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Abstract—Independent validation of experimental results in
the field of parallel and distributed systems research is a chal-
lenging task, mainly due to changes and differences in software
and hardware in computational environments. Recreating an
environment that resembles the original systems research is
difficult and time-consuming. In this paper we introduce the
Popper Convention, a set of principles for producing scientific
publications. Concretely, we make the case for treating an article
as an open source software (OSS) project, applying software
engineering best-practices to manage its associated artifacts and
maintain the reproducibility of its findings. Leveraging existing
cloud-computing infrastructure and modern OSS development
tools to produce academic articles that are easy to validate. We
present our prototype file system, GassyFS, as a use case for
illustrating the usefulness of this approach. We show how, by
following Popper, re-executing experiments on multiple platforms
is more practical, allowing reviewers and students to quickly get
to the point of getting results without relying on the author’s
intervention.

I. INTRODUCTION

A key component of the scientific method is the ability to
revisit and replicate previous experiments. Managing infor-
mation about an experiment allows scientists to interpret and
understand results, as well as verify that the experiment was
performed according to acceptable procedures. Additionally,
reproducibility plays a major role in education since the
amount of information that a student has to digest increases
as the pace of scientific discovery accelerates. By having the
ability to repeat experiments, a student learns by looking at
provenance information about the experiment, which allows
them to re-evaluate the questions that the original experiment
addressed. Instead of wasting time managing package conflicts
and learning the paper author’s ad-hoc experimental setups,
the student can immediately run the original experiments and
build on the results in the paper, thus allowing them to “stand
on the shoulder of giants”.

Independently validating experimental results in the field of
computer systems research is a challenging task. Recreating
an environment that resembles the one where an experiment
was originally executed is a challenging endeavour. Version-
control systems give authors, reviewers and readers access to
the same code base [1] but the availability of source code does
not guarantee reproducibility [2]; code may not compile, and
even it does, the results may differ. In this case, validating
the outcome is a subjective task that requires domain-specific
expertise in order to determine the differences between original
and recreated environments that might be the root cause of any
discrepancies in the results [3–5]. Additionally, reproducing
experimental results when the underlying hardware environment

Fig. 1. The OSS development model. A version-control system is used to
maintain the changes to code. The software is packaged and those packages are
used in either testing or deployment. The testing environment ensures that the
software behaves as expected. When the software is deployed in production,
or when it needs to be checked for performance integrity, it is monitored and
metrics are analyzed in order to determine any problems.

changes is challenging mainly due to the inability to predict the
effects of such changes in the outcome of an experiment [6,7].
A Virtual Machine (VM) can be used to partially address this
issue but the overheads in terms of performance (the hypervisor
“tax”) and management (creating, storing and transferring)
can be high and, in some fields of computer science such
as systems research, cannot be accounted for easily [8,9]. OS-
level virtualization can help in mitigating the performance
penalties associated with VMs [10].

One central issue in reproducibility is how to organize an
article’s experiments so that readers or students can easily
repeat them. The current practice is to make the code available
in a public repository and leave readers with the daunting task
of recompiling, reconfiguring, deploying and re-executing an
experiment. In this work, we revisit the idea of an executable
paper [11], which proposes the integration of executables and
data with scholarly articles to help facilitate its reproducibility,
but look at implementing it in today’s cloud-computing world
by treating an article as an open source software (OSS)
project. We introduce Popper, a convention for organizing
an article’s artifacts following the OSS development model
that allows researchers to make all the associated artifacts
publicly available with the goal of easing the re-execution of
experiments and validation of results. There are two main goals
for this convention:

1. It should apply to as many research projects as possible,
regardless of their domain. While the use case shown in
Section IV pertains to the area of distributed storage
systems, our goal is to embody any project with a
computational component in it.

2. It should be applicable, regardless of the underlying
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technologies. In general, Popper relies on software-
engineering practices like continuous integration (CI)
which are implemented in multiple existing tools. Apply-
ing this convention should work, for example, regardless
of what CI tool is being used.

If, from an article’s inception, researchers make use of
version-control systems, lightweight OS-level virtualization,
automated multi-node orchestration, continuous integration and
web-based data visualization, then re-executing and validating
an experiment becomes practical. This paper makes the
following contributions:

• An analysis of how the OSS development process can be
repurposed to an academic article;

• Popper: a convention for writing academic articles and
associated experiments following the OSS model; and

• GasssyFS: a scalable in-memory file system that adheres
to the Popper convention.

GassyFS, while simple in design, is complex in terms of
compilation and configuration. Using it as a use case for Popper
illustrates the benefits of following this convention: it becomes
practical for others to re-execute experiments on multiple
platforms with minimal effort, without having to speculate
on what the original authors (ourselves) did to compile and
configure the system; and shows how automated performance
regression testing aids in maintaining the reproducibility
integrity of experiments.

The rest of the paper is organized as follows. Section II
analyzes the traditional OSS development model and how it
applies to academic articles. Section III describes Popper in
detail and gives an overview of the high-level workflow that a
researcher goes through when writing an article following the
convention. In Section IV we present a use case of a project
following Popper. We discuss some of the limitations of Popper
and lessons learned in Section V. Lastly, we review related
work on Section VI and conclude.

II. THE OSS DEVELOPMENT MODEL FOR ACADEMIC
ARTICLES

In practice, the open-source software (OSS) development
process is applied to software projects (Figure 1). In the
following section, we list the key reasons why the process of
writing scientific papers is so amenable to OSS methodologies.
The goal of our work is to apply these in the academic setting
in order to enjoy from the same benefits. We use the generic
OSS workflow in Figure 1 to guide our discussion.

A. Version Control

Traditionally the content managed in a version-control
system (VCS) is the project’s source code; for an academic
article the equivalent is the article’s content: article text,
experiments (code and data) and figures. The idea of keeping
an article’s source in a VCS is not new and in fact many
people follow this practice [1,12]. However, this only considers
automating the generation of the article in its final format
(usually PDF). While this is useful, here we make the distinction

between changing the prose of the paper and changing the
parameters of the experiment (both its components and its
configuration).

Ideally, one would like to version-control the entire end-to-
end pipeline for all the experiments contained in an article.
With the advent of cloud-computing, this is possible for most
research articles1. One of the mantras of the DevOps movement
[13] is to make “infrastructure as code”. In a sense, having all
the article’s dependencies in the same repository is analogous
to how large cloud companies maintain monolithic repositories
to manage their internal infrastructure [14,15] but at a lower
scale.

Tools and services: git, svn and mercurial are popular VCS
tools. GitHub and BitBucket are web-based Git repository
hosting services. They offer all of the distributed revision
control and source code management (SCM) functionality of
Git as well as adding their own features. They give new users
the ability to look at the entire history of the project and its
artifacts.

B. Package Management
Availability of code does not guarantee reproducibility of re-

sults [2]. The second main component on the OSS development
model is the packaging of applications so that users don’t have
to. Software containers (e.g. Docker, OpenVZ or FreeBSD’s
jails) complement package managers by packaging all the
dependencies of an application in an entire filesystem snapshot
that can be deployed in systems “as is” without having to worry
about problems such as package dependencies or specific OS
versions. From the point of view of an academic article, these
tools can be leveraged to package the dependencies of an
experiment. Software containers like Docker have the great
potential for being of great use in computational sciences [16].

Tools and services: Docker [17] automates the deployment
of applications inside software containers by providing an
additional layer of abstraction and automation of operating-
system-level virtualization on Linux. Alternatives to docker are
modern package managers such as Nix [18] or Spack [19], or
even virtual machines.

C. Continuous Integration
Continuous Integration (CI) is a development practice that

requires developers to integrate code into a shared repository
frequently with the purpose of catching errors as early as
possible. The experiments associated to an article is not absent
of this type of issues. If an experiment’s findings can be codified
in the form of a unit test, this can be verified on every change
to the article’s repository.

Tools and services: Travis CI is an open-source, hosted,
distributed continuous integration service used to build and
test software projects hosted at GitHub. Alternatives to Travis
CI are CircleCI, CodeShip. Other on-premises solutions exist
such as Jenkins.

1For large-scale experiments or those that run on specialized platforms, re-
executing an experiment might be difficult. However, this doesn’t exclude such
research projects from being able to version-control the article’s associated
assets.



D. Multi-node Orchestration
Experiments that require a cluster need a tool that automati-

cally manages binaries and updates packages across machines.
Serializing this by having an administrator manage all the
nodes in a cluser is impossible in HPC settings. Traditionally,
this is done with an ad-hoc bash script but for experiments that
are continually tested there needs to be an automated solution.

Tools and services: Ansible is a configuration management
utility for configuring and managing computers, as well as
deploying and orchestrating multi-node applications. Similar
tools include Puppet, Chef, Salt, among others.

E. Bare-metal-as-a-Service
For experiments that cannot run on consolidated infrastruc-

tures due to noisy-neighborhood phenomena, bare-metal as a
service is an alternative.

Tools and services: Cloudlab [20], Chameleon and PRObE
[21] are NSF-sponsored infrastructures for research on cloud
computing that allows users to easily provision bare-metal
machines to execute multi-node experiments. Some cloud
service providers such as Amazon allow users to deploy
applications on bare-metal instances.

F. Automated Performance Regression Testing
OSS projects such as the Linux kernel go through rigorous

performance testing [22] to ensure that newer version don’t
introduce any problems. Performance regression testing is
usually an ad-hoc activity but can be automated using high-
level languages or [23] or statistical techniques [24]. Another
important aspect of performance testing is making sure that
baselines are reproducible, since if they are not, then there is
no point in re-executing an experiment.

Tools and services: Aver is language and tool that allows
authors to express and validate statements on top of metrics
gathered at runtime. For obtaining baselines Baseliner is a tool
that can be used for this purpose.

G. Data Visualization
Once an experiment runs, the next task is to analyze and

visualize results. This is a task that is usually not done in OSS
projects.

Tools and services: Jupyter notebooks run on a web-based
application. It facilitates the sharing of documents containing
live code (in Julia, Python or R), equations, visualizations and
explanatory text. Other domain-specific visualization tools can
also fit into this category. Binder is an online service that allows
one to turn a GitHub repository into a collection of interactive
Jupyter notebooks so that readers don’t need to deploy web
servers themselves.

III. THE POPPER CONVENTION

Popper is a convention for articles that are developed
as an OSS project. In the remaining of this paper we use
GitHub, Docker, Binder, CloudLab, Travis CI and Aver as the
tools/services for every component described in the previous
section. As stated in goal 2, any of these should be swappable

Fig. 2. End-to-end workflow for an article that follows the Popper convention.

for other tools, for example: VMs instead of Docker; Puppet
instead of Ansible; Jenkins instead of Travis CI; and so on
and so forth. Our approach can be summarized as follows:

• Github repository stores all details for the paper. It stores
the metadata necessary to build the paper and re-run
experiments.

• Docker images capture the experimental environment,
packages and tunables.

• Ansible playbook deploy and execute the experiments.
• Travis tests the integrity of all experiments.
• Jupyter notebooks analyze and visualize experimental data

produced by the authors.
• Every image in an article has a link in its caption that

takes the reader to a Jupyter notebook that visualizes the
experimental results.

• Every experiment involving performance metrics can be
launched in CloudLab, Chameleon or PRObE.

• The reproducibility of every experiment can be checked
by running assertions of the aver language on top of the
newly obtained results.

Figure 2 shows the end-to-end workflow for reviewers and
authors. Given all the elements listed above, readers of a paper
can look at a figure and click the associated link that takes
them to a notebook. Then, if desired, they instantiate a Binder
and can analyze the data further. After this, they might be
interested in re-executing an experiment, which they can do
by cloning the github repository and, if they have resources
available to them (i.e. one or more docker hosts), they just
point Ansible to them and re-execute the experiment locally in
their environment. If resources are not available, an alternative
is to launch a Cloudlab, Chameleon or PRObE instance (one
or more docker nodes hosted in Cloudlab) and point Ansible
to the assigned IP addresses. An open question is how do we
deal with datasets that are too big to fit in Git. An alternative
is to use git-lfs to version and store large datasets.

A. Organizing Files
The structure of an example “paper repo” is shown in Figure

3. A paper is written in any desired format. Here we use mark-



down as an example (main.md file). There is a build.sh
command that generates the output format (e.g. PDF). Every
experiment in the paper has a corresponding folder in the repo.
For example, for a scalability experiment referred in the
paper, there is a experiments/scalability/ folder in
the repository.

Inside each experiment folder there is a Jupyter notebook
that, at the very least, displays the figures for the experiment
that appear in the paper. It can serve as an extended version
of what figures in the paper display, including other figures
that contain analysis that show similar results. If readers wants
to do more analysis on the results data, they can instantiate
a Binder by pointing to the github repository. Alternatively,
If the repository is checked out locally into another person’s
machine, it’s a nice way of having readers play with the result’s
data (although they need to know how to instantiate a local
notebook server). Every figure in the paper has a [source]
link in its caption that points to the URL of the corresponding
notebook in GitHub2.

For every experiment, there is an ansible playbook that
can be used to re-execute the experiment. In order to do
so, readers clone the repository, edit the inventory file
by adding the IP addresses or hostnames of the machines they
have available. The absolutely necessary files for an experiment
are run.sh which bootstraps the experiment (by invoking a
containerized ansible); inventory, playbook.yml and
vars.yml which are given to ansible. The execution of
the experiment will produce output that is either consumed
by a postprocessing script, or directly by the notebook.
The output can be in any format (CSVs, HDF, NetCDF,
etc.). output.csv is the ultimate output of the experiment
and what it gets displayed in the notebook. An important
component of the experiment playbook is that it should assert
the environment and corroborate as much as possible the
assumptions made by the original (e.g. via the assert task,
check that the Linux kernel is the required one). vars.yml
contains the parametrization of the experiment.

At the root of the project, there is a .travis.yml file
that Travis CI uses to run unit tests on every commit of the
repository. For example, if an experiment playbook is changed,
say, by adding a new variable, Travis will ensure that, at the
very least, the experiments can be launched without any issues.

Aver can be used for checking that the original find-
ings of an experiment are valid for new re-executions. An
assertions.aver file contains assertions in the Aver
language. This file is is given to Aver’s assertion checking
engine, which also takes as input the files corresponding to
the output of the experiment. Aver then checks that the given
assertions hold on the given performance metrics. This allows
to automatically check that high-level statements about the
outcome of an experiment are true.

When validating performance, an important component is to

2GitHub has the ability to render jupyter notebooks on its web interface.
This is a static view of the notebook (as produced by the original author). In
order to have a live version of the notebook, one has to instantiate a Binder
or run a local notebook server.

Fig. 3. Structure of a folder for a project following the Popper convention.
The red markers correpond to dependencies for the generation of the PDF,
while the blue ones mark files used for the experiment.

see the baseline performance of the experimental environment
we are running on. Ansible has a way of obtaining “facts” about
machines that is useful to have when validating results. Also,
baseliner profiles that are associated to experimental results are
a great way of asserting assumptions about the environment.
baseliner is composed of multiple docker images that measure
CPU, memory, I/O and network raw performance of a set of
nodes. We execute baseliner on multi-node setups and make
the profiles part of the results since this is the fingerprint of
our execution. This also gives us an idea of the relationship
among the multiple subsystems (e.g. 10:1 of network to IO).

B. Organizing Dependencies

A paper repo is mainly composed of the article text and
experiment orchestration logic. The actual code that gets
executed by an experiment is not part of the paper repository.
Similarly for any datasets that are used as input to an
experiment. These dependencies should reside in their own
repositories and be referenced in an experiment playbook.

1) Executables: For every execution element in the experi-
ment playbook, there is a repository that has the source code
of the executables, and an artifact repository (package manager
or software image repository) that holds the executables for
referenced versions. In our example, we use git and docker.
Assume the execution of an scalability experiment refers to
code of a mysystem codebase. Then:

• there’s a git repo for mysystem that holds its source code
and there’s a tag/sha1 that we refer to in our experiment.
This can optionally be also tracked via git submodules
(e.g. placed in a vendor/ folder).

• for the version that we are pointing to, there is a docker
image in the docker hub. For example, if we reference
version v3.0.3 of mysystem in our experiment, then
there’s a docker image mysystem#v3.0.3 in the
docker hub repository. We can also optionally track
the docker image’s source (the Dockerfile) with git
submodules in the paper repository (vendor/ folder).

2) Datasets: Input/output files should be also versioned. For
small datasets, we can can put them in the git repository of
the paper. For large datasets we can use git-lfs.



IV. GASSYFS: A MODEL PROJECT FOR POPPER

GassyFS [25] is a new prototype filesystem system that stores
files in distributed remote memory and provides support for
checkpointing file system state. The architecture of GassyFS
is illustrated in Figure 4. The core of the file system is a
user-space library that implements a POSIX file interface. File
system metadata is managed locally in memory, and file data
is distributed across a pool of network-attached RAM managed
by worker nodes and accessible over RDMA or Ethernet.
Applications access GassyFS through a standard FUSE mount,
or may link directly to the library to avoid any overhead that
FUSE may introduce.

By default all data in GassyFS is non-persistent. That is,
all metadata and file data is kept in memory, and any node
failure will result in data loss. In this mode GassyFS can be
thought of as a high-volume tmpfs that can be instantiated and
destroyed as needed, or kept mounted and used by applications
with multiple stages of execution. The differences between
GassyFS and tmpfs become apparent when we consider how
users deal with durability concerns.

At the bottom of Figure 4 are shown a set of storage
targets that can be used for managing persistent checkpoints
of GassyFS. Given the volatility of memory, durability and
consistency are handled explicitly by selectively copying data
across file system boundaries. Finally, GassyFS supports a form
of file system federation that allows checkpoint content to be
accessed remotely to enable efficient data sharing between
users over a wide-area network.

Although GassyFS is simple in design, it is relatively
complex to setup. The combinatorial space of possible ways in
which the system can be compiled, packaged and configured
is large. For example, current version of GCC (4.9) has
approximately 1080 possible ways of compiling a binary. For
the version of GASNet that we use (2.6), there are 64 flags
for additional packages and 138 flags for additional features3.
To mount GassyFS, we use FUSE, which can be given 30
different options, many of them taking multiple values.

Furthermore, it is unreasonable to ask the developer to list
and test every enviroments packages, distros, and compilers.
Merely listing these in a notebook or email is insufficient for
sharing, colloborating, and distributing experimentl results and
the methodology for sharing these environments is specific to
each developer.

In subsequent sections we describe several experiments that
evaluate the performance of GassyFS4. We note that while the
performance numbers obtained are relevant, they are not our
main focus. Instead, we put more emphasis on the goals of
the experiments, how we can reproduce results on multiple
environments with minimal effort and how we can ensure the
validity of the results.

3This are the flags that are documented. There are many more that can be
configured but not shown in the official documentation.

4Due to time constraints we had to limit the amount of experiments that we
include. We will expand the number of experiments, as well as the number of
platforms we test on.
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Fig. 4. GassyFS has facilities for explicitly managing persistence to different
storage targets. A checkpointing infrastructure gives GassyFS flexible policies
for persisting namespaces and federating data.

A. Experimental Setup

We have two sets of machines. The first two experiments
use machines in Table 1. The third experiment uses machines
in Table 2. While our experiments should run on any Linux
kernel that is supported by Docker (3.2+), we ran on kernels
3.19 and 4.2. Version 3.13 on Ubuntu has a known bug that
impedes docker containers to launch sshd daemons, thus our
experiments don’t run on this version. Besides this, the only
requirement is to have the Docker 1.10 or newer.

TABLE I
MACHINES USED IN EXPERIMENTS 1 AND 2.

Machine ID CPU Model Memory BW Release Date

M1 Core i7-930 @2.8GHz 6x2GB DDR3 Q1-2010
M2 Xeon E5-2630 @2.3GHz 8x8GB DDR3 Q1-2012
M3 Opteron 6320 @2.8GHz 8x8GB DDR3 Q3-2012
M4 Xeon E5-2660v2 @2.2GHz 16x16GB DDR4 Q3-2013

TABLE II
MACHINES USED IN EXPERIMENT 3.

Platform CPU Model Memory BW Site

cloudlab Xeon E5-2630 @2.4GHz 8x16GB DDR4 Wisconsin
cloudlab Xeon E5-2660 @2.20GHz 16x16GB DDR4 Clemson

ec2 Xeon E5-2670 @2.6GHz 122GB DDR4 high network
ec2 Xeon E5-2670 @2.6GHz 122GB DDR4 10Gb network

mycluster Core i5-2400 @3.1GHz 2x4GB DDR3 in-house

For every experiment, we first describe the goal of the
experiment and show the result. Then we describe how we
codify our observations in the Aver language. Before every
experiment executes, Baseliner obtains baseline metrics for
every machine in the experiment. At the end, Aver asserts
that the given statements hold true on the metrics gathered at
runtime. This helps to automatically check when experiments
are not generating expected results

B. Experiment 1: GassyFS vs. TempFS

The goal of this experiment is to compare the performance
of GassyFS with respect to that of TempFS on a single node.
As mentioned before, the idea of GassyFS is to serve as a



Fig. 5. [source] Boxplots comparing the variability of GassyFS vs TmpFS
on a sequential fio workload. Every test was executed 3 times on machines
listed on Table 1 (all except M4).

distributed version of TmpFS. Figure 55 shows the results of
this test. The overhead of GassyFS over TmpFS is attributed
to two main components: FUSE and GASNet. The validation
statements for this experiments are the following:

when
workload=

*

expect

time(fs='gassyfs') < 5

*

time(fs='tmpfs')

The above assertion codifies the condition that, regardless
of the workload, GassyFS should not be less than 5x worse
than TmpFS. This number is taken from empirical evidence
and from work published in [26].

C. Experiment 2: Analytics on GassyFS
One of the main use cases of GassyFS is in data ana-

lytics. By providing larger amounts of memory, an analysis
application can crunch more numbers and thus generate more
accurate results. The goal of this experiment is to compare the
performance of Dask when it runs on GassyFS against that
on the local filesystem. Dask is a python library for parallel
computing analytics that extends NumPy to out-of-core datasets
by blocking arrays into small chunks and executing on those
chunks in parallel. This allows python to easily process large
data and also simultaneously make use of all of our CPU
resources. Dask assumes that an n-dimensional array won’t
fit in memory and thus chunks the datasets (on disk) and
iteratively process them in-memory. While this works fine for
single-node scenarios, an alternative is to load a large array
into GassyFS, and then let Dask take advantage of the larger
memory size.

Figure 6 shows the results of an experiment where Dask
analyzes 5 GB worth of NetCDF files of an n-dimensional
array. We see that as the number of routines that Dask executes

5We don’t link our figures to the corresponding notebooks (as we propose
in this convention) due to double-blind review.

Fig. 6. [source] Performance of Dask on GassyFS vs. on the local disk. Dask
is used to break the memory barrier for large datasets. Having GassyFS, users
can scale-up DRAM by aggregating the memory of multiple nodes, which is an
alternative to the conventional way in which that Dask is used. We show that
even though Dask is efficient, having NetCDF datasets in GassyFS improves
the performance significantly. The variability of the experiment comes from
executing the same workload on all the machines listed in Table 1.

increases, the performance of GassyFS gets closer to that of
executing Dask, but up to a certain threshold. The following
assertions are used to test the integrity of this result.

when
fs='gassyfs'

expect

time(num_routines = 1) < time(num_routines = 2)

;

when
num_analytic_routines=

*

expect

time(fs='gassyfs') > time(fs='local')

The first condition asserts that the first time that Dask runs
an analytic routine on GassyFS, the upfront cost of copying
files into GassyFS has to be payed. The second statement
expresses that, regardless of the number of analytic routines, it
is always faster to execute Dask on GassyFS than on the local
filesystem.

D. Experiment 3: Scalability
In this experiment we aim to show how GassyFS performs

when we increase the number of nodes in the underlying
GASNet-backed FUSE mount. Figure 7 shows the results of
compiling git on GassyFS. We observe that once the cluster
gets to 2 nodes, performance degrades sublinearly with the
number of nodes. This is expected for workloads such as the
one in question. The following assertion is used to test this
result:

when
workload=

*

and machine=

*

expect

sublinear(nodes,time)

The above expresses our expectation of GassyFS performing
sublinearly with respect to the number of nodes.



Fig. 7. [source] Scalability of GassyFS as the number of nodes in the GASNet
network increases. The workload in question compiles git.

V. DISCUSSION

A. We did well for 50 years. Why fix it?

Shared infrastructures “in the cloud” are becoming the norm
and enable new kinds of sharing, such as experiments, that were
not practical before. Thus, the opportunity of these services
goes beyond just economies of scale: by using conventions and
tools to enable reproducibility, we can dramatically increase the
value of scientific experiments for education and for research.
The Popper Convention makes not only the result of a systems
experiment available but the entire experiment and allows
researchers to study and reuse all aspects of it.

B. The power of “crystallization points.”

Docker images, Ansible playbooks, CI unit tests, Git
repositories, and Jupyter notebooks are all exemples of artifacts
around which broad-based efforts can be organized. Crystal-
lization points are pieces of technology, and are intended to
be easily shareable, have the ability to grow and improvie
over time, and ensure buy-in from researchers and students.
Examples of very successful crystallization points are the Linux
kernel, Wikipedia, and the Apache Project. Crystallization
points encode community knowledge and are therefore useful
for leveraging past research efforts for ongoing research as
well as education and training. They help people to form
abstractions and common understanding that enables them
to more effectively commmunicate reproducible science. By
having docker/ansible as a lingua franca for researchers, and
Popper to guide them in how to structure their paper repos, we
can expedite collaboration and at the same time benefit from
all the new advances done in the cloud-computing/DevOps
world.

C. Perfect is the enemy of good

No matter how hard we try, there will always be something
that goes wrong. The context of systems experiments is often
very complex and that complexity is likely to increase in the

future. Perfect repeatability will be very difficult to achieve.
We don’t aim at perfect repeatability but to minimize the issues
we face and have a common language that can be used while
collaborating to fix all these reproducibility issues.

D. Drawing the line between deploy and packaging

Figuring out where something should be in the deploy
framework (e.g., Ansible) or in the package framework (e.g.,
Docker) must be standardized by the users of the project.
One could implement Popper entirely with Ansible but this
introduces complicated playbooks and permantently installs
packages on the host. Alternatively, one could use Docker
to orchestrate services but this requires “chaining” images
together. This process is hard to develop since containers must
be recompiled and shared around the cluster. We expect that
communities of practice will find the right balance between
these technologies by improving on the co-design of Ansible
playbooks and Docker images within their communities.

E. Usability is the key to make this work

The technologies underlying the OSS Development Model
are not new. However, the open-source software community, in
particular the DevOps community, have significantly increased
the usability of the tools involved. Usability is the key to
make reproducibility work: it is already hard enough to publish
scientific papers, so in order to make reproducibility even
practical, the tools have to be extremely easy to use. The
Popper Convention enables systems researchers to leverage the
usability of DevOps tools.

However, with all great advances in usability, scientists
still have to get used to new concepts these tools introduce.
In our experience, experimental setups that do not ensure
any reproducibility are still a lot easier to create than the
ones that do. Not everyone knows git and people are irritated
by the number of files and submodules in the paper repo.
They also usuaually misunderstand how OS-level virtualization
works and do not realize that there is no performance hit, no
network port remapping, and no layers of indirection. Lastly,
first encounters with Docker require users to understand that
Docker containers do not represent baremetal hardware but
immutable infrastructure, i.e. one can’t ssh into them to start
services, one need to have a service per image, and one cannot
install software inside of them and expect those installations
to persist after relaunching a container.

F. Numerical vs. Performance Reproducibility

In many areas of computer systems research, the main subject
of study is performance, a property of a system that is highly
dependant on changes and differences in software and hardware
in computational environments. Performance reproducibility
can be contrasted with numerical reproducibility. Numerical
reproducibility deals with obtaining the same numerical values
from every run, with the same code and input, on distinct
platforms. For example, the result of the same simulation on
two distinct CPU architectures should yield the same numerical
values. Performance reproducibility deals with the issue of



obtaining the same performance (run time, throughput, latency,
etc.) across executions. We set up an experiment on a particular
machine and compare two algorithms or systems.

We can compare two systems with either controlled or sta-
tistical methods. In controlled experiments, the computational
environment is controlled in such a way that the executions are
deterministic, and all the factors that influence performance
can be quantified. The statistical approach starts by first
executing both systems on a number of distinct environments
(distinct computers, OS, networks, etc.). Then, after taking a
significant number of samples, the claims of the behavior of
each system are formed in statistical terms, e.g. with 95%
confidence one system is 10x better than the other. The
statistical reproducibility method is gaining popularity, e.g.
[27].

Current practices in the Systems Research community
don’t include either controlled or statistical reproducibility
experiments. Instead, people run several executions (usually
10) on the same machine and report averages. Our research
focuses in looking at the challenges of providing controlled
environments by leveraging OS-level virtualization. [28] reports
some preliminary work.

Our convention can be used to either of these two approaches.

G. Controlled Experiments become Practical
Almost all publications about systems experiments under-

report the context of an experiment, making it very difficult
for someone trying to reproduce the experiment to control for
differences between the context of the reported experiment
and the reproduced one. Due to traditional intractability of
controlling for all aspects of the setup of an experiment systems
researchers typically strive for making results “understandable”
by applying sound statistical analysis to the experimental design
and analysis of results [27].

The Popper Convention makes controlled experiments prac-
tical by managing all aspects of the setup of an experiment
and leveraging shared infrastructure.

H. Providing Performance Profiles Alongside Experimental
Results

This allows to preserve the performance characteristics of
the underlying hardware that an experiment executed on and
facilitates the interpretation of results in the future.

VI. RELATED WORK

The challenging task of evaluating experimental results
in applied computer science has been long recognized [29–
31]. This issue has recently received a significant amount of
attention from the computational research community [4,32–
34], where the focus is more on numerical reproducibility rather
than performance evaluation. Similarly, efforts such as The
Recomputation Manifesto [35] and the Software Sustainability
Institute [36] have reproducibility as a central part of their
endeavour but leave runtime performance as a secondary
problem. In systems research, runtime performance is the
subject of study, thus we need to look at it as a primary

issue. By obtaining profiles of executions and making them
part of the results, we allow researchers to validate experiments
with performance in mind.

Recent efforts have looked at creating open science portals
or repositories [37–40] that hold all (or a subset of) the artifacts
associated to an article. In our case, by treating an article as an
OSS project, we benefit from existing tools and web services
such as git-lfs without having to implement domain-specific
tools. In the same realm, some services provide researchers
with the option of generating and absorving the cost of a
digital object identifier (DOI). Github projects can have a DOI
associated with it [41], which is one of the main reasons we
use it as our VCS service.

A related issue is the publication model. In [42] the authors
propose to incentivize the reproduction of published results
by adding reviewers as co-authors of a subsequent publication.
We see the Popper convention as a complementary effort that
can be used to make the facilitate the work of the reviewers.

The issue of structuring an articles associated files has been
discussed in [12], where the authors introduce a “paper model”
of reproducible research which consists of an MPI application
used to illustrate how to organize a project. In [1], the authors
propose a similar approach based on the use of make, with
the purpose of automating the generation of a PDF file. We
extend these ideas by having our convention be centered around
OSS development practices and include the notion of instant
replicability by using docker and ansible.

In [43] the authors took 613 articles published in 13 top-
tier systems research conferences and found that 25% of the
articles are reproducible (under their reproducibility criteria).
The authors did not analyze performance. In our case, we are
interested not only in being able to rebuild binaries and run
them but also in evaluating the performance characteristics of
the results.

Containers, and specifically docker, have been the subject of
recent efforts that try to alleviate some of the reproducibility
problems in data science [16]. Existing tools such as Reprozip
[44] package an experiment in a container without having to
initially implement it in one (i.e. automates the creation of a
container from an “non-containerized” environment). This tool
can be useful for researchers that aren’t familiar with tools

VII. CONCLUSION

In the words of Karl Popper: “the criterion of the scientific
status of a theory is its falsifiability, or refutability, or
testability”. The OSS development model has proven to be an
extraordinary way for people around the world to collaborate
in software projects. In this work, we apply it in an academic
setting. By writing articles following the Popper convention,
authors can generate research that is easier to validate and
replicate.
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