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Abstract

When a computer code is used to simulate a complex system, one of the fundamental
tasks is to assess the sensitivity of the simulator to the different input parameters. This is
often accomplished via a surrogate statistical model, a statistical output emulator, in the
case of computationally expensive simulators. An effective emulator is one that provides
good approximations to the computer code output for wide ranges of input values. In
addition, an emulator should be able to handle large dimensional simulation output for a
relevant number of inputs; it should flexibly capture heterogeneities in the variability of the
response surface; it should be fast to evaluate for arbitrary combinations of input parameters,
and it should provide an accurate quantification of the emulation uncertainty. In this paper
we discuss the Bayesian approach to multivariate adaptive regression splines (BMARS) as
an emulator for a computer model that outputs curves. We introduce modifications to
traditional BMARS approaches that allow for fitting large amounts of data and allow for
more efficient MCMC sampling. We emphasize the ease with which sensitivity analysis can
be performed in this situation. We present a sensitivity analysis of a computer model of
the deformation of a protective plate used in pressure driven experiments. Our example
serves as an illustration of the ability of BMARS emulators to fulfill all the necessities of
computability, flexibility and reliable calculation on relevant measures of sensitivity.

Keywords: functional data analysis, global sensitivity analysis, multivariate adaptive regression
splines, nonlinear regression, parallel tempering
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1 Introduction

Sensitivity analysis, as defined in Saltelli et al. 2004, is the study of how uncertainty in the

output of a model (numerical or otherwise) can be apportioned to different sources of variability

in the model input. Determining these relationships has become a fundamental step in the

use of complex models because of the possible ways a modeler or model user can utilize such

information. Uses include finding which inputs require the most attention (because varying them

causes the output to vary substantially), finding inputs to which the model is robust, conveying

the reasons that a decision based on the model may not be totally certain, among others. More

details about the practical relevance of sensitivity analysis are found in Saltelli et al. (2008)

Section 1.2.14 and Pannell (1997). For the purposes of this paper, we are most interested in

performing sensitivity analyses of expensive-to-run computer models that are used to simulate

complex processes. Further, we would like to do this while treating the computer model as a

black box, also known as non-intrusive uncertainty quantification.

While many methods for sensitivity analysis exist, they are not all of equal value. Most

methods use a set of inputs at which the model needs be evaluated, called the experimental

design. Saltelli and Annoni (2010) describe the downfalls of the “one-factor-at-a-time” (OAT or

OFAT) experimental design, which determines sensitivity by changing only one input at a time

from some nominal input values. The OAT design is often paired with methods of sensitivity

analysis deemed “local”, because they only take into account variation in the model output in

some small neighborhood of the inputs, usually by taking or approximating a derivative (Saltelli

et al., 2000). By contrast, “global” sensitivity analysis methods (Sobol’, 1990; Saltelli et al.,

2008) take into account the entire space of uncertain inputs by eliciting probability distributions

over the inputs. Global methods are thus able to discover when changes in the model output

are due to simultaneous changes in multiple inputs (interactions), as well as the implications of

extreme, but possible, input settings. In this paper, we limit our attention to global sensitivity

analysis.

When a model is expensive to evaluate, as is the case for many computer models, being able

to perform a sensitivity analysis using a limited number of model evaluations is essential. Hence,

much research has been done to determine which experimental designs yield the best sensitivity
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analyses with the least number of evaluations (Sobol’, 2001; Sacks et al., 1989). Another approach

is to use a set of model evaluations to build a fast, statistical alternative to the model. Sensitivity

analysis and other analyses of uncertainty can then be performed on this surrogate model,

also called an emulator or metamodel. The Gaussian process has been a popular surrogate

model choice (Welch et al., 1992; Kennedy and O’Hagan, 2001) because of its flexibility and

simplicity, though it is sometimes avoided because of its lack of scalability to large numbers of

model evaluations, large numbers of input variables, and high dimensional output. In general,

sensitivity analysis for the surrogate model will require the surrogate to be evaluated for very

many different combinations of the input parameters. Oftentimes, the result is prone to Monte

Carlo error, depending on the number of model evaluations. This undermines the value of

surrogate models that are not extremely fast to evaluate for large numbers of inputs.

In this paper, we detail the benefits of using Bayesian multivariate adaptive regression splines

(BMARS) as an emulator for the purposes of sensitivity analysis. MARS and BMARS have

been recently introduced to the literature on computer model analysis (Chakraborty et al., 2013;

Stripling et al., 2013; Maljovec et al., 2013), as a flexible and scalable alternative to more tradi-

tional Gaussian process based methods. We emphasize, in particular, that the sensitivity analysis

of a BMARS surrogate model can be performed without requiring evaluations of the surrogate,

and thus without Monte Carlo error. This is the case for a limited number of surrogate models,

perhaps the most popular of which is polynomial chaos (Sudret, 2008). While both BMARS

and polynomial chaos use polynomial expansions that facilitate the analytical calculations of

the integrals required for a global sensitivity analysis, BMARS is especially well suited for high

dimensional problems. In addition, BMARS follows an adaptive strategy to fitting the response

surface, producing flexible and parsimonious emulators. For completeness, Oakley and O’Hagan

(2004) propose a method for getting sensitivity indices under a scalar Gaussian process emula-

tor that is Monte Carlo free and analytical in some cases. However, the BMARS method we

introduce is well suited to much larger datasets than Gaussian process methods.

Our interest lies especially in the application of these methods to computer models that gen-

erate functional data. Such models present a particular challenge as they often produce output

of massive dimension, as, for every combination of the input parameters, there are hundreds

or even thousands of simulated values. The example that motivated our interest in BMARS
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emulators is a computer model of the deformation of a metal plate during pressure driven exper-

iments. This model has seven inputs detailing the configuration of the plate and outputs a curve

representing the profile of the plate after deformation, as shown in Figure 1. The most natural

way to approach emulating a model that outputs functions, say of r, would be to think of r as

though it was another input to the model. However, if we have m model evaluations that each

output a function on a grid of size n, then this approach to emulation would need to be able to

handle data of size mn, which can be difficult for large m or large n.

In this paper, we show how the BMARS formulation is well suited for functional output.

We introduce sensitivity analysis methods for functional data, and give analytical sensitivity

measures for the functional BMARS model. We also introduce some alterations to the BMARS

priors to induce regularization as well as parallel tempering in the MCMC sampling scheme to

allow for efficient exploration of the highly multimodal model space.

Figure 1: Formulation of the plate deformation model: (a) shows the configuration of the protec-
tive (half) plate, (b) shows the output from 104 evaluations of the computer model with different
variable combinations, and (c) shows the variables. Each curve in (b) is the output from one
model evaluation and represents the profile of the tantalum plate after the experiment. Zero in
the x-axis of (b) represents the center of the plate.

The structure of the paper is as follows. We first review the definition of the Sobol’ index,

which we use as a measure of global sensitivity, in Section 2. We specifically detail some ap-

proaches for obtaining the Sobol’ index for models with functional output. We then explain
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our approach to fitting the BMARS surrogate model in Section 3, including our prior specifi-

cation, computational approach for functional model output, tempering scheme, and analytical

expressions for the Sobol’ sensitivity indices. In Section 4, we present a simulation study to

demonstrate the effectiveness of the sensitivity analysis approach. In Section 5, we perform a

sensitivity analysis of a model of the deformation of a protective plate used in pressure driven

experiments. Finally, we discuss our findings in Section 6.

2 Global Sensitivity Indices for Functional Output

The Sobol’ sensitivity indices (Sobol’, 1990) decompose the variance of the model output in terms

of the variance due to main effects (first order effects) for each of the inputs, and variance due to

interaction effects (higher order effects). This is the same task that the ANOVA decomposition

accomplishes in linear models, but for models that may be highly nonlinear. To start, let the

function f represent our model (or surrogate model). Say that f is a function of p inputs,

x = (x1, . . . , xp), each with domain in the unit interval. Further, say that f has functional

output that is a function of r, also with domain in the unit interval. Then f(r,x) is a scalar.

The Sobol’ decomposition of such a functional output model could proceed in two ways.

First, consider writing f as

f(r,x) = f0(r) +

p∑
i=1

fi(r, xi) +
∑

1≤i<j≤p

fij(r, xi, xj) + . . .+ f1...p(r, x1, . . . , xp)

where

f0(r) =

∫ 1

0

. . .

∫ 1

0

f(r,x)dx

fi(r, xi) =

∫ 1

0

. . .

∫ 1

0

f(r,x)dx−i − f0(r)

fij(r, xi, xj) =

∫ 1

0

. . .

∫ 1

0

f(r,x)dx−ij − f0(r)− fi(r, xi)− fj(r, xj)

and so on with x−ij being the vector x without elements i and j. These terms are interpretable

as the overall mean function, f0(r), the main effect function for variable i, fi(r, xi), the two way

interaction effect function for variables i and j, fij(r, xi, xj), and so on. Proceeding with the
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method for obtaining Sobol’ indices, we have that

V ar(f(r,x)) =

p∑
i=1

V ar(fi(r, xi)) +
∑

1≤i<j≤p

V ar(fij(r, xi, xj)) + . . .+ V ar(f1...p(r, x1, . . . , xp))

which we write as

D(r) =

p∑
i=1

Di(r) +
∑

1≤i<j≤p

Dij(r) + . . .+D1...p(r). (1)

Thus, we have decomposed the variance of the function in terms of the variance from the main

effects of each input and the variance from the interactions between inputs. Each of these terms

is a function of r, as are the associated sensitivity indices

Si1...il(r) =
Di1...il(r)

D(r)
,

so that Si1...il(r) is the proportion of variance in the model output at r explained by the inter-

action between inputs i1 . . . il in addition to the variance explained by main effects coming from

these inputs and interactions of lesser order between these inputs. We may also be interested in

the cumulative sensitivity of the model to a particular input at r. The total sensitivity for input

i at r is defined as

Ti(r) = Si(r) +
∑
j 6=i

Sij(r) + . . .+ S1...p(r)

and interpreted relative to Tj(r) as the importance of input i compared to input j at r. Though

these are no longer interpretable as proportions, they give us an idea of the overall importance

of an input relative to the other inputs at a particular r.

The second way we could obtain the Sobol’ decomposition of such a functional output model

would be to augment the vector of inputs to z = (r,x). We then obtain the decomposition

f(z1, . . . , zd) = f0 +

d∑
i=1

fi(zi) +
∑

1≤i<j≤d

fij(zi, zj) + . . .+ f1...d(z1, . . . , zd), (2)

where d = p + 1. We proceed with the traditional Sobol’ variance decomposition to obtain Si,
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Sij , Ti, etc., which are no longer functions of r. Letting r = z1, S1 is the proportion of variance

in the model output due to the main effect produced by the functional variable r. This provides

interesting insights, especially when determining whether the bulk of the variance in the model

output is due to the functional variables or the inputs to the computer model.

These approaches to functional sensitivity analysis have complementary strengths, as will be

demonstrated in the plate deformation example in Section 5.

3 BMARS

We now discuss the problem of fitting a BMARS model to a set of simulated output in more

detail. Multivariate adaptive regression splines (MARS) were proposed in Friedman (1991) as a

continuous alternative to recursive partitioning methods like CART. The adaptive part of MARS

is what makes it work for high dimensions (large numbers of input variables). Multivariate

(non-adaptive) regression splines might take a tensor product of one dimensional splines to get a

multivariate spline, but with only a few dimensions the number of knots explodes and the curse

of dimensionality becomes debilitating. The MARS model instead chooses knots adaptively,

learning where to put them in the same way that partitions are learned in classification and

regression tree (CART) models (Breiman et al., 1984). Thus, if there is not sufficient utility

in having a knot at some point in the high dimensional input space, it will not be included.

Further, the MARS model has a natural ANOVA type decomposition, making main effects and

interactions easy to understand. Unlike CART, MARS produces continuous models, creating

computational difficulties but resulting in more realistic models.

The original MARS inference is done using a forward stepwise algorithm followed by a back-

ward stepwise algorithm similar to versions of inference for recursive partitioning. The Bayesian

version (Denison et al., 1998b; Nott et al., 2005) considers all the unknowns as random variables

and assigns prior distributions to them. Reversible Jump Markov chain Monte Carlo (RJMCMC)

(Green, 1995) methods are used to obtain transdimensional samples from the joint posterior. Our

approach uses aspects of Denison et al. (1998b) and Nott et al. (2005) but with a number of

significant alterations to the priors, a strong focus on efficient handling of functional data, and

tempered RJMCMC to achieve more efficient sampling.
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We note that MARS is not an interpolator, meaning it does not have the property that

the fitted emulator replicates the computer model runs exactly. When emulating deterministic

computer models, using an interpolator seems like a natural choice. However, Gramacy and

Lee (2012) point out that emulation is often improved when a small-scale measurement error is

included.

We will first formulate the model and discuss our choice of priors. We then discuss efficient

computation for functional data. Next, we discuss the need for tempering, and our tempering

approach. Finally, we discuss how to analytically obtain the Sobol’ decomposition of a BMARS

model.

3.1 Model formulation

To use the BMARS approach for functional data, we include the functional variable as an

additional input to the model. At this point, we consider only the case of output as a function

of one variable, as is the case in the plate deformation example. Let yi(r) denote the simulator

output at r using input vector xi, where r denotes the functional variable and i = 1, . . . , nx.

Then we model yi(r) as

yi(r) = f(r,xi) + εi(r), εi(r) ∼ N(0, σ2)

where we use a basis expansion to specify f ,

f(r,x) = a0 +
M∑
m=1

amBm(r,x).

If we let z = (r,x), the mth basis function Bm(r,x) = Bm(z) is given by

Bm(z) =

Km∏
k=1

[skm (zvkm − tkm)]
α
+ (3)

which is a tensor product of piecewise polynomials of degree α. The value of Km determines

the degree of interation in the basis function, where Km ∈ {1, . . . ,Kmax}. The vkm is an index

to determine which variable is used (which element of z). We allow each variable to be used at

most one time in each basis function. The tkm is called a knot, and is a value in the domain of
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the variable zvkm . Following previous MARS implementations, a knot tkm is only allowed at one

of the marginal locations where we have a value of zvkm in the data for identifiability purposes.

The skm is a value in {−1, 1}. The function [·]+ is defined as max(·, 0), meaning that it makes

any negative values zero.

This notation follows that of Friedman (1991), with the exception of the inclusion of the

functional variable. The functional variable could be space, time, or any other such variable over

which the output is measured. In practice, functional output is usually given on a grid. While

nothing in the formulation above requires the output for yi(r) to be on the same grid of r values

as yj(r), say that the output for y1(r), . . . , yn(r) are on the same grid of nr values. We will

denote this grid as r. For example, if r denotes time, nr would be the number of time points on

which the output is given, and r would be the vector of those time points. Treating the functional

variable as an additional input results in a univariate MARS fitted over N = nx×nr data points.

If we define the nx × p matrix X such that the ith row of X is xi, then the data used to fit the

MARS model are the rows of [1nx⊗r,X⊗1nr ], where ⊗ denote the Kronecker product. For large

nx or nr manipulating, and even storing the full matrix X can be challenging. More specifically,

in the course of inference and prediction, we will plug in values of x and r to Equation 3 to get

discretized versions of the basis functions, which we call basis vectors. We denote the mth basis

vector as Bm, and the (M + 1)×N matrix of basis vectors (with an additional column of ones)

as B. When N is large and M is moderately large, storing this matrix becomes costly. We will

discuss a computational strategy that simplifies this approach in Section 3.2.

To complete the Bayesian specification of the model, we will specify priors for the unknown

parameters. Our unknowns include the number of basis functions M , the basis function coeffi-

cients a = (a1, . . . , aM ), the variance σ2, and the parameters used to build each basis function.

For the mth basis function, these are Km, sm = (s1m, . . . , sKmm), vm = (v1m, . . . , vKmm),

tm = (t1m, . . . , tKmm). For notation purposes, let K = (K1, . . . ,KM ), s = (s1, . . . , sM ),

v = (v1, . . . ,vM ), and t = (t1, . . . , tM ). We will formulate our prior as

p
(
M,σ2,a,K, s,v, t, λ, τ

∣∣X, r) = p(λ)p(τ |X, r)p(σ2)p(M |λ)p(a|M,σ2,B, τ)

M∏
m=1

p(Km|M)p(sm,vm, tm|Km,M,X, r)
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where λ and τ are hyper parameters to be discussed below. We point out that B is a function

of M , K, s, v, t, X, and r. We also note that priors conditional on such quantities as X and r,

do not violate the Bayesian formulation, as they are considered known.

For the number of basis functions we use a Poisson prior

p(M |λ) ∝ e−λλM

M !

truncated toM = 0, . . . ,Mmax, whereMmax is the maximum allowable number of basis functions.

We use a Gamma(aλ, bλ) hyperprior for λ. For the error variance, we use a default prior,

p(σ2) ∝ 1/σ2. For the basis function coefficients, we use a variant of Zellner’s g prior (Zellner,

1986; Liang et al., 2008) with

a|B, τ, σ2 ∼ N
(
0,
σ2

τ
(B′B)

−1
)

where τ |X, r ∼ Gamma(1/N, 1). Thus, τ is centered over the unit information prior. This prior

simplifies computations when compared to previous approaches that use a ridge regression prior.

It also induces a parsimonious choice in the number of basis functions by introducing shrinkage,

which the ridge regression prior also does. For the interaction order we use a discrete uniform

prior

Km|M ∼ Unif{1, . . . ,Kmax}, m = 1, . . . ,M.

Most implementations of this model take Kmax = 2 as a default. However, we would like to allow

for two way interactions between the input variables that can also interact with the functional

variable, so we use Kmax = 3. We note that one could easily adopt a prior that assigns decreasing

probability to larger values of K in order to allow for higher dimensional interactions if the data

really dictate their inclusion.

For the signs, variables, and knots, previous Bayesian approaches have considered a discrete

uniform prior over all possibilities. We use a similar discrete uniform prior, but over a limited

set of possibilities. The reason for this is that we want to limit how localized a basis function

can become in the same way that recursive partitioning approaches do, which is to require
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that each partition contain a certain number of data points. This is because very local fitting

often produces overfitting. In our experience this issue is magnified when functional output

is considered. In the MARS approach, we do not exactly have regular partitions, since basis

functions are usually overlapping in the input space. We get a gauge on how local the structure

a certain basis function is trying to explain by counting the number of non-zero points in the

basis vector. Although this is only a reliable measure of how localized the model is near the

edge of the input space (in p dimensions), this is the part of the space for which MARS tends

to become unstable.

As an example of the instabilities that we can encounter if we allow for all possible knot,

sign, and variable combinations, consider the dataset given in Figure 2. There are 100 random

uniform (x1, x2) pairs, given as black dots. If we were interested in choosing knots for the MARS

basis function [x1− t1]+[x2− t2]+, the red dots in the left plot give the possible locations if we do

not constrain the prior. The partition created by the choice of (t1, t2) would, in many of these

cases, contain few data points. The corresponding basis function would then be trying to fit the

very local structure in those few points. The right panel shows the possible knot locations (in

red) if we require the partition to contain at least 20 points. Some may suggest that a simpler

way to fix the edge instability of MARS is to not allow marginal knots too close to the endpoints

of the space, as in Friedman (1991). For instance, if we required each knot in the example to

have at least 20 points marginally between it and the edge of the space, we would allow for a

knot at the intersection of the lines shown in the right panel. Note, however, that there would

only be one data point driving the fit of that basis function, which would lead to overfitting.

To specify the prior for the signs, variables, and knots, that correspond to our proposed

constraint, we use the discrete uniform

p(sm,vm, tm|Km,M,X, r) =


cKm if bm ≥ b

0 otherwise

where bm is the number of non-zero values in the basis vectors and b is the minimum number of

non-zero points. In practice, since we have the entire functional output for each input combina-

tion, we might consider choosing b based only on the part of the basis function that corresponds
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Figure 2: In both plots, 100 random uniform (x1, x2) pairs are shown with black dots. If we
wanted to build the basis function [x1 − t1]+[x2 − t2]+, the red dots in the left panel show
the possible (t1, t2) knot locations if the prior for knots is unconstrained. On the right are the
possible knot locations when the resulting basis vector is constrained to have at least 20 non-zero
values. The lines are placed so that there are 20 data points larger than them in each dimension
marginally to illustrate the approach advocated by Friedman.

to the non-functional inputs. We can do this is by replacing b above with bnr where b is chosen as

the minimum number of input points allowed to contribute to the local structure of the function,

which we do in the plate deformation problem. In particular, we use b = 20, though we find

the results are fairly robust for b > 10. We note again, as with the prior for K, that we could

instead use a prior that places lower probability on basis functions with smaller bm in order to

allow for more localized basis functions if the data gave strong enough evidence for them, though

we consider only the discrete uniform prior in this paper. The value of cKm would usually be

unimportant and this prior would merely add an indicator function to the posterior. However,

in the RJMCMC algorithm, cKm will play a role. The actual value of cKm is the reciprocal of

the number of possible basis functions with interaction order Km, which depends on X and r.

For some datasets, it is feasible to run a pre-processing step to count the basis functions that

meet the required criteria. For datasets where this is not the case, we recommend using, as a
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conservative proxy, the constant that would result from the unconstrained prior as an estimate,

cKm =

(
1

2

)Km ( p

Km

)−1 Km∏
k=1

1

nvkm

where the first term is obtained from the count of all sm, the second from that of the vm, and

the third from that of the tm, conditional on the corresponding vm. Here, nvkm is the number

of unique marginal values of the vkm input in the dataset. This prior for the knots is slightly

different than previous approaches because we have nx possible knot locations if vkm is one of

the regular inputs and nr possible knot locations if vkm is the functional variable. We find that

using this estimate does not negatively influence the results in test cases.

Now, to address our settings of the fixed parameters we have not yet addressed, we first

consider the spline order α. While in many cases, setting α to an integer that would ensure

continuous derivatives would make sense, we often encounter instabilities when α > 1. This is

because of the erratic tail behavior of higher order polynomials, as is documented in Friedman

(1991). In practice, α = 1 tends to work quite well even for smooth surfaces. We find that the

value of Mmax need not be finite unless computer memory constraints are encountered in the

fitting. Mmax too small should be avoided in order to allow the necessary exploration of the

parameter space. The setting of the hyperparameters for λ, the mean of the distribution of the

number of basis functions, can be difficult. This is because under the model formulation we have

given, the only way to prevent overfitting, even with a reasonable setting of b and Kmax, is to

have a strong prior keeping the number of basis functions small. Hence, this is a prior that may

require tuning. Other possibilities are to use a strong prior keeping the value of σ2 large or, as

has been done in other approaches, use a large value of τ to shrink the values of a towards zero.

In our experience, changing the value of τ has little effect. A prior keeping the value of M small

seems less invasive that one that keeps σ2 large, especially when uncertainty quantification is

important. Thus, we advocate for a prior that keeps λ smaller than the actual number of basis

functions that we expect. The slow rate at which the tail of the Poisson distribution decays

makes it a weak prior otherwise.
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3.2 Computation

We adapt the original RJMCMC stochastic search algorithm for BMARS (Denison et al., 1998b)

with the additions of Nott et al. (2005) to work with the priors discussed in the previous section.

The RJMCMC has three possible steps: birth (create a new basis function, add it to the model),

death (remove a basis function), change (change a knot and sign in one basis function). The

additions of Nott et al. (2005) allow for fast variable selection by proposing variables to be used

in a new basis function with probability proportional to the number of times they have been

used in the current set of basis functions.

To efficiently deal with large N , we will break each of our tensor product basis functions into

two parts, the part that uses the variables x and the part that uses the functional variable r. We

can then write basis function m as Bm(r,x) = Bxm(x)Brm(r). If we let Sxm = {k ∈ (1, . . . ,Km) :

zkm 6= r} and Srm = {k ∈ (1, . . . ,Km) : zkm = r}, then

Bxm(x) =


∏
k∈Sx [skm(zvkm − tkm)]α+ if |Sx| > 0

1 otherwise

Brm(r) =


[skm(r − tkm)]α+|k∈Sr if |Sr| > 0

1 otherwise

.

We then create the nx-vector Bx
m = (Bxm(x1), . . . , Bxm(xnx))

′
and the nr-vector Br

m = (Brm(r1), . . . , Brm(rnr ))
′
.

Note, then, that a MARS basis vector is written as Bm = Bx
m ⊗Br

m. Thus, we have broken the

MARS basis vector into the part from the input variables (Bx
m) and the part from the functional

variable (Br
m). The cases when these are vectors of ones occur when the basis function uses only

the functional variable or only the design variables.

Now, the matrix of basis functions B can be written as [1N ,B
x
1⊗,Br

1, . . . ,B
x
M⊗,Br

M ]. If

Bx = [1nx ,B
x
1 , . . . ,B

x
M ] and Br = [1nr ,B

r
1, . . . ,B

r
M ] then we have that B = Bx ∗ Br where ∗

denotes the Khatri-Rao product (Kolda, 2006; Lev-Ari et al., 2005). This Kronecker structure

simplifies many matrix calculations. For instance, from properties of Khatri-Rao products, Ba =

vec(Brdiag(a)Bx′). This is an important quantity in prediction, and under this formulation it

can be calculated without building explicitly the whole matrix B. Other important quantities
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used for inference also have simplified forms, such as B′B =
(
Bx′Bx

)
◦
(
Br ′Br

)
where ◦ denotes

the Hadamard (elementwise) product, and B′vec(Y) = vecd(Br ′YBx) where Y is the nr × nx

matrix of data. Here, vec(·) denotes the columnwise stacking of a matrix and vecd(·)denotes the

vectorization of the diagonal of a matrix. These simplifications mean that we do not need to

build the large matrix B explicitly, but can instead work with the smaller Br and Bx.

Further simplifications come from the fact that in the RJMCMC algorithm, we are only

adding, deleting, or changing one basis function at a time. For instance, if we were adding a basis

function, B∗, we need only calculate B∗
′B∗ = (Bx

∗
′Bx
∗)(B

r
∗
′Br
∗) and B′B∗ = (Bx′Bx

∗) ◦ (Br ′Br
∗)

in order to update B′B. Deleting is simpler in that if we have selected the mth basis function

to delete, we need only remove the (m + 1)th row and column of B′B. We use similar updates

for B′vec(Y).

3.3 Tempering

The BMARS model, along with Bayesian versions of CART (Denison et al., 1998a; Chipman

et al., 1998), yield a posterior distribution over a space of models that is often highly multimodal.

As such, the RJMCMC algorithm tends to have difficulty exploring the entire posterior. In the

BMARS case, after selecting a set of basis functions and ending up in one of these modes,

it is unlikely that enough basis functions will be deleted to allow for the chain to move to

another mode. BMARS and Bayesian CART approaches to dealing with this problem have often

centered around restarting the MCMC algorithm after a certain number of iterations. Restarting

the MCMC, or equivalently, taking samples from parallel chains, has the undesirable property

of representing modes based on their “basins of attraction” instead of the total probability

associated with each mode (Neal, 1996).

We overcome these problems by using parallel tempering, also known as Metropolis coupled

MCMC (Geyer, 1991). That is, we run multiple MCMC chains in parallel, each with a slightly

different stationary distribution, and allow them to swap states. Particularly, if we denote our

parameter vector as θ = (M,σ2,a,K, s,v, t, λ, τ), our data as y, and the posterior of interest

as π(θ|y), we will define a series of altered posterior distributions as π1(θ|y), . . . , πT (θ|y). In

this paper, we define πi(θ|y) ∝ π(θ|y)ti , where ti is called the inverse temperature parameter

and the sequence 1 = t1 > t2 > . . . > tT > 0 is called the temperature ladder. Small values of

15



ti flatten posterior modes and raise troughs, and correspond to “heated” chains where mixing

easier. A swap of the current state from chain i (called θi) with that of the current state from

chain j (called θj) is accepted with probability

αswap = min

{
1,
πi(θj |y)πj(θi|y)

πi(θi|y)πj(θj |y)

}
.

We note that state vectors θi and θj are possibly of different dimension, so quantities like πi(θj |y)

are not necessarily intuitive. Further, the assurance that posterior normalizing constants cancel

is not immediately clear, because of the dimensionality difference. We will show explicitly what

we mean when we write πi(θj |y) and why it works with the unnormalized posterior.

Call the unnormalized posterior distribution function g(θ|y). Then, π(θ|y) = g(θ|y)/c where

c is obtained by marginalizing g(θ|y) over all the parameters in θ. Note that c is the same no

matter the dimension of θ since we are marginalizing over all possible dimensions. What we

mean by πi(θ|y), no matter the dimension of θ, is πi(θ|y) = [g(θ|y)/c]ti/ai where ai is obtained

from marginalizing [g(θ|y)/c]ti over all the parameters in θ. Now, let ci = ctiai and we have

that πi(θ|y) = g(θ|y)ti/ci. Note then that πi(θj |y) and πi(θi|y) have the same normalizing

constants, ci. Thus, the acceptance ratio can be written as

πi(θj |y)πj(θi|y)

πi(θi|y)πj(θj |y)
=

(
g(θj |y)

g(θi|y)

)ti−tj

which means that the normalizing constants cancel and we need only keep track of the unnor-

malized posterior for each chain.

This can be done in parallel, as in Altekar et al. (2004), such that it requires very little

communication between chains. Rather than explicitly swapping states, we swap temperatures.

Also, we only keep samples from the true posterior (the coolest chain), meaning that the memory

footprint of such an algorithm is not substantially larger than when we do not use tempering.

While simulated tempering (Geyer and Thompson, 1995) might provide better mixing than par-

allel tempering (Atchadé et al., 2011), specification of a pseudo-prior for the inverse temperature

is difficult. Further, being able to run the chains in parallel is very useful to those who have access

to large parallel computers, which is common among those working in uncertainty quantification.
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3.4 Sobol’ Indices for BMARS

We now discuss the Sobol’ decomposition of a BMARS model. In particular, we note that the

integration required to obtain the Sobol’ decomposition can be done in closed form. Chen et al.

(2005) describe how tensor product basis function expansions have analytical Sobol’ decomposi-

tions under certain conditions. For MARS models, these conditions are that we can analytically

perform the integration

Cv(s, t) =

∫ 1

0

[s(xv − t)]α+dxv (4)

Cv(s1, t1, s2, t2) =

∫ 1

0

[s1(xv − t1)]α+[s2(xv − t2)]α+dxv. (5)

We find that this is possible when α is a positive integer. Particularly

Cv(s, t) =


(1−t)α+1

α+1 s = 1

tα+1

α+1 s = −1

Cv(s1, t1, s2, t2) =



∫ 1

t2
[(xv − t1)(xv − t2)]

α
dxv s1 = s2 = 1∫ t1

0
[(xv − t1)(xv − t2)]

α
dxv s1 = s2 = −1

(−1)α
∫ t2
t1

[(xv − t1)(xv − t2)]
α
dxv s1 = 1, s2 = −1

0 s1 = −1, s2 = 1

(6)

assuming, without loss of generality, that t1 ≤ t2. The integrals in Equation (6) are

∫ b

a

[(x− t1)(x− t2)]
α
dx =

[
α∑
i=0

pi(x− t1)α−i(x− t2)α+1+i

]x=b
x=a

where pi = (α!)2(−1)i
(α−i)!(α+1+i)! . We can then write quantities like f̂ij(zi, zj) =

∫ 1

0
. . .
∫ 1

0
f(z)dz−ij , the

non centered version of fij(zi, zj) in Equation 2, using Equation 4. We can write quantities like∫ 1

0

∫ 1

0
f̂ij(zi, zj)

2dzidzj , important in finding V ar(fij(zi, zj)), using Equations 4 and 5. Similarly,

fij(r, x1, x2) and V ar(fij(r, x1, x2)) can be written using Equations 4 and 5 where we never

integrate over r.
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Specifically, if we are considering a set of variables indexed by W = {i1, . . . , il}, the quantity

of interest DW (r) from Equation 1 can be obtained as

DW (r) =
∑
U∈P

(−1)|W |−|U |D̂U (r)

where P is the power set of W excluding the empty set, |U | denotes the size of set U , and

D̂U (r) =

M∑
m1=1

M∑
m2=1

am1
am2

Brm1
(r)Brm2

(r)

{ ∏
k∈U1

Cvkm1
(skm1

, tkm1
)
∏
k∈U2

Cvkm2
(skm2

, tkm2
)

∏
k∈U12

Cvkm1
(skm1 , tkm1 , skm2 , tkm2)−

∏
k∈Sx

Cvkm1
(skm1 , tkm1)

∏
k∈Sx

Cvkm2
(skm2 , tkm2)

}
.

Here U1 = {k : ∀l, vkm1 6= vlm2}, U2 is defined similarly with m1 and m2 switched, U12 = {k :

vkm1
∈ U} ∩ {k : vkm2

∈ U}, and Brm(r) and Sx are defined as in Section 3.2.

For each posterior sample, we can calculate the Sobol’ decomposition to quantify the uncer-

tainty of the sensitivity indices. This would be uncertainty due to variance in the emulator, not

due to Monte Carlo error, as is usually the case.

4 Simulation

Consider the function

f(x) = 10 sin(2πx1x2) + 20

(
x3 −

1

2

)2

+ 10x4 + 5x5,

with each xi ∈ [0, 1], which is a slight alteration of the Friedman function (Friedman, 1991;

Denison et al., 1998b; Gramacy and Lee, 2012; Surjanovic and Bingham, 2015). We treat x1

as a functional variable. In order to get more flexible functional output we replace π in the

Friedman function with 2π. The integrals necessary to obtain the Sobol’ sensitivity indices for

this function are mostly analytical, with solutions given in the appendix. The integrals that are

not analytical have solutions that can be represented using series approximations to an arbitrary

degree of accuracy.

We simulate nx values of x2, . . . , x5 from the uniform hypercube and set x1 to be a grid

of values of length nr and use these to generate f(x) for the nx × nr combinations of x. We
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Figure 3: A few simulated curves, f(x), are given on the left in terms of the functional variable
x1. The middle and right plots show the small and large data curves corresponding to the curves
on the left.
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Figure 4: Posterior distributions of sensitivity indices represented with boxplots for the small
and large datasets. Actual values of sensitivity indices are given with red dots.

add standard Normal errors to the simulated values of f(x). We further generate nx values of

x6, . . . , xp that will be extraneous variables. We will fit our BMARS emulator to these data.

This corresponds to having nx model runs, each of which outputs a curve on a grid of nr values.

Further, the computer model takes p inputs, but only four of them are meaningful.

We consider two settings of nx, nr, and p that demonstrate cases with small and large data.

For the small data case, we use nx = 100, nr = 10, and p = 5. For the large data case, we

use nx = 20000, nr = 500, and p = 200. To demonstrate what these functional data look like,

twenty curves with different settings of x are shown in Figure 3 under these two settings of nr

with standard Normal error, in addition to the true curves. Fitting BMARS models to the small
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Figure 5: Functional pie charts of posterior mean sensitivity indices compared to true values. The
left panels show the sensitivity indices using the smaller data set. The middle shows these indices
using the larger dataset. The right panels show true values. The top panels show functional pie
charts while the bottom show the partitioned variance.

and large datasets took 14 and 966 seconds, respectively, on a personal computer with a 1.7 GHz

Intel Core i7 processor. The posterior median number of basis functions used for the small and

large datasets is 26 and 95. In these simulations, we did not use tempering.

We demonstrate our two functional sensitivity analysis approaches using BMARS emulators

built using these datasets. The sensitivity indices when x1 is treated as one of inputs are given

in Table 1 and Figure 4, along with the true values. The functional sensitivity indices (posterior

mean) are given in the form of functional pie charts (Saltelli et al., 2000; Lamboni et al., 2009)

in Figure 5, along with the true functional sensitivity indices. In both approaches, we are able

to capture the important elements quite well for both the small and large data cases. Since the

Sobol’ indices are available analytically when we use the BMARS emulator, discrepancy in the

sensitivity indices (which is quite small in our simulation) is due only to emulation discrepancy.

The sensitivity analysis is more accurate when we use more data and has more uncertainty when

we have small data, as we would expect. Our BMARS methods are able to efficiently handle the

large data analysis.
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Table 1: Posterior mean Sobol’ indices for BMARS functions fit with small and big datasets,
compared to actual sensitivity indices.

BMARS - small data BMARS - big data Actual
S1 0.15365 0.15232 0.15225
S2 0.16185 0.15224 0.15225
S3 0.05391 0.05337 0.05335
S4 0.20034 0.20014 0.20008
S5 0.04871 0.05000 0.05002
S12 0.38144 0.39192 0.39206

Total 0.99990 0.99998 1.00000

5 Plate Deformation Model Sensitivity Analysis

In this section, we use the above formulation to create an emulator for the plate deformation

model and perform a sensitivity analysis. The plate deformation model has seven inputs control-

ling the configuration of a tantalum plate used to protect a diagnostic imager during pressure

driven experiments, as shown in Figure 1(c). The output from one model run is a curve rep-

resenting the profile of the deformed plate starting from the center of the plate and extending

along the radius to the end of the plate. Hence, the functional variable r in this case is called

radial position. Each curve is given on the same grid of nr = 517 equally spaced points. We

have model runs corresponding to nx = 104 combinations of x specified using a Latin hypercube

design, for a total of 53,768 simulated values. A separate Latin hypercube was used to obtain

34 model runs that will be used to test the fit of the emulator.

We use the BMARS formulation given above to build a surrogate model. We use α = 1,

Mmax = 300, and a hyperprior for λ that keeps it close to zero. Specifically, we use aλ = 1

and bλ = 10300 (chosen by cross-validation). Such a large value of bλ is necessary in this case

because of the combination of the smoothness of the curves and the large number of possible

basis functions. If we did not limit basis functions based on partition size, there would be

more than 1.2 × 109 possible basis functions, which means more than 21.2×10
9

possible models.

Hence, bλ = 10300, which controls the regularization on the number of basis functions, is not an

exorbitantly large number when compared with the size of the model space. We note that when

the curves are smooth, σ2 plays the role of quantifying the variance in the data not explained by

the model, and will thus be larger as we impose stronger regularization. Posterior exploration is

especially difficult in this case because moving from one posterior mode to another may require

a substantial increase in σ2, which is not likely to be favored in a typical RJMCMC chain.
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This is where tempering becomes extremely useful. We choose a temperature ladder through

experimentation, and find that the maximum inverse temperature at which we are able to mix

well over the model space is 0.001. We find that mixing is reasonable when we use 100 inverse

temperatures in the pattern ti = 1−Φ
(
i−50.5
13.2

)
, where Φ denotes the standard Normal cdf. Plots

of predicted curves (point-wise posterior means) and residual curves for the training and test

data are given in Figure 6. These plots show that we are able to explain most of the variation

in the computer model runs with the emulator. The posterior predictions for four individual

curves from the test set is shown in Figure 7 with 95% central regions (curve-wise) constructed

following Sun and Genton (2012).
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Figure 6: Model fit for the training and test data. From left to right the panels show the model
runs (observed data), our prediction (posterior mean) of the model runs, the observed curves
against the predicted curves, and residual curves. The top panels show predictions of the training
data while the bottom panels show predictions of the test data.

Upon obtaining a suitable BMARS surrogate model, we use the analytical Sobol’ decom-

position as described above to obtain the sensitivity indices for each posterior sample. First,

consider the model sensitivity when we treat the functional variable as one of the inputs. Figure

8 shows the posterior distributions of the sensitivity indices for the most important main effects

and interactions as boxplots, as well as the posterior distributions of the total sensitivity indices.
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Figure 7: Predicted mean curves with 95% central regions for four model runs from the test
data.

Importance was determined by ranking means. These show that radial position (the functional

variable) explains most of the variance, and that the most important input variable is the spacer

thickness. These variables have a strong interaction with each other and show up in interactions

with other variables. The reality of this problem is that all the effects should be interactions with

the functional variable, since there is nearly zero variance in the model output at the large radial

positions. However, because of the sequential nature of the Sobol’ decomposition (sensitivity

indices for interactions are the additional variance explained when the main effects and lower

order interactions are already included), it is not surprising to see important terms that do not

interact with radial position. It could be that the higher order interaction with radial position

only contributes a small amount.

Now, consider the approach to sensitivity analysis that takes sensitivity as a function of

radial position. For each main effect and interaction we now have a sensitivity index that is a

function of r. Plots of posterior mean sensitivity for the main effects and most important effects

are shown in functional pie charts in Figure 9. Also included in Figure 9 are plots of how the

standard deviation as a function of radial position is partitioned. Importance was determined

by integrating the partitioned variance functions over radial position. We note that the plots

are blank when r approaches 0.9 because many of the MCMC draws yield zero variance after

that point, and we do not try to decompose zero variance. This is a desirable property, since the

actual data have zero variance for these values of r. These plots show us which variables and

interactions are most important at different radial positions. Clearly, the spacer thickness is most
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Figure 8: Sensitivity analysis including the functional variable. The top left boxplots are the
posterior distributions of the largest sensitivity indices, indicating which main effects and inter-
actions explain the most variance. The top right is an enlarged version to show the sensitivity
indices for terms that are hard to compare in the left plot. The bottom plots similarly show
the posterior distributions of the total indices. Note that the functional variable, labeled as 1,
explains most of the variance.

important because of the large main effect and the important interactions. These plots also show

us that the spacer gap radius plays an important role for 0.3 < r < 0.4. The lexan thickness plays

an important role on its own and interacting with spacer thickness for r > 0.3. The tantalum

thickness is important in combination with spacer thickness and on its own throughout the range

of r. The spacer gap radius plays a small role for r < 0.2, the most varied part of the functions.

6 Discussion

We have outlined the potential benefits of performing sensitivity analysis using BMARS as an

emulator for functional data. We introduced a way of doing sensitivity analysis with functional

data. We gave an altered version of BMARS with priors that improve the fit in many circum-

stances, specifically in cases where the traditional priors lead to overfitting. We also presented

modifications for the efficient handling of one dimensional functional data on a fixed grid. We
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Figure 9: Sensitivity analysis as a function of radial position. The top plots show functional pie
charts of the sensitivity indices for the main effects and the most important effects. The bottom
plots show the way the actual standard deviation of the model (a function of r) is partitioned.

showed that BMARS is fast, accurate, flexible, and can handle datasets with many variables and

thousands of curves, each represented with hundreds of observations. We described how global

sensitivity analysis can be performed effortlessly and without Monte Carlo error. We introduced

a tempering scheme that leads to more satisfactory posterior sampling than previous approaches.

Finally, we stress the fact that the Bayesian nature of the method allows for a full assessment

and propagation of the uncertainties.

We note that automatic specification of a model of this form is an ongoing problem. For

instance, using the automatic settings of the BMARS code that accompanies Denison et al. (2002)

resulted in extreme overfitting in the plate deformation problem. Our approach requires some

tuning in specifying the hyperprior for the mean number of basis functions, and we are interested

in other ways of regularizing. Another area for improvement in this model is the assumed

homoscedasticity. Conceptually, there would be no problem introducing heterscedasticity by

assuming variance depends on the functional variable and learning the form of the variance

functions. However, computationally, this is troublesome because we would need to manipulate
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very large matrices.

Owing to the many computer models coming into use that output large and complex data,

we feel that the BMARS methods outlined have promising possibilities in the field of uncertainty

quantification.

7 Appendix - Simulation Details

We obtain the Sobol’ decomposition of the function

f(x) = 10 sin(2πx1x2) + 20

(
x3 −

1

2

)2

+ 10x4 + 5x5 (7)

using the the approach where we treat x1 as another input (augmentation approach) and where

we get other sensitivity indices as a function of x1 (functional approach).

7.1 Augmentation Approach

The overall mean is given by

f0 =

∫ 1

0

. . .

∫ 1

0

f(x)dx

=

∫ 1

0

∫ 1

0

10 sin(2πx1x2)dx1dx2︸ ︷︷ ︸
a1

+

∫ 1

0

20

(
x3 −

1

2

)2

dx3︸ ︷︷ ︸
a2=5/3

+

∫ 1

0

10x4dx4︸ ︷︷ ︸
a3=5

+

∫ 1

0

5x5dx5︸ ︷︷ ︸
a4=5/2

where

a1 =

∫ 1

0

10 sin2(πx)

πx
dx

=
5

π
[log(2π) + γ − Ci(2π)]

Ci(x) = γ + log(x) +

∞∑
k=1

(−x2)k

2k(2k)!

⇒ a1 = − 5

π

∞∑
k=1

(−4π2)k

2k(2k)!
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The main effects are given by

f1(x1) =

∫ 1

0

10 sin(2πx1x2)dx2 + a2 + a3 + a4 − f0

=
10 sin2(πx1)

πx1
− a1

f2(x2) =
10 sin2(πx2)

πx2
− a1

f3(x3) = 20

(
x3 −

1

2

)2

− a2

f4(x4) = 10x4 − a3

f5(x5) = 5x5 − a4

and the interaction effect is given by

f12(x1, x2) = 10 sin(2πx1x2)− 10 sin2(πx1)

πx1
− 10 sin2(πx2)

πx2
+ a1.

Then the overall variance is given by

V ar(f(x)) =

∫ 1

0

. . .

∫ 1

0

f2(x)dx

=

∫ 1

0

. . .

∫ 1

0

100 sin2(2πx1x2)︸ ︷︷ ︸
50−25Si(4π)/2π

+ 400

(
x3 −

1

2

)4

︸ ︷︷ ︸
5

+ 100x24︸ ︷︷ ︸
100/3

+ 25x25︸︷︷︸
25/3

+ 400 sin(2πx1x2)

(
x3 −

1

2

)2

︸ ︷︷ ︸
2a1a2

+ 200x4 sin(2πx1x2)︸ ︷︷ ︸
2a1a3

+ 100x5 sin(2πx1x2)︸ ︷︷ ︸
2a1a4

+ 400x4

(
x3 −

1

2

)2

︸ ︷︷ ︸
2a2a3

+ 200x5

(
x3 −

1

2

)2

︸ ︷︷ ︸
2a2a4

+ 100x4x5︸ ︷︷ ︸
2a3a4

dx− f20

= 50− 25Si(4π)/2π + 5 + 125/3 + 2(a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4)− f20

where the underbraces give the quantity after integration and

Si(x) =

∫ x

0

sin t

t
dt =

∞∑
k=1

(−1)k−1
x2k−1

(2k − 1)(2k − 1)!
.
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The variances for the main effects are given by

V ar(f1(x1)) =

∫ 1

0

f21 (x1)dx1

=

∫ 1

0

100 sin4(πx1)

π2x21︸ ︷︷ ︸
50/π[2Si(2π)−Si(4π)]

+ a21 − 20a1
sin2(πx1)

πx1︸ ︷︷ ︸
a21−2a21=−a21

dx1

V ar(f2(x2)) = V ar(f1(x1))

V ar(f3(x3)) =

∫ 1

0

400

(
x3 −

1

2

)4

︸ ︷︷ ︸
5

+ a22 − 40a2

(
x3 −

1

2

)2

︸ ︷︷ ︸
−a22

dx3

V ar(f4(x4)) =

∫ 1

0

100x24︸ ︷︷ ︸
100/3

+ a23 − 20a3x4︸ ︷︷ ︸
−a23

dx4

V ar(f5(x5)) =

∫ 1

0

25x25︸︷︷︸
25/3

+ a24 − 10a4x5︸ ︷︷ ︸
−a24

dx5.

The variance for the interaction is given by

V ar(f12(x1, x2)) =

∫ 1

0

∫ 1

0

f212(x1, x2)dx1dx2

=

∫ 1

0

∫ 1

0

100 sin2(2πx1x2)︸ ︷︷ ︸
50−25Si(4π)/2π

+
100 sin4(πx1)

π2x21
+

100 sin4(πx2)

π2x22
+ a21︸ ︷︷ ︸

100/π[2Si(2π)−Si(4π)]+a21

−2
10 sin2(πx1)

πx1
10 sin(2πx1x2)− 2

10 sin2(πx2)

πx2
10 sin(2πx1x2)︸ ︷︷ ︸

−200/π[2Si(2π)−Si(4π)]

+ 2a110 sin(2πx1x2)︸ ︷︷ ︸
2a21

+ 2
10 sin2(πx1)

πx1

10 sin2(πx2)

πx2︸ ︷︷ ︸
2a21

−2
10 sin2(πx1)

πx1
a1 − 2

10 sin2(πx2)

πx2
a1︸ ︷︷ ︸

−4a21

dx1dx2

= 50− 25Si(4π)/2π − 100/π[2Si(2π)− Si(4π)] + a21
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7.2 Functional Approach

As a function of x1, the main effects are

f0(x1) =
10 sin2(πx1)

πx1
+ a2 + a3 + a4

f2(x1, x2) = 10 sin(2πx1x2)− 10 sin2(πx1)

πx1

f3(x1, x3) = f3(x3)

f4(x1, x4) = f4(x4)

f5(x1, x5) = f5(x5).

Then the variance functions are

D(x1) =

∫ 1

0

. . .

∫ 1

0

f2(x)dx−1

= 50− 25 sin(4πx1)

2πx1
+ 5 + 125/3 + 2(a2 + a3 + a4)

10 sin2(πx1)

πx1

+ 2a2a3 + 2a2a4 + 2a3a4 − f20 (x1)

D2(x1) =

∫ 1

0

f22 (x1, x2)dx2

= 50− 25 sin(4πx1)/(2πx1)− 100 sin4(πx1)

π2x21

D3(x1) = 5− a22

D4(x1) = 100/3− a23

D5(x1) = 25/3− a24.
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