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1 Introduction

Systematic risk can be loosely defined as the vulnerability of a financial market to events that

affect all (or, at least, most) of the agents and products in the market. This is in contrast to

idiosyncratic risks, which are risks to which only specific agents or products are vulnerable.

The notions of systematic and idiosyncratic risk play a key role in motivating investment

diversification. In this paper, we study the evolution of systematic and idiosyncratic risks in

the U.S. economy by focusing on the behavior of the S&P500 index and its sector components.

The Standard & Poor’s 500, or S&P500 index, is a commonly watched stock market index in

the U.S., constructed as a market-value weighted average of the prices of the common stock of

500 publicly traded companies. Standard & Poor’s, which publishes the index, selects the com-

panies included in the S&P500 index to be representative of the industries in the U.S. economy.

These companies are commonly grouped into ten economic sectors: consumer discretionary,

consumer staples, energy, financials, health care, industrials, materials, information technology,

telecommunication services, and utilities. The largest sector (consumer discretionary) includes

81 companies, whereas the smallest (telecommunication services) includes only 8. In addition

to the overall S&P500 index, Standard & Poor’s publishes separate indexes for each of these

sectors. The behavior of these sector-specific indexes is of independent interest; for example, the

performance of the industrial and consumer discretionary components of the S&P500 is used by

some analysts as a leading indicator of future economic growth.

The most widely used tool to characterize idiosyncratic risks in financial markets is the

Capital Asset Pricing Model (CAPM) (Treynor, 1961, 1962; French, 2003). The form of the

CAPM can be derived from a structural model in which agents maximize the expected utility

derived from the investment, which is a function of the expected return on risky activities and

the associated variance, as well as those of the market as a whole. The parameters can then be

estimated using linear regression to relate the expected returns of an individual security or sector

to those of the market. The estimated regression coefficient (the so-called “beta”) measures the

sensitivity of the expected excess asset returns to the expected excess market returns, with larger

values of “beta” indicating investments with substantial idiosyncratic risks.

The original CAPM has been repeatedly criticized as being too simplistic (e.g., Fama and
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French, 2004), and extensions have been driven by considerations both empirical (e.g., the three

factor model discussed in Fama and French, 1992) and theoretical (e.g., the behavioral model

discussed in Daniel et al., 2001). Two obvious concerns with estimates of idiosyncratic risk based

on the CAPM are the assumption that deviations from the model follow Gaussian distributions,

and their reliance on expected returns. Indeed, from a risk management perspective, it is

more appealing to define these concepts on the basis of the behavior of extreme returns. As

the financial crises of 2007 and 2008 demonstrated, the behavior of markets (e.g., the level of

correlation among asset prices) during periods of distress can dramatically deviate from their

behavior during periods of calm. Variations of CAPM that focus on extreme returns include

Barnes and Hughes (2002), Allen et al. (2009), and Chang et al. (2011). In these papers, quantile

regression instead of ordinary linear regression is used to relate the returns of individual securities

to those of the market.

This paper develops a novel approach to estimate systematic and idiosyncratic market risks.

Unlike the CAPM model, our focus is on tail risks, that is, risks associated with rare extreme

losses (e.g., those associated with negative asset price movements of more than three standard

deviations), and on reduced-form models for the relative frequency of extreme losses rather than

structural models for the behavior of market actors. More specifically, we model the time of

appearance of extreme losses in each market using a superposition of two Poisson processes, one

that corresponds to systematic risks that are shared by all sectors, and one that corresponds to

the idiosyncratic risk associated with a specific sector. In order to capture changes in the risk

structure over time, the intensity functions associated with each of the underlying components

are modeled using a Dirichlet process (DP) mixture model (Antoniak, 1974; Escobar and West,

1995). Hence, our model can be conceptualized as an example of a Cox process (Cox, 1955). In

contrast to the CAPM setting, the proposed methodology does not rely (implicitly or explicitly)

on the assumption that returns arise from a Gaussian distribution. Furthermore, our model is

dynamic in nature, allowing for the structure of the different risks to evolve over time. As with

the CAPM, the main goal of our analysis is a general description of the structure of the different

risks and explanation rather than prediction. For example, the modeling approach results in

idiosyncratic, sector-specific risk indexes, as well as metrics that quantify the overall relative
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importance of idiocycratic and systematic risks on each sector.

There has been a growing interest in recent years on identifying systemic risks, that is, events

that can trigger a collapse in a certain industry or economy. Some recently introduced measures

of systemic risk include the CoVaR of Adrian and Brunnermeier (2010), the marginal expected

shortfall (MSE) of Acharya et al. (2010), and the systemic risk measure (SRISK) of Acharya

et al. (2012). Although some of the methods are relevant, these metrics are not tailored to

systematic and idiosyncratic risks.

To motivate the class of models we develop, consider the daily returns associated with the

ten sectors making up the S&P500 index (see also Section 4). Figure 1 presents the most

extreme negative log returns on four of those sectors between January 1, 2000 and December

31, 2011. It is clear from the figure that all sectors present an increased frequency of extreme

losses around periods of distress, such as the so-called “dot com” bubble burst in March of 2000

and the climax of the financial crises in September 2008. However, it is also clear that certain

features are particular to specific sectors, such as the increased number of extreme returns in

the energy sector in 2004 and 2005. Furthermore, even when the frequency of losses tends to

increase significantly for all markets, it is not the case that extreme losses occur in all markets

on exactly the same dates.

[Figure 1 about here.]

The rest of the paper is organized as follows. In Section 2, we develop the modeling ap-

proach, and in Section 3, we discuss posterior simulation (with technical details included in the

Appendix), as well as subjective prior elicitation. Section 4 considers the analysis of the U.S.

market, using data from the S&P500 index. Finally, Section 5 provides concluding remarks.

2 Modeling approach

We focus on the negative log returns for the ten S&P500 sector indexes

xi,j = −100× log

(
Si,j
Si−1,j

)
,
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where Si,j is the value of the index for sector j = 1, . . . , J = 10 at time i = 1, . . . , T . Note that

large positive values of xi,j indicate a large drop in the price index associated with sector j, and

thus for risk management purposes we are interested in large values of xi,j . Hence, for a given

threshold u, we focus our attention on the collections of times {tj,k : k = 1, . . . , nj , j = 1, . . . , J},

where tj,k is the date associated with the appearance of the k-th negative log return in sector j

that is larger than u.

For each sector j, we regard the collection of times {tj,k : k = 1, . . . , nj} at which exceedances

occur as a realization from a point process Nj(t) defined on [0, T ], i.e., Nj(t) =
∑nj

k=1 I[tj,k,T ](t),

where IΩ(t) denotes the indicator function of set Ω. In turn, each Nj(t) is constructed as the

superposition of two independent, non-homogeneous Poisson processes. The first such process

accounts for systematic risk and has a cumulative intensity function Λ∗0 that is common to all

sectors, while the second is associated with the idiosyncratic risk and has a cumulative intensity

function Λ∗j that is specific to each sector. Because of properties of superpositions of Poisson

processes, this assumption implies that each Nj(t) is also a non-homogeneous Poisson process

with cumulative intensity Λj(t) = Λ∗0(t) + Λ∗j (t), and intensity function λj(t) = λ∗0(t) + λ∗j (t),

where λ∗0 and λ∗j are the Poisson process intensities associated with Λ∗0 and Λ∗j , respectively.

The modeling approach for the Λ∗j builds from the direct connection of a non-homogeneous

Poisson process cumulative intensity/intensity function with a distribution/density function.

Specifically, for j = 0, 1, ..., J , we can write Λ∗j (t) = γ∗jF
∗
j (t), where γ∗j ≡ Λ∗j (T ) =

∫ T
0 λ∗j (t)dt (<

∞) is the rate parameter controlling the total number of exceedances, and F ∗j (t) = Λ∗j (t)/Λ
∗
j (T )

is a distribution function on [0, T ] that controls how the exceedances are distributed over time.

Hence, the sector-specific cumulative intensity function Λj can be written as

Λj(t) = γjFj(t) = {γ∗0 + γ∗j }

{
γ∗0

γ∗0 + γ∗j
F ∗0 (t) +

γ∗j
γ∗0 + γ∗j

F ∗j (t)

}
.

This construction implies that the sector-specific exceedance rate, γj , is the sum of the systematic

and idiosyncratic rates, while the sector-specific distribution function, Fj , can be written as a

mixture of the systematic and idiosyncratic distribution functions. The corresponding weight,

εj = γ∗0/(γ
∗
0 + γ∗j ), represents the proportion of exceedances in sector j that are associated with
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the systematic component. In addition, note that values of εj close to 1 (which are associated

with γ∗0 � γ∗j ) imply a stronger association in the pattern of extreme losses.

Because each Nj(t) follows a Poisson process, the probability that at most r exceedances will

be observed in sector j during time period [t0, t0 + ∆] is

r∑
i=0

{Υj(t0,∆)}i exp {−Υj(t0,∆)}
i!

,

where Υj(t0,∆) = Λj(t0 + ∆) − Λj(t0). These exceedance probabilities are easier to interpret

than the intensity functions through which the model is defined. For example, the probability

that no exceedances are observed in sector j between time points t0 and t0 + ∆ is given by

exp {− [Λj(t0 + ∆)− Λj(t0)]} = exp {− [Λ∗0(t0 + ∆)− Λ∗0(t0)]}×exp
{
−
[
Λ∗j (t0 + ∆)− Λ∗j (t0)

]}
,

where the first term in the right-hand side expression corresponds to the probability of no ex-

ceedance due to the systematic component and the second term corresponds to the probability

of no exceedance due to the idiosyncratic component. In this sense, our model implies a multi-

plicative risk structure.

2.1 Modeling the intensity functions

To generate a flexible model that can capture changes in the pattern of extreme returns over

time, we model the densities f∗0 and f∗1 , . . . , f
∗
J associated with the systematic and idiosyncratic

distribution functions F ∗0 and F ∗1 , . . . , F
∗
J , using DP mixtures. In particular,

f∗j (t) ≡ f∗(t | G∗j , τ) =

∫
ψ(t | µ, τ)dG∗j (µ), j = 0, 1, . . . , J,

where ψ(t | µ, τ) is a kernel density on [0, T ] indexed by parameters µ and τ , and G∗j is a discrete

mixing distribution.

By carefully choosing the kernel ψ and the prior on the mixing distribution G∗j , we can obtain

a flexible model for the intensity functions. Hence, we opt for a prior on G∗j that has full support

on the space of discrete distributions. In particular, G∗j is assigned a DP prior (Ferguson, 1973)
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with precision parameter αj and baseline (centering) distribution H, which is common to all G∗j .

Thus, using the stick-breaking DP constructive definition (Sethuraman, 1994),

G∗j (·) =

∞∑
l=1

{
vj,l
∏
s<l

(1− vj,s)

}
δµ̃j,l(·), j = 0, 1, . . . , J,

where δa(·) denotes the degenerate measure at a, the atoms {µ̃j,1, µ̃j,2, . . .} form a sequence of

random variables independent and identically distributed according to H, and {vj,1, vj,2, . . .}

is another sequence (independent of {µ̃j,1, µ̃j,2, . . .}) of independent and identically distributed

random variables according to a Beta(1, αj) distribution.

Because in our application the support for the point process is a compact set, a natural

choice for the kernel ψ(t | µ, τ) is the rescaled beta density,

1

T

Γ (τ)

Γ (µτ/T ) Γ ({1− µ/T}τ)

(
t

T

)µτ/T−1(
1− t

T

){1−µ/T}τ−1

I[0,T ](t) (1)

where µ ∈ [0, T ] is a location parameter (the mean of the kernel distribution), and τ > 0 can be

interpreted as a scale parameter.

Note that if µτ/T > 1 and {1 − µ/T}τ > 1, the rescaled beta density is unimodal, with

the mode located approximately at µ, for large τ . Hence, the location mixture of beta kernels

can accommodate the type of risk clustering we observe in Figure 1. Furthermore, because DP

mixtures allow for a countable number of mixture components, the model is dense on the space of

absolutely continuous distributions on [0, T ] as long as the baseline distribution H and the prior

on the scale parameter τ are selected to provide full support on the domain of the parameters

of the rescaled beta kernel (see, e.g., Diaconis and Ylvisaker, 1985). Note that the precision

parameter αj controls the relative weight of the mixture components, with smaller values of αj

favoring mixtures with a small number of effective components. On the other hand, the baseline

distribution H controls the location of the mixture components.

Besides a prior on the densities f∗0 , f
∗
1 , . . . , f

∗
J , full prior specification for the intensity func-

tions λ1(t), . . . , λJ(t) requires priors for the rate parameters γ∗0 , γ
∗
1 , . . . , γ

∗
J . In the case of the

rate associated with the common component, γ∗0 , a natural choice is a gamma distribution with

shape parameter aγ∗0 and rate parameter bγ∗0 . For the idiosyncratic component, we use a more
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general, zero-inflated gamma prior with density,

p(γ∗j | π) = (1− π)δ0(γ∗j ) + πGam(γ∗j | aγ∗j , bγ∗j ), j = 1, ..., J

where Gam(a, b) denotes a gamma distribution with mean a/b. Note that the case γ∗j = 0

corresponds to εj = 1, i.e., all exceedances in sector j are driven by systematic risks. Hence,

this zero-inflated prior allows us to formally test for the presence of idiosyncratic risks. In the

sequel we refer to this test as the idiosyncracy test.

2.2 Hierarchical priors

The model is completed by adding hyperpriors to model parameters. For the baseline distri-

bution H, we note that the parameter µ in Equation (1) is constrained to the [0, T ] inter-

val. Hence, a natural choice for H is another rescaled beta distribution with density h(µ) ∝

(µ/T )aµ−1{1 − (µ/T )}bµ−1I[0,T ](µ). Although the full Bayesian model can be extended to in-

corporate a hyperprior for one or both of the parameters of H, this was not necessary for the

application to the S&P500 data. In fact, we applied the model using the default choice of a

uniform distribution for H; sensitivity of posterior inference results to this choice, as well as to

the other hyperprior choices, is discussed in Section 4.2.

The remaining priors are selected for computational convenience. In particular, a condition-

ally conjugate Gam(aα, bα) prior is assigned to the DP precision parameters αj , j = 0, 1, ..., J .

Similarly, the conditionally conjugate prior for the mixing probability π is given by a Beta(aπ, bπ)

distribution. Finally, the scale parameter τ is assigned an inverse gamma distribution with shape

aτ and scale bτ (denoted by IGam(aτ , bτ )). Details on informative hyperparameter elicitation

are discussed in Section 3.2

2.3 Related literature

The DP mixture modeling approach for the systematic and idiosyncratic intensities builds on

earlier work for temporal or spatial Poisson processes (Kottas and Sansó, 2007; Taddy and Kot-

tas, 2012). This methodology has been applied to inference for neuronal firing intensities (Kottas
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et al., 2012), tracking the intensity of violent crime (Taddy, 2010), risk assessment for extremes

of environmental time series (Kottas et al., 2012), and analysis of hurricane landfall occurrences

(Xiao et al., 2015). These applications involve modeling of dependent Poisson process intensities,

with the index of dependence ranging from a finite set indicating different experimental condi-

tions (Kottas et al., 2012), to discrete time (Taddy, 2010; Xiao et al., 2015), to space (Kottas

et al., 2012). Dependence in the prior model for the intensities is built through dependent DP

(MacEachern, 2000) or spatial DP (Gelfand et al., 2005) priors for the corresponding mixing

distributions that define the mixture model for the Poisson process densities. We refer to Bas-

setti et al. (2014) for discussion of other prior models for finite collections of distributions, and

for constructions of dependent Pitman-Yor process priors which extend dependent DP priors.

This paper provides an example of a more structured dependent prior model for a finite

collection of Poisson process intensities. The representation of the sector-specific distribution

function Fj as a mixture of a systematic and an idiosyncratic component is reminiscent of the

models for dependent random distributions discussed in Müller et al. (2004), Hatjispyros et al.

(2011), and Kolossiatis et al. (2013). Müller et al. (2004) focused on the case Fj = εH0+(1−ε)Hj ,

for j = 1, ..., J , where the Hj , j = 0, 1, ..., J , are assigned independent DP priors with precision

parameters αj and common centering distribution. Kolossiatis et al. (2013) studied the more

general version, Fj = εjH0 + (1 − εj)Hj , albeit for two distributions, arguing for a dependent

prior on (ε1, ε2) built from εj = γ0/(γ0 + γj), with independent gamma priors for γ0, γ1 and γ2.

Hatjispyros et al. (2011) used a similar modeling approach, but with a priori independent ε1 and

ε2. Although there is an apparent connection in model structure with these earlier methods,

the motivation for our modeling approach is different. Indeed, the objective of the earlier work

is to construct dependent random densities through mixture modeling, where the prior model

for the Fj is used for the dependent mixing distributions. However, our model structure for the

sector-specific Poisson process densities, fj = εjf
∗
0 + (1 − εj)f∗j , for j = 1, ..., J , follows from

the assumption that the point process associated with the presence of extreme values can be

constructed as a superposition of Poisson processes. In particular, the structure with sector-

specific weights of the form εj = γ∗0/(γ
∗
0 + γ∗j ), is a direct consequence from the superposition of

the Poisson processes, rather than a particular model choice as in Kolossiatis et al. (2013).
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Regarding the point process literature, a relevant reference is Griffiths and Milne (1978),

where a bivariate point process was studied such that the marginals, N1(t) and N2(t), follow the

same Poisson process with cumulative intensity Λ(·). The key result provides a specific form for

the Laplace transform of the bivariate point process which is achieved if and only if the marginals

admit the representation, N1(t) = M1(t)+M2(t) and N2(t) = M2(t)+M3(t), where M1(t), M2(t)

and M3(t) are independent Cox processes with respective cumulative intensities ν(·), µ(·) and

ν(·), with µ(·) ≤ Λ(·) almost surely, and ν(·) = Λ(·)− µ(·). The Laplace transform is the main

functional used in the study of completely random measures (CRMs), which are defined in terms

of underlying Poisson processes and have been used as general nonparametric prior models for

distributions; see, e.g., Lijoi and Prünster (2010) for a review. Hence, this result has inspired

work on dependent CRMs, built from dependent Poisson processes that admit the representation

above. We refer to Lijoi et al. (2014a,b) for related theory and inference methods in the context

of mixture models, as well as to Lijoi and Nipoti (2014) for modeling dependent hazard rate

functions in survival analysis. Although this work is based on the same representation for

Poisson process intensities that we use in our approach, the objective is to build nonparametric

priors for dependent distributions. In particular, the representation in terms of a common term

and an idiosyncratic term is utilized mainly as a mechanism to build dependence in the prior

model for two correlated distributions. In our approach, the particular representation is the key

modeling assumption for the occurrence of extreme values, and inference for the systematic and

idiosyncratic components is of direct interest.

3 Posterior simulation and prior elicitation

3.1 Markov chain Monte Carlo posterior inference

Our modeling approach is based on the decomposition of the Poisson process intensity into the

total intensity, γj = γ∗0+γ∗j , and the Poisson process density, fj(t) = εjf
∗
0 (t) + (1−εj)f∗j (t), for t ∈

[0, T ]. Under this decomposition, the likelihood function associated with the non-homogeneous

Poisson process giving rise to the exceedances in sector j is γ
nj
j exp {−γj}

∏nj
k=1 fj(tj,k). Hence,
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the joint posterior distribution for our model can be written as

p({γ∗j }, {vj,l}, {µ̃j,l}, τ, {αj}, π | data) ∝
J∏
j=1

(γ∗0 + γ∗j )nj exp
{
−(γ∗0 + γ∗j )

}
×

J∏
j=1

nj∏
k=1

(
γ∗0

γ∗0 + γ∗j

∞∑
l=1

{
v0,l

∏
s<l

(1− v0,s)

}
ψ(tj,k | µ̃0,l, τ)+

γ∗j
γ∗0 + γ∗j

∞∑
l=1

{
vj,l
∏
s<l

(1− vj,s)

}
ψ(tj,k | µ̃j,l, τ)

)

× p(π)p(τ)p(γ∗0)

J∏
j=1

p(γ∗j | π)

J∏
j=0

∞∏
l=1

h(µ̃j,l)Beta(vj,l | 1, αj)
J∏
j=0

p(αj) (2)

where the priors p(π), p(τ), p(γ∗0), p(γ∗j | π), for j = 1, ..., J , and p(αj), for j = 0, 1, ..., J , are

given in Section 2.

Since the posterior distribution is computationally intractable, we resort to a Markov chain

Monte Carlo (MCMC) algorithm (Robert and Casella, 2005) for simulation-based inference.

To sample from the posterior distribution associated with the nonparametric component of the

model, we resort to a blocked Gibbs sampler (Ishwaran and Zarepour, 2000; Ishwaran and James,

2001). Hence, for computational purposes, we replace the mixing distributions G∗0, G
∗
1, . . . , G

∗
J

with finite-dimensional approximations:

GNj (·) =
N∑
l=1

{
uj,l
∏
s<l

(1− uj,s)

}
δµ?j,l(·), j = 0, 1, ..., J.

where, as before, the µ?j,l are drawn independently fromH and the uj,l are independent Beta(1, αj),

for l = 1, . . . , N − 1, but uj,N = 1 to ensure that the weights sum to 1. The truncation level

N can be chosen to any desired level of accuracy, using distributional results for the DP stick-

breaking weights. In particular, E(
∑N

l=1 uj,l
∏
s<l(1 − uj,s) | αj) = 1 − {αj/(αj + 1)}N , which

can be averaged over the prior for αj to estimate the prior expectation for the partial sum of

the first N weights. In practice, in addition to using the above result to guide the selection of

N , we perform a sensitivity analysis to investigate the impact of our choice (see Section 4).

Furthermore, we expand the model by introducing for each observation tj,k a pair of latent

configuration variables, (rj,k, Lj,k), where rj,k ∈ {0, j} is an indicator for the systematic or
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idiosyncratic component, whereas Lj,k ∈ {1, . . . , N} identifies the respective mixture component

under the truncation approximation for GN0 or GNj . More specifically, independently for j =

1, . . . , J and k = 1, . . . , nj , Pr(rj,k = 0 | γ∗0 , γ∗j ) = 1 − Pr(rj,k = j | γ∗0 , γ∗j ) = γ∗0/(γ
∗
0 + γ∗j ),

and, for l = 1, ..., N , Pr(Lj,k = l | rj,k = 0, GN0 ) = u0,l
∏
s<l(1 − u0,s) and Pr(Lj,k = l | rj,k =

j,GNj ) = uj,l
∏
s<l(1−uj,s). In addition to the aforementioned indicator variables associated with

the mixture representation of the intensity functions, we introduce a set of binary indicators,

ξ1, . . . , ξJ , such that Pr(ξj = 0 | π) = 1−π. Inferences on Pr(ξj = 0 | data) provide an operational

mechanism to implement the idiosyncrasy test discussed at the end of Section 2.1. Details of the

posterior simulation algorithm, and on point and interval estimation for the intensity functions

λ∗0, . . . , λ
∗
J , are provided in the Appendix.

As pointed out by one of the referees, a possible alternative to the blocked Gibbs sampler

is a slice sampler (e.g., Kalli et al., 2011; Griffin and Walker, 2011). Such an approach allows

posterior simulation from most model parameters without explicitly truncating the countable

representation for the G∗j , j = 0, 1, ..., J , and is therefore attractive if the inference objectives

are limited to posterior predictive estimation which does not require posterior samples for the

mixing distributions. However, key for our analysis is inference for the sector-specific intensities,

λj(t), j = 1, ..., J , defined through mixture densities f∗j (t), j = 0, 1, ..., J , and for the probability

of r exceedances over a given period. And, we are interested not only in point estimates for

these functionals, but also in estimates of the uncertainty. Obtaining those estimates requires

posterior samples for the mixing distributions, for which truncation is necessary also under a

slice sampler. Hence, the advantages of slice sampling in this context are limited.

3.2 Hyperparameter elicitation

The model hyperparameters can be elicited using historical and/or expert information that is

typically available for most liquid financial markets. We recommend that this elicitation process

be complemented with a careful sensitivity analysis over a reasonable range of prior beliefs.

Consider first the parameters γ∗0 , γ
∗
1 , . . . , γ

∗
10, which control the total number of exceedances

observed in each sector and the relative distribution of these exceedances between the systematic

and idiosyncratic component of the model. Because of their role in the model, we can elicit a
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value for the expected number of extreme returns in a given sector j (which corresponds to

E(γ∗0 +γ∗j )) by assuming that returns in the sector are normally distributed, so that E(γ∗0 +γ∗j ) ≈

T × Φ({−u − ζj}/κj), where Φ denotes the standard normal distribution function, and ζj and

κj are rough estimates of the mean and standard deviation of returns for sector j. The values

of ζj and κj can be obtained from historical data or expert knowledge. For simplicity, it can

be assumed that ζj and κj are the same for every sector, leading to a model where sectors are

exchangeable, but this is not required. Similarly, we can exploit the interpretation of γ∗0/(γ
∗
0 +

γ∗j ) as the proportion of exceedances arising from the systematic component to elicit expert

information about the most likely value of such rate, as well as a high probability range for its

value. This same information can be used to provide informative priors for 1 − π, the prior

probability that the risk in a given sector is entirely driven by the systematic component.

Next, consider eliciting the hyperparameters associated with the densities f∗0 and f∗1 , . . . , f
∗
J .

A common feature of extreme returns in financial time series is that they tend to cluster over

time (e.g., Mandelbrot, 1963). Hence, the priors for the precision parameters α0, α1, . . . , αJ

(which, as mentioned in Section 2, control the number of mixture components) should support

relatively large values. A rough value for the number of components, which can be used to

select the prior mean of αj (see, e.g., Escobar and West, 1995), can be elicited from a rough

estimate of the frequency at which distress periods arise in sector j. Similarly, the value for the

scale parameter τ can be elicited from prior information about the length of distress periods.

Finally, in the absence of prior information about the time at which distress periods occur, we

recommend that H be selected so that the prior mean for f∗0 and f∗1 , . . . , f
∗
J is close to uniform.

4 Systematic and idiosyncratic risks in the U.S. economy: An

analysis of the S&P500 index and its components

The data analyzed in this section corresponds to the negative daily log returns above u = 2% on

each of the ten sectors that make up the S&P500 index, from the time period between January

1, 2000 and December 31, 2011. This results in sample sizes for extreme returns that range from

85 (for consumer staples) to 387 (for information technology). Prices for the individual indexes
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were obtained from Bloomberg financial services; see Table 1 for the corresponding tickers. A

2% drop in the market has been historically used as a threshold for trading curbs on program

trades (which involve a basket of stocks from the S&P500 index where there are at least 15

stocks or where the value of the basket is at least $1 million). Although these particular trading

curbs were abandoned in late 2007 because of their inefficacy in reducing market volatility, we

believe that the 2% threshold is still a useful guideline to identify periods of distress in the

market without excessively thinning the sample. We repeated our analysis for other values of

the threshold u without significant qualitative changes in the conclusions.

[Table 1 about here.]

All inferences reported here are based on 3,000 posterior samples obtained after a burn in

period of 20,000 iterations and thinning of the original chain every 50 iterations. Convergence

of the MCMC algorithm was monitored using trace plots as well as the R statistic discussed in

Gelman and Rubin (1992). In particular, we ran four independent chains started from overdis-

persed initial values and compared between and within chain variability in the value of the log

likelihood function and in some of the hyperparameters in the model. No lack of convergence was

evident from these diagnostics. The algorithm was implemented in C/C++ and total execution

time was approximately 16 hours on a MacBook laptop with a 2 GHz Intel Core 2 Duo processor

and 2GB of memory.

Using the guidelines discussed in Section 3.1, the truncation level for the blocked Gibbs

sampler was set to N = 60. A sensitivity analysis (using both N = 50 and N = 70) suggests

that values larger than 60 lead to essentially identical results.

Table 2 summarizes our choice of prior hyperparameters. For π and γ∗0 , . . . , γ
∗
10, the choice

reflects the prior belief that the systematic component of the risk explains the majority of

exceedances observed in the data. Indeed, we construct our prior for π by assuming that E(π) =

0.2 and placing high probability on values of π close to zero. Moreover, we specify the priors

for γ∗0 , . . . , γ
∗
10 on the basis of a 0 mean return with 18% annualized volatility for the S&P500,

along with the prior beliefs that on average 85% of the observed exceedances, and with 0.99

probability at least 50% of them, arise from the systematic component of the model (recall the
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discussion in Section 3.2). On the other hand, our choice of priors for H, for τ , and for the αj ,

j = 0, 1, ..., J , is guided by the fact that we expect highly multimodal intensity functions, but

have little information about where the modes lie. Hence, our prior supports relatively large

values of αj (E(αj) = 12 a priori) so that individual realizations from the prior are multimodal,

but we set H to the uniform distribution and favor relatively large values of τ so that the prior

mean shape of the intensity function is relatively flat (see Figure 3). In all cases, the posterior

distributions for all hyperparameters appear to be concentrated relative to the corresponding

prior distributions. Results from prior sensitivity analysis are discussed in Section 4.2.

[Table 2 about here.]

Estimates of the overall intensities λ1(t), . . . , λ10(t) associated with each of the ten compo-

nents of the S&P500 index can be seen in Figure 2. The last two panels also provide summaries

of the prior distribution over intensities induced by the prior choices discussed above. By com-

paring some of those estimates to the raw data presented in Figure 1, it becomes clear that

the model faithfully reproduces the main features of the data. Furthermore, the uncertainty

associated with these estimates is relatively low. The ratio of these intensities with respect to

the intensity associated with the systematic component, λ1(t)/λ∗0(t), . . . , λ10(t)/λ∗0(t), can be

used as a time-dependent index of idiosyncratic risk on each of the sectors of the U.S. economy

tracked by the S&P500 index. Indeed, note that λj(t)/λ
∗
0(t) = 1 +{γ∗j f∗j (t)/(γ∗0f

∗
0 (t))} indicates

the excess risk of a given sector relative to the baseline at time t, with sectors that exhibit little

idiosyncratic risk across time having λj(t)/λ
∗
0(t) ≈ 1 for all t.

[Figure 2 about here.]

Next, Figures 3 and 4 show estimates of the densities f∗0 and f∗1 , . . . , f
∗
10 associated with

the systematic and idiosyncratic risk intensities. Figure 5 presents the posterior densities for

ε1, . . . , ε10, the (average) proportion of the risk attributable to the systematic component in

each of the ten sectors. Note that in half the sectors (consumer discretionary, consumer staples,

health care, industrials, and utilities) the proportion of extremes associated with the system-

atic component is at least 80%, while for the rest (energy, financials, information technology,
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telecommunications and materials) the proportion is between 40% and 80%. In addition, note

that the density for the systematic risk shows peaks that coincide, or shortly follow, important

stock market events. On the other hand, the behavior of the idiosyncratic risk varies drastically

with the economic sector and, in most cases, can be explained by factors that are sector-specific.

For example, the energy and utilities sectors present increases in idiosyncratic risk during 2005,

a period that corresponded to sharp increases in oil prices but that was otherwise relatively

calm. On the other hand, the idiosyncratic risk associated with the financial sector increases

dramatically after the summer of 2007. An oversized idiosyncratic risk for this sector after

2007 is clearly reasonable as financials were the main driver of the recent crisis. Similarly, the

idiosyncratic risks associated with the information technology and telecommunication services

sectors are particularly elevated between 2000 and 2002, a period that included the bursting

of the so-called dot-com bubble. Finally, note that the idiosyncratic risk associated with con-

sumer staples is almost negligible over the whole period under study, with our idiosyncrasy test

suggesting that there is moderate evidence for the absence of idiosyncratic risk in this sector of

the S&P500 index. This is reasonable, as the consumer staples sector includes companies that

produce and trade basic necessities whose consumption might be affected by general economic

conditions but is otherwise relatively stable.

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

As we discussed in Section 2, we can alternatively quantify the level of risk through the

probability of observing at least one exceedance during a given period of time. Figure 6 shows

for four different sectors the posterior distributions for the odds ratios of the probability of at

least one exceedance in the month starting two weeks after the bankruptcy of Lehman Brothers

versus the probability of at least one exceedance in the month ending two weeks before the

bankruptcy. Note that all sectors show an increase in risk after Lehman Brothers bankruptcy.

However the increase is lower for financials than it is for the other sectors (the estimated pos-

terior probabilities are 1.000, 0.913 and 0.977 for consumer staples, energy and information
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technology, respectively). Indeed, note that systematic risk increases after the bankruptcy of

Lehman Brothers but the idiosyncratic risk associated with financials actually decreases (as does

the one for energy, although to a lesser degree), while the idiosyncratic risks associated with in-

formation technology and consumer staples increased. The increase in risk in the information

technology and consumer staples sectors could be explained by the fact that one of the main

effects of Lehman’s bankruptcy was a collapse in the short term corporate debt market. Hence,

although the bankruptcy of Lehman Brothers actually reduced the uncertainty in the financial

sector of the economy, it caused real damage to companies in other sectors that are extremely

dependent on short term debt. Note that companies that are part of the S&P500 energy sector

are typically not reliant in short term funding, hence the limited impact of Lehman’s bankruptcy

in their idiosyncratic risk.

[Figure 6 about here.]

4.1 Model validation

The model was validated using two different approaches. First, an out-of-sample cross validation

exercise was conducted, with cross-validation datasets being constructed by randomly selecting

20% of the observations from each sector to be used as held-out data. The remaining 80% of

the data was used to fit our nonparametric model and generate nominal 90% highest posterior

density (HPD) intervals for new exceedances. The true coverage of these HPD intervals was

then evaluated on the held-out data. Figure 7 presents examples of cross-validation samples and

the corresponding densities for two different sectors.

[Figure 7 about here.]

We repeated the process described above for 10 different cross-validation datasets, with the

results presented in Figure 8. As expected, there is variability in the coverage rates depending

on the sector and the specific cross-validation dataset. However, the results suggest that for the

most part the real coverage rates are in line with the nominal coverage, which suggest that the

model does not under or over fit.

[Figure 8 about here.]
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In addition to the cross validation exercise described above, in-sample goodness of fit was

investigated using quantile-quantile plots for the posterior distribution of inter-event times. More

specifically, we use the time-rescaling theorem (see, e.g., Daley and Vere-Jones, 2003), according

to which if {tj,k : k = 1, . . . , nj} is a realization from a non-homogeneous Poisson process with

cumulative intensity Λj(t), then the transformed point pattern {Λj(tj,k) : k = 1, . . . , nj} is a

realization from a homogeneous Poisson process with unit intensity. Hence, if the Poisson process

assumption is correct, we would expect the transformed inter-arrival times zj,1, . . . , zj,nj defined

as zj,k = 1 − exp {− [Λj(tj,k | Gj , τ)− Λj(tj,k−1 | Gj , τ)]} (with the convention tj,0 = 0) to be

uniformly distributed on the unit interval. A variant of this check for extreme value models was

originally proposed by Hill (1975) in the context of threshold selection.

Figure 9 presents quantile-quantile plots of the posterior means of these transformed inter-

arrival times, E(zj,k | data), for k = 1, . . . , nj , against the quantiles of a uniform distribution for

each of the ten S&P500 sectors. For the most part the fit appears acceptable, although there is

some evidence of poor fit for a couple of sectors. In particular, note that for consumer staples

our model tends to systematically predict shorter inter-arrival periods than those that would

be expected under the Poisson model. Similar, albeit less dramatic, biases can also be seen for

information technology. Note that these two sectors (along with telecommunications services)

are identified by the cross validation exercise as the ones where the model overfits the most.

[Figure 9 about here.]

4.2 Sensitivity analysis

We carried out a comprehensive sensitivity analysis to assess the effect of prior distributions on

posterior inferences. First, we considered three alternative sets of hyperparameters for the mix-

ture kernel scale parameter τ corresponding to IGam(5, 4000), IGam(10, 7200), and IGam(2, 500)

priors. The hyperparameters were selected to represent a range of situations where the prior

mean is both larger and smaller than the one used for our previous analysis, as well as different

levels of concentration. Posterior inferences were mostly unaffected under any of these scenarios.

Next, we considered four alternative prior specifications for the precision parameters α0, . . . , α10,

specifically, a Gam(4, 1/3), a Gam(10, 2), a Gam(2, 0.4), and a Gam(3, 3) prior. Inferences for the
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intensity function were mostly unchanged under these prior distributions. However, inferences

for individual hyperparameters were somewhat affected. In particular, smaller values for E(αj)

naturally lead to somewhat smaller posterior means for the αj , but also to larger posterior values

for τ and an increase in the posterior mean for some of the εj (for example, for consumer staples

we have Pr(ε2 = 1 | data) = 0.71 under the Gam(3, 3) prior). On the other hand, changes in the

prior dispersion of αj had no discernible effect on the individual posterior distributions of the

hyperparameters, as long as the prior mean was kept constant.

To assess the effect of the baseline distribution H on posterior inferences, we considered

an alternative rescaled beta distribution with aµ = bµ = 3. This prior tends to favor the

localization of distress periods towards the middle of the time series. This alternative baseline

distribution leads to somewhat smoother estimates for the density functions f1, . . . , f10, and to

less multimodal estimates for the idiosyncratic intensities f∗1 , . . . , f
∗
10. In addition, the posterior

means for the αj and for τ tend to be slightly smaller. However, the overall structure of the

results is unchanged.

We also considered an alternative specification for the priors on γ∗0 and γ∗1 , . . . , γ
∗
10 where we

assume that the number of extreme returns in each sector is consistent with a 2% positive annu-

alized return and a 25% annualized volatility for the S&P500, while only 50% of the exceedances

come from the systematic component, and Pr(0.2 < γ∗0(γ∗0 + γ∗j )−1 < 0.8) = 0.99. This leads

to aγ∗0 = 7.65, bγ∗0 = 0.65, and aγ∗j = 7.65, bγ∗j = 0.65 for j ≥ 1. As before, these new priors

have very little impact on the inference for the intensity functions. Also, although the posterior

distributions on the weights ε1, . . . , ε10 are somewhat affected, the qualitative outcome is iden-

tical under both analyses. In particular, in both cases consumer staples is the only sector for

which we find little or no evidence of an idiosyncratic component. The difference focuses on the

level of evidence provided by the analysis: under the new prior, the idiosyncrasy test provides

very strong evidence that shocks in consumer staples are driven exclusively by the systematic

component (Pr(ε2 = 1 | data) ≈ 1), while for the other sectors we have very strong evidence for

the presence of idiosyncratic components (Pr(εj = 1 | data) = 0 for j = 1, 3, 4, . . . , 10).

Finally, we investigated the effect on posterior inferences of alternative prior distributions

on π. In addition to the original Beta(0.5, 2) prior (which favors the hypothesis that most the
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exceedances are generated by the systematic component of the model), we considered a uniform

and a Beta(0.5, 0.5) prior for π. While the Beta(0.5, 0.5) had a negligible effect on posterior

inferences, the use of a uniform prior led to an increase in the posterior mean for some of the εj

(for example, Pr(ε2 = 1 | data) = 0.76).

5 Discussion

We have developed a novel modeling approach for simultaneous risk assessment in multiple

sectors of the U.S. economy that focuses on modeling the dependence in the appearance of large

losses in the different sectors constituting the S&P500 index. Some of the advantages of the

proposed methodology include its nonparametric nature, its focus on extreme returns rather

than average returns, and the interpretability of the components of the model. These features

lead to robust indexes and hypothesis tests for the presence of idiosyncratic risks in specific

sectors of the economy.

Although our application used data from equity markets to understand the interdependence

across different sectors of the economy, the model described here also has potential applications

in debt markets. In particular, reduced-form credit risk models (e.g., Lando, 1998) are also

Cox process models for debt default. Therefore, our model could be extended to estimate the

probability of default for firms within and across multiple economic sectors.

Appendix. Details of the Markov chain Monte Carlo algorithm

Here, we provide the details for simulation from the posterior distribution of the model given in

Equation (2). Posterior simulation is based on the blocked Gibbs sampler, including Metropolis-

Hastings steps for some of the parameters. In particular, the MCMC algorithm iteratively

updates model parameters through the following steps:

1. Each pair (rj,k, Lj,k), for j = 1, . . . , J and k = 1, . . . , nj , is updated jointly from a multi-
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nomial distribution with

Pr(rj,k = 0, Lj,k = l | · · · , data) ∝ γ∗0

[
u0,l

∏
s<l

{1− u0,s}

]
ψ(tj,k | µ?0,l, τ)

and

Pr(rj,k = j, Lj,k = l | · · · , data) ∝ γ∗j

[
uj,l
∏
s<l

{1− uj,s}

]
ψ(tj,k | µ?j,l, τ),

for l = 1, . . . , N .

2. The update for the stick-breaking ratios {uj,l} follows the standard recipe described in

Ishwaran and James (2001). In particular, the posterior full conditional for each uj,l is a

Beta
(

1 +Mj,l, αj +
∑N

r=l+1Mj,r

)
distribution, where Mj,l =

∑J
s=1

∑nk
i=1 I(rs,i=j,Ls,i=l).

3. The full conditional distribution for the atoms µ?j,l with j = 0, 1, . . . , J and l = 1, . . . , N is

given by

p(µ?j,l | · · · ,data) ∝ h(µ?j,l)
∏

{(s,i):rs,i=j,Ls,i=l}

ψ(ts,i | µ?j,l, τ).

Hence, if {(s, i) : rs,i = j, Ls,i = l, } = ∅, µ?j,l can be updated by sampling from the

baseline distribution H. Otherwise, since this full conditional does not correspond to

any known distribution, we update µ?j,l using a random walk Metropolis-Hasting step

with symmetric logit-normal proposal distribution where new values µ
?(p)
j,l are generated

according to logit
{
µ
?(p)
j,l

}
| µ?(c)j,l ∼ Normal

(
logit

{
µ
?(c)
j,l

}
, κ2

µ

)
, where µ

?(c)
j,l represents the

current value of the chain, and κ2
µ is a tuning parameter chosen such that the average

acceptance rate is between 30% and 40%.

4. Since the prior for γ∗0 is conditionally conjugate, we update this parameter by sampling from

γ∗0 | · · · ,data ∼ gamma
(
aγ∗0 +

∑J
j=1mj , bγ∗0 + J

)
, where mj =

∑nj
k=1 I(rj,k=0) denotes

the number of observed exceedances in sector j that are associated with the systematic

component.

5. For j = 1, . . . , J , the pairs (ξj , γ
∗
j ) are conditionally independent from each other and

can be updated by first updating ξj so that ξj = 1 if mj < nj or ξj | · · · , data ∼
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Bernoulli

 π

{
bγ∗
j
/(1+bγ∗

j
)

}aγ∗
j

1−π+π

{
bγ∗
j
/(1+bγ∗

j
)

}aγ∗
j

 if mj = nj . Once ξj has been updated, γ∗j is updated

by setting γ∗j = 0 if ξj = 0, or by sampling γ∗j from a gamma distribution with shape

parameter aγ∗j + nj −mj and rate parameter 1 + bγ∗j if ξj = 1.

6. The full conditional posterior for τ is

p(τ | · · · ,data) ∝ p(τ)

J∏
j=1

nj∏
k=1

ψ(tj,k | µ?rj,k,Lj,k , τ).

Since no direct sampler is available from this distribution, we update τ using a ran-

dom walk Metropolis-Hasting step with symmetric log-normal proposal, log(τ (p)) | τ (c) ∼

Normal(log(τ (c)), κ2
τ ), where κ2

τ is again a tuning parameter.

7. Because the prior on π is conditionally conjugate, the full conditional for π is given by a

Beta
(
aπ + J −

∑J
j=1 ξj , bπ +

∑J
j=1 ξj

)
distribution.

8. The precision parameters α0, α1, . . . , αJ can be updated independently using the algorithm

described in Escobar and West (1995).

Given a sample from the posterior distribution generated using the previous algorithm,

(
{r(b)
j,k}, {L

(b)
j,k}, {u

(b)
j,l }, {µ

?(b)
j,l }, {γ

∗(b)
j }, {ξ(b)

j }, τ
(b), π(b), {α(b)

j }
)

b = 1, . . . , B

point and interval estimates for any functional of the model can be easily obtained. For example,

estimates of the probability that the j-th sector is driven exclusively by the systematic component

can be estimated as Pr(εj = 1 | data) ≈ B−1
∑B

b=1 I(ξ(b)j =0)
(see Figure 5). Moreover, posterior

realizations for λ∗j (t), the intensity function at time t, can be obtained from

λ
∗(b)
j (t) = γ

∗(b)
j

N∑
l=1

{
u

(b)
j,l

∏
s<l

(1− u(b)
j,s)

}
ψ(t | µ?(b)j,l , τ

(b)).

Then, the posterior mean, B−1
∑B

b=1 λ
∗(b)
j (t), can be used as a point estimate for λ∗j (t). A plot

of the estimated intensity function can be obtained by repeating this evaluation over a dense
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grid of t values. Similarly, symmetric pointwise β% credible bands for λ∗j (t) can be obtained

by computing the β/2% and 1 − β/2% quantiles of the sampled values {λ∗(1)
j (t), . . . , λ

∗(B)
j (t)}.

Extensions to other quantities of interest are straightforward.
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Kottas, A., Z. Wang, and A. Rodŕıguez (2012). Spatial modeling for risk assessment of ex-

treme values from environmental time series: A Bayesian nonparametric approach. Environ-

metrics 23, 649–662.

Lando, D. (1998). On Cox processes and credit risk securities. Review of Derivatives Research 2,

99–120.

Lijoi, A. and B. Nipoti (2014). A class of hazard rate mixtures for combining survival data from

different experiments. Journal of the American Statistical Association 109, 802–814.

Lijoi, A., B. Nipoti, and I. Prünster (2014a). Bayesian inference with dependent normalized

completely random measures. Bernoulli 20, 1260–1291.

Lijoi, A., B. Nipoti, and I. Prünster (2014b). Dependent mixture models: Clustering and

borrowing information. Computational Statistics and Data Analysis 71, 417–433.

Lijoi, A. and I. Prünster (2010). Models beyond the Dirichlet process. In N. L. Hjort, C. Holmes,

P. Müller, and S. G. Walker (Eds.), Bayesian Nonparametrics, pp. 80–136. Cambridge: Cam-

bridge University Press.

MacEachern, S. N. (2000). Dependent Dirichlet processes. Technical report, Department of

Statistics, The Ohio State University.

Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business 36,

394–419.

Müller, P., F. Quintana, and G. Rosner (2004). A method for combining inference across related

nonparametric Bayesian models. Journal of Royal Statistical Society, Series B 66, 735–749.

Robert, C. P. and G. Casella (2005). Monte Carlo Statistical Methods (Second Edition ed.).

Springer, New York.

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica 4, 639–650.

Taddy, M. and A. Kottas (2012). Mixture modeling for marked Poisson processes. Bayesian

Analysis 7, 335–362.

Taddy, M. A. (2010). An auto-regressive mixture model for dynamic spatial Poisson processes:

Application to tracking the intensity of violent crime. Journal of the American Statistical

Association 105, 1403–1417.

Treynor, J. L. (1961). Market value, time, and risk. Unpublished manuscript.

25



Treynor, J. L. (1962). Toward a theory of market value of risky assets. Unpublished manuscript.
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Information Technology, n=387
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Figure 1: Negative log returns above 2% for four sectors of the S&P500 index (consumer staples,
energy, financials, and information technology). Vertical dotted lines identify seven events of
significance to the markets: the bursting of the .com bubble (03/10/2000), the 09/11 terrorist
attacks (09/11/2001), the stock market downturn of 2002 (09/12/2002), the bursting of the
Chinese bubble (02/27/2007), the bankruptcy of Lehman Brothers (09/16/2008), Dubai’s debt
standstill (11/27/2009), and the beginning of the European sovereign debt crisis (08/27/2010).

27



Consumer Discretionary, n=229

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Consumer Staples, n=85

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Energy, n=305

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Financials, n=321

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Health Care, n=144

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Industrials, n=228

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Materials, n=289

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Information Technology, n=387

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Telecommunications Services, n=245

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Utilities, n=183

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Prior realizations

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Prior mean and pointwise credible intervals

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 2: The top three rows and the left panel on the bottom row show the posterior mean of
the overall intensity, λj , j = 1, ..., 10, associated with the different components of the S&P500
index, along with posterior 95% pointwise credible intervals. The headers on each panel include
the number of exceedances observed in each sector over the 12 year period under study. The last
two plots in the bottom row present prior realizations for the intensity function (middle panel)
and the mean prior intensity function along with prior 95% pointwise credible intervals (right
panel).
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Figure 3: The left panel shows the posterior mean of f∗0 , the density associated with the system-
atic risk component of the S&P500 index, including posterior 95% pointwise credible intervals.
The middle panel shows prior realizations for f∗0 , while the right panel plots the prior mean and
prior 95% pointwise credible intervals for f∗0 .
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Figure 4: Posterior mean of the idiosyncratic densities, f∗1 , ..., f
∗
10, associated with the different

components of the S&P500 index, along with posterior 95% pointwise credible intervals.
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Figure 5: Posterior density for εj , j = 1, ..., 10, the overall proportion of risk attributable to the
systematic component on each of the ten components of the S&P500 index.
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Figure 6: Posterior densities for the odds ratio of the probability of at least one exceedance in the
month starting two weeks after the bankruptcy of Lehman Brothers against the probability of
at least one exceedance in the month ending two weeks before the bankruptcy for four different
sectors. The vertical line corresponds to the mean of the posterior distribution.
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Figure 7: Examples of cross-validation datasets (plotted on the horizontal axis) for two sectors,
and the posterior mean and 95% pointwise interval estimates for the densities associated with
them.
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Figure 8: Results from the cross validation exercise to investigate the coverage rate of highest
posterior density intervals associated with the nonparametric model.
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Figure 9: Quantile-quantile plot of the posterior means for the transformed inter-arrival times
against the quantiles of a uniform distribution (solid line) for each of the ten S&P500 sectors.
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Table 1: S&P500 sector indexes and their associated tickers.

Sector number Ticker Sector description

1 S5COND Consumer Discretionary
2 S5CONS Consumer Staples
3 S5ENRS Energy
4 S5FINL Financials
5 S5HLTH Health Care
6 S5INDU Industrials
7 S5MATR Materials
8 S5INFT Information Technology
9 S5TELS Telecommunications
10 S5UTIL Utilities
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Table 2: Parameters of the prior distributions used in the analysis of the S&P500 sectors.

Parameter Prior parameters

π aπ = 0.5, bπ = 2
γ∗0 aγ∗0 = 7.32, bγ∗0 = 0.06

γ∗j , j = 1, ..., 10 aγ∗j = 1.32, bγ∗j = 0.06

τ aτ = 5, bτ = 2400
αj , j = 0, 1, ..., 10 aα = 4, bα = 1/3

H aµ = 1, bµ = 1
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