
GassyFS: An In-Memory File System That Embraces Volatility

Noah Watkins, Michael Sevilla, Carlos Maltzahn
University of California, Santa Cruz

{jayhawk,msevilla,carlosm}@soe.ucsc.edu

Abstract

For many years storage systems were designed for slow
storage devices. However, the average speed of these de-
vices has been growing exponentially, making traditional
storage system designs increasingly inadequate. Suffi-
cient time must be dedicated to redesigning future stor-
age systems or they might never adequately support fast
storage devices using traditional storage semantics.

In this paper, we argue that storage systems should ex-
pose a persistence-performance trade-off to applications
that are willing to explicitly take control over durabil-
ity. We describe our prototype system called GassyFS
that stores file system data in distributed remote memory
and provides support for checkpointing file system state.
As a consequence of this design, we explore a spectrum
of mechanisms and policies for efficiently sharing data
across file system boundaries.

1 Introduction

A wide range of data-intensive applications that access
large working sets managed in a file system can eas-
ily become bound by the cost of I/O. As a workaround,
practitioners exploit the availability of inexpensive RAM
to significantly accelerate application performance us-
ing in-memory file systems such as tmpfs [10]. Unfor-
tunately, durability and scalability are major challenges
that users must address on their own.

While the use of tmpfs is a quick and effective so-
lution to accelerating application performance, in order
to bound data loss inherent with memory-based storage,
practitioners modify application workflows to bracket
periods of high-performance I/O with explicit control
over durability (e.g. checkpointing), creating a trade-
off between persistence and performance. But when
single-node scalability limits are reached applications are
faced with a choice: either adopt a distributed algorithm
through an expensive development effort, or use a trans-

Figure 1: GassyFS is comparable to tmpfs for genomic bench-
marks that fit on one node, yet it is designed to scale beyond one
node. Its simplicity and well-defined workflows for its applica-
tions lets us explore new techniques for sharing data.

parent scale-out solution that minimizes modifications to
applications. In this paper we consider the latter solu-
tion, and observe that existing scale-out storage systems
do not provide the persistence-performance trade-off de-
spite applications already using a homegrown strategy.

Figure 1 shows how our system, GassyFS, compares
to tmpfs when the working set for our genomics bench-
marks fit on a single node. That figure demonstrates the
types of workflows we target: the user ingests BAM in-
put files (10GB, 40MB), computes1 results, and check-
points the results back into durable storage (24GB) us-
ing cp and sync. The slowdowns reported by Figure 1
demonstrate that GassyFS has performance comparable
to tmpfs, in our limited tests, with the added benefit that it

1The workload uses SAMtools, a popular Genomics tool kit.
The jobs process are (input/output sizes): sort (10GB/10GB), shuf-
fle (10GB/52MB), convert into VCF (40MB/160MB), merge (20GB/
13.4GB)



is designed to scale beyond one node. Scaling the work-
load to volumes that do not fit into RAM without a dis-
tributed solution limits the scope of solutions to expen-
sive, emerging byte-addressable media.

One approach is to utilize the caching features found
in some distributed storage systems. These systems are
often composed from commodity hardware with many
cores, lots of memory, high-performance networking,
and a variety of storage media with differing capabili-
ties. Applications that wish to take advantage of the per-
formance heterogeneity of media (e.g. HDD vs SSD)
may use caching features when available, but such sys-
tems tend to use coarse-grained abstractions, impose re-
dundancy costs at all layers, and do not expose abstrac-
tions for volatile storage—memory is only used inter-
nally. These limitations force applications that explicitly
manage durability from scaling through the use of ex-
isting systems. Furthermore, existing systems originally
designed for slow media may not be able to fully exploit
the speed of RAM over networks that offer direct mem-
ory access. What is needed are scale-out solutions that
allow applications to fine-tune their durability require-
ments to achieve higher performance when possible.

Existing solutions center on large-volume high-
performance storage constructed from off-the-shelf hard-
ware and software components. For instance, iSCSI
extensions for RDMA can be combined with remote
RAM disks to provide a high-performance volatile block
store formatted with a local file system or used as a
block cache. While easy to assemble, this approach re-
quires coarse-grained data management, and I/O must be
funneled through the host for it to be made persistent.
Non-volatile memories with RAM-like performance are
emerging, but software and capacity are a limiting factor.
While easy to setup and scale, the problem of forcing all
I/O related to persistence through a host is exacerbated as
the volume of data managed increases. The inability of
these solutions to exploit application-driven persistence
forces us to look to other architectures.

In the remainder of this paper we present a prototype
file system called GassyFS1, a distributed in-memory file
system with explicit checkpointing for persistence. We
view GassyFS as a stop-gap solution to providing appli-
cations with access to very high-performance large vol-
ume persistent memories that are projected to be avail-
able in the coming years, allowing applications to be-
gin exploring the implications of a changing I/O per-
formance profile. As a result of including support for
checkpointing in our system, we encountered a number
of ways that we envision data to be shared without cross-
ing file system boundaries, by providing data manage-
ment features for attaching shared checkpoints and ex-
ternal storage systems, allowing data to reside within the
context of GassyFS as long as possible.

RADOS Ceph Amazon S3 SSDGluster

GassyFS (libgassy, FUSE)

POSIX Application

Network-attached RAM

GassyFS (libgassy, FUSE)

POSIX Application

Network-attached RAM

Checkpoint
Restore

Checkpoint
Restorefe

de
ra

te
d

Organization A Organization B

Figure 2: GassyFS has facilities for explicitly managing
persistence to different storage targets. A checkpointing
infrastructure gives GassyFS flexible policies for persist-
ing namespaces and federating data.

2 Architecture

The architecture of GassyFS is illustrated in Figure 2.
The core of the file system is a user-space library that
implements a POSIX file interface. File system meta-
data is managed locally in memory, and file data is dis-
tributed across a pool of network-attached RAM man-
aged by worker nodes and accessible over RDMA or Eth-
ernet. Applications access GassyFS through a standard
FUSE mount, or may link directly to the library to avoid
any overhead that FUSE may introduce.

By default all data in GassyFS is non-persistent. That
is, all metadata and file data is kept in memory, and
any node failure will result in data loss. In this mode
GassyFS can be thought of as a high-volume tmpfs that
can be instantiated and destroyed as needed, or kept
mounted and used by applications with multiple stages of
execution. The differences between GassyFS and tmpfs
become apparent when we consider how users deal with
durability concerns.

At the bottom of Figure 2 are shown a set of storage
targets that can be used for managing persistent check-
points of GassyFS. We will discuss durability in more
detail in the next section. Finally, we support a form of
file system federation that allows checkpoint content to
be accessed remotely to enable efficient data sharing be-
tween users over a wide-area network. Federation and
data sharing are discussed in Section 6.

3 Durability

Persistence is achieved in GassyFS using a checkpoint
feature that materializes a consistent view of the file sys-
tem. In contrast to explicitly copying data into and out of
tmpfs, users instruct GassyFS to generate a checkpoint
of a configurable subset of the file system. Each check-
point may be stored on a variety of supported backends

2



such as local disk or SSD, a distributed storage system
such as Ceph, RADOS or GlusterFS, or to a cloud-based
service such as Amazon S3.

A checkpoint is saved using a copy-on-write mecha-
nism that generates a new, persistent version of the file
system. Users may forego the ability to time travel and
only use checkpointing to recover from local failures.
However, generating checkpoint versions allows for ro-
bust sharing of checkpoints when one file system is ac-
tively being used.

GassyFS takes advantage of its distributed design to
avoid the single-node I/O bottleneck that is present when
persisting data stored within tmpfs. Rather, in GassyFS
each worker node performs checkpoint I/O in parallel
with all other nodes, storing data to a locally attached
disk, or to a networked storage system that supports par-
allel I/O. Next we’ll discuss the modes of operation and
how content in a checkpoint is controlled.

4 Extensible Namespaces

In the previous section we discussed how persistence is
achieved in GassyFS using a basic versioning checkpoint
scheme. In this section we discuss how the content of
each checkpoint can be customized using a set of poli-
cies provided by an application or user. We consider two
broad scenarios, illustrated in Figure 3. The first column
in the figure represents the state of the GassyFS names-
pace at a particular point-in-time, and each red (light)
node represents a component of the GassyFS namespace
fully managed by GassyFS (i.e. metadata and data). The
right column depicts which content may be included in
the checkpoint.

In the first row of Figure 3 the GassyFS standard mode
of operation is illustrated in which all data is fully man-
aged by GassyFS. When a checkpoint is created a con-
figurable subset of the namespace is persisted within the
checkpoint being created.

The second row illustrates the flexibility of GassyFS
to integrate with external resources. The highlighted
sub-tree represents an attached external namespace con-
structed from either a remote file system or a mounted
checkpoint. Each node in this sub-tree is black, depict-
ing that its namespace is visible but its data is not man-
aged by GassyFS. In this mode content contained in the
attached system can be selectively included in a check-
point.

Write-back persistence. By attaching an external file
system as a sub-tree within GassyFS persistence can be
achieved using a basic write-back policy or using ex-
plicit flushing. In this way GassyFS can be configured
to behave like a scalable buffer-cache. Note that sim-
ply constructing an overlay mount on the host would
achieve the same result, but has two drawbacks. First,

Full Checkpoint

Namespace View Checkpoint Content

Partial Checkpoint

B

A B
Attached File System or Checkpoint

Parallel Load

B

A

Included In Checkpoint

Figure 3: Namespace checkpointing modes. Top:
full/partial checkpoints, Middle: checkpointing attached
file systems (e.g., connected with POSIX), Bottom:
checkpointing inode types (e.g., code to access remote
data)

since the mount is not managed by GassyFS it has no
ability to integrate the external content or maintain refer-
ences within a checkpoint. And second, all I/O to the ex-
ternal mount must flow through the host, preventing fea-
tures like parallel I/O that take advantage of the GassyFS
worker nodes.

5 Programmable File Types

GassyFS includes experimental support for file types that
allow users to specify storage system policies program-
matically. The motivation for this feature stems from
single node file systems, where many policies are hard-
coded into the implementation. For example, the ext4
file system uses 5 “tricks“ in its block and inode alloca-
tion: (1) multi-block allocation, (2) delayed allocation,
(3) co-locating data and inodes in the same block, (4)
co-locating directory and its inode in the same block,
and finally (5) 128MB block groups [3]. Distributed file
systems serve different workloads and are significantly
larger and more complicated than single node file sys-
tems; they have more resources, larger variations in la-
tencies, and more failures.

Exposing these policies is especially important for
GassyFS because the target workloads and their bottle-
necks are well-understood. The user already knows that
circumventing storage IO with tmpfs is a valid strategy
for keeping the CPU busy, so they probably also know
how to get high performance from their application. Our
aim is to give these users the tools to programmatically
adjust their system using domain-specific knowledge.

GassyFS embeds a Lua virtual machine wherever a
policy decision is made. This effectively decouples pol-
icy from mechanism, which helps future designers ex-

3



plore trade-offs and isolates policy development from
code-hardened systems. Decoupling policy mechanism
is not a new technique but designing the storage system
with programmability as a first-class citizen is. For ex-
ample, McKusick credits policy/mechanism separation
as the biggest reason for the success of the block allo-
cation mechanisms in the Fast File System [6] yet there
are no mechanisms for transparently exposing and mod-
ifying the underlying logic in modern file systems.

Scripting is useful in large systems for 3 reasons:

• accelerates deployment: tweaking policies, like
changing a threshold or metric calculation, does not
require a full recompile or system start-up.

• transparency: if the bindings carefully expose the
correct metrics and functions, the user does not need
to learn the system’s internal functions, variables, or
types.

• portability: scripts can be exchanged across plat-
forms and system versions without compatibility is-
sues.

We use Lua, the popular embedded scripting language,
to define dynamic policies in GassyFS. Although Lua is
an interpreted language, it runs well as modules in other
languages and the bindings are designed to make the
exchange of variables and functions amongst languages
straightforward. The LuaJIT virtual machine boasts
near-native performance, making it a logical choice for
scriptability frameworks in systems research [13]. In
storage systems, it has been effectively used both on [5,
14] and off [9] the critical path, where performance is
important.

Lua is an ideal candidate for storage system pro-
grammability. It is small both in its memory footprint
and its syntax has been shown to be ideal for embedding
in systems [13]. It’s portability allows functions to be
shipped around the cluster without having to compile or
reason about compatibility issues. And finally, Lua pro-
vides relatively robust sandbox capabilities for protecting
the system against some malicious cases, but primarily
from poor policies.

6 Federation

The use of checkpoints in GassyFS to achieve persis-
tence encourages users to maintain data within GassyFS.
Of course this is not possible to do in perpetuity, and
ultimately data must be exported into other domains,
archived, or shared. Driven by proliferation of container
technologies such as Docker we observe that dissemina-
tion of environments through file system checkpoints is
becoming an accepted practice which has proven highly

beneficial for reproducibility. GassyFS draws inspiration
from this trend, adding additional features for efficiency.

GassyFS supports features that allow users to collab-
orate by forming ad-hoc links between shared GassyFS
checkpoints. Sharing can take place over private connec-
tions such as SSH, or by using a storage backend such
as Amazon S3 to host checkpoints. A user may either
mount an entire checkpoint, or attach a checkpoint into
an existing namespace, allowing data to be selectively
fetched on demand without the cost of retrieving an en-
tire checkpoint.

7 Implementation and Evaluation

GassyFS passes nearly all of the Tuxera POSIX cor-
rectness suite, built and run unit tests for Git and Post-
greSQL, IOzone configuration tests, and can success-
fully build the Linux kernel, and Ceph on multiple nodes.
A simple block allocator and checkpointing facility are
implemented and our next step is to implement extensi-
ble namespaces and programmable file types.

Most of our performance analysis has been done with
the Genomics SAMtools benchmark. When scaling the
number of threads on a single node, GassyFS approaches
the performance of tmpfs and we observe no more than
1.6× overhead for any of our configurations. Interest-
ingly, when testing GassyFS in pseudo-distributed node
(i.e. multiple processes on the same node) we see perfor-
mance increases. We suspect that either we get unfore-
seen parallelism with multiple processes or Linux does
not favor large mmap()s. Regardless, this result indicates
that spreading GassyFS processes or chopping memory
across nodes or within nodes (or a mix) might help per-
formance.

8 Related Work

MemFS [12, 11] is an in-memory parallel file system
that stripes file content across a set of nodes that con-
tribute memory to a storage pool. The system is used in
HPC environments to provide fast, locality-agnostic ac-
cess to intermediate files generated in many-task com-
puting (MTS) workflows. The MemFS file system is
purpose-built for MTS, sacrificing POSIX semantics.
Write buffering, sequential prefetch, load-balancing, and
elasticity optimizations are used by MemFS to enhance
performance, but the system provides no fault-tolerance
capabilities.

The Network RamDisk [4] is a virtual block device in
which data is distributed across remote memory, and can
be formatted as a standard local file system. The sys-
tem supports a fully volatile mode, or a mode in which
parity or replication is used to provide resilience against

4



one node failure. Since the block device abstraction is
opaque, file system-specific features are difficult to re-
alize. The dRamDisk [8] project is similar, but adds an
adaptive prefetch policy that expands the read-ahead re-
gion.

More recently Mühleisen et. al [7] assemble a remote
RAM disk using an RDMA interconnect to export re-
mote RAM over NFS as a set of local loopback block de-
vices that may be aggregated at the block or file system
level (e.g. using mdadm or btrfs). The multiple levels
of indirection involved in this approach at best introduce
overhead, but make efficient data management difficult.

Chai et. al [1] examine the performance of pNFS over
Infiniband using RAM-based storage, demonstrating that
the storage stack can take advantage of high-performance
media by showing performance gains over more tradi-
tional storage such as disk. Dahlin et. al [2] present
cooperative caching, which shows that file system per-
formance can increase when clients pool their memory
resources together, further validating the benefits of re-
mote memory caches.

Lua has been used in operating and storage system de-
sign to provide support for flexible policies. In storage
systems Lua has been used as a control in metadata and
data services. Sevilla et al. [9] use Lua to define metadata
balancing policies in the Ceph file system in which Lua
policies are periodically evaluated avoiding any hot code
path. Grawinkel et al. [5] used Lua along the critical path
to implement distribution policies decisions for file data
in the pNFS storage cluster, giving them the flexibility
to change the access semantics and functionality on the
fly. In our previous work on storage programmability
we use Lua in the RADOS object store to define storage
interfaces, and show that these code fragments must be
treated with the same durability concerns as data in or-
der to ensure data can continue to be accessed [14]. Neto
et al. [13] use Lua to make policies for network packet
filtering and CPU throttling. The overheads reported are
a testament to the effectiveness and practicality of using
Lua in a system along the fast path.

9 Conclusion

The emergence of software-defined storage helps sys-
tems evolve to meet user needs through new abstractions
and the introduction of new media. However, control
over persistence is one area that is lacking. Exposing
these abstractions helps applications, already making ex-
plicit persistence-performance trade-offs, utilize differ-
ent resources (e.g. RAM) in storage systems to meet
their needs. We have developed GassyFS and positioned
it as platform for exploring these ideas. Throughout this
process, we discovered that by checkpointing file system

state we uncover interesting methods to share data with-
out leaving the context of the file system.

References
[1] CHAI, L., OUYANG, X., NORONHA, R., AND PANDA, D. K.

pnfs/pvfs2 over infiniband: Early experiences. In Proceedings of
the 2nd International Workshop on Petascale Data Storage: Held
in Conjunction with Supercomputing ’07 (New York, NY, USA,
2007), PDSW ’07, ACM, pp. 5–11.

[2] DAHLIN, M. D., WANG, R. Y., ANDERSON, T. E., AND PAT-
TERSON, D. A. Cooperative caching: Using remote client mem-
ory to improve file system performance. In Proceedings of the
1st USENIX Conference on Operating Systems Design and Im-
plementation (Berkeley, CA, USA, 1994), OSDI ’94, USENIX
Association.

[3] EXT4. Ext4 Disk Layout.

[4] FLOURIS, M. D., AND MARKATOS, E. P. The network ramdisk:
Using remote memory on heterogeneous nows. Cluster Comput-
ing 2, 4 (1999), 281–293.

[5] GRAWINKEL, M., SUB, T., BEST, G., POPOV, I., AND
BRINKMANN, A. Towards Dynamic Scripted pNFS Layouts.
In Proceedings of the 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis (Washington, DC,
USA, 2012), SCC ’12, IEEE Computer Society, pp. 13–17.

[6] MCKUSICK, M. K. Keynote Address: A Brief History of the
BSD Fast Filesystem, February 2015.

[7] MÜHLEISEN, H., GONÇALVES, R., AND KERSTEN, M. Peak
performance: Remote memory revisited. In Proceedings of
the Ninth International Workshop on Data Management on New
Hardware (2013), DaMoN ’13, pp. 9:1–9:7.

[8] ROUSSEV, V., RICHARD, G. G., AND TINGSTROM, D.
dramdisk: efficient ram sharing on a commodity cluster. In Per-
formance, Computing, and Communications Conference, 2006.
IPCCC 2006. 25th IEEE International (April 2006), pp. 6 pp.–
198.

[9] SEVILLA, M. A., WATKINS, N., MALTZAHN, C., NASSI, I.,
BRANDT, S. A., WEIL, S. A., FARNUM, G., AND FINEBERG,
S. Mantle: A Programmable Metadata Load Balancer for the
Ceph File System. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis (2015), SC ’15.

[10] SNYDER, P. tmpfs: A virtual memory file system. In Proceedings
of the Autumn 1990 EUUG Conference (1990), pp. 241–248.

[11] UTA, A., SANDU, A., COSTACHE, S., AND KIELMANN, T. In
CCGrid Scale Challenge ’15 (2015).

[12] UTA, A., SANDU, A., AND KIELMANN, T. Overcoming data lo-
cality: An in-memory runtime file system with symmetrical data
distribution. Future Generation Computer Systems 54 (2016),
144 – 158.

[13] VIEIRA NETO, L., IERUSALIMSCHY, R., DE MOURA, A. L.,
AND BALMER, M. Scriptable Operating Systems with Lua. In
Proceedings of the 10th ACM Symposium on Dynamic Languages
(New York, NY, USA, 2014), DLS ’14, ACM, pp. 2–10.

[14] WATKINS, N., MALTZAHN, C., BRANDT, S., PYE, I., AND
MANZANARES, A. In-Vivo Storage System Development. In
Euro-Par 2013: Parallel Processing Workshops (2013), Springer,
pp. 23–32.

Notes
1http://github.com/noahdesu/gassyfs

5


