arm A having higher MRL

over the entire time. When comparing the results under the DDP mixture model from under the

independent DP mixture model, we see the same non-linear trend and favorability of Arm A over

Arm B, however, the separation between the two groups is far less under DDP mixture model

compared to the DP mixture model (see, Figure 3 in Poynor and Kottas (2018)). Arm B is the

group that appears to be most affected by the model change. Specifically, the point estimate for

Arm B is shifted up. The shift is most drastic in the tail where data become more sparse.

In Figure 9, we look at the prior probability, Pr(mA(t) > mB(t)), and posterior probability,

Pr(mA(t) > mB(t) | data), under the DDP mixture model. This figure is analogous to Figure 8
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Figure 8: Small cell lung cancer data. Posterior point and 95% interval estimates of the density
function for Arm A (upper left) and Arm B (upper right). Posterior point estimate of the survival
function (bottom left) and the mean residual life function (bottom right) for Arm A (blue dashed)
and Arm B (green solid).

in Poynor and Kottas (2018). The prior probabilities under both models do not favor one MRL

function over the other at any time point. We also see from the figures that the posterior probability

changes in a similar fashion as we move across the time space. Specifically, the probability is highest

at smaller survival times then dips down followed by an increase and then then tapers back down.

The range in probabilities is larger in Figure 9, with some probabilities reaching below 0.6. In

particular, Figure 9 indicates a lower probability of the MRL function of Arm A being higher than

the MRL function of Arm B after about 500 days.

4.1.2 Model comparison

In regards to model comparison, we are not aware of any competitive models for inference on the

MRL regression function. However, the small cell lung cancer data set has been used for illustration

of semiparametric survival regression models. In particular, Kottas and Krnjajić (2009) develop a
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Figure 9: Small cell lung cancer data. The posterior (black solid) and prior (red dashed) probability
of the MRL function of Arm A being higher than the MRL function of Arm B over a grid of survival
times (days).

Bayesian semiparametric model for quantile regression, based on a linear quantile regression func-

tion and a non-parametric scale mixture of uniform densities for the error distribution. Therefore,

we formally compare the predictive performance of the DDP mixture model for these data using

the CPO criterion and comparing to the summary values reported in Kottas and Krnjajić (2009).

The CPO of the ith observation CPOi can be expressed in terms of the joint posterior distribu-

tion of the model parameters, Ψ, given all the observations: CPOi =
(∫
f(ti|Ψ, xi)

−1π(Ψ|data)dΨ
)−1

.

The expression often does not have a closed form, so MCMC approximation is used (see, for exam-

ple, Chen et al. (2000)). The DDP mixture model requires a slightly different expression for the

CPO values. We provide the expression and derivation details in Appendix C.

A summary of the CPO values were obtained by averaging over the log-CPO values, ALPML,

in each group. The ALPML that are reported in Kottas and Krnjajić (2009) include −6.91 for the

non-parametric scale mixture of uniform densities, and 11.56 for a Weibull proportional hazards

model. The ALPML of the DDP mixture model is −6.05, indicating better predictive performance

compared to these models.

4.2 Incorporating the age covariate

Here, we incorporate the age (in years) of the subjects, upon entrance into the study, that is

also available in the small cell lung cancer dataset. The researchers did not select subjects from

particular ages, so it is not a fixed covariate, and it can thus be incorporated into the model through
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Figure 10: Small cell lung cancer data. Point and 80% interval estimates of the conditional mean
of the survival distribution of Arm A (blue dashed) and Arm B (green solid) across a grid of age
values (in years).

a joint response-covariate distribution.

In Figure 10, we plot the mean regression function over a grid of ages. Recall that the mean

regression is a weighted sum of the kernel component means. Moreover, the weights are functions

of the covariate, indicating the potential of the model to capture non-standard relationships across

the covariate space. This ability is demonstrated in Figure 10 where we see an increase in the mean

survival from about age 36 to just after 50, followed by a steeper decline, particularly in Arm B,

and then leveling out at higher ages.

We also look at the MRL regression function at age 50, 60, and 78, see top panels in Figure

11. At age 50, the MRL function for Arm A appear monotonic while the MRL of Arm B has a

very shallow dip at about 400 days then becomes indistinguishable from Arm A. At age 60, the

separation becomes more apparent towards in the earlier survival range, and the dips are more

pronounced and present in both groups. At age 78, we see a similar curvature as in our past

analysis: a dip around 300 − 400 and a shallow mode around 1000 − 1200. While the shapes and

range of the MRL functions change across the covariate space, Arm A remains as high or higher

than Arm B.

In the bottom panels of Figure 11, we consider the MRL as a function of age for three fixed time

points: 0, 250, and 750 days. Recall that the mean regression function is equivalent to the MRL

at time 0. Therefore, the bottom left panel is simply the mean regression function estimates (as

in Figure 10) for the two groups. At 250 and 750 days, we see a global decrease in the remaining

life expectancy compared to time 0. At all times, the maximum remaining life expectancy occurs
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Figure 11: Small cell lung cancer data. Estimates of the MRL function of Arm A (blue dashed)
and Arm B (green solid) for fixed ages (top panel) and for fixed times (bottom panels)

around age 52 years for both groups. The differentiation between groups is apparent across all ages

at 0 and 250 days, but is much less at 750 days. As seen previously, Arm A appears to have a

higher MRL across all ages at all three times. Moreover, the shape of the MRL as a function of

age is non-linear and non-monotonic.

5 Summary

We have proposed a nonparametric mixture model for mean residual life (MRL) regression, a prob-

lem that, to our knowledge, has not received attention in the Bayesian literature (parametric or

nonparametric). The focus has been on developing general inference methodology for both MRL

functions across different values in the covariate space and for MRL regression relationships across

different time points. The modeling approach builds from Dirichlet process mixture density regres-

sion, including dependent Dirichlet process priors to accommodate data from different experimental

groups. The methodology has been illustrated with both synthetic and real data examples.
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APPENDIX A: Theoretical Results

Proof of the Lemma.

Based on the DP constructive definition,

E(T | x, G) =

∞∑
l=1

ql(x;θ1l)E(T | x,θ2l) =

∑∞
l=1wlAx(θl)

f(x | G)

where Ax(θ) =
∫
R+ u k(u,x | θ) du = k(x | θ1)E(T | x,θ2) < ∞, from the first lemma assump-

tion. Let Zx =
∑∞

l=1wlAx(θl). Using the monotone convergence theorem, and the independence

between the DP atoms and weights, we have E(Zx) =
∑∞

l=1 E(wl)E(Ax(θl)) = E(Ax(θl)), since

this expectation is free of l as the θl are i.i.d. (from G0). Moreover,

E(Ax(θl)) =

∫
Ax(θ) dG0(θ1,θ2) =

{∫
k(x | θ1) dG10(θ1)

}{∫
E(T | x,θ2) dG20(θ2)

}

which is finite based on the second lemma assumption. Since Zx is a positive-valued random variable

with finite expectation, we conclude that Zx <∞, almost surely, and therefore, E(T | x, G) <∞,

almost surely.

Correlations of the DDP mixture prior model.

The bivariate beta distribution by Nadarajah and Kotz (2005) is based off of the product of indepen-

dent beta distributions. Start with sampling the independent latent variables: U ∼ Beta(α, 1− b),

V ∼ Beta(α, 1− b), W ∼ Beta(α+ 1− b, b). Let ζC = UW and ζT = VW . The weights are defined

by w1s = 1− ζ1s, wls = (1− ζls)
∏l−1
r=1 ζrs, for l ∈ {2, 3, ...}.

We are interested in obtaining the correlation between the two mixing distributions, GC and GT ,

implied under this bivariate beta distribution. We first start with the correlation between ζC and ζT ,

Corr(ζC , ζT ). We omit the component subscript in the latent variables, since results are the same

for each l ∈ {1, 2, ...}. The covariance can be written as, Cov(ζC , ζT ) = E(ζCζT ) − E(ζC)E(ζT ) =

E((UW )(VW )) − E(UW )E(VW ). Using the fact that U, V,W are independent, the covariance

becomes E(U)E(V )E(W 2)−E(U)E(V )E2(W ) = E(U)E(V )V ar(W ). Now, since ζC and ζT have

the same marginal distribution, Beta(α, 1), the covariance and correlation reduces to:

Cov(ζC , ζT ) =
α2b

(α+ 1− b)(α+ 1)2(α+ 2)

Corr(ζC , ζT ) =
αb

α+ 1− b
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The correlation between ζC and ζT can take values on the interval (0, 1). As b→ 0 and/or α→ 0,

the correlation goes to 0. As b→ 1 and/or α→∞, the correlation tends to 1.

The next step is to explore the correlation of the weights, Corr(wlC , wlT ) for l ∈ {1, 2, ....}.
When l = 1, w1s = 1− ζ1s, which is simply a linear operation, hence the covariance and correlation

are the same as before. The Cov(w1C , w1T ) = Cov(ζC , ζT ) and Corr(w1C , w1T ) = Corr(ζC , ζT )

are given above. The case is different for l = {2, 3, ...}. In this case, the covariance is defined

asE[((1 − ζlC)
∏l−1
r=1 ζrC)((1 − ζlT )

∏l−1
r=1 ζrT )] − E[(1 − ζlC)

∏l−1
r=1 ζrC ]E[(1 − ζlT )

∏l−1
r=1 ζrT ]. Using

the fact that ζls are independent across l = 1, ..., L, for each s ∈ {C, T}, the covariance, for

l ∈ {2, 3, ...}, can be expressed as

Cov(wlC , wlT ) =
(α+ 1− b)(α+ 2) + α2b

(α+ 1− b)(α+ 1)2(α+ 2)

(
α2b+ α2(α+ 1− b)(α+ 2)

(α+ 1− b)(α+ 1)2(α+ 2)

)l−1
− 1

(α+ 1)2

(
α2

(α+ 1)2

)l−1

The variance for the weights are independent of group, and can be expressed as V ar(wls) =

2/(α+ 1)(α+ 2)[(α+α2(α+ 2))/((α+ 1)2(α+ 2))]l−1− 1/(α+ 1)2[α2/(α+ 1)2]l−1. Therefore, the

correlation, for l ∈ {2, 3, ...}, can be obtained by Corr(wlC , wlT ) = Cov(wlC , wlT )/V ar(wls), which

is in closed form, but does not reduce. The correlation between the weights for l ∈ {2, 3, ...} also

takes values on the interval (0, 1) and behaves the same in terms of the limits of α and b as in the

case when l = 1. The component value, l, plays a slight role in the correlation, specifically as l get

larger, the rate of change for smaller α values becomes less extreme.

The correlation between GT and GC is discussed in Section 3.2. Here, we provide details on

the correlation between TC and TT . The Corr(TC , TT ) is found by marginalizing over the mixing

distributions, GC and GT . Starting with the covariance, Cov(TC , TT ) = E[TCTT ]− E[TC ]E[TT ] =

E[E[TC | GC ]E[TT | GT ]]− E[E[TC | GC ]]E[E[TT | GT ]]. Under the gamma kernel with bivariate

normal G0 the covariance is given by the following,

Cov(TC , TT ) =
(
et
′
2µ+ 1

2 t
′
2Σt2 − e2(t

′
3µ+ 1

2 t
′
3Σt3

)( (α− 2)b+ α+ 2

α(2α− 3b+ 5)− 2b+ 2

)

where t2 = (2,−2)′ and t3 = (1,−1)′. The variance of Ts, for both s ∈ {C, T}, is given by,

et
′
1µ+ 1

2
t′1Σt1 + et

′
2µ+ 1

2
t′2Σt2 − e2(t′3µ+ 1

2
t′3Σt3). Recall that t1 = (1,−2)′. Therefore the correlation is
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given by,

Corr(TC , TT ) =

[(
et
′
2µ+ 1

2 t
′
2Σt2 − e2(t

′
3µ+ 1

2 t
′
3Σt3)

)( (α− 2)b+ α+ 2

α(2α− 3b+ 5)− 2b+ 2

)]
/[

et
′
1µ+ 1

2 t
′
1Σt1 + et

′
2µ+ 1

2 t
′
2Σt2 − e2(t

′
3µ+ 1

2 t
′
3Σt3)

]

As the et
′
1µ+ 1

2
t′1Σt1 = E[eη−2φ]→ 0 the correlation simplifies to ((α−2)b+α+2)/(α(2α−3b+5)−

2b+ 2). In this case, as α→ 0 the correlation tends to 1 and as α→∞ the correlation tends to 0.

Also, as b→ 0 the correlation tends to 1/(2α+ 1) and as b→ 1 the correlation tends to 1/(α+ 1).

These results are scaled down as E[eη−2φ], the expectation of the kernel variance, gets larger.

APPENDIX B: MCMC Details

Here we show the posterior sampling algorithm used for the DDP mixture model in the presence of a

single random continuous real-valued covariate as applied in Section 4.2 of the manuscript. Omitting

the covariate terms of the algorithm will yield the model applied in Sections 3.3 and 4.1. Assuming

a singe group, i.e., s having only a single index value, will yield the algorithm pertaining to the

gamma DP mixture model applied in Section 2.3. We obtain posterior samples using the blocked

Gibbs sampler and working with the latent parameters of the bivariate beta distribution. Posterior

samples are based on a truncation approximation, GLs, to Gs: GLs =
∑L

l=1 plsδθl . Specifically,

the atoms are defined as θl = (ηl, φl, βl, κ
2
l )

i.i.d.∼ G0, for l = 1, ..., L with corresponding weights

p1s = 1 − ζ1s, pls = (1 − ζls)
∏l−1
r=1 ζrs for l ∈ {2, 3, ..., L − 1} with (ζlC , ζlT )|φ ind∼ Biv-Beta(· | φ),

and pLs = 1−
∑L−1

l=1 pls.

Upon introducing the latent configuration variables, w = {wis : i = 1, ..., ns | s = C, T}, such

that wis = l if the ith observation at group s is assigned to mixture component l, the full hierarchical

version of the model is written as,

(tis, xis) | wis,θl
ind∼ Γ(tis | eηwis , eφwis )N(xis | βwis , κ

2
wis)

wis | {(ζls)}
ind∼

L∑
l=1

{(1− ζls)
l−1∏
r=1

ζrs}δl(wis), for i = 1, ..., ns and s ∈ {C, T}

{(ζlC , ζlT )} | α, b ∼ Biv-Beta({(ζlC , ζlT )} | α, b)

(ηl, φl)
′ | µ,Σ i.i.d.∼ N2((ηl, φl)

′ | µ,Σ), for l = 1, ..., L

where ζlC = UW and ζlT = VW for l ∈ {1, ..., L} with U
i.i.d.∼ Beta(α, 1− b), V i.i.d.∼ Beta(α, 1− b),
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and W
i.i.d.∼ Beta(1 + α − b, b). We place the following priors: α ∼ Γ(α | aα, bα), b ∼ Unif(b |

0, 1), µ ∼ N2(µ | aµ, Bµ), Σ ∼ IWish(Σ | aΣ, BΣ), βl | λ, τ2 i.i.d.∼ N(βl | λ, τ2), κ2
l | a, ρ

i.i.d.∼

Γ−1(κ2 | a, ρ), λ ∼ N(λ | aλ, b2λ), τ2 ∼ Γ−1(τ2 | aτ , bτ ), and ρ ∼ Γ(ρ | aρ, bρ), with l ∈ {1, ..., L}.

Let L∗s be the number of distinct components, and w∗s ≡ {w∗js : j = 1, ..., L∗s} be the vector of

latent configuration variables for group s ∈ {C, T}. For subject i = 1, ..., ns, let δis = 0 if tis is

observed and δis = 1 if tis is right censored. Let Ψ represent the vector of the most recent iteration

of all other parameters. Let b = 1, ..., B be the number of iterations in the MCMC. The posterior

samples of p(η,φ,β,κ2,w, ζ,µ,Σ, λ, τ2, ρ, α, b | data) can be obtained by the following:

First, we consider updates for (ηl, φl)
′,βl, and κ2

l for l = 1, ..., L. If l is not already a compo-

nent: l /∈ w
∗(b)
C ∪w

∗(b)
T , then draw p(η

(b+1)
l , φ

(b+1)
l | data,Ψ) ∼ N2(µ(b),Σ(b)), p(β

(b+1)
l | data,Ψ) ∼

N(λ(b), κ
2(b)
l ), and p(κ

2(b+1)
l | data,Ψ) ∼ Γ−1(a, ρ(b)). If l is an active component in either or both:

l ∈ w
∗(b)
C ∪ l ∈ w

∗(b)
T . We have p(ηl, φl | data,Ψ) ∝ N2((ηl, φl)

′ | µ,Σ)
∏
s∈{C,T}

∏
{i:l=wis}[Γ(tis |

eηl , eφl)]1−δis [
∫∞
tis

Γ(ui | eηl , eφl)dti]δis . We use a Metropolis-Hastings step for this update. We sam-

ple from the proposal distribution (η′l, φ
′
l)
′ ∼ N2((η

(b)
l , φ

(b)
l )′, cS2), where S2 is updated from the av-

erage posterior samples of Σ under initial runs, and c > 1. For βl and κl, we have p(βl | data,Ψ) ∝
N(βl | λ, τ2)

∏
s∈{C,T}

∏
{i:l=wis}N(xis | βl, κ2

l ) and p(κ2
l | data,Ψ) ∝ Γ−1(κ2

l | a, ρ)
∏
s∈{C,T}∏

{i:l=wis}N(xis | βl, κ2
l ). Thus we sample via:

p(β
(b+1)
l | data,Ψ) ∼ N(mβ , s

2
β)

p(κ
2(b+1)
l | data,Ψ) ∼ Γ−1

a+ 0.5
∑

s∈{C,T}

∑
{i:l=wis}

1, ρ(b) + 0.5
∑

s∈{C,T}

∑
{i:l=wis}

(xis − β(b+1)
l )2



where mβ = s2
β

(
κ
−2(b)
l

[∑
s∈{C,T}

∑
{i:l=wis} xis

]
+ τ−2(b)λ(b)

)
,

and s2
β =

(
τ−2(b) + κ

−2(b)
l

[∑
s∈{C,T}

∑
{i:l=wis} 1

])−1
.

To obtain samples from p(ζ | Ψ.data) we work with {Ul, Vl,Wl}. Using slice sampling, we

can introduce latent variables νl and γl for l = 1, ..., L, such that we have Gibbs steps for each
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parameter:

p(ν
(b+1)
l | Ψ, data) ∼ Unif

(
0, (1− U (b)

l W
(b)
l )M

(b)
lC

)
p(γ

(b+1)
l | Ψ, data) ∼ Unif

(
0, (1− V (b)

l W
(b)
l )M

(b)
lT

)
p(U

(b+1)
l | Ψ, data) ∼ Beta

(
(

L∑
r=l+1

M
(b)
rC ) + α, 1− b

)
1(

0, 1

W
(b)
l

[
1−exp

(
log(ν

(b+1)
l

)

M
(b)
lC

)])

p(V
(b+1)
l | Ψ, data) ∼ Beta

(
(

L∑
r=l+1

M
(b)
rT ) + α, 1− b

)
1(

0, 1

W
(b)
l

[
1−exp

(
log(γ

(b+1)
l

)

M
(b)
lT

)])

p(W
(b+1)
l | Ψ, data) ∼ Beta

(
(

L∑
r=l+1

M
(b)
rT +M

(b)
rC ) + α+ 1− b, b

)
1(0,m∗)

where m∗ = min

{
1

U
(b+1)
l

[
1− exp

(
log(ν

(b+1)
l )

M
(b)
lC

)]
, 1

V
(b+1)
l

[
1− exp

(
log(γ

(b+1)
l )

M
(b)
lT

)]}
Set ζ

(b+1)
lC = U

(b+1)
l W

(b+1)
l and ζ

(b+1)
lT = V

(b+1)
l W

(b+1)
l

For the update for wis we have p(wis | data,Ψ) ∝ Γ(tis | eηwis , eφwis )N(xis | βwis , κ
2
wis)

∑L
l=1{(1−

ζls)
∏l−1
r=1 ζrs}δl(wis), so we sample from p(w

(b+1)
is | data,Ψ) ∼

∑L
l=1 p̃lisδ(l)(wis) where p̃lis =

pls[Γ(tis | eη
(b+1)
l , eφ

(b+1)
l )]1−δis [

∫∞
tis

Γ(uis | eη
(b+1)
l , eφ

(b+1)
l )duis]

δisN(xis | β(b+1)
l , κ

2(b+1)
l )/{

∑L
l=1 pls[Γ(tis |

eη
(b+1)
l , eφ

(b+1)
l )]1−δis [

∫∞
tis

Γ(uis | eη
(b+1)
l , eφ

(b+1)
l )duis]

δisN(xis | β(b+1)
l , κ

2(b+1)
l )} with p1s = 1− ζ1s and

pls = (1− ζls)
∏l−1
r=1 ζrs for l = 2, ..., L− 1.

For the update for µ we have p(µ | data,Ψ) ∝ N2(µ | aµ, Bµ)
∏L
l=1 N2((ηl, φl)

′ | µ,Σ),

so we sample p(µ(b) | data,Ψ) ∼ N2(mµ, S
2
µ) where mµ = S2

µ(B−1
µ aµ + Σ−1∑L

l=1(ηl, φl)
′(b)),

S2
µ = (B−1

µ + LΣ−1(b))−1.

For the update of Σ, we have p(Σ | data,Ψ) ∝
∏L
l=1 N2((ηl, φl)

′ | µ,Σ)IWish(Σ | aΣ, BΣ), so we

sample p(Σ(b+1) | data,Ψ) ∼ IWish(L+aΣ, BΣ+
∑L

l=1((ηl, φl)
′(b+1)−µ(b+1))((ηl, φl)

′(b+1)−µ(b+1))′)

For the update for λ we have p(λ | data,Ψ) ∝ N(λ | aλ, b2λ)
∏L
l=1 N(βl | λ, τ2), so we sample

p(λ(b+1) | data,Ψ) ∼ N(mλ, s
2
λ) where mλ = s2

λ(b−2
λ aλ + τ−2

∑L
l=1 βl) and s2

λ = (b−2
λ + τ−2(b)L)−1.
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For the update for τ2 we have p(τ2 | data,Ψ) ∝ Γ−1(τ2 | aτ , bτ )
∏L
l=1N(βl | λ, τ2), so we sample

p(τ2(b+1) | data,Ψ) ∼ Γ−1(0.5L+ aτ , 0.5[
∑L

l=1(β
(b+1)
l − λ(b+1))2] + bτ )

For the update for ρ, p(ρ | data,Ψ) ∝ Γ(ρ | aρ, bρ)
∏L
l=1 Γ−1(κ2

l | a, ρ), so we sample p(ρ(b+1) |

data,Ψ) ∼ Γ(aL+ aρ, [
∑L

l=1 κ
−2(b+1)
l ] + bρ).

We do not have conjugacy for α and b, so we turn to the Metropolis-Hastings algorithm to up-

date these parameters. The Bivariate Beta density of (ζc, ζT ), has a complicated form, however, we

can work with the density of the latent variables, (U, V,W ): p(α, b | data,Ψ) ∝ Unif(b | 0, 1)Γ(α |

aα, bα)
∏L−1
l−1 Beta(Ul | α, 1 − b)Beta(Vl | α, 1 − b)Beta(Wl | 1 + α − b, b). We sample from the

proposal distribution, (log(α′), logit(b′))′ ∼ N2((log(α(b)), logit(b(b))), cS2
αb), where S2

αb is updated

from the average variances and covariance of posterior samples of ((log(α), logit(b)) under initial

runs, and c is updated from initial runs to optimize mixing.

APPENDIX C: Conditional Predictive Ordinate Derivations

Here we provide the details of how we arrived to the expression necessary for computing the CPO

values under the DDP mixture model. As our data example in Section 4.1 does not contain any

random covariates, we will derive the expression without covariates, however, the derivation can

easily be extended to include random covariates in the curve-fitting setting. The hierarchical form

of the DDP mixture model without covariates and based on the truncation approximation, GLs, of

Gs is given as follows:

tis|wis,θ
ind∼ Γ(tis | θwis) for i = 1, ..., ns s ∈ {C, T}

w | {ζlC , ζlT } ∼
∏

s∈{C,T}

ns∏
i=1

L∑
l=1

[
(1− ζls)

l−1∏
r=1

ζrs

]
δl(wis)

θl | µ,Σ
i.i.d.∼ N2(θl | µ,Σ)

(ζlC , ζlT ) | α, b i.i.d.∼ Biv-Beta((ζlC , ζlT ) | α, b) forl = 1, ..., L− 1

with α ∼ Γ(α | aα, bα), b ∼ Unif(b | 0, 1), µ ∼ N2(µ | aµ, Bµ), and Σ ∼ IWish(Σ | aΣ, BΣ). Let
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Ψ = (α, b,µ,Σ). The predictive density for a new survival time from group s, t0s, is given by:

p(t0s | data) =

∫ ∫
Γ(t0s | θw0s)

(
L∑
l=1

plsδl(w0s)

)
p(θ,p,w,Ψ | data)dw0sdθdwdpdΨ

=

∫ ( L∑
l=1

plsΓ(t0s | θl)

)
p(θ,p,w,Ψ | data)dθdwdpdΨ

Let s′ be the experimental group that s is not, data = {ts, ts′}, and A be the normal-

izing constant for p(θ,p,w,Ψ | data). Namely, p(θ,p,w,Ψ | data) = [(
∏ns
i=1 Γ(tis | θwis))

(
∏ns′
i=1 Γ(tis′ | θwis′ ))p(θ,p,w,Ψ)]/[

∫
(
∏ns
i=1 Γ(tis | θwis))(

∏ns′
i=1 Γ(tis′ | θwis′ ))p(θ,p,w,Ψ)dθ

dwdpdΨ]. Note that p(θ,p,w,Ψ) = N2(θ | µ,Σ)(
∏ns
i=1

∑L
l=1 plsδl(wis))(

∏ns′
i=1

∑L
l=1 pls′ δl(wis′))Biv-Beta(p ≡

(ζs, ζs′) | α, b)Γ(α | aα, bα)Unif(b | 0, 1)N2(µ | aµ, Bµ)IWish(Σ | aΣ, BΣ).

The CPO of the ith survival time in group s is defined as, CPOis = p(tis | t(−i)s, ts′) =
∫

Γ(tis |

θw0s)(
∑L

l=1 plsδl(w0s))p(θ,p,w(−i)s,Ψ)dθdw(−i)sdpdΨdw0s, where w(−i)s is the vector w with the

ith member of group s removed. Similarly, data(−i)s represents data with the ith member in group

s removed. Now, consider p(θ,p,w(−i)s,Ψ|data(−i)s), which is given by:

p(data(−i)s | θ,w(−i)s)p(θ,w(−i)s,p,Ψ)∫
p(data(−i)s | θ,w(−i)s)p(θ,w(−i)s,p,Ψ)dw(−i)sdpdΨ

=

{∏ns
j 6=i Γ(tjs | θwjs)

}{∏ns′
i=1 Γ(tis′ | θwis′ )

}
p(θ,p,w(−i)s,Ψ)∫ {∏ns

j 6=i Γ(tjs | θwjs)
}{∏ns′

i=1 Γ(tis′ | θwis′ )
}
p(θ,p,w(−i)s,Ψ)dθdw(−i)sdpdΨ

Let Bis be the normalizing constant of p(θ,p,w(−i)s,Ψ | data(−i)s), specifically:

Bis =
∫ {∏ns

j 6=i Γ(tjs | θwjs)
}{∏ns′

i=1 Γ(tis′ | θwis′ )
}
p(θ,p,w(−i)s,Ψ)dθdw(−i)sdpdΨ

Then, we can write p(θ,p,w(−i)s,Ψ|data(−i)s) as:

{
∏ns
i=1 Γ(tis | θwis)}

{∏ns′
i=1 Γ(tis′ | θwis′ )

}
p(θ,p,w,Ψ)

BisΓ(tis | θwis)p(wis | p)
=

A

Bis

p(θ,p,w,Ψ | data)

Γ(tis | θwis)p(wis | p)
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Thus,

CPOis =

∫
Γ(tis | θw0s)p(w0s idp)p(θ,p,w(−i)s,Ψ)dθdw(−i)sdpdΨdw0s

=

∫
Γ(tis | θw0s)

(∫
p(w0s,wis | p)dwis

)
p(θ,p,w(−i)s,Ψ)dθdw(−i)sdpdΨdw0s

=
A

Bis

∫
[Γ(tis | θw0s)p(w0s,wis | p)]

[Γ(tis | θwis)p(wis | p)] p(θ,p,w,Ψ | data)dw0sdθdwdpdΨ

=
A

Bis

∫ [∑L
l=1 plsΓ(tis | θl)

]
[Γ(tis | θwis)] p(θ,p,w,Ψ | data)dw0sdθdwdpdΨ

Note, p(w0s | wis,p) = p(w0s | p). All that is left is to be able to evaluate A/Bis:

(
A

Bis

)−1

=
1

A

∫ 
ns∏
j 6=i

Γ(tjs | θwjs)


{ns′∏
i=1

Γ(tis′ | θwis′ )

}(∫
p(wis | w(−i)s,p)dwis

)
︸ ︷︷ ︸

1

×p(w(−i)s | p)p(p,θ,Ψ)dθdw(−i)sdpdΨ

=
1

A

∫ 
ns∏
j 6=i

Γ(tjs | θwjs)


{ns′∏
i=1

Γ(tis′ | θwis′ )

}
p(θ,p,w,Ψ)dθdwdpdΨ

=
1

A

∫ {∏ns
j 6=i Γ(tjs | θwjs)

}{∏ns′
i=1 Γ(tis′ | θwis′ )

}
Γ(tis | θwis)

p(θ,p,w,Ψ)dθdwdpdΨ

=

∫
1

Γ(tis | θwis)
p(θ,p,w,Ψ)dθdwdpdΨ

Collecting the final terms,

CPOis =
A

Bis

∫ [∑L
l=1 plsΓ(tis | θl)

]
[Γ(tis | θwis)] p(θ,p,w,Ψ|data)dw0sdθdwdpdΨ

where

(
A

Bis

)−1

=

∫
1

Γ(tis | θwis)
p(θ,p,w,Ψ)dθdwdpdΨ

The MCMC approximation of the CPO values is given by:

CPOis ≈
A

Bis

 B∑
j=1

∑L
l=1 Γ(tis | θlj)

Γ(tis | θwisj )

 , where
A

Bis
=

 B∑
j=1

1

Γ(tis | θwisj )


where B is the total number of MCMC iterations.
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