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Abstract
To meet the needs of a diverse and growing set of
cloud-based applications, modern distributed storage
frameworks expose a variety of composable subsystems
as building blocks. This approach gives infrastruc-
ture programmers significant flexibility in implementing
application-specific semantics while reusing trusted com-
ponents. Unfortunately, in current storage systems the
composition of subsystems is a low-level task that couples
(and hence obscures) a variety of orthogonal concerns, in-
cluding functional correctness and performance. Building
an application by wiring together a collection of compo-
nents typically requires thousands of lines of carefully-
written C++ code, an effort that must be repeated when-
ever device or subsystem characteristics change.

In this paper, we propose a declarative approach to sub-
service composition that allows programmers to focus on
the high-level functional properties that are required by
applications. Choosing an implementation that is consis-
tent with the declarative functional specification then can
be posed as a search problem over the space of parameters
such as block sizes, storage interfaces (e.g. key/value or
block storage) and concurrency control mechanisms. We
base our observations and conclusions on data mining the
git repository of the Ceph storage system and performance
evaluating our own prototype implementations.

1 Introduction
Storage systems are increasingly providing features that
take advantage of application-specific knowledge to
achieve optimizations and provide unique services. How-
ever, this trend is leading to the creation of a large number
of software extensions that will be difficult to maintain as
system software and hardware continue to evolve.

The standardization of the POSIX file I/O interface has
been a major success, allowing application developers to
avoid vendor lock-in. However, large-scale storage sys-
tems have been dominated by proprietary products, pre-
venting exploration of alternative interfaces and compli-
cating future migration paths, eliminating the benefits of

Figure 1: [source] Growth of officially supported, custom object inter-
faces in RADOS over 6 years. An operation is a function executed in the
context of an object, and operations are grouped into different categories
corresponding to applications or utilities, such as reference counting

commodity systems. But the recent availability of high-
performance open-source storage systems is changing this
because these systems are modifiable, enabling interface
change, and reducing the risks of lock-in. The widely
deployed Ceph distributed storage system is an example
of a storage system that supports application-specific ex-
tensions in the form of custom I/O interfaces to objects
managed by the underlying RADOS object storage sys-
tem [36, 37]. Organizations are increasingly reliant upon
these extensions as is shown in Figure 1 by a marked in-
crease in the number of object operations that are pack-
aged as part of the Ceph distribution and widely used
by internal Ceph subsystems and by applications such as
OpenStack Swift and Cinder [2].

In addition to the growth in the quantity of operations
in use throughout Ceph installations, Figure 1 also depicts
the amount of low-level C++ written to implement these
operations. Unfortunately, this code is written assuming
a performance profile defined by the combination of the
hardware and software versions available at the time of
development. While the bulk of these interfaces are cre-
ated by core Ceph developers with a complete view of
the performance model, this may be changing as the de-
velopment community has been receptive to outside con-
tributions with the recent inclusion by CERN develop-
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ers of an extension for performing limited numeric op-
erations on object data [1]. And while Ceph has not yet
reached the point of directly exposing these features to
non-administrative users, the inclusion of a mechanism
for dynamically defining extensions using Lua [3] (cur-
rently pending review) suggests that aspects of this feature
may soon appear. What is needed is support for creating
storage interfaces using a method that allows transparent
optimization as the system, application, and supporting
environment evolve.

Unfortunately the size of the design space for even
simple interfaces can be very large, and it can be diffi-
cult to choose a design that future proofs an implemen-
tation against hardware and software upgrades. Previous
work related to storage interface design has largely been
in the context of standardization efforts and active stor-
age. While the former is primarily concerned with fixed
interfaces, application-specific interfaces built using ac-
tive storage techniques have not to the best of our knowl-
edge addressed portability concerns that arise from defin-
ing interfaces imperatively. We address this gap by using a
declarative language we call brados to define application-
specific storage interfaces in object-based storage sys-
tems, decoupling interface definition from implementa-
tion and allowing interfaces to adapt to system changes
without modification.

To demonstrate the use of the brados language we will
show how a high-performance shared-log based on the
CORFU protocol can be built in Ceph, as well as exist-
ing real-world interfaces used in the Ceph storage system.
First we discuss the Ceph storage system which our proto-
type is built upon and the motivating system, CORFU. We
then present the challenges that programmers face when
navigating the design space during the process of building
an application-storage interface. The brados language is
then described using the CORFU system and an existing
Ceph-specific interface as motivating examples. We con-
clude by discussing the optimization opportunities that we
can realize using analysis of interfaces. We hope you en-
joy the show.

2 Background

In this section we describe the salient components of
Ceph that we use to construct application-specific exten-
sions, and provide an overview of the CORFU distributed
shared-log which is the primary motivating example used
in this paper. The content of this section sets the stage for
a discussion of the complexities developers face building
application-specific storage interfaces.

(a) Ceph Cluster (b) OSD

Figure 2: The Ceph cluster is composed of object storage devices (OSD)
that provide access to objects on behalf of client requests. An OSD
supports a wide variety of hardware and software configurations, as
well as the transactional composition of object operations for defining
application-level interfaces.

2.1 Ceph Basics and Storage Interfaces
Figure 2a illustrates the collection of components com-
monly referred to as Ceph. At the bottom, a cluster
of 10s–10,000s object storage devices compose the dis-
tributed object storage system called RADOS. Widely de-
ployed applications such as the S3/Swift–compliant RA-
DOS Gateway (RGW), RADOS Block Device (RBD),
and the POSIX Ceph File System are built upon the li-
brados client layer that presents a fault-tolerant always-on
view of the RADOS cluster.

The object storage device (OSD), illustrated in Fig-
ure 2b, is the building block of the RADOS cluster and
is responsible for managing and providing access to a set
of named objects. The configuration of an OSD is flex-
ible, and commonly contains a mix of commodity hard-
ware such as HDD and SSD bulk storage, a multi-core
CPU, GBs of RAM, and one or two 10 Gb Ethernet links.
Clients access object data managed by an OSD by invok-
ing native object operations exposed by the OSD such as
reading or writing bytes, as well as more complex oper-
ations like taking snapshots or composing one or more
native operations into compound procedures that execute
in a transactional context.

The native object operations in RADOS roughly fall
into two categories based on the type of data being ac-
cessed: key-value items, or bulk bytestream data. The
key-value interface operates as an isolated database as-
sociated with each object, and the bytestream interface
supports random byte-level access similar to a standard
file interface. At a low-level each of these abstract
I/O interfaces map to hardware storage devices through
a pluggable object backend shown in Figure 2b. For
instance, LevelDB or RocksDB may be used to store
key-value data, while the FileStore implementation maps
the bytestream interface onto a local POSIX file sys-
tem [19, 18] via XFS or other supported file systems. Sev-
eral backend implementations exist for storing data in a
range of targets such as HDD, SSD, as well as Ethernet-
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attached disks, and NVMe devices using optimized access
libraries.

Object Classes While Ceph provides a wide variety of
native object operations, it also includes a facility re-
ferred to as object classes that allow developers to create
application-specific object operations in the form of C++
shared libraries dynamically loaded into the OSD process
at runtime. Object classes can be used to implement ba-
sic data management tasks such as indexing metadata, or
used to perform complex operations such as data trans-
formations or filtering. Table 1 summarizes the range of
object classes maintained in the upstream Ceph project
which support internal Ceph subsystems as well as appli-
cations and services that run on top of Ceph.

Category Specialization Methods

Locking Shared 6Exclusive

Logging
Replica 3
State 4
Timestamped 4

Garbage Collection Ref. Counting 4

Metadata

RBD 37
RGW 27
User 5
Version 5

Table 1: A variety of RADOS object storage classes exist that expose
reusable interfaces to applications.

A critical step in the development of application-
specific object interfaces is deciding how to best make
use of the native object interfaces. For instance if an ap-
plication stores an image in an object, it may also extract
and store EXIF metadata as key-value pairs in the object
key-value database. However, depending on the appli-
cation needs it may be sufficient or offer a performance
advantage to store this metadata as a header within the
bytestream. In the remainder of this section we will ex-
plore the challenges associated with these design ques-
tions.

2.2 Motivating Application: CORFU
The primary motivating example we will use in this pa-
per is the CORFU distributed shared-log designed to pro-
vide high-performance serialization across a set of flash
storage devices [7]. The shared-log is a powerful abstrac-
tion useful when building distributed systems and applica-
tions, but common implementations such as Paxos or Raft
funnel I/O through a single node limiting total through-
put [24]. The CORFU protocol addresses this limitation
by de-coupling log entry storage from log metadata man-
agement, making use of a centralized, volatile, in-memory

sequencer service that assigns positions to clients that are
appending to the log. Since the sequencer is centralized
serialization is trivial, and the use of non-durable state al-
lows the sequencer service to operate at very high rates.
The CORFU system has been used to demonstrate a num-
ber of interesting services such as transactional key-value
and metadata services, replicated state machines, and an
elastic cloud-based database management system [6, 10].

Two aspects of CORFU make its design attractive in
the context of the Ceph storage system. First, CORFU as-
sumes a cluster of flash devices because log-centric sys-
tems tend to have a larger percentage of random reads
making it difficult to achieve high-performance with spin-
ning disks. However, the speed of the underlying storage
does not affect correctness. Thus, in a software-defined
storage system such as Ceph a single implementation can
transparently take advantage of any software or hardware
upgrades, and make use of existing and future data man-
agement features such as tiering, allowing users to freely
choose between media types such as SSD, spinning disks
for archival storage, or emerging NVRAM technologies.

The second property of CORFU relevant in the con-
text of Ceph is the dependency CORFU places on cus-
tom storage device interfaces used to guarantee serializa-
tion during failure and reconfiguration. Each flash device
in a CORFU cluster exposes a 64-bit write-once address
space consisting of the primary I/O interfaces write(pos,
data) and read(pos) for accessing log entries, as well as
fill(pos) and trim(pos) that invalidate and reclaim log en-
tries, respectively. All I/O operations in CORFU initiated
by clients are tagged with an epoch value, and flash de-
vices are expected to reject client requests that contain an
old epoch value. To facilitate recovery or handle system
reconfiguration in CORFU, the storage devices are also
required to support a seal(epoch) command that stores the
latest epoch and returns the maximum position written to
that device. The seal interface is used following the fail-
ure of a sequencer to calculate the tail of the log that the
sequencer should use to repopulate its in-memory state.

Storage Programmability While the authors of the
CORFU paper describe prototype device interfaces im-
plemented as both host-based and FPGA-based solutions,
RADOS directly supports the creation of logical storage
devices through its object class feature described in Sec-
tion 2.1. Thus, by using software-based object interfaces
offered by RADOS flash devices in CORFU can be re-
placed by software-defined interfaces offering significant
flexibility and a simplified design.

The implementation of a custom object class that sat-
isfies the needs of an application such as CORFU is of-
ten straightforward. However, as described in Section 2.1
there are a variety of native object I/O interfaces available,
and it is not always immediately clear how best to utilize

3



EGstart

CP IO

GC US

Out

R,W,F

T

F

R,W

F,T

W

R

F,T,W

Figure 3: State transition diagram for read (R), write (W ), fill (F ), and
trim (T ) CORFU operations. The states epoch guard (EG), check po-
sition (CP ), and update state (US) access metadata. The I/O performs
a log entry read or write, and garbage collection (GC) marks entries for
reclamation.

these interfaces.

3 Physical Design Space
As we have seen, Ceph provides a rich storage API and
places few requirements on the structure of applications.
Thus a primary concern when implementing an object in-
terface in Ceph is deciding how native interfaces are com-
posed into compound operations in order to implement
the semantics of the target interface. These types of de-
cisions are commonly referred to as physical design, and
can affect performance and application flexibility. As we
will see the design space that developers must operate in
is often large, and its dynamic nature can lead to design
decisions that become obsolete and non-optimal.

To understand the developer process in the context
of CORFU we have included the state-machine dia-
gram in Figure 3 showing the composition of actions for
each component of the CORFU interface which must be
mapped onto Ceph object classes. For instance, all op-
erations begin by applying an epoch guard that ensures
the request is tagged with an up-to-date epoch value. The
read (R) and write (W) operations both proceed by (1) ex-
amining metadata associated with the target position, (2)
performing I/O to read or write the log entry, and in the
case of a write, (3) updates metadata for the target log po-
sition.

As an example, one valid design option is to store each
log position in an object with a name using a one-to-one
mapping with the log entry position. This would simplify
the design of the write interface because a small amount
of metadata stored as a header in the object could describe
the state of the log entry. However, as we will see this
choice of a physical design can result in poor performance
compared to other designs. In the remainder of this sec-
tion we will define the entire design space and use a set
of targeted benchmarks to arrive at a final design. Finally

we will show that these design decisions can lead to non-
optimal decisions and suggest an automated approach is
desirable.

3.1 Challenges
The design space can be divided into three challenges:
selecting a strategy for log entry addressing, choosing a
native I/O interface for storing log entry content, and im-
plementing efficient metadata management.

1. Entry addressing. We refer to the method by which
a client locates a log entry in Ceph as entry address-
ing, and we consider two strategies. In a one-to-one
(1:1) strategy each log entry is stored in a distinct
object with a name derived from the associated log
entry position. This is an attractive option because it
is trivial for clients to locate a log entry given its po-
sition. In contrast, an N:1 strategy stripes log entries
across a smaller set of objects, but this adds complex-
ity to both the client and the object interface which
must multiplex a set of entries.

2. Log entry storage. Clients read and write binary
data associated with each log entry, and these entries
can be stored in the bytestream or in the key-value
database associated with an object. Retrieval of log
entry payloads should perform well for both large
(e.g. database checkpoint) and small log entries.

3. Metadata management. The CORFU protocol de-
fines the storage interface semantics, such as enforc-
ing up-to-date epoch values and a write-once address
space. The object interface constructed in Ceph must
implement these semantics in software by storing
metadata (e.g. the current epoch) and validating re-
quests against this metadata (e.g. has the target po-
sition been written?). A key-value store is a natu-
ral location for this type of data, but metadata man-
agement adds overhead to each request and must be
carefully designed.

In the remainder of this section we will explore the full
design space defined by the cross product of these design
challenges to arrive at a final design.

3.2 Baseline Performance
We begin the process of exploring the design space by fo-
cusing on log entry addressing and log entry storage (the
I/O action shown in Figure 3). These two dimensions are
represented by the first two columns of Table 2 which de-
scribes the entire design space. In the I/O column KV cor-
responds to the key-value interface, and the bytestream
interface is represented by AP for an append strategy, and
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EX for a strategy that writes to an explicit bytestream off-
set (both described shortly).

Map I/O Entry Size Addressing Metadata

1:1
KV Flex Ceph KV/BS
AP Flex Ceph/VFS KV/BS

N:1

KV Flex KV/BS
EX Fixed VFS KV/BS
AP Flex KV/BS KV/BS

Table 2: The high-level design space of mapping CORFU log entry
storage onto the RADOS object storage system.

The top row of Figure 4 shows the expected perfor-
mance of different sized log appends without metadata
management overhead using each of the five strategies de-
fined in Table 2. Starting with Jewel and 4KB entry sizes,
we see that both one-to-one strategies have relatively poor
performance. Jewel with 1KB entry sizes sees a 2.5×
performance increase for the (N:1,KV) mapping. This
particular graph was extended to show an extra 30 min-
utes to demonstrate another disadvantage of (1:1,BS) -
the large period of reduced throughput corresponds to the
OSD splitting file system directories in order to maintain
a maximum directory size, and will occur in (1:1,KV)
although the threshold number of objects is not reached in
this example due to the reduced overall throughput of the
(1:1,KV) strategy.

The second lesson that we can learn from the Jewel row
of Figure 4 is that even when using an N:1 addressing
strategy, the key-value interface imposes a large overhead.
This is unfortunate because the key-value interface can
provide a direct solution to addressing log entries within
an object. Instead, what we find is that an N:1 address-
ing strategy that stores log entries in the bytestream using
either object appends or writes to explicit offsets outper-
form all other strategies by a factor of over 2×.

The apparent performance tie between the strategies of
appending to an object and writing to explicit offsets can
be broken by considering the flexibility offered by each
approach. The third column entry size in Table 2 shows
if a particular strategy supports storage of entries with dy-
namic sizes, or if entries must be restricted to a fixed size.
Notably the strategy that stores log entries at explicit ob-
ject offsets is limited in this regard because each log entry
is effectively pre-mapped into the storage system. This
leaves the clear winner: an N:1 strategy that appends log
entries to objects provides flexibility and the best write
performance in this particular configuration. This result
is corroborated by considering the read performance for
each strategy as well. Figure 5 shows the expected ran-
dom read performance from a log containing 1K entries
in which an addressing strategy that stores log entries in
the bytestream has the best performance.

3.3 Metadata Management
The previous results show that storing log entries in the
bytestream has the potential to provide the best overall
performance, but by design, those results do not contain
the real-world overheads introduced by metadata manage-
ment such as validating that requests are tagged with an
up-to-date epoch value. Having only focused on entry I/O
costs, in this section we consider the overhead of the re-
maining actions shown in Figure 3.

1. Epoch guard. Each client request must be validated
against the current epoch. This singleton value in
infrequently updated, but the cost of accessing the
value must be incurred for every request.

2. Per-entry metadata. Unlike the singleton epoch
value, metadata associated with each log position
must be read, and optionally updated for every re-
quest. For instance the fill operation must ensure that
it is not applied to a log position that has already been
written. When an operation that changes a log posi-
tion is successful (i.e. write, fill, trim) the per-entry
metadata must also be updated to reflect the change.
While the size of the per-entry metadata is small, it is
accessed for every operation and a single object may
manage a large number of entries.

The design space for managing metadata can be large
depending on the application. In many cases this space
is significantly reduced when the key-value interface is
used because it handles a large portion of common data
management challenges such as indexing. On the other
hand, we have seen that the bytestream can be used to
achieve much higher performance when used in lieu of
the key-value database, but leaves the design space wide
open.

We consider two high-level design prototypes in this
paper based on both the key-value and bytestream inter-
faces. The summary of performance of these designs is
shown in Figure 6 where we begin by highlighting two
baseline throughputs labelled librados and write
only that correspond to the baseline append throughput
described in the previous section, and the append through-
put achieved with object class overhead included. We will
discuss the performance of our two prototype designs rel-
ative to the base cost of using object class facility.

The first design is based on the key-value interface. In
this design the epoch value is stored under a fixed key, and
the metadata associated with each log entry is stored un-
der a key derived from the log position. The expected
throughput of this design is shown in Figure 6 and la-
beled as KV. This result shows us that even for very small
values the cost of managing data in the key-value store
introduces significant overhead. In contrast, the unstruc-

5



Figure 4: The relative performance difference between the different mapping strategies in Table 2 changes with the Ceph version. These discrep-
ancies alter the implementation that a developer would have chosen had they been developing on a different release. Here we vary the log entry size
to show that there is a trend for Jewel (larger entry sizes decreases (N:1)’s relative performance) that is not present in Firefly.

Figure 5: The expected random read performance for a log with 1KB
entries performs best on the same strategy that the writes perform best
on - (N:1, BS).

tured bytestream interface imposes little to no restriction
on how it is used.

An obvious choice for encoding the singleton epoch
value in the bytestream is to position it at a fixed offset
such as in a header. A method for indexing entry metadata
is far less obvious. Solutions span a wide design spectrum
and include approaches such as encoding a search tree into
the bytestream, or exploiting the regularity log addressing
and storing a dense array that can be efficiently indexed.
While there is clearly a wide variety of approaches, we
have chosen to examine the overhead incurred by an hypo-
thetical best-case design in which per-entry metadata can
be accessed with a single I/O. The I/O overhead of the test
includes (1) read epoch value from a fixed header loca-
tion, (2) read the per-entry metadata, and in the case of an
update (3) write the updated per-entry metadata. The ex-
pected throughput from such a design is shown in Figure 6

Figure 6: The overhead of Ceph’s object class interfaces and the cost of
checking metadata affect the performance of the CORFU API on RA-
DOS. The performance degradation of KV might not be enough to offset
the simplicity of the implementation.

labeled as BS for bytestream and performs with roughly a
6% overhead.

Application-level designs also contribute to an ex-
panded design space. In the N:1 design of mapping
CORFU onto Ceph the potential amount of I/O paral-
lelism is controlled by the value N, however if this value
becomes too large there may be no benefit or performance
could suffer from reduced data locality. Other aspects of
application-level design are even more flexible. A wide
variety of data structures could be serialized into the byte
stream to handle metadata management tasks, but select-
ing a single external index that performs well across work-
loads and hardware may not be possible.
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3.4 Cluster-Specific Optimizations
So far, we have demonstrated that a design based on an
N:1 addressing scheme that stores both log entries and
metadata in the bytestream can provide the best overall
performance, and it does so by a large margin. However,
this process of design we have outlined may not yield such
clear cut results when applied in a different context. To
illustrate these contexts, we describe the software param-
eters, system tunables, and hardware parameters that af-
fect the performance of our CORFU implementation. The
complexity and breadth of our parameter sweep, and the
fact that our state space grew so large, motivates the lan-
guage for declarative, programmable object storage de-
scribed in section 4.

3.4.1 Software Parameters

Ceph releases stable versions every year (Oct/Nov) and
long-term support (LTS) versions every 3-4 months [12].
The head of the master branch moves quickly because
there are over 400 contributors and an active mailing list.
Over the past calendar year, there were between 70 and
260 commits per week [11].

Ceph Versions: to show the evolution of Ceph’s perfor-
mance and behavior, we ran the same benchmark, which
measures append throughput, with the same configura-
tions, hardware, and tunables on 2 versions of Ceph:
Jewel (April 2016) - the newest stable release and Fire-
fly (May 2014) - a long term support version that intro-
duced cache tiering and erasure coding. The Jewel row
of Figure 4 shows that the size of the log entries has a
clear impact on performance but the Firefly release shows
no such trend. The fact that the appends per second are
an order of magnitude slower on Firefly indicates that the
benchmark is bottlenecked by the Ceph software instead
of the external log implementation.

The bytestream interface outperforms the key-value in-
terface by 12%, compared to over 100% in the newer
version of Ceph. Qualitatively, given the reduced over-
all throughput achieved in the older version, some devel-
opers may find that incurring the overhead of using the
key-value interface is an easy decision given the reduced
complexity of the design space for metadata management.
If this choice had been made, then a future system upgrade
could drop a significant number of IOPS on the floor.

Ceph Features: Ceph constantly adds new features and
one particular feature that has the potential to greatly im-
prove the performance of log appends is BlueStore [35].
BlueStore is a replacement for the FileStore file system in
the OSD (traditionally XFS). FileStore has performance
problems with transactions and enumerations; namely the
journal needed to assure atomicity incurs double writes
and the file system metadata model makes object list-
ings slow, respectively. BlueStore stores data directly on

a block device and the metadata in RocksDB, which is
provided by a minimalistic, non-POSIX C++ filesystem.
This model adheres to the overall software defined stor-
age strategy of Ceph because it gives the administrator the
flexibility to store the 3 components of BlueStore (e.g.,
data, RocksDB database, and RocksDB write-ahead log)
on any partition on any device in the OSD.

Unfortunately, due to space constraints, we do not show
results for BlueStore. Anecdotally, performance for reads
was a couple thousand IOPs better while writes are sig-
nificantly worse. This is an example of a software feature
that has a good architecture for a CORFU application on
Ceph but is not production-ready yet.

Takeaway: choosing the best implementations is de-
pendent on both the timing of the development (Ceph Ver-
sion) and the expertise of the administrator (Ceph Fea-
tures). Different versions and features of Ceph may lead
the administrator to choose a suboptimal implementation
for the system’s next upgrade. The software parameters
must be accounted for and benchmarked when making de-
sign decisions.

3.4.2 System Tunables

The most recent version of Ceph (v10.2.0-1281-
g1f03205) has 994 tunable parameters1, where 195 of
them pertain to the OSD itself and 95 of them focus on the
OSD back end file system (i.e. its filestore). Ceph
also has tunables for the subsystems it uses, like LevelDB
(10 tunables), RocksDB (5 tunables), its own key-value
stores (5 tunables), its object cache (6 tunables), its jour-
nals (24 tunables), and its other optional object stores like
BlueStore (49 tunables).

This many domain-specific tunables makes it almost
impossible to come up with the best set of tunables, al-
though auto-tuning like the work done in [9] could go a
long way. Regardless of the technique that we use, it is
clear the number of tunables increases the physical design
parameters to an unwieldy state space size.

Takeaway: the number and complexity of Ceph’s tun-
ables makes brute-force parameter selection hard.

3.4.3 Hardware Parameters

Ceph is designed to run on a wide variety of commodity
hardware as well as new NVMe devices. All these devices
have their own set of characteristics and tunables (e.g.,
the IO operation scheduler type). In our experiments, we
tested SSD, HDDs, NVMe devices and discovered a wide
range of behaviors and performance profiles. As an ex-
ample, Figure 7 shows the write performance of 128 byte
log entries using Jewel and a single HDD. Performance is

1This number comes from src/common/config opts.h with
debug options filtered out.
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Figure 7: The performance of (N:1,KV) is within 1% of (N:1,BS)
when using the Ceph Jewel release on a HDD. For this specific hard-
ware/software configuration, (N:1,KV) is a better implementation.

10× slower than its SSD counterpart in Figure 4 (top row,
third column) but the behavior and relative performance
make this hardware configuration especially tricky.

The behavior of the 1:1 implementations shows
throughput drops lasting for minutes at a time – this lim-
its our focus to the N:1 implementations. The perfor-
mance of (N:1, BS) implementation is almost identi-
cal to (N:1, KV) (within 1% mean throughput). Re-
gardless of the true bottleneck, it is clear that choosing
(N:1, KV) is the better choice because of the resulting
implementation should be less complex and there is min-
imal performance degradation.

Takeaway: choosing the best implementations is de-
pendent on hardware. Something as common as an up-
grade from HDD to SSD may nullify the benefits of a cer-
tain implementation.

3.5 Discussion

What started out as a pragmatic approach to designing a
complex service on Ceph quickly proved to be unwieldy.
While finding the best solution for a specific set of config-
urations (i.e. software, tunable, and hardware parameters)
can be done, finding a solution that is future-proof is still
unsolved.

This physical design process, of first thinking about the
design trade-offs and then doing parameters sweeps, is
insufficient for large general-purpose systems like Ceph.
Had we built CORFU from the ground up the story might
be different but to deal with the large state space we need a
way to automatically decide which parameters to choose.

Next we present a declarative programming model that
seeks to solve the issue of selecting an optimal mapping
between application requirements and object class imple-
mentation.

4 The Brados Programming Model
As Ceph continues to develop into a target for building
distributed services and applications, it is important to not
restrict use to developers seasoned in distributed program-
ming and those with knowledge of the intricacies of Ceph
and its performance model. The hard-coded imperative
method of writing object interfaces today restrict the opti-
mizations that can be performed automatically or derived
from static analysis. To this end we present Brados, a
declarative language with relational semantics for defin-
ing the behavior of RADOS object interfaces. Brados uses
a declarative data model, can reduce the learning curve for
new users, and allows existing developers to increase pro-
ductivity by writing less code that is more portable.

The Brados language corresponds to a subset of the
Bloom language which a declarative language for ex-
pressing distributed programs as an unordered set of
rules [5]. These rules fully specify program semantics and
allow a programmer to ignore the details associated with
how a program is evaluated. This level of abstraction is
attractive for building storage interfaces whose portability
and correctness is critical.

4.1 Basics

Brados models the storage system state uniformly as a
collection of relations. The composition of a collection
of existing interfaces is then expressed as a collection of
high-level queries that describe how a stream of requests
(API calls) are filtered, transformed and combined with
existing state to define streams of outputs (API call re-
turns as well as updates to system state). Separating the
relational semantics of such compositions from details of
their physical implementations introduces a number of de-
grees of freedom, similar to the “data independence” of-
fered by database query languages. The choice of access
methods (for example, whether to use a bytestream in-
terface or a key/value store), storage device classes (e.g.,
whether to use HDDs or SDDs), physical layout details
(e.g. a 1:1 or N:1 mapping) and execution plans (e.g. op-
erator ordering) can be postponed to execution time. The
optimal choices for these physical design details are likely
to change much more often than the logical specification,
freeing the interface designer from the need to rewrite sys-
tems and device and interface characteristics change.

4.2 The CORFU Log Interface

We now show the implementation of CORFU using Bra-
dos and use this as a vehicle for describing additional as-
pects of the language of semantics. Listing 1 shows the
declaration of state for the CORFU interface. Lines 1 and
2 define the schema of the two persistent collections that
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hold the current epoch value, and the log contents. These
collections are mapped onto storage within Ceph but ab-
stract away the low-level interface (e.g. bytestream vs
key-value). Lines 5-9 define the input and output inter-
faces. We use a generic schema for the input operation
to simplify how rules are defined that apply to all opera-
tion types. Lines 11-15 define named collections for each
operation type. The scratch type indicates that the data
is not persistent, and only remains in the collection for a
single execution time step. The remaining scratch collec-
tions are defined to further subdivide the operations based
on different properties which we’ll describe next.

1 state do
2 table :epoch, [:epoch]
3 table :log, [:pos] => [:state, :data]
4

5 interface input, :op,
6 [:type, :pos, :epoch] => [:data]
7

8 interface output, :ret,
9 [:type, :pos, :epoch] => [:retval]

10

11 scratch :write_op, op.schema
12 scratch :read_op, op.schema
13 scratch :trim_op, op.schema
14 scratch :fill_op, op.schema
15 scratch :seal_op, op.schema
16

17 # op did or did not pass the epoch guard
18 scratch :valid_op, op.schema
19 scratch :invalid_op, op.schema
20

21 # op’s position was or was not found in the log
22 scratch :found_op, op.schema
23 scratch :notfound_op, op.schema
24 end

Listing 1: State Declaration

Initialization is performed in Listing 2 which acts as
a demux for the operation type and properties. Lines 3-
7 show the epoch guard that is applied to all operations.
The guard rejects requests that are tagged with old epoch
values, ensuring that a client generating a request has an
up-to-date view of the system. First the invalid op
collection is defined to include the current operation if its
epoch value is no larger than the stored epoch value. Next
the valid op collection is defined to be the inverse of
invalid op and is a helper used to refine other opera-
tions later in the dataflow. Finally we handle the case for
all operations tagged with an out-of-date epoch by merg-
ing the invalid op set into the output ret collection.

Lines 10 and 11 populate the found op and
notfound op collections that allow operations behav-
ior to be predicated on if the position associated with a
request is found in the log. Finally the remaining lines in
Listing 2 populate each of the specific operation collec-
tions.

1 bloom do
2 # epoch guard
3 invalid_op <= (op * epoch).pairs{|o,e|
4 o.epoch <= e.epoch}
5 valid_op <= op.notin(invalid_op)
6 ret <= invalid_op{|o|
7 [o.type, o.pos, o.epoch, ’stale’]}

8

9 # op’s position found in log
10 found_op <= (valid_op * log).lefts(pos => pos)
11 notfound_op <= valid_op.notin(found_op)
12

13 # demux on operation type
14 write_op <= valid_op {|o| o if o.type == ’write’}
15 read_op <= valid_op {|o| o if o.type == ’read’}
16 fill_op <= valid_op {|o| o if o.type == ’fill’}
17 trim_op <= valid_op {|o| o if o.type == ’trim’}
18 seal_op <= valid_op {|o| o if o.type == ’seal’}
19 end

Listing 2: Setup

The process of sealing an object requires installing a
new epoch value and returning the current maximum po-
sition written. Listing 3 implements the seal interface
by first removing the current epoch value and replacing
it with the epoch value contained in the input operation.
Next an aggregate is computed over the log to find the
maximum position written, and this value is returned, typ-
ically to a client performing a reconfiguration of the sys-
tem or following the failure of a sequencer.

1 bloom :seal do
2 epoch <- (seal_op * epoch).rights
3 epoch <+ seal_op { |o| [o.epoch] }
4 temp :maxpos <= log.group([], max(pos))
5 ret <= (seal_op * maxpos).pairs do |o, m|
6 [o.type, nil, o.epoch, m.content]
7 end
8 end

Listing 3: Seal

Trimming a log entry always succeeds. In Listing 4 the
<+- operator simultaneously removes the log entry with
the given position and replaces it with an entry with its
state set to trimmed. In practice the removal of a log entry
may trigger garbage collection, but we model it here as an
update for brevity.

1 bloom :trim do
2 log <+- trim_op{|o| [o.pos, ’trimmed’]}
3 ret <= trim_op{|o|
4 [o.type, o.pos, o.epoch, ’ok’]}
5 end

Listing 4: Trim

The write and fill interfaces are implemented similarly,
and are both shown in Listing 5. A valid write col-
lection is created if the operation position is not found in
the log. A valid write operation is then merged into
log, otherwise a read only error is returned indicating that
the log position was already written to. The fill operation
is identical except the fill state is set on the log entry.

1 bloom :write do
2 temp :valid_write <= write_op.notin(found_op)
3 log <+ valid_write{ |o| [o.pos, ’valid’, o.data]}
4 ret <= valid_write{ |o|
5 [o.type, o.pos, o.epoch, ’ok’] }
6 ret <= write_op.notin(valid_write) {|o|
7 [o.type, o.pos, o.epoch, ’read-only’] }
8 end
9

10 bloom :fill do
11 temp :valid_fill <= fill_op.notin(found_op)
12 log <+ valid_fill { |o| [o.pos, ’fill’] }
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13 ret <= valid_fill { |o|
14 [o.type, o.pos, o.epoch, ’ok’] }
15 ret <= fill_op.notin(valid_fill) { |o|
16 [o.type, o.pos, o.epoch, ’read-only’] }
17 end

Listing 5: Write and Fill

Finally the read interface is shown in Listing 6, and
structured in a similar way to the write and fill interfaces.
First we create a collection containing a valid read opera-
tion (named ok read) that is in the log and does not have
the filled or trimmed state set. The data read from the log
is returned in the case of a valid read operation, otherwise
an error is returned through the output interface.

1 bloom :read do
2 temp :ok_read <= (read_op * log).pairs(pos => pos

) { |o, l|
3 [o.type, o.pos, o.epoch, l.data] unless
4 [’filled’, ’trimmed’].include?(l.state) }
5 ret <= ok_read { |e|
6 [e.type, e.pos, e.epoch, e.data] }
7 ret <= read_op.notin(ok_read, type=>type) do |o|
8 [o.type, o.pos, o.epoch, ’invalid’]
9 end

10 end

Listing 6: Read

Amazingly these few code snippets express the seman-
tics of the entire storage device interface requirements in
CORFU. For reference our prototype implementation of
CORFU in Ceph (called ZLog2) is written in C++ and the
storage interface component comprises nearly 700 lines
of code. This version was designed to store log entries
and metadata in the key-value interface, thus requiring
a lengthy rewrite to realize the performance advantage
available by using the bytestream interface, as was high-
lighted in Section 3. Furthermore, the complexity intro-
duced by using the bytestream interface would grow the
amount of code written in the optimized version.

But beyond the convenience of writing less code, it is
far easier for the programmer writing an interface such
as CORFU to convenience herself of the correctness of
the high-level details of the implementation without being
distracted by issues related to physical design or the many
other gotchas that one must deal with when writing low-
level systems software.

4.3 Other Interfaces
As we have seen the subset of Bloom used in Brados is
powerful enough to express the semantics of the CORFU
storage interface. We briefly sketch the implementation
of an additional interface found in Ceph that is used by
the S3-compatible RADOS-Gateway service to perform
object reference counting.

The reference count implementation that we describe
does not use a typical counter, but rather uses a tag-based

2https://github.com/noahdesu/zlog

interface in which each reference to an object is identi-
fied by a application-level tag. Each tag represents one or
more references supporting an idempotent property use-
ful for applications that may replay reference count oper-
ations out of order. Otherwise the semantics are straight-
forward: clients record references to an object by inserting
a tag, and remove a reference by removing a tag. When
the number of references (i.e., tags) drop to zero the object
is garbage collected.

The reference implementation in Ceph is 300 LOC
written in C++. The version written in Brados is shown
in Listing 7. Line 10 shows the implementation of re-
questing a reference which is an idempotent merge of
the tag into the persistent refs collection. Unlike the
CORFU interface that highlighted how collections are
unified with persistent storage, the reference counting in-
terface requires access to RADOS runtime facilities that
allow objects to be removed. This is modeled in Brados
using the Bloom channel abstraction that is used to trans-
mit facts between entities in the system; we effectively
send a message to the runtime with our removal request.
The remove chn channel may be populated with mes-
sages and the RADOS runtime will processes these asyn-
chronously.

1 state do
2 table :refs, [:tag]
3 channel :remove_chn
4 interface input, :get_op, [:tag]
5 interface input, :put_op, [:tag]
6 interface output, :ret, [:status]
7 end
8

9 bloom :get do
10 refs <= get_op
11 ret <= get_op{|op| [’ok’]}
12 end
13

14 bloom :put do
15 temp :found <= (put_op * refs).matches
16 refs <- found
17 ret <= put_op{|op| [’ok’]}
18

19 temp :remove <= found.notin(refs)
20 remove_chn <˜ remove
21 end

Listing 7: Reference counting interface

4.4 Optimizations
While our implementation does not yet map a declara-
tive Brados specification to a particular physical design,
the specification provides a powerful infrastructure for au-
tomating this mapping and achieving other optimizations.

Physical design. The challenge of navigating the phys-
ical design space has served as the primary source of mo-
tivation for selection of a declarative language. Given the
declarative nature of the interfaces we have defined, we
can draw parallels between the physical design challenges
described in this paper and the large body of mature work
in query planning and optimization. Consider the simple

10



interface reference counting interface described in Sec-
tion 4.3. The C++ interface makes a strong assumption
about a relatively small number of tags, and chooses to
fully serialize and deserialize a C++ std::map for every
request and store the marshalled data as an extended at-
tribute. As the number of tags grows the cost of false shar-
ing will increase to the point that selection of an index-
based interface will likely offer a performance advantage.
While the monolithic version can outperform for small
sets of tags, this type of optimization decision is precisely
what can be achieved using a declarative interface defini-
tion that hides low-level evaluation aspects such as physi-
cal design.

Looking beyond standard forms of optimization deci-
sions that seek to select an appropriate mix of low-level
I/O interfaces, data structure selection is an important
point of optimization. For instance in Section 3.3 we
showed that using the bytestream for metadata manage-
ment as opposed to the key-value interface offered supe-
rior performance. However the unstructured nature of the
bytestream data model imposes no restrictions on imple-
mentation or storage layout. Integration of common in-
dexing techniques into an optimizer combined with a per-
formance model will allow our CORFU interface to derive
similar optimizations when appropriate.

Static analysis. The Bloom language that we use as a
basis for Brados produces a data flow graph that can be
used in static analysis. We envision that this graph will
be made available to the OSD and used to reorder and
coalesce requests based on optimization criteria available
from a performance model combined with semantic in-
formation from the dataflow. For example today object
classes are represented as black boxes from the point of
view of the OSD execution engine. Understanding the
behavior of an object class may allow intelligent prefetch-
ing. Another type of analysis that may be useful for op-
timization is optimistic execution combined with branch
prediction where frequent paths through a dataflow are
handled optimistically.

5 Related Work

Active storage. There is a wide variety of work re-
lated to active storage that seeks to increase performance
and reduce data movement by exploiting remote stor-
age resources. This concept has been applied in the
context of on-disk controllers and object-based storage
(T10) [30, 17, 39]. Solutions to safety concerns have
examined using managed languages, sandbox technolo-
gies, as well as restricting extension installation to ven-
dors [23, 39, 31].

Techniques for remote storage processing have been
applied in application-specific domains for database and

file system acceleration, as well as in remote data filter-
ing in cloud-based storage environments [34, 15, 26, 20]
Others have collected and used statistics to optimize the
location of computation in general workloads as well as
database systems [14, 13, 29].

Most closely related to our work are efforts that con-
sider specific programming models in the context of ac-
tive storage such as a stream-based model [4], a model
that assisted in optimizing balancing computation [38],
and optimization that took advantage of read-only data to
reorder operations [22]. While our goals are similar to
previous work, we start with a declarative language that
will enable us to apply optimization techniques beyond
the limited domain-specific optimizations found in previ-
ous work.

Declarative Specifications. Declarative interfaces
have been used for specifying distributed analytic
tasks [28, 33], information extraction [32] and distributed
systems [16, 8]. The use of declarative specifications has
also been explored in other contexts such as cloud recov-
ery testing [21], bug reproduction [25] and cloud resource
orchestration [27].

6 Conclusion and Future Work

Much work remains to be done. While we demonstrated
some of the immediate benefits of separating logical and
physical specifications of component compositions, the
“dream” of data independence is to take the physical de-
sign question completely off the table for programmers.
We are currently exploring both cost-based optimizers
and autotuners to automate the selection of a high per-
formance physical design consistent with a given logical
specification.

The database literature on materialized view mainte-
nance and selection can be brought to bear in the context
of programmable storage as well. Recall the sequencer
logic of Corfu described in Section 2.2. The Bloom spec-
ification (Listing 5) simply states that the current value
of the sequencer is the result of evaluating an aggregate
query over the log relation. This means that the system
may choose any strategy to maintain a sequence value
that is consistent with this constraint. The physical de-
sign decision to store and update a memory-resident se-
quence value rather re-computing the maximal value at
each request is a view materialization decision that could
similarly be made by a compile-time optimizer.

The future of programmable storage is likely to wit-
ness a further decomposition of services to allow greater
flexibility in customizing deployments. More than likely,
not all of these services will assume or provide strongly-
consistent operations by default. Instead, program-
mers will have the flexibility (and burden!) of trading
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off between performance (offered by weakly consistent
subsystems) and programmability. Languages such as
Bloom—which provide static analyses to determine when
loosely-ordered operations nevertheless produce consis-
tent outcomes—will become increasingly relevant in this
domain.
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